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The Good Samaritan and

Traffic on the Road to Jericho

Ted Bergstrom ∗

April 12, 2013

“A certain man went down from Jerusalem to Jericho, and fell
among thieves, which stripped him of his raiment, and wounded
him, and departed, leaving him half dead. And by chance there
came down a certain priest that way: and when he saw him,
he passed by on the other side. And likewise a Levite, when he
was at the place, came and looked on him, and passed by on
the other side. But a certain Samaritan, as he journeyed, came
where he was: and when he saw him, he had compassion on him,
And went to him, and bound up his wounds, pouring in oil and
wine, and set him on his own beast, and brought him to an inn,
and took care of him.” Parable of the Good Samaritan, New
Testament, Luke 10: 30-34

Driving along a lonely road, you come upon a stalled car and a motorist
who appears to have run out of gas. You consider stopping to offer help,
although this may cost you several minutes and some extra driving. Would
your decision be different if the road were heavily travelled? If you were to
run of gas, would you prefer that it be on a busy street or on a lonely road?

1 Equilibrium with Identical Travelers

Let us try to develop our understanding with a simple game-theoretic model.
Cars approach a stranded motorist’s location according to a random Pois-
son process with arrival rate λ. Passing travelers are sympathetic to this

∗I am grateful to Greg Leo and Rod Garratt of UCSB and to Stefano Barbieri and
John Edwards of Tulane University for stimulating discussions and helpful advice.
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motorist’s plight, but stopping is costly and they believe that other poten-
tial helpers will arrive in the future. Every passing traveler attaches a cost
c > 0 to stopping to help, and a psychic cost of vt to the prospect that the
stranded motorist must wait for an expected length of time t before being
rescued.

In deciding whether to stop, passers-by compare the cost of stopping to
the psychic cost of not stopping. They choose to stop if c < vw where w is
the expected amount of time that the stranded motorist will have to wait
if the passer-by does not stop. If a motorist expects all future passers-by to
stop, then the expected waiting time for the stranded motorist will be

w =

∫ ∞
`

te−λt =
1

λ
. (1)

Passing travelers would always stop if vw = v/λ > c. Therefore if the road
is so little-traveled that λ < v

c , then, in Nash equilibrium, every passing
motorist would stop, and the expected waiting time for a stranded motorist
would be 1/λ.

Where traffic is frequent enough that λ > v/c, there cannot be a Nash
equilibrium in which everyone stops, nor can there be an equilibrium in
which no one stops. The only symmetric Nash equilibrium is a mixed strat-
egy equilibrium in which each passing traveler stops with some probability
p, where 0 < p < 1. The appearance of a driver who will stop and help
is then a Poisson process with arrival probability λp. Thus if the currently
passing traveler does not stop, the expected waiting time until the stranded
motorist is helped is

w =
1

λp
. (2)

In a symmetric mixed-strategy Nash equilibrium, all passing travelers
must be indifferent between stopping and not stopping. This occurs if c =
vw or equivalently if

w =
c

v
. (3)

From Equations 2 and 3, it follows that in equilibrium,

p =
1

λ

(v
c

)
. (4)

Thus changes in λ lead to inversely proportional changes in p, so that the
equilibrium expected waiting time for the arrival of a passing motorist who
is willing to help does not change with traffic density.
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As traffic becomes more dense, the expected number of travelers who
pass the stranded motorist before one of them stops to help will increase.
Where λ is traffic density and p is the probability that any passer-by will
stop, the expected number of motorists to drive past a stranded motorist
is (1 − p)/p.1 From Equation 4, it follows that the relation between traffic
density λ and the expected number of motorists that drive by before help
arrives is given by

1− p
p

= λ
v

c
− 1 (5)

We now have answers to our opening questions.

Proposition 1. If all travelers have the same cost ratio, c/v, and the arrival
rate of traffic is λ, then in symmetric Nash equilibrium:

• Over the range of traffic densities such that λ < c/v, all passing trav-
elers will stop, and the expected waiting time for rescue decreases with
increased traffic density.

• Over the range of traffic densities such that λ > c/v:

– the only symmetric equilibrium is one in which the stopping prob-
ability is p = (1/λ)(v/c), which is between 0 and 1.

– the probability of stopping declines with traffic density so that
the expected waiting time for a stranded motorist is invariant to
changes in traffic density.

– the expected number of cars that pass by before help arrives is
λ(v/c)− 1.

2 Equilibrium When Costs and Sympathies Differ

Let us add realism by allowing those who travel on the road to differ in
their costs of stopping, and in their sympathy for the plight of strangers.

1The probability that help first arrives at time t is λpe−λpt. If help arrives at time t,
the expected number of motorists to pass by before help arrives is (1 − p)λt. Therefore
the expected number of motorists to drive past before help arrives is∫ ∞

`

(1− p)λtλpe−pλtdt = (1− p)λ
∫ ∞
`

(λp)te−λptdt

=
1− p
p

.
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Attention to such differences leads to qualitatively different conclusions and
to interesting comparative statics that are not found when passing travelers
are identical. In equilibrium, for the model presented here, all consumers
choose pure strategies, and the expected waiting time for a stranded motorist
decreases as traffic density increases.

2.1 Passing strangers and incomplete information

We model the situation as a symmetric game of incomplete information. All
passing travelers are aware of the density λ of traffic, and they know their
own ratios c/v of the cost of stopping to the value they place on a stranded
motorist’s time. They do not know the cost ratios of other travelers, but they
share a common belief that the cost ratio c/v of each subsequent passer-by
is an independent random draw from a continuous distribution, F (·), with
density function, f(·).

A strategy for any passing motorist is a mapping from his or her own
cost ratio c/v to one of the two actions Stop and Don’t stop. Under these
assumptions, there will be a symmetric Nash equilibrium in which players
observe their own cost ratio and compare it with some threshold ratio (c/v)∗.
The strategy of every player is to stop if and only if c/v < (c/v)∗.

Where w is the expected waiting time for the stranded motorist, a passer-
by with cost ratio c/v will stop only if if c < wv, or equivalently c/v < w.
Therefore if expected waiting time is w, the probability that a randomly
selected motorist will stop is

p = F (w). (6)

If the probability that any subsequent traveler will stop is p, then the Poisson
arrival rate of passers-by who will stop is λp and the expected waiting time
for the stranded motorist is

w =
1

λp
. (7)

In Nash equilibrium, the stopping probability p and the expected waiting
time w must satisfy Equations 6 and 7.

In this model, we find that if some passers-by are kinder or less busy
than others, you are better off running out of gas on a busy street than on
a lonely road. Stated more formally:

Proposition 2. In the model described in this section, with a continuous
distribution, F , of cost ratios, for any arrival rate λ > 0, there is a unique
equilibrium expected waiting time wF (λ) for a stranded motorist, and wF (λ)
is a decreasing function of λ.
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Proof. Equations 6 and 7 imply that in equilibrium it must be that in equi-
librium,

wF (w) =
1

λ
. (8)

Since wF (w) is a continuous increasing function that ranges from 0 to ∞
as w ranges from 0 to ∞, for any λ, there must be exactly one solution to
Equation 8. Since the left side of Equation 8 is increasing in w and the right
side is decreasing in λ, it must be that this solution is decreasing in λ.

A Graphical Exposition

Figure 1: Traffic Density and Expected Waiting Time with Varying Costs
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Figure 1 shows the effect of traffic density on the equilibrium stopping
threshold and expected waiting time for a stranded traveler. The horizontal
axis plots the stranded motorist’s expected waiting time, while the vertical
axis shows the probability that a random passer-by will stop. The upward-
sloping curve is a “stopping-response curve”, showing the probability p that
a random passer-by will stop if the expected waiting time is w. A passer-by
with cost ratio c/v will stop if c/v < w. Therefore the stopping-response
curve is just the graph of the cumulative density, F (w). The curve drawn
in this figure is the cdf of a log normal distribution with mean 1/2.2

2The diagram was drawn with Mathematica for a distribution in which the logarithm
of c/v has mean µ = log(1/2) − 1/8 and standard deviation σ = 1/2. The resulting log
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The figure shows two downward-sloping “expected waiting-time curves.”
These curves relate the expected waiting-time w = 1/λp of a stranded mo-
torist on a road with density λ to the probability p that a random passer-by
will stop. The higher of these two curves is drawn for a “rural” highway with
relatively low traffic density, λ = 2.5. The lower downward-sloping curve is
drawn for an “urban” highway with higher traffic density, λ = 15. For each
of the two highways, the equilibrium outcome is found at the intersection of
the stopping-response curve with the corresponding expected waiting-time
curve. For this example, the graph shows that a random passer-by on an
urban highway is less likely to stop than on a rural highway, but because
travelers pass by more often, the expected waiting time for the stranded
motorist is shorter on the urban than on the rural highway.

Figure 2: Equilibrium with Uniform and Varying Costs
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Figure 2 compares the equilibria described in Figure 1 to equilibria in the
case where all travelers have identical cost ratios with the same mean, c/v =
1/2. The downward-sloping curves show the expected waiting-time function,
w = 1/λp, for two alternative traffic densities, λ = 2.5 and for λ = 15. The
smooth upward-sloping curve is the same as that shown in Figure 1, while the
thick piecewise linear “curve” shows the stopping-response correspondence
for the case of uniform cost ratios. As this curve shows, if expected waiting
time is w < 1/2, no motorists would stop. If w > 1/2, all motorists would
stop and if w = 1/2, all motorists are indifferent between stopping and not

normal distribution has mean 1/2 = e(µ+σ
2/2) and standard deviation (1/2)

√
e1/4 − 1 =

e(µ+σ
2/2)

√
eσ2 − 1 .
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stopping. and the smooth upward-sloping curve shows the stopping-response
curve for the case where cost ratios are log-normally distributed with mean
1/2.

As Figure 2 shows, when all travelers have identical cost ratios, the
downward-sloping curves must intersect the stopping-response curve in its
vertical section, with an expected waiting time of w = 1/2. Thus the equi-
librium adjustment to a change in λ must take the form of an offsetting
change in the mixed-strategy probability p so that w = 1/λp is the same on
the quiet rural road as on the busy urban highway.

2.2 Comparative statics results

The elasticity of waiting time with respect to density

Proposition 2 tells us that when cost ratios are continuously distributed, the
equilibrium expected waiting time for a stranded passenger is shorter when
traffic is more dense. Here we quantify the relation between the dispersion of
cost ratios and the effect of traffic density on expected waiting time. Where
F is the distribution of cost ratios, we define the elasticity of equilibrium
waiting time with respect to traffic density as

ηw(λ, F ) =
d lnwF (λ)

d lnλ
=

λ

wF (λ)

∂wF (λ)

∂λ
. (9)

and the elasticity of the cost distribution function F (·) at the point w as

σF (w) =
d lnF (w)

d lnw
=
wf(w)

F (w)
. (10)

We have the following result, which is proved in the Appendix.

Proposition 3. The elasticity of expected waiting time for the stranded trav-
eler with respect to traffic density lies between −1 and 0. If the distribution
function of cost cost ratios is F , it must be that

ηw(λ, F ) =
−1

1 + σF (wF (λ))
. (11)

Simple mean-preserving spreads and expected waiting time.

Michael Rothschild and Joseph Stiglitz [14] defined the notion of a mean-
preserving spread to capture the idea of “taking weight from the center of a
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probability distribution and shifting it to the tails, while keeping the mean
of the distribution constant.”3 Stiglitz and Peter Diamond [9] describe a
special class of such spreads as follows: a distribution function G is said
to be a simple mean-preserving spread of a distribution function F if the
two distribution functions have the same mean, and if they are related by a
single crossing property such that for some x̂, G(x̂) = F (x̂) , while if x < x̂
then G(x) > F (x) and if x > x̂, then G(x) < F (x).4

The log-normal distribution shown in Figure 2 is a simple mean-preserving
spread of the distribution in which all travelers have the same cost ratio.
In this example, travelers on the rural road have a longer expected waiting
time with the spread-out distribution than with the concentrated distribu-
tion, while travelers on the more heavily-traveled urban road would have a
shorter expected waiting time with the more spread-out distribution. This
observation generalizes to show that, broadly speaking, greater dispersion
of the distribution of cost ratios tends to reduce the expected waiting time
of stranded motorists on heavily traveled roads and increase their expected
waiting time on less traveled roads.

Proposition 4. Let the distribution function G be a simple mean-preserving
spread of the distribution function F , where a single crossing point at x̂. Let
λ̂ = 1/ (x̂F (x̂)). Then on roads where λ < λ̂, equilibrium waiting time for
the stranded motorist is longer if the distribution of cost ratios is G than if
it is F . If λ > λ̂, then equilibrium waiting time for the stranded motorist is
shorter if the distribution is G than if it is F .

Proof. Let wF (λ) and wG(λ) be equilibrium waiting times with the distri-
butions F and G respectively. Suppose that λ > λ̂. Then

wF (λ)F (wF (λ)) =
1

λ
<

1

λ̂
= x̂F (x̂).

Since zF (z) is strictly increasing in z, it follows that wF (λ) < x̂ and hence
G (wF (λ)) > F (wF (λ)). Therefore

wF (λ)G (wF (λ)) > wF (λ)F (wF (λ)) = 1/λ = wG(λ)G (wG(λ)) .

3Formally, a random variable Y is a mean-preserving spread of the random variable X
if and only if Y is equal in distribution to X + Z for some random variable Z such that
E(Z|X) = 0 for all values of X.

4Diamond and Stiglitz show that every simple mean-preserving spread is a mean-
preserving spread, but not every mean-preserving spread is a simple mean-preserving
spread. In general, the crossing point of the two distributions need not necessarily be the
same as their common mean.
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Since G (wG(λ)) > 0, it follows that wF (λ) > wG(λ).
A similar argument shows that if λ < λ̂, then G (wF (λ)) < F (wG(λ))

and that wF (λ) < wG(λ).

Equilibrium preserving spreads and elasticities

We have seen that a simple mean-preserving spread of the distribution of
cost-ratios implies increased expected waiting time on little-travelled roads
and decreased expected waiting time on busy roads. A mean-preserving
spread can be thought of a stretch of the density function in both directions
away from the mean. Here we consider a spread in the cost-ratio distribution
that leaves the equilibrium expected waiting time unchanged but stretches
the density function out in both directions away from the equilibrium cor-
responding to a fixed density λ.

Let us define the distribution function G to be a simple equilibrium-
preserving spread of the distribution function F around wF (λ) if wG(λ) =
wF (λ) = ŵ and if G(w) < F (w) for w > ŵ and G(w) > F (w) for w < ŵ.5

Proposition 5. If the cost ratio has a continuous distribution function F
and if the distribution function G is a simple equilibrium-preserving spread
of F , then the elasticity of waiting time with respect to λ is greater in ab-
solute value for a population with distribution function G than for one with
distribution function F .

Proof. If G is a simple equilibrium-preserving spread of F , then it is imme-
diate that G′(ŵ) = g(ŵ) < F ′(ŵ) = f(ŵ). Then, since F (ŵ) = G(ŵ), it
follows that

σF (ŵ) =
ŵf(ŵ)

F (ŵ)
<
ŵg(ŵ)

G(ŵ)
= σG(ŵ) (12)

From Equations 12 and 3, it then follows that it follows that

ηw(λ, F ) =
−1

1 + σF (wF (λ))
> ηw(λ,G) =

−1

1 + σG (wG(λ))
. (13)

and since both elasticities are negative, ηw(λ,G) is higher in absolute value.

5For example, it is is not hard to show that where ŵ is an equilibrium waiting time
and

G(w) = F
(
w̄ +

w − w̄
ε

)
,

it must be that G is a simple equilibrium-preserving spread of F if ε > 1.
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3 Ethical Guidelines for When to Stop and Help

Perhaps the priest and the Levite who hurried past the injured traveler had
good excuses. Maybe they had important things to do and realized that if
they did not stop, someone less busy would soon be likely to appear and
perform the rescue.

When stopping costs differ among travelers, it is not necessarily efficient
for travelers to stop every time that they encounter someone in distress.
Efficiency would be better served by a convention that passing travelers
should stop if and only if their costs fall below some threshold level. Since
stopping costs of passing travelers are not likely to be transparent to others,
such a rule could not be enforced by external sanctions. But experimental
evidence [3] suggests that many people act by self-imposed ethical rules that
dictate behaving sympathetically toward others. It is therefore interesting
to explore the social effects of alternative ethical rules. In this discussion we
examine the nature of an “ethical ideal”, that is, a rule that, if followed by
everyone, would lead to an efficient outcome in environments like the Road
to Jericho game.

To avoid difficulties in making interpersonal utility comparisons, we as-
sume sufficient symmetry for the population so that there will be unanimous
agreement about the “best” symmetric ethical rule. All persons are assumed
to have the same the cost vt of being stranded for a length of time t. We
assume that all have the same travel frequencies, all are equally likely to be
stranded, and all are equally likely to encounter a stranded motorist on any
road. The costs of stopping to perform a rescue will differ from occasion to
occasion, but for all individuals, these costs are assumed to be independent
draws from the same distribution function F (c).

In this environment, an efficient ethical rule would require passing mo-
torists to stop and help if and only if their stopping costs are below some
threshold, c∗. If all individuals abide by this rule, then for any stranded
motorist, the Poisson arrival rate of a motorist who will help is λF (c∗) and
expected waiting time is 1/λF (c∗). The expected total cost of each incident
of a stranded motorist includes the expected waiting cost for the stranded
motorist and the expected cost c for the first passer-by who has a cost below
the threshold c∗. This total is:∫ c∗

` cf(c)dc

F (c∗)
+

v

λF (c∗)
(14)

Given our symmetry assumptions, all individuals bear the same expected
total cost. Therefore the expected costs of all community members would be
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minimized by a rule that set a stopping threshold of c∗, where c∗ minimizes
Expression 14. We will call a rule with this stopping threshold an ideal
ethical stopping rule.

Differentiating Expression 14 with respect to c∗ yields the first order
necessary condition:

c∗ −
∫ c∗
` cf(c)dc

F (c∗)
=

v

λF (c∗)
. (15)

Equation 15 has a straightforward interpretation as a marginal efficiency
condition. This equation requires that for a traveler with costs equal to the
threshold c∗, the difference between c∗ and the expected cost of the next
traveler who would be required to stop is equal to the expected additional
cost of waiting for the stranded traveler if the current passer-by does not
stop.

Proposition 6, which is proved in the Appendix, shows if all commu-
nity members follow an ideal ethical stopping rule, then as traffic density
increases, individual passers-by will be less likely to stop, but the average
waiting time for help to arrive will also be smaller.

Proposition 6. In the symmetric community described in this section, if
the entire population abides by an ideal ethical stopping rule, then

• on busier roads, the probability that a randomly selected passer-by will
stop is lower.

• if the distribution F of costs is log-concave, then on busier roads, the
expected waiting time for help to arrive for a stranded traveler is lower.

The assumption that cumulative distribution function F is log-concave
is not a strong requirement. Essentially all commonly-known distribution
functions have log-concave cumulative distribution functions. Log concavity
of the density function is sufficient but not necessary for log-concavity of the
distribution function [4].6

Having found a socially efficient cost threshold for potential helpers, we
can ask how this ethical rule might be expressed in common language. An
interesting candidate rule is: “Treat the misfortune of others as if it were
your own.” A passing motorist who practiced this rule would stop whenever
his cost of stopping was less than the expected cost of further waiting to the

6For example, the log-normal distribution does not have a log-concave density function,
but has a log concave distribution function [4].
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stranded motorist. If travelers all abide this rule and have a stopping cost
threshold c̄, the probability that a passing motorist will stop is F (c̄) and the
expected waiting cost to a stranded motorist would be v/λF (c̄). Therefore
the cost-threshold c̄ would be an equilibrium for motorists abiding by the
rule “treat the misfortune of others as your own” only if

c̄ =
v

λF (c̄)
. (16)

Comparing Equation 16 with Equation 15 leads us to conclude that:

Proposition 7. In the symmetric society posited in this section, if travel-
ers applied the rule “act as if the misfortune of a stranded traveler is your
own,” they would stop less frequently than if they applied the the ideal ethical
stopping rule.

Proof. Define G(c) = c− v
λF (c) . From Equations 15 and 16 it follows that

G(c∗)−G(c̄) =

∫ c∗
` cf(c)dc

F (c∗)
> 0.

Since G is an increasing function of c, it follows that c∗ > c̄. A higher
stopping threshold implies that each passing traveler is more likely to stop.

There is a simple explanation of the result of Proposition 7. The benefits
that one confers on others by stopping to help include not only the benefit to
the stranded individual, but also the benefit to another traveler who other-
wise would have felt obliged to stop and perform a rescue. If travelers take
only the former effect into account, they underestimate the total benefits
that their action confers on others.

4 Publicly supported rescue patrols

Community members may decide to support publicly-funded highway pa-
trols that cruise the streets and help any stranded travelers that they en-
counter. The presence of such patrols will typically shorten the expected
waiting time for those in need of help. This effect is weakened by the fact
that public patrols typically “crowd out” some private rescues. However,
this crowding-out also has the beneficial effect of reducing the total costs
borne by private travelers stopping to help a stranded motorist.
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4.1 Comparative Statics and Crowding Out

On a highway with traffic rate λ, suppose that sufficient rescue patrols are
provided to arrive at a Poisson rate µ. If the fraction of ordinary passing
travelers who will stop to aid a stranded motorist is p, then for a stranded
motorist, the Poisson arrival rate of a vehicle that will stop to help is µ+λp
and the expected waiting time for help to arrive is

w =
1

µ+ λp
. (17)

Let us normalize the sympathy variable v so that v = 1 and hence vw = w is
the psychic cost of leaving a motorist stranded for an expected length of time
w. We assume that the cost of stopping for private travelers is a random
variable with distribution function F (·) and density function f defined on
the interval [`,∞]. Then it follows from Equation 17 that at an interior
equilibrium where some, but not all, private travelers will stop, it must be
that

w =
1

µ+ λF (w)
. (18)

or equivalently,
wµ+ λwF (w) = 1. (19)

For all λ > 0, the expression on the left side of Equation 19 is strictly
increasing in w and in µ. For all λ > 0, and all µ ≥ 0, the value of this
expression ranges from 0 to ∞ as w ranges from 0 to ∞. Therefore for all
λ > 0 and all µ ≥ 0, Equation 19 has a unique solution for w. This solution
implicitly defines the function w(µ, λ) representing equilibrium waiting time
on a road with traffic rate λ and arrival rate µ of public rescue vehicles.
Differentiating Equation 19 and rearranging terms, we find that the marginal
effect of the rate of rescue patrolling on expected waiting time is

∂w(µ, λ)

∂µ
=

−w(µ)

µ+ λ (F (w(µ)) + wf (w(µ)))
< 0. (20)

Where p(µ, λ) is the equilibrium probability that a private traveler will stop,
the expected arrival rate of private travelers who will stop is λp(µ, λ) =
λF (w(µ, λ)). Therefore the the rate at which public patrols crowd out
private help is

λ
∂p(µ, λ)

∂µ
= λf (w(µ, λ))

∂w(µ, λ)

∂µ
=

−λwf (w(µ))

µ+ λ (F (w(µ)) + wf (w(µ)))
. (21)

From Equations 20 and 21, we conclude that:
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Proposition 8. If the distribution F of stopping costs for private travelers
is continuous, then, at an interior equilibrium, an increase in the arrival
rate of a public rescue service will reduce expected waiting time for stranded
travelers, but will also crowd out some private help.

A special case with closed-form solution

Equation 19 defines the function w(µ) only implicitly. For most familiar
forms of the distribution function, there is no simple closed-form expression
for w(µ). There is, however a closed-from solution for w(µ) in the case of a
Pareto distribution taking the special form

F (c) = 1− A

c

over the range c ∈ [A,∞]. In this case Equation 19 becomes

wµ+ λ(w −A) = 1 (22)

and hence

w(µ, λ) =
1 + λA

µ+ λ
. (23)

Then we have
∂w(µ, λ)

∂µ
= − 1 + λA

(µ+ λ)2
=
−w(µ, λ)

µ+ λ
(24)

and the rate at which private help is crowded out by public patrols is

λ
∂p(µ, λ)

∂µ
= λf (w(µ, λ))

∂w(µ, λ)

∂µ
=
−λA

1 + λA
. (25)

Equation 25 tells us that for this special distribution, the degree of crowd-
ing out of private rescues by a public rescue service is independent of µ
and increases continuously with the density of traffic. There is almost no
crowding-out with very thin traffic and almost full crowding out with very
dense traffic.

Graphical Exposition

Figure 3 illustrates the comparative statics effects of changes in the frequency
of public rescue patrols. On the horizontal axis, this figure shows expected
waiting time for a stranded traveler the vertical axis shows the probability
that a private traveler will stop to help. The upward-sloping curve is the
graph of the distribution function F (·). The solid downward-sloping curve
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shows how the probability p that a private traveler will stop influences the
expected waiting time if there are no public rescue patrols. This function
is given by p = 1/λw where, in the figure, we have set λ = 5. The dashed
downward-sloping curves shows expected waiting as a function of p when the
frequency of rescue patrols is µ = 1/2. In this case, expected waiting time is
given by w = 1/(µ+ λp). The intersections of these two downward-sloping
curves with the graph of the distribution function F determine show, with
and without the presence of the rescue services, the equilibrium probabilities
that private travelers will help and equilibrium expected waiting times for
a stranded traveler. In this graph, we see that the presence of the rescue
patrol reduces expected waiting time of a stranded traveler from W0 to W1

and reduces the probability that a private traveler will stop form p0 to p1.
If there had been no crowding-out effect, so that private travelers continued
to help as often as in the absence of public rescue patrols, then the addition
of the rescue patrols would have reduced waiting times to the point W ∗ on
the graph.

Figure 3: Effect of Public Rescue Patrol
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In the special case where travelers have identical cost distributions, the
marginal crowding-out effects are quite simply described. Where traffic rates
are very low and rescue vehicles are infrequent, there is no crowding out
because all private travelers will stop even with modest increases in the
amount of public patrols. On heavily travelled roads with frequent public
rescue patrols, there will be no marginal crowding out because no private
travelers will stop with or without incremental changes in the frequency of
public patrols.

The three solid downward-sloping curves in Figure 4 relate expected
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waiting times for a stranded traveler to private stopping probabilities with
there is no public rescue service for three different levels λ of traffic density.
For each of these three traffic densities, the corresponding dashed downward-
sloping curve relates expected waiting time to private stopping probabilities
if public rescue patrols arrive at the rate 0.1λ. The reaction correspondence,
showing the fraction of the population willing to stop, given the expected
waiting time of a stranded traveler is shown by the piecewise linear curve
running rom the origin to (1/2, 0), then vertically from (1/2, 0) to (1/2, 1)
and then horizontally from (1/2, 1) to (1, 1).

Figure 4: Public Rescue Patrol with Identical Travelers
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The highest of the downward-sloping curve shows w = 1/λp for a rela-
tively isolated road with traffic arrival rate 1.5. As the graph shows, if there
are no public rescue patrols, all private travelers would stop to help. In the
example shown here, we also see that if a public rescue patrol arrives at
the rate 0.1λ, all private travelers would continue to stop, so there would
be no crowding out. The middle downward-sloping curve is drawn for an
intermediate density, λ = 5. We see from the intersection of the dotted line
just below this curve that for this traffic density, there is complete crowding
out. The equilibrium probability of stopping by private travelers falls by ex-
actly the probability λµ that a rescue vehicle will appear, and the expected
waiting time of the stranded traveler is unchanged by the presence of the
rescue patrol. The lowest of the solid curves corresponds to a relatively busy
road with traffic arrival rate of 30. The dashed curve just below this curve
relates expected waiting time to the probability that a private motorist will
stop, given that the road features public rescue patrols that arrive at the
rate 0.1λ. We see from these curves that the addition of the public patrol
eliminates private stopping altogether and it reduces the expected waiting
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time to a period shorter than that which would induce private travelers to
stop.

4.2 Benefit-cost for Public Rescue Patrols

Calculating marginal benefits

An increase in the frequency of public rescue patrols will benefit travelers by
reducing the expected amount of time that a stranded traveler must wait for
help. The greater frequency of rescue patrols is partially counteracted by a
reduction of private rescue efforts, a “crowding-out effect.” But crowding-
out also yields benefits. Those private travelers who were crowded out are
spared the cost of performing a rescue.

Let us assume that the probability that every motorist faces a Poisson
probability of ρ of being stranded while traveling. Then on a road with traffic
density λ, trended motorists will appear according to a Poisson process with
arrival rate ρλ. The expected number of motorists to be stranded on a road
with traffic density λ, during a period of length T , is ρλT . Let µλ be
the Poisson arrival rate of traffic patrols, let w(µ) be the corresponding
equilibrium waiting time for motorist who is stranded, and let v∗ be the
cost per unit of expected waiting time for those who are stranded. Then, on
a road with traffic density λ, over a time interval of length T , the expected
total waiting cost for stranded motorists is v∗w(µ)ρλT .

Total costs of travelers include not only the cost of waiting if stranded,
but also expected costs of stopping to help those in distress. Where p(µ) =
F (w(µ)) is the fraction of passing travelers with stopping costs low enough
that they will stop and where ` is the lower bound of the support of F (·),
the average stopping cost incurred by those who stop to help will be

A(µ) =

∫ w(µ)
` cf(c)dc

F (w (µ))
. (26)

The fraction of all stranded motorists who are helped by private travelers is

S(µ) =
F (w(µ))

µ+ F (w(µ))
. (27)

Then, for each stranded motorist, the expected cost of rescues by private
travelers is A(µ)S(µ). Therefore over a time interval of length T , on a
road with traffic density λ, the expected total rescue costs borne by private
motorists must be

A(µ)S(µ)ρλT =

(∫ w(µ)
` cf(c)dc

µ+ F (w(µ))

)
ρλT. (28)
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It follows that over a time interval of length T , on a road with traffic
density λ, the expected total cost borne by stranded motorists and those
who stop to help them is

C(µ, T ) =

(
v∗w(µ) +

∫ w(µ)
` cf(c)dc

µ+ F (w(µ))

)
ρλT (29)

From Equations 18 and 29 it follows that

C(µ, T ) =

(
v∗w(µ) + λw(µ)

∫ w(µ)

`
cf(c)dc

)
ρλT (30)

The marginal benefits MB(µ) from an increase in µ for a period of time
T are equal to the resulting marginal reduction in costs. Differentiating
Equation 30, we find that

MB(µ) = −w′(µ)

(
v∗ + λ

∫ w(µ)

`
cf(c)dc+ λw2(µ)f (w(µ))

)
ρλT. (31)

The three terms in parentheses on the left side of Equation 31 show three
distinct benefits of the reduction in expected waiting time induced by addi-
tional public patrols. The first term, v∗, is the benefit to stranded travelers
of reduced waiting time. The second term measures the expected reduced
cost to private travelers that results when a public rescue vehicle arrives
before any willing private traveler. The third term represents the reduction
in private rescue costs that results from reducing the average stopping cost
of those travelers whose cost falls below the stopping threshold.

4.2.1 Equating marginal costs with marginal benefits

Let us assume that the cost of maintaining rescue patrols that traverse
a highway with frequency µλ for a period of time T is cµλT . Then the
marginal cost of increasing the rate µ is simply

MC(µ) = cλT. (32)

Efficiency calls for equality between marginal benefits and marginal costs
of changing µ. From Equations 31 and 32 we see that this implies that

c

ρ
= −w′(µ)

(
v∗ + λ

∫ w(µ)

`
cf(c)dc+ λw2(µ)f (w(µ))

)
. (33)
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The efficiency condition in Equation 33 is stated only in implicit form. Even
for simple distribution functions, the resulting expression does not have a
closed-form solution, for the efficient relative frequency µ of public patrols,
but would need to be solved numerically. However in this expression is
greatly simplified in the special case where traffic is so frequent that efficient
levels of public rescues fully crowd out private rescues and in the case where
traffic is so infrequent that, even with efficient availability of public rescue
patrols, almost all private travelers will stop.

5 Are country folk more helpful than city folk?

A large body of field studies in social psychology explore what Nancy Ste-
blay [15] calls the “rather simple hypothesis that ‘country people are more
helpful than city people.’” Stebley examines 65 studies, of which 46 support
greater rural helpfulness, 9 support greater urban helpfulness and 10 report
no significant differences.

Paul Amato [2] conducted a series of field experiments in 55 randomly
selected Australian communities stratified by size and isolation.7 In each
community, Amato and his co-workers staged a number of situations that
tested the willingness of random passers-by to help a stranger. One of
Amato’s staged events bears a close similarity to the Road to Jericho game.
Amato described the set-up as follows:

The episode began with the investigator walking along the
sidewalk with a noticeable limp. A suitable pedestrian approach-
ing from the opposite direction was selected to be the subject . . .
the investigator would suddenly drop to the sidewalk with a cry
of pain. Then while half kneeling, the investigator would reveal
a heavily bandaged leg, with . . . bandage generously smeared
with a fresh application of theatrical blood.

A confederate observed whether the subject offered to help and scored the
response of the subject on a scale of “prosocial responsiveness.” Amato
found that the percentage of individuals who offered to help the injured
person declined steadily with population size, from a helping rate of about 50
per cent in communities with populations below 5,000 to about 15 percent in
larger cities. In another study [1], Amato conducted the hurt-leg experiment
in several small Northern California cities and also in San Francisco. His

7About 1/4 of these communities came from each of the size ranges: < 1000, 1000 −
5, 000, 5, 000− 20, 000, > 20, 0000.
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findings were similar to those for Australia. In the small Californian cities,
43% of the subjects offered to help and in San Francisco, 20% offered help.

Robert Levine and his co-workers [11] [12] conducted two series of field
experiments in a large number of small, medium, and large U.S. cities, once
in the early 1990’s and again 13-15 years later. These experiments included
an episode similar to Amato’s hurt-leg experiment.

“Walking with a heavy limp and wearing a large and clearly
visible leg brace, experimenters ‘accidentally’ dropped and then
unsuccessfully struggled to reach down for a pile of magazines...”

Both studies found that in places with larger populations, people were less
likely to help. Evidence from the first of these studies suggested that popula-
tion density had a stronger effect than population size. In the second study,
there was insufficient independent variation of size and density to allow them
to statistically distinguish the effects of size from those of density.

Our theoretical model suggests that when the hurt-leg experiment is
performed on more busily traveled sidewalks, the fraction of passers-by who
offer to help would be smaller, but that the average amount of time between
offers to help would be shorter. As far as I know, none of these studies
calculated the effects of a direct measure of the traffic rate on either the
probability that an individual would stop, or on the average amount of time
that the “victim” would have to wait for help.8 While it is likely that
the cities with larger population had more frequent pedestrian traffic on
the sidewalks where the experiments were performed, this correlation is not
likely to be perfect. Levine makes a partial correction for this effect by using
population density as well as population size as a variable.

Suppose that we want to test the hypothesis that “big city life leads
to public apathy and a lack of concern for the well-being of others.” Our
discussion suggests that it would not be sufficient simply to find whether
“country people are more helpful than city people” by finding the relation
between population size and probability of helping, nor would it be sufficient
to find out whether people are less likely to stop on busier sidewalks. Our
model has it that even if people everywhere have the same distribution of
sympathies for others, those who travel on busy city sidewalks are less likely
to stop than those on less busy small-town sidewalks. But this model also
predicts that the average amount of time between offers of help would be

8Amato [2] (page 578) reports that he and his associates recorded pedestrian traffic
rates at the sites of their experiments, but he does not appear to have related this ob-
servation to outcomes, nor does he estimate the expected waiting time before an injured
pedestrian would receive help.

20



smaller, the busier the sidewalk. If experimenters were to discover that
the expected amount of time between offers of help is greater on the busy
sidewalks of large cities, this evidence would suggest that those in big cities
may tend to have less sympathy or higher costs of stopping than those in
small towns.

6 Related Theoretical Work

6.1 The Volunteer’s Dilemma game

In 1964, a young woman named Kitty Genovese was attacked and stabbed
to death on the streets of New York City. According to news accounts,
the murder was witnessed by a large number of people whose apartments
overlooked the site of the crime. Yet, none of them came to help her or even
bothered to call the police. Commentators offered this event as evidence
that big city life leads to public apathy and a lack of concern for the well-
being of others. Andreas Diekmann, a sociologist, suggested that these
sad events might better explained as the result of a coordination problem
that arises whenever well-meaning observers are aware that several other
potential helpers are available and that the help of only one is needed.

Diekmann modeled this situation as a game which he called the Vol-
unteer’s Dilemma Game. In this game, n players choose simultaneously
whether or not to take a costly action. If one or more persons act, everyone
who acted must pay a cost of c, while all n persons, including those who did
not act, will receive a benefit b > c. If nobody acts, all receive a payment
of zero. Where there are n identical players, Diekmann suggested that the
most plausible outcome of the game is the symmetric mixed Nash equilib-
rium, which will be unique in this case. He showed that, in equilibrium, as
the number of player increases, each individual is less likely to take action.
More surprisingly, he also found that as the number of players increases,
the probability that nobody takes action increases. Thus, it would not be
surprising to find that even if urban people are just as concerned about the
welfare of their neighbors as rural people, crime victims are less likely to be
helped in more densely populated cities.

Joseph Harrington [10] and Martin Osborne [13], (pp 131-134) offer fur-
ther interesting discussions of the Volunteer’s Dilemma game. Jeroen Weesie
[16] presented a thorough study of this game, along with a provocative dis-
cussion of its applications. Weesie showed that, even with symmetric payoffs
and complete information, the Volunteer’s Dilemma Game will have a large
number of asymmetric equilibria. He characterized the full set of complete
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information Nash equilibria for symmetric and asymmetric versions of the
Volunteer’s Dilemma.

Weesie [17] presented a version of the Volunteer’s dilemma that is a
symmetric game of incomplete information in which players’ costs differ.
Players know their own costs and all believe that the costs of other players
are independent draws from a commonly-known uniform distribution. For
this distribution, he shows that in symmetric equilibrium, the probability
that nobody acts is increasing in n for small n and decreasing in n for large
n. Xiaopeng Xu [18] considers a similar model and finds similar results.

Stefano Barbieri and David Malueg [5] study a broader class of games
in which the amount of a public good provided to a group is determined
by the maximum effort, “Best Shot”, made by a group member. This
generalizes the Volunteer’s Dilemma in which effort levels can take only one
of two values, 0 or 1. Barbieri and Malueg find the mixed strategy equilibria
for symmetric, complete information Best Shot games. Their results for
the complete information game are qualitatively similar to those for the
discrete Volunteer’s Dilemma. As the number of active players increases,
individuals stochastically reduce their efforts and the realized maximum
effort is also stochastically reduced. Barbieri and Malueg go on to analyze
symmetric games in which the costs of effort differ and where players’ own
costs being private information. For these games, the symmetric equilibrium
is in pure strategies. In equilibrium, as the number of players increase,
individual contribution functions are point wise reduced, but players’ payoffs
are increased. Barbieri and Malueg also show that greater heterogeneity of
the group increases players’ payoffs.

6.2 Waiting to take action

Weesie [16] studied a related game, which he called the Volunteer’s Timing
Dilemma. In Diekmann’s Volunteer’s Dilemma, players move simultaneously
and must decide whether to act without being able to observe what others
have done. In contrast, players in the Volunteer’s Timing Dilemma choose
when to act and can wait to see whether others have acted before taking
their own actions. In this game, Weesie assumes that everyone would prefer
that action be taken earlier rather than later. A strategy in this game is a
choice of when to act, conditional on nobody else having acted previously.
Assuming that all players have complete information, Weesie finds equilib-
rium solutions for this game, both for the case of identical payoff functions
and for differing payoffs.

In a paper titled “Dragon Slaying and Ballroom Dancing: The Private
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Supply of a Public Good”, Christopher Bliss and Barry Nalebuff [7] study
a game with a payoff structure to similar to that of Weesie’s Volunteer’s
Timing Dilemma. They motivate their discussion by scenarios in which the
first person to take a costly action provides benefits to several others who
might have taken this action.9 Bliss and Nalebuff model this as a “game of
attrition” in which players have incomplete information about others’ costs.
Players know their own costs of taking action, but each player views the costs
of the other players as independent random draws from a distribution that
is common knowledge. Players need not act immediately, but delay is costly
to all. Players are able to observe whether any one else has acted, before
taking action themselves. A strategy for any player is a mapping from the
player’s type to the time at which this player will take action if no one else
has yet acted. Bliss and Nalebuff show that the game has a Nash equilibrium
in which each player’s strategy is the same function from his own type to the
time at which he will take action if no one else has yet acted. In equilibrium,
the first to act will be the player with the greatest net benefit from action
being taken. Bliss and Nalebuff find that as the number of players increases,
the expected net payoff to each possible volunteer increases. However, for
small groups, the length of time before someone takes action may either
increase or decrease with the number of players. In a study that summarizes
results of Volunteer’s Dilemma games and Volunteer’s Timing Games [17]
with complete and incomplete information, Weesie finds results similar to
those of Bliss and Nalebuff.10

Marc Bilodeau and Al Slivinski [6] show that if the Dragon Slaying and
Ballroom Dancing story of Bliss and Nalebuff is modeled as a stationary
game with complete information and an infinite horizon, then it will have
an infinite number of subgame perfect equilibria. However, with complete
information, if individuals have a finite time horizon, there is a unique sub-
game perfect equilibrium equilibrium and in that equilibrium, the individual
with the highest benefit-cost ratio acts immediately.

6.3 Comparison of results

The sequential arrival structure of passing travelers in the “Road to Jericho”
story produces a game that differs qualitatively from both the Volunteer’s

9As examples, they suggest the awkward period before some couple is first to start
dancing in a ballroom full of shy dancers, or where someone first to make the effort to
open a window in an overheated lecture hall.

10Weesie’s model differs slightly from that of Bliss and Nalebuff in the way in which the
cost of delay is modeled.
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Dilemma, the Best Shot game, and the Volunteer’s Timing Dilemma. In
the Volunteer’s Dilemma game and the Best Shot game, actions are taken
simultaneously and there is a significant probability that costly efforts will
be duplicated, even though the effort of only one player is needed. In the
Volunteer’s Timing Dilemma game and in the Ballroom Dancing game, there
is no duplicated effort in equilibrium. In these games, all players observe the
need for action at the same time, but all have the option of waiting to act
at a later time and can choose to act only if no one else has yet acted. The
Road to Jericho game also avoids the possibility of wasteful duplicated effort,
since travelers see the stranded motorist only if he has not been helped. In
this game, however, travelers do not have the option of waiting, but must
either offer immediate help or drive on.

In the Volunteer’s Dilemma with identical players, the equilibrium ex-
pected payoff to potential volunteers is unchanged as the number of vol-
unteers increases, but the recipient is worse off, since help is less likely to
arrive. In the Volunteer’s Timing Dilemma, as more individuals are added,
the expected payoff to potential volunteers increases, but the recipient may
or may not have to wait longer to receive assistance. In the Road to Jericho
game, as traffic levels increase, travelers who are not stranded are better off,
since they are less likely to have to pay the cost of stopping. If stopping
costs differ among travelers, stranded motorists can expect shorter waiting
times on more heavily travelled roads, while if stopping costs are the same
for all travelers, expected waiting times do not change with the density of
traffic.

7 Conclusion: Fables and Games

Ariel Rubenstein asserts that:

“Game theory is about a collection of fables. Are fables useful
or not? In some sense, you can say that they are useful, because
good fables can give you some new insight into the world and
allow you to think about a situation differently. But fables are
not useful in the sense of giving you advice about what to do
tomorrow. . . ”[8]

This paper tells a simple tale. I will consider it successful if it meets
Rubenstein’s criterion for a good fable: giving new insight to a common
situation and allowing one to think about it differently. The fable told here
offers a fresh look at the familiar Parable of the Good Samaritan. In this
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version, I apply game theory to the riddle of who would help someone in
need if everyone believes that others are willing to do so. This paper probes
the relation between social efficiency and ethical norms when more than one
person could help a stranger. The fable told here proposes a theoretical
explanation for observations that people tend to be act more helpfully in
less populous places, but it also predicts that help is likely to arrive more
quickly in more densely populated places. The discussion also suggests an
improvement in the design of field experiments that may lead to a sharper
test of the hypothesis that urban dwellers are less neighborly than their
country cousins.
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8 Appendix

Proof of Proposition 3

Proof of Proposition. Equilibrium requires that

wF (λ)F (wF (λ)) =
1

λ
. (34)

Taking logarithms of both sides of Equation 34 and differentiating with
respect to log λ, we find that:

d lnwF (λ)

d lnλ
+
d lnF (wF (λ))

d lnw

d lnwF (λ)

d lnλ
= −1 (35)

Rearranging terms of Equation 35 results in the expression

ηw(λ, F ) =
−1

1 + σF (wF (λ))
. (36)

Since ηF is necessarily non-negative, it follows from Equation 36 that the
elasticity of equilibrium expected waiting time with respect to the arrival
rate λ is negative and lies in the interval between -1 and 0.

Proof of Proposition 6

Our proof of the second assertion of Proposition 6 uses the following Lemma.

Lemma 1. Suppose that the distribution function F is log-concave. Then
the function

δ(x) = x−
∫ x
` tf(t)dt

F (x)

is monotone increasing in x.

A proof of this result is found in Bagnoli and Bergstrom [4].

Proof of Proposition. Let c∗(λ) be the ethical ideal stopping threshold when
the Poisson arrival rate of traffic is λ. From Equation 15 it follows that

c∗(λ)F (c∗(λ))−
∫ c∗(λ)

`
cf(c)dc =

v

λ
(37)

Differentiating both sides of Equation 37 with respect to λ and rearrang-
ing terms, we find that

c∗′(λ) = − v

λ2F (c∗(λ))
< 0. (38)
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The effect of traffic density on the probability that any single passer-by will
stop is therefore

d

dλ
F (c∗(λ)) = f (c∗(λ)) c′(λ) = −

( v
λ2

) f (c∗(λ))

F (c∗(λ))
< 0. (39)

This proves the first assertion of the theorem.
Let w(λ) = 1/λF (c∗(λ)) be the expected waiting time for a stranded

traveler if passing travelers stop when and only when their their stopping
costs are below c∗(λ). Let us define

δ(c∗) = c∗ −
∫ c∗
` cf(c)dc

F (c∗)
. (40)

From Equations 15 and 40 it follows that

δ (c∗(λ)) = vw(λ). (41)

From Equation 41 it follows that

w′(λ) =
1

v
δ′ (c∗(λ)) c∗′(λ) (42)

According to Lemma 1, the assumption that F is log-concave implies
that δ′ (c∗(λ)) > 0. According to Expression 38, it must be that c∗′(λ) < 0.
Therefore Equation 42 implies that w′(λ) < 0. It follows that the more
dense is traffic on the road, the shorter is the equilibrium expected waiting
time for a stranded traveler.

Proof of Proposition 8
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