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1 Measures of Assortativity

Sewall Wright [8] [9] [10] defined a measure of assortative matching “for
describing population structure in breeds of livestock and in natural pop-
ulations.” This measure has come to be known as Wright’s F-statistic.
Wright sometimes referred to the F -statistic as the coefficient of inbreeding
in a population and, in the case of animals with known pedigree, as the coef-
ficient of relatedness. Wright applied the F-statistic not only to assortative
matching resulting from inbreeding of kin, but also to preferential mating
patterns where mate choice is based on phenotypic similarities correlated
with genotypic similarity. between them. He offered a formal definition
of his F -statistic as “the correlation between homologous genes of uniting
gametes under a given mating pattern,”

There is a simple connection between the F -statistic and the prevalence
of “mixed pairs” in a population. In a genetics text book by Hartl and
Clark, ([7], page 245) Wright’s F is described as “the fractional reduction in
heterozygosity relative to a random-mating population with the same allele
frequencies.”

In a discussion of group selection and assortative mating, Bergstrom [4]
defines the index of assortativity of a matching process between types i and
j to be the difference between the probability that one is matched with a
type i given that one is of type i and the probability that one is matched
with a type i given that one is a type j. In a series of papers, [1], [2], [3],
Alger and Weibull apply this index of assortativity to analyze stable states
in the evolution of preferences.

Theorem 1 shows that for a broad class of matching processes, the three
measures, Wright’s correlation, the “fractional reduction in heterozygosity”
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and the “index of assortativity” are all equivalent.

Definition 1. A random matching process is an assignment such that each
individual in the population is assigned exactly one partner. The probability
that a randomly selected matched pair has one member of type i and one of
type j is denoted πij. The conditional probability that a randomly selected
individual of type j has a partner of type i is denoted π(i|j) .

Wright’s coefficient F is the correlation between the indicator random
variables for type of two individuals that are paired together. In standard
genetic applications, the combinatorics of diploid sexual reproduction im-
ply that this correlation is independent of the proportions of types in the
population. However, as we will demonstrate, there are interesting combi-
natorial processes in which this correlation depends on the proportions of
types. Thus where the proportions of the two types are p and 1 − p, we
will denote Wright’s statistic as F (p). The following result, whose proof is
found in the appendix, shows the equivalence of Wright’s correlation, the
reduction of heterozygosity, and the index of assortativity.

Proposition 1. In a random matching process with two types, where the
fractions of types 1 and 2 respectively are p and 1− p, Wright’s correlation
coefficient can be written in any of the following ways:

F (p) =
π(1|1)− p

1− p
, (1)

F (p) = 1− π12
2p(1− p)

, (2)

and as
F (p) = π(1|1)− π(1|2) (3)

Equation 1 of Theorem 1 expresses F (p) as the correlation coefficient
of indicators for the types of two individuals who are matched. Equation
2 expresses Hartl and Clark’s “fractional reduction in heterozygosity by
showing the ratio of the actual probability of a match between the two
different types and the probability of such a match if matching were random
is equal to 1 − F (p). Equation 3 shows that the “index of assortativity” is
equal to Wright’s correlation coefficient.

2 Two-Pool Assortative Processes

L.L. Cavalli-Sforza and M. W. Feldman employ the F -statistic in a study of
cultural evolution in a population with assortative matching ([5], page 96).
They describe a matching process which can be defined as follows:
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Definition 2. A two-pool assortative matching process with uniform as-
sortativity F is a random matching process such that with probability F ,
a member of the population matches from an “assortative pool”, consisting
only of its own type, while the complementary fraction 1− F matches from
a “random pool” consisting of all individuals who who did not match from
an assortative pool.

Proposition 2. Wright’s F -statistic for a two-pool assortative matching
process with uniform assortativity F is equal to F and is independent of the
proportions p and 1− p in the population.

Proof. An individual of type 1 can be matched with another type 1 in one
of two ways. With probability F , the individual joins an assortative pool
and is then certain to be matched with another type 1. With probability
(1 − F ), a type 1 joins the random pool. Since the fraction of type 1’s
in the random pool is p, the probability that a type 1 joins the random
pool and is matched with a type 1 is p(1 − F ). Therefore the conditional
probability that one is matched with a type 1 given that one is of type 1 is
π(1|1) = F +p(1−F ) = (1−p)F +p. Substituting this expression for π(1|1)
in Equation 1 of Theorem 1, we have

F (p) =
(1− p)F + p− p

1− p
= F. (4)

Since according to Proposition 1, the index of assortativity of a match-
ing process is equal to Wright’s correlation coefficient, the following is an
immediate corollary to Proposition 2.

Corollary 1. The index of assortativity a(p) of a two-pool assortative match-
ing process with uniform assortativity F is constant with respect to p and
equal to F .

Statistical Identification of F

An empirical investigator will typically observe the proportions of the three
possible types of matched pairs in a sample population. These can be used
to estimate the parameters F and p under the maintained hypothesis that
the matching was generated by a two-pool assortative process with uniform
assortativity, F . The pairs that appear in a sample generated by a uniform
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two-pool assortative process will be draws from a multinomial distribution,
where the probabilities of the three types of pairs are (π11, π12, π22). The
maximum likelihood estimators of these probabilities are equal to the sample
proportions, π̂11, π̂12 and π̂22 of each of the three types of pairs. These
estimates can then be used to identify estimates of the parameters p and F .
The probability that a randomly drawn individual is of type 1 is equal to
the probability that a randomly drawn pair of individuals has two type 1’s
plus one half the probability that a randomly drawn pair has one individual
of each type, Therefore the probability p can be estimated as

p̂ = π̂ii +
1

2
π̂12v. (5)

The probability π12 that a randomly drawn pair has one individual of
each type must be π12 = 2p(1 − p)(1 − F ). Rearranging this expression to
solve for F , and using our estimates π̂12 and p̂, we construct an unbiased
estimate F̂ as

F̂ = 1− π̂12
2p̂(1− p̂)

(6)

The assumption that matching is a two-pool assortative process with uni-
form assortativity implies that F ≥ 0. From Equations 5 and 6, we see that
this requires that

π̂12 ≤ 2

(
π̂11 +

1

2
π̂12

)(
1− (π̂11 +

1

2
π̂12)

)
(7)

Condition 7 simply requires that the observed fraction of “mixed” pairings
be no larger than the expected fraction of mixed pairings if matching were
entirely random.

Generalized Two-Pool Processes

The notion of two-pool assortative processes can be generalized to allow
some types to be more likely to seek their match in an assortative pool than
others. The process can also be generalized to allow there to be more than
two types. Consider a population with n types, where pi is the fraction
of the population that is of type i. Suppose that with probability Fi an
individual of type i obtains a partner from an assortative pool which includes
only individuals of type i and with probability Gi = 1 − Fi, an individual
obtains a partner by drawing randomly from a random pool which includes
all individuals who have not joined assortative pools.1

1Of course this model is far from completely general. In this model, those who do not
join an assortative pool consisting only of their own type, select their matches at random
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The probability that a randomly selected matched pair includes one type
i and one type j is equal to the sum of the probability that a randomly
selected individual is a type i who has a type j partner and the probability
that a randomly selected individual is a type j who has a type i partner.
If i 6= j, a type i will have a type j partner only if the type i goes to the
random pool rather than its assortative pool and happens to draw a type j.
Since the random pool includes all individuals not in the assortative pools,
the probability that a randomly drawn individual from the random pools is
a type j must be

Gjpj∑n
k=1Gkpk

. (8)

Therefore the probability that a randomly selected individual is a type i
whose partner is a type j is

piGi

(
Gjpj∑n
k=1Gkpk

)
=

pipjGiGj∑n
k=1Gkpk

. (9)

This is also equal to the probability that a randomly selected individual is
a type j who is matched with a type i. Therefore the probability that a
randomly selected pair consists of one i and one j where i 6= j is

πij =
2pipjGiGj∑n
k=1 pkGk

. (10)

A type i will be matched with another type i either if it joins the as-
sortative pool of its own type or if it joins the random pool and happens
to draw another type i. The probability that a type i joins the assortative
pool is 1−Gi. If it joins the random pool, the probability that it is matched
with another type i is piGi/ (

∑n
k=1 pkGk). It follows that

πii = pi(1−Gi) +
p2iG

2
i∑

k pkGk
. (11)

A randomly selected individual in the population could be drawn by first
selecting a pair of individuals at random and then choosing one member at
random from this pair. Thus it must be that or all i,

pi = πii +
1

2

∑
j 6=i

πij (12)

from a single pool that includes all individuals who did not join assortative pools. It does
not allow the possibility, for example, that some members of types i and j, do not join
assortative pools, but join a random pool that includes members of types i and j but no
members of type k.
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Non-Uniform Matching with Two Types: An Identification
Problem

If there are only two types, then knowing the fraction of pairs that are
of each possible composition is not sufficient to uniquely identify the two
assortativity parameters, F1 and F2. To see this, let π11, π12, and π22 be
the probabilities of each of the three possible compositions of mixed pairs.
The probability that a randomly selected individual is of type 1 is then

p = π11 +
1

2
π12. (13)

Where G1 = 1− F1 and G2 = 1− F2, it follows from Equation 10 that

G1G2

pG1 + (1− p)G2
=

π12
2p(1− p)

. (14)

Equation 14 is satisfied when

G1 = G2 =
π(1, 2)

2p(1− p)
. (15)

From Equation 13, it follows that the probabilities π11, π12, and π22
uniquely determine the right side of Equation 15. Therefore the group com-
position π11, π12 will be consistent with a two-pool matching process with
uniform assortativity, F = 1 − G > 0 so long as π12 < 2p(1 − p), which is
to say that the probability of a mixed match, is smaller than it would be if
matching were random.

But the same data is consistent with a range of possible G1, G2 pairs
where G1 6= G2. Rearranging Equation, 14, we have

1

pG1
+

1

(1− p)G2
=

2

π12
(16)

The set of assortativity parameters that are consistent with the distribution
parameters π11, π12, π22 consists of all pairs of (G1, G2) that lie on the level
curve defined by Equation 16 where G1 ≤ 1 and G2 ≤ 1. Simple calculations
show that this is a downward-sloping curve with slope

dG2

dG1
= −

(
1− p
p

)(
G2

2

G2
1

)
(17)
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Illustrative Diagrams

This section provides a brief diagrammatic explanation of the identification
problem that arises when there are two types who have possibly differing
degrees of assortativity. The downward-sloping curve in figure 1 shows the
locus of combinations of assortativity parameters G1 and G2 for types 1 and
2 that are consistent with expected proportions π11 = π22 = π12 = 1/3 of
paired combinations. In this case, the population fractions are p = 1− p =
π11 + π12

2 = 1/2. This curve intersects the upward-sloping 45 degree line at
the point G1 = G2 = G = 2/3. Thus if there is uniform assortativity, the
index of assortativity would be F = 1 − G = 1/3. In this case, each type
would use the assortative pool with probability 1/3 and the random pool
with probability 2/3. But the same proportions of types of matched pairs
would be found with differing assortativities, F1 and F2, where (F1, F2) =
(1 − G1, 1 − G2) for any (G1, G2) pair that lies on the downward-sloping
curve.

Figure 1: Assortativity Locus when G1 = G2 = G = 2/3.

Figure 2 shows the locus of combinations ofG1 andG2 that are consistent
with the proportions π11 = .7, π22 = .2, π12 = .1. In this case the proportions
of the two types in the population are p = π11 + π12/2 = .75. In this
case the curve intersects the upward-sloping 45 degree line at the point
G1 = G2 = G = .2667. Thus if there is uniform assortativity, the index
of assortativity would be F = 1 − G = .7333. Each type would use the
assortative pool with probability .7333 and the random pool with probability
.26678. The same proportions of matched pairs could also be achieved with
differing assortativities by type as represented by any combination on the
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downward-sloping line. Although data on the composition of matching pairs
is not sufficient to identify non-uniform assortativities when there are only
two types, identification becomes possible when there are three or more
types for which 0 < Fi < 1.

Figure 2: Assortativity Locus when π11 = .7, π22 = .2, π12 = .1

Non-uniform Two-Pool Assortative Matching with Three Types

Proposition 3. Consider a two-pool matching process with three types. Let
Fi be the probability that a type i matches from an assortative pool consisting
only of type i’s and let Gi = 1−Fi. Let πij be the probability that a randomly
selected pair of individuals are of types i and j. There is a one-to-one
mapping from the parameters (G1, G2, G3, p1, p2, p3) of the matching process
to the matching probabilities πij.

The fact that the mapping from the assortativity parameters Fi to the
probability distribution of compositions of matches is one-to-one means that
we can estimate these parameters for a population by observing the actual
distribution of match compositions in that population. The observed pro-
portions will be maximum likelihood estimates of the probabilities of types
of mixed matches. The estimates of these probabilities are in turn sufficient
to provide maximum likelihood estimates of the assortativity parameters,
conditional on the hypothesis that matching is a two-pool assortative pro-
cess.
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3 Strangers-in-the-Night Assortative Matching

In the two-pool assortative matching process, an individual who wishes to
match assortatively can go to an “assortative pool” and be certain to obtain
a match of the same type. We now consider an alternative matching process
such that one is less likely to match assortatively, the less common is one’s
type. In particular, we assume that those who seek partners encounter
others randomly with respect to their type. However, once they meet, the
probability that two individuals will choose to form a partnership is higher
if they are of the same type than if they are of different types. Because of
the random nature of encounters, we call this the “strangers-in-the-night”
process.

Strangers-in-the-Night with Uniform Assortativity

Definition 3. A strangers-in-the-night matching process with two types and
uniform assortativity is a matching process in which at all times a constant
number of persons of each type are seeking partners. Those seeking partners
are equally likely to meet a person of either type. When two persons of the
same type meet, they match with probability s. When two persons of different
types meet, they match with probability m < s.

Let p and q be the fractions of those seeking partners who are of types
1 and 2 respectively. The conditional probabilities of one’s partner’s type,
given one’s own type are seen to be

π(1|1) =
ps

ps+ qm
(18)

and
π(1|2) =

pm

qs+ pm
. (19)
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Therefore the degree of assortativity is

a(p) =

(
ps

ps+ qm

)
−
(

pm

qs+ pm

)
=

pq(s2 −m2)

(ps+ qm) (qs+ pm)

=
pq(s2 −m2)

pq (s2 +m2) + sm (p2 + q2)

=
pq(s2 −m2)

pq (s2 +m2) + sm (1− 2pq)

=
pq(s2 −m2)

pq(s−m)2 + sm
. (20)

Proposition 4. If two types are matched by a strangers-in-the-night pro-
cess with uniform assortativity, then Wright’s F -statistic for the matching
satisfies the equation

F (p) =
pq(s2 −m2)

pq(s−m)2 + sm
, (21)

If s > m, F (p) is increasing in p for p < 1/2 and decreasing in p for p > 1/2,
F (0) = F (1) = 0 and F (1/2) = (s−m)(s+m).

Proof. According to Theorem 1, Wright’s F -statistic is equal to the degree
of assortativity. Therefore Equation 21 is immediate from Equation 20.
Differentiating Equation 21, we find that if s > m > 0, then a(p) is a strictly
increasing function of pq = p(1 − p). This implies that a(p) is maximized
at p = 1/2 and is strictly increasing in p for p < 1/2 and strictly decreasing
in p for p > 1/2. Direct calculations show that a(0) = a(1) = 0 and that
a(1/2) = (s−m)/(s+m).

Statistical Identification of Parameters

In some applications, a researcher may be able to observe the makeup by
type of existing matches, but would not have direct observations of the
proportions of each type who seek matches. The proportions p and q of
persons of each type seeking matches are not in general equal to the pro-
portions found in existing matches. Since the more common type is more
likely to meet its own type than is the less common type, the rate at which
the more common type finds matches will exceed that for the less common
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type. The rates at which type 1’s and type 2’s form partnerships are re-
spectively ps+ qm and pm+ qs, and the difference between these two rates
is (p − q)(s −m). 2 However, if we assume that matching is the result of
a strangers-in-the-night process with uniform assortativity, it is possible to
estimate the proportions p and q as well as the ration m/s from observations
of the makeup of matches that form.

The rate at which two type 1’s meet and form partnerships is p2s. The
rate at which two type 2’s meet and form partnerships is q2s and the rate
at which mixed partnerships of one type 1 and one type 2 meet and form
partnerships is 2pqm. Thus the total rate at which partnerships are formed is
(p2+q2)s+2pqm. The expected ratios of partnership types in the population
will therefore be

π11 =
p2s

(p2 + q2)s+ 2pqm
(22)

π22 =
q2s

(p2 + q2)s+ 2pqm
(23)

π12 =
2pqm

(p2 + q2)s+ 2pqm
(24)

Although we do not directly observe p and q = 1 − p, we can estimate
these parameters from the observed fractions of pairs of each type. From
Equations 22 and 23, it follows that

p

q
=

√
π11
π22

. (25)

Therefore it follows that if π̂ij is the observed fraction of pairs that are of
type ij we can estimate the fraction p by

p̂ =

√
π̂12√

π̂11 + π̂22
(26)

From Equations 22, 24, and 25 it follows that

m

s
=

p

2q

π12
π11

=
π12

2
√
π11π22

(27)

2To make a stationary model of this process, we need individuals to have lives of finite
length. Some individuals of each type reach the end of their life without finding a match.
Given its lower matching probability, the less common type will be more likely than those
of the more common type to die without finding a match.
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Therefore we can estimate the ratio m/s by(̂m
s

)
=

π̂12

2
√
π̂11π̂22

. (28)

Although the proportions π̂ij are sufficient to identify estimates of p, q, and
m/s, they are not sufficient to allow separate estimates of m and s. To see
this, we note that if p, m, and s satisfy Equations 22-24, then p, km and ks
would also satisfy these equations for any k > 0.

From Equation 20 it follows that if s > m > 0, then a(p) is a strictly
increasing function of pq = p(1−p). Therefore a(p) is maximized at p = 1/2
and is strictly decreasing in p for p > 1/2 and strictly decreasing in p for
p < 1/2. Simple calculations show that a(1/2) = (s − m)/(s + m) and
a(0) = a(1) = 0.

Strangers-in-the-night with Non-uniform Assortativity

It might be that the two types who meet by a strangers-in-the-night process
differ in the probabilities of matching with another individual of the same
type. Suppose that the probability that an encounter between two type i’s
leads to a partnership is si for i = 1, 2. Then it must be the case that

π11
π22

=
s1
s2

(
p

q

)2

. (29)

In order to identify the ratio s1/s2, we would need to have independent
estimates of the proportions p and q of those seeking matches who are of
each type. Identification of separate values for s1 and s2 would be possible
if and only if direct information of the proportions p and q were available.

4 Dynamics and Assortativity

William Hamilton’s [6] theory of altruistic behavior among kin relatives is
one of the most celebrated applications of Wright’s F -statistic. Hamilton
presented this theory by considering simple symmetric interactions between
pairs of related animals who could help each other at a cost to themselves.
Hamilton’s helping game as a game in which there are two players, each of
whom can increase the expected reproductive success (fitness) of the other
at some cost to itself.

Definition 4. Hamilton’s helping game is a two player game in which a
strategy for either player is a level of effort x ∈ [0, 1] that this player can
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exert to help the other. Where xi is the strategy of player i, the reproductive
fitness of player 1 is b(x2) − c(x1) and that of player 2 is b(x1) − c(x2).
There are positive but diminishing marginal benefits from help received and
increasing marginal costs to help given. Thus we assume that b(0) = c(0) =
0, b′(x) > 0, c′(x) > 0, b′′(x) < 0 and c′′(x) > 0 for all x ∈ [0, 1].

Evolutionary Equilibrium with two-pool assortative matching

Suppose that animals are matched by a two-pool assortative matching pro-
cess with assortativity F to play Hamilton’s helping game. Types are dis-
tinguished by the amount x of help that they will offer to their partners.
With probability F , an animal of type x is matched with an animal of its
own type from the assortative pool and with probability 1−F it is matched
with a partner drawn randomly from the population distribution.

The expected fitness of type x is

Fb(x) + (1− F )y − c(x) (30)

where y is the expected value of benefits received if one is matched with a
random selection from the population distribution. An animal of another
type x′ will receive b(x′) if it joins the assortative pool of its own type and
will face the same probability distribution of benefits as the x type if it
matches from the random pool. The expected fitness of a type x will exceed
that of a type x′ if

b(x)F − c(x) > b(x′)F − c(x′). (31)

Given our assumptions on b and c, there will be a unique x̄ such that x̄
maximizes the function b(x)F − c(x) on the interval [0, 1]. Then regardless
of the proportions of types in the population, animals of type x̄ will have
greater fitness than any other type.

Proposition 5. If animals are matched by a two-pool assortative process
with assortativity F , where type is determined by the amount, x, that each
will offer in a Hamilton helping game with its partner, and if the reproduction
rate of each type is an increasing function of its fitness, then there is a
unique evolutionary equilibrium in which all animals are of type x̄ where x̄
maximizes b(x)F − c(x).

Proposition 5 predicts that in equilibrium, all players will choose the
strategy of offering x̄ units of health where the ratio of the marginal cost
of helping to the marginal benefit received is equal to F . This condition
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is consistent with Hamilton’s description of equilibrium for interaction of
animals that are genetically related:

“The social behavior of a species evolves in such a way that in
each distinct behavior-evoking situation the individual will seem
to value his neighbors fitness against his own according to the
coefficients of relationship appropriate to that situation.” [6]

Evolutionary equilibrium with strangers-in-the-dark

If matching to play Hamilton’s helping game takes place assortatively ac-
cording to a strangers-in-the-dark process rather than a two-pool process,
then instead of a unique stable equilibrium, there will be a continuum of
stable equilibria. These equilibria will be characterized by having a positive
fraction of the population who devote the same positive effort to helping and
a complementary fraction of the population who offer no help. More out-
comes are stable because, with this process, rare mutants that do well when
they encounter their own type are highly unlikely to meet their own type.
In contrast, if matching occurs by means of a two-pool process with assor-
tativity F , a rare mutant has a probability of at least F of being matched
with one of its own type.

Definition 5. Define the cost-benefit ratio function for a Hamilton’s help-
ing game as ρ(x) = c(x)/b(x). A Hamilton helping game is regular if
ρ(·) is a continuous, increasing function on the interval (0, 1] with ρ0 =
limx→0 ρ(x) ≥ 0.

The following proposition, which is proved in the appendix to this pa-
per, asserts that there is a continuum of evolutionarily stable equilibria
for a regular Hamilton’s helping game in which partners are matched by a
strangers-in-the-night process.

Proposition 6. Suppose that individuals are matched by a strangers-in-the-
dark process to play a regular Hamilton’s helping game, where ρ0 <

s−m
s+m <

ρ(1). Let x∗ = ρ−1
(
s−m
s+m

)
. Then for every x in the interval (0, x∗], there

is a unique p(x) ∈ [1/2, 1) such that there is a locally stable equilibrium in
which the fraction p(x) of those seeking partners offer x units of help and
the fraction 1−p(x) offer no help. The fraction p(·) is a decreasing function
of x.
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5 Appendix

Proof of Proposition 1

Proof. To motivate Wright’s F -statistic as a correlation, let us construct two
random variables IA and IB as follows. If one randomly selects one matched
pair and then randomly chooses one individual from that pair, let IA be the
random variable that takes on the value 1 or 0 depending on whether this
individual is a type 1 or a type 2. Let IB be the random variable that takes
the value 1 or 0 depending on whether the remaining member of the selected
pair is of type 1 or type 2. Wright’s F is the correlation coefficient between
the random variable IA and IB. This correlation coefficient is, by definition,

ρ =
E(IAIB)− E(IA)E(IB)

σ(IA)σ(IB)
(32)

Now E(IA) = E(IB) = p, and σ(IA) = σ(IB) =
√
p(1− p). Also E(IAIB) =

π11 = pπ(1|1). Therefore Equation 32 can be written as

ρ =
pπ(1|1)− p2

p(1− p)
=
π(1|1)− p

1− p
(33)

This establishes Equation 1.
Since π(1|1) = 1− π(2|1), Equation 33 can be written as

ρ =
1− π(2|1)− p

1− p
= 1− π(2|1)

1− p
(34)

Then, since π(1, 2) = pπ(2|1), it follows that

ρ = 1− π12
p(1− p)

(35)

This establishes Equation 2.
Since π12 = pπ(2|1) = (1− p)π(1|2), it must be that

π(1|2) =
p

1− p
π(2|1) =

p

1− p
(1− π(1|1)) . (36)

From Equation 1 it follows that π(1|1) = (1−p)F (p)+p. Therefore Equation
36 simplifies to

π(1|2) = p (1− F (p)) . (37)

Therefore we have

π(1|1)− π(1|2) = (1− p)F (p) + p− p (1− F (p))

= F (p) (38)

This establishes Equation 3.
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Proof of Proposition 3

Proof. The mapping from the Gi’s and pi’s to the probabilities πij is imme-
diate from Equations 10 and 11.

To find the inverse mapping from the πij ’s to the Gi’s and pi’s, we
proceed as follows. From Equation 10, it follows that

2 (p1p2G1G2) (p1p3G1G3)

p2p3G2G3
=
π12π13
π23

(
3∑

k=1

pkGk

)
(39)

Simplifying and rearranging Equation 39, we have

p1G1 =
1√
2

√
π12π13√
π23

√∑
k

pkGk =
1√
2

√
π12π23π13
π23

√∑
k

pkGk. (40)

Symmetric reasoning shows that also

p2G2 =
1√
2

√
π12π23π13
π13

√∑
k

pkGk (41)

p3G3 =
1√
2

√
π12π23π13
π12

√∑
k

pkGk (42)

Summing the terms in Equations 40-42, we have∑
k

pkGk =
1√
2

√
π12π23π13

√∑
k

pkGk

(
1

√
π23 +

√
π13 +

√
π12

)
(43)

which in turn implies√∑
k

pkGk =
1√
2

√
π12π23π13

(
1

√
π23 +

√
π13 +

√
π12

)
(44)

From Equations 40-42 it then follows that

p1G1 =
1

2
π12π13

(
1

√
π23 +

√
π13 +

√
π12

)
(45)

p2G2 =
1

2
π12π23

(
1

√
π23 +

√
π13 +

√
π12

)
(46)

p3G3 =
1

2
π13π23

(
1

√
π23 +

√
π13 +

√
π12

)
(47)
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Since

pi = πii +
1

2

∑
j 6=i

πij (48)

the pi’s are uniquely determined by the πij ’s. Given that the pi’s are uniquely
determined, it follows from Equations 40-42 that the Gi’s are also uniquely
determined by the πij ’s. This proves Proposition 3.

Proof of Proposition 6

Proof. The function F (·) is continuous and strictly decreasing for p in the
interval [1/2, 1], with F (1/2) = s−m

s+m and F (1) = 0. Therefore F−1(·) is a

continuous, decreasing function from the interval [0, s−ms+m ] onto [0, 1/2]. Our
assumptions imply that function ρ(·) is a continuous, increasing function
from (0, x∗] onto the interval (ρ0,

s−m
s+m ]. Therefore there is a well-defined

function p(x) = F−1(ρ(x)) mapping the non-empty interval (0, x∗] onto
[1/2, 1). Since ρ(·) is an increasing function and F−1(·) is a decreasing
function, it must be that p(·) is a decreasing function of x.

Let x ∈ (0, x∗] and suppose that the fraction p(x) of the population
seeking matches are of the type that contributes x and the fraction 1− p(x)
are of the type that contributes 0. Then the expected payoff of a type x is
π(x|x)b(x) − c(x) and the expected payoff of a type 0 is π(x|0)b(x). The
difference between the expected payoffs of the two types is F (p(x)b((x) −
c(x). From the definition of p(x), it follows that F (p(x)) = ρ(x) and hence
b(x)F (p(x)) − c(x) = 0. Therefore, when the fraction p(x) are of type x
and fraction 1 − p(x) are of type 0, the expected fitnesses of the two types
are equal. A mutant individual of another type, who contributes a non-
zero amount x′ 6= x will almost always meet either a type x or a type 0.
The probability that a type x′ matches with a type x is the same as the
probability that a type 0 matches with a type x. Therefore the fitness of
a type x′ is π(x|0)b(x) − c(x′) < π(x|0, which is the expected payoff of the
two incumbent types x and 0.
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