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ABSTRACT

Many optimization problems are multi-modal. In certain
cases, we are interested in finding multiple locally optimal
solutions rather than just a single optimum as is computed
by traditional genetic algorithms (GAs). Several niching
techniques have been developed that seek to find multiple
such local optima. These techniques, which include sharing
and crowding, are clearly powerful and useful. But they do
not explicitly let the user control the number of local op-
tima being computed, which we believe to be an important
capability.

In this paper, we develop a method that provides, as an
input parameter to niching, the desired number of local op-
tima. Our method integrates techniques from feedback con-
trol, includes a sensor based on clustering, and utilizes a
scaling parameter in Generalized Crowding to control the
number of niches being explored. The resulting Feedback
Control GA (FCGA) is tested in several experiments and
found to perform well compared to previous approaches.
Overall, the integration of feedback control and General-
ized Crowding is shown to effectively guide the search for
multiple local optima in a more controlled fashion. We be-
lieve this novel capability has the potential to impact future
applications as well as other evolutionary algorithms.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Markov Processes, Prob-
abilistic algorithms including Monte-Carlo; 1.2.8 [Artificial
Intelligence]: Problem Solving, Control methods, Search
methods—Heuristic methods

Keywords

FCGA; Genetic Algorithms; Generalized Crowding; Feed-
back Control; Multi-modal Optimization
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1. INTRODUCTION

Multi-modal problems have multiple local optima in their
solution landscape. In many cases it is desirable to obtain
multiple distinct and locally optimal solutions to such prob-
lems. One reason for such a requirement is that some of
the local optima may be surrounded by a steep fitness land-
scape, while other local optima may not be. The latter case
might be preferred if a more stable solution is needed. Ob-
taining multiple solutions is also useful in situations where
there is considerable uncertainty about the fitness function
or important problem aspects are not fully captured in it.

Different niching techniques including sharing and crowd-
ing have been developed to converge to multiple solutions
[1, 2, 3, 4, 5]. Based on Deterministic [1] and Probabilistic
Crowding [6], a new Generalized Crowding method which
integrates these two original ideas has been developed [5].
A so-called scaling factor is the key parameter in General-
ized Crowing which allows us to simulate both Determinis-
tic and Probabilistic Crowding. The existence of a scaling
factor of course raises the question of designing schedules
for varying it. Recently, several schedules have been in-
vestigated including a constant schedule; an exponentially-
decaying schedule; a diversity-adaptive schedule based on
population entropy; and a self-adaptive schedule [5, 7]. Al-
though these approaches work well, there is no explicit con-
trol of the number of local optima, multiple distinct solu-
tions, or niches explored or found.

More broadly, investigating the trade-off between explo-
ration and exploitation is one of the central themes of evolu-
tionary algorithms (EAs). In particular, exploration is em-
phasized in niching techniques, where the goal is to improve
diversity or increase the number of local optima explored.
Surprisingly, to the best of our knowledge, the literature
has not discussed how to directly control the number of lo-
cal optima found by niching algorithms. In this paper, we
investigate this problem.

Specifically, we use the desired number of distinct niches
(number of local optima) to be explored as the set-point in
a feedback control loop. This enables the user to directly
control, using the set-point, the number of niches explored
in a Feedback Computing GA (FCGA) run. A set-point
represents external constraints associated with a user or a
computational process using an FCGA. In other words, the
set-point may not have anything to do with the number of
local optima in the fitness function, as long as we make the
reasonable assumption that the set-point is less than or equal
to the number of local optima.



Before summarizing our approach, we highlight a few sit-
uations in which better user control of the number of local
optima, through a set-point, promises to be powerful:

e It might be useful in a design process to create diverse
physical prototypes of candidate solutions. Clearly,
there might exist time and budget constraints for de-
veloping such prototypes (e.g. 3D printing). In this
case, the FCGA set-point would be the number of dis-
tinct physical prototypes to be created.

e When software is evolved, one might require that the
candidate solutions be tested extensively. While run-
ning computer programs might seem relatively inex-
pensive, there are always time and budget constraints
given the complexity often found in software. In this
case, the FCGA set-point would be the number of dis-
tinct software prototypes to be evolved.

e A computer screen may visualize candidate solutions
being evolved, for example for the purpose of interac-
tive design of shapes [8] or interactive optimization of
robot controllers [9]. In this case, the user’s FCGA set-
point would be the number of diverse shapes or robot
controllers that can be meaningfully visualized.

In this paper, we consider applying feedback control on the
scaling factor ¢ in Generalized Crowding to better achieve
the desired number of locally optimal solutions as defined
by the user. We apply simple proportional control, and an-
alyze the impact of control parameters and also compare the
resulting performance with existing scaling factor schedules.

The rest of this paper is organized as follows. In Section
2, related research on crowding, self-adaptation, and feed-
back computing is discussed. Section 3 presents our feedback
control approach to EAs, the Feedback Control GA, and de-
fines the components of the control loop in a GA context.
In Section 4, we present experimental results for several test
functions. Finally, we conclude with Section 5 and outline
future research directions.

2. RELATED RESEARCH

2.1 Niching Techniques

Niching techniques in Evolutionary Algorithms (EAs) are
often motivated by multi-modality in the objective function.
Niching techniques include sharing [10] and crowding [11, 1,
6, 5]. Crowding, which we focus on in this paper, was intro-
duced as a technique for preserving population diversity [11].
It is perhaps interesting to consider the mechanism of crowd-
ing using a biological perspective. Even when the whole pop-
ulation is derived from the same species, individuals mostly
compete with each other within a niche. This results in
the preservation of sub-populations in distinct niches, cor-
responding to local optima and their neighborhoods in the
fitness function.

Technically, crowding techniques are applied in the sur-
vival stage of GAs. There are two phases in the crowding
process: The Grouping Phase, used to pair up individu-
als according to a similarity metric, and the Replacement
Phase, in which competitions are held within each pair to
decide the winner [4]. In most crowding approaches the sim-
ilarity metric used is genotypic distance.

The replacement rule plays an important role in crowding.
Depending on how replacement is performed, several rules

have been identified, including Deterministic Crowding [1]
and Probabilistic Crowding [6]. Deterministic Crowding is
an exploitative replacement rule since the winner of a com-
petition is always the one with a higher fitness [1]. One
shortcoming of Deterministic Crowding, however, is that it
may lead to premature convergence. In Probabilistic Crowd-
ing, an individual wins a competition with a probability pro-
portional to its fitness. This approach is more exploratory
than Deterministic Crowding, but similar to Deterministic
Crowding the selection pressure is not adaptive.

Subsequently, these two techniques were generalized by in-
troduced a scaling factor ¢, creating Generalized Crowding
[5]. In Generalized Crowding the exploration-exploitation
trade-off is parametrized through ¢. This is similar, to some
extent, to the use of temperature in simulated annealing [12,
13]. Intuitively, high temperature and high scaling factor
give exploration, while low temperature and low scaling fac-
tor give exploitation. A key difference between simulated
annealing and Generalized Crowding is that the latter is a
population-oriented technique, while the former is not. Gen-
eralized Crowding and other EAs thus lend themselves more
naturally to multi-modal optimization.

2.2 Adaptation and Self-adaptation

The idea of self-adaptation, including self-adaptive pa-
rameter control, has been extensively performed by EAs.
Evolution strategies [14, 15] self-adapts the mutation step
sizes throughout the search process. Mutation [16] as well
as crossover rates [17] have been self-adapted. Generalized
Crowding has been augmented with diversity-adaptive and
self-adaptive methods [7]. In diversity-adaptive Generalized
Crowding, the scaling factor ¢ is changed according to pop-
ulation diversity. In self-adaptive Generalized Crowding, ¢
is added to the chromosome, and undergoes crossover, mu-
tation, and selection along with it.

2.3 Feedback Computing

Feedback control, both theory and practice, has tradition-
ally been applied to physical systems governed by Newtonian
mechanics. More recently, feedback control is starting to be
applied to computing hardware and software; this is known
as feedback computing [18]. Examples of feedback comput-
ing include: control of HT'TP servers [19, 20], email servers
[21], quality of service assurance [22], and Internet traffic
control [23]. While computing systems are clearly different
from traditional feedback control applications, many tech-
niques have carried over.

3. FEEDBACK COMPUTING GA (FCGA)

Although the various crowding techniques and their cor-
responding replacement rules have been proven to work well
with multi-modal optimization problems, one drawback is
that they provide no direct user control over the number of
niches (or local optima) being explored. We seek to attack
this problem by adopting techniques from feedback control.
Our novel idea of integrating feedback control with evolu-
tionary computation is illustrated in Figure 1. Crucially,
the user now has direct control over a set-point r(¢). This
set-point represents how many niches, with local and diverse
optima, a user wants to find using the GA.

We call this feedback computing pattern, where the com-
putational process is a GA operating on a population 7 (t)
at time ¢ > 0, a Feedback Control GA (FCGA). Similar
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Figure 1: Feedback control loop of the Feedback
Computing GA (FCGA) with a Generalized Crowd-
ing GA as the process. A proportional controller is
used, while clustering is used as a sensor.

to more traditional feedback control loops, there are three
important components.

e Process P : ¢(t) x n(t — 1) — 7(t). The process to
be controlled is a GA, currently a Generalized Crowd-
ing GA. The (multi-modal) fitness function f and the
population w(t) are also part of this computational
process. The population consists of M individuals
71'(75) = (71'1 (t), 7l'2(t), ey 7'I'M(t)).

e Sensor S : 7w(t) — I(t). The objective of the sensor is
to measure the current process status. In our case, the
number of niches (or local optima) in the current pop-
ulation is the statistic I(¢) to be sensed. This number
is then sent to the controller.

e Controller C : e(t) — ¢(t). The controller is a math-
ematical function that maps the error e(t) between the
current number of local optima I(¢) and the set-point
r(t) to the scaling factor ¢(¢). The controller sends a
signal to manipulate the GA process by adjusting the
scaling factor ¢(t). We use r(t) to capture potential
variation of the set-point through time ¢, however, it
might be kept constant r(t) = r.

Now, we discuss the Process, the Sensor, and the Con-
troller in more detail.

3.1 Process: Generalized Crowding

Various methods have been developed to avoid premature
convergence in GAs and to find multiple solutions. Crowd-
ing is one such method developed by De Jong [11] and later
modified by Mahfoud [1]. Crowding attempts to prevent
premature convergence to a single local optimum by trying
to distribute individuals across niches. Generalized Crowd-
ing introduces a scaling factor ¢ [5], which is the “knob”
being controlled in FCGA.

The replacement rule for Generalized Crowding is expressed

as follows. Assume that parent p € 7(t) and child ¢ € = (t)
are paired in the grouping phase. Let f(c) and f(p) be the
fitness of the child and the parent, respectively. We let P.
be the probability that child ¢ replaces parent p:

if f(c) > f(p)

if £(c)=£(p)
om0 <S@).

Putting ¢ = 0 results in Deterministic Crowding, which

mostly exploits the niches already found and does not usu-
ally result in the discovery of new niches. On the other

f(e)
f(e)+éxf(p)
P.=<¢ 05

hand, putting ¢ = 1 results in Probabilistic Crowding which
is biased more towards exploration and finding new niches.
Using 0 < ¢ < 1 allows for a combination of such effects
while ¢ > 1 provides even more exploration than Proba-
bilistic Crowding does.

A larger scaling factor ¢ leads to a greater probability of
the less fit individual surviving a competition, on average.
This results in more extensive exploration of less fit parts
of the search space, including less-fit niches. Control over
the scaling factor ¢ enables FCGA to dynamically vary the
balance between exploration and exploitation. In FCGA, a
time index ¢ > 0 is added to ¢, and ¢(t) is varied by FCGA’s
controller.

3.2 Sensor: Clustering

A key component of the FCGA control loop is a reliable
sensor. An unreliable sensor would make incorrect estimates
of the current process status, which may mislead the con-
troller to make poor adjustments to ¢(t). The statistic that
we would like to sense from the population is the number
of local optima explored (niches). Hence, a natural way to
arrive at such a sensor would be to employ a clustering al-
gorithm.

Clustering solves the problem of finding clusters in a set of
data points, given an assumption about the number of clus-
ters. Specifically, the k-means clustering algorithm requires
as input the number of clusters k(¢). The algorithm there-
fore does not directly solve our problem, namely estimating
the number of sub-populations I(¢) in 7(¢). However, there
are methods to use a clustering algorithm, such as k-means,
to estimate the number of clusters. One such method, which
we use in this paper, is to find [(¢) through estimating the
change in the k-means objective function (see below).

Since FCGA calls the clustering algorithm multiple times
during each FCGA generation, we need clustering to be com-
putationally efficient. This justifies our use of k-means clus-
tering, which is linear in the number of data points in each
iteration, as the basis for our sensor. The pseudo-code for
clustering using k-means in the context of a GA population
is presented as follows:

e Given: GA population 7(¢) and the number of clus-
ters k(t).

e Initialize: Use random initialization, and then com-
pute and store k(t) centriods.

e Iterate: While there exists an individual (7;(¢)) which
is not well clustered (an individual is closest to a cluster
centroid to which it does not currently belong):

— Reassign the mis-classified individual to its near-
est cluster centroid

— Recalculate the centroid of each cluster

e Output: Population 7 (t) partitioned into k(t) clus-
ters.

We now describe the algorithm used in FCGA to estimate
I(t) using k-means. k-means minimizes an objective func-
tion (within-cluster sum-of-squares) for a given k. Thus,
one can specify different k£ and measure the objective func-
tion. As we increase k, we would see a decrease in the ob-
jective function since we allow for greater model complexity.
Now, when k approaches the “correct” number of clusters,



the objective function might observe a sharp decrease for
well-defined clusters. The decrease is much smaller after
this point, since adding more complexity does not help as
the data is well-clustered using a smaller k. Using Occam’s
razor, the smallest k after the drop in the k-means objec-
tive function is chosen as the estimate for I(t) for the tt"
generation.’

3.3 Controller: Proportional Control

Inspired by the successful integration of adaptive con-
trol and feedback control with Bayesian network compu-
tation [26, 27], FCGA uses a simple Proportional-Integral-
Derivative (PID) controller. The PID controlled is arguably
the most widely used controller in industrial applications
due to it being simple and well-suited in most situations.
Although it has problems in dealing with non-linear systems
and obtaining optimal control strategies, its advantages of-
ten dominate. Furthermore, the process to be controlled in
our study is hard to model. Thus, another reason to use a
proportional controller is that it can work without an ex-
plicit model of the process.

In our FCGA method using Generalized Crowding, we ex-
plore a simplified application of PID control. The parameter
that we control in Generalized Crowding is the scaling factor
¢, which has a direct impact on the exploration/exploitation
trade-off. If we desire to increase the number of niches (local
optima) found, we would desire a higher ¢ whereas in order
to decrease the number of niches, we would decrease ¢. This
leads us to the following control strategy:

Ap(t) :{ WO -l Y 2

if I(t) = r(t)

for some v > 0, which we call the control rate. Although
there exist analytical methods to determine ~, their appli-
cation to the case in which the process is a Generalized
Crowding GA is non-trivial. Thus we have explored a range
of values for 7, optimizing it empirically (see Table 2).

FCGA currently uses proportional control to adjust the
scaling factor based on the difference between the current
number of clusters [(¢) and the set-point r(t):

Bt +1) = o(t) + Ag(t).
There are three cases possibly needing control:

e [(t) < r(t): In this case, the current number of niches
I(t) is less than desired and therefore we need to ex-
plore more niches. Thus we increase the scaling factor
¢(t) proportional to the error e(t) = r(t) —I(t) > 0, to
enable more exploration and less exploitation.

e [(t) = r(t): When the current number of niches equals
its set-point, we keep the scaling factor constant at its
current value.

e [(t) > r(t): In this case, the current number of niches
I(t) is greater than desired and therefore we need to
lose some niches. Thus we decrease the scaling factor
o(t) proportional to the error e(t) = r(t) —I(t) < 0, to
enable less exploration and more exploitation.

!There are alternative methods for estimating the number of
clusters, such as X-means [24] and G-means [25]. A detailed
study of these methods versus our method of estimating &
through a change in the objective function is left for future
research.

Table 1: Parameters used for FCGA experiments
unless specified otherwise. Bold indicates defaults.

GA parameter Value

Population size M € {25,100, 400}
Mating Random

Crossover (Uniform) | P. =1

Mutation (Uniform) | P, € {0.0125,0.025,0.3}
Survivor Selection Generational

Scaling Parameter Initially ¢ =1
Generations per run | G = 500

Number of runs N =100

Control rate ~v € {0.1,1,10, 100}

3.4 Discussion

The idea of integrating feedback control and computing,
or feedback computing, is not new [18]. However, we be-
lieve that feedback computing for the purpose of controlling
an EA process—which is what we do in this paper—is new.
We hypothesize that this amalgamation of evolutionary al-
gorithms, feedback computing, and clustering can poten-
tially bring substantial benefit to multi-modal optimization
by means of genetic algorithms. While multi-modal opti-
mization using genetic algorithms is well-established, it has
so far lacked the capability of controlling the number of local
optima being searched for by the algorithm. In hindsight,
this appears to be a small but crucial limitation of previ-
ous work, since the number of local optima as well as the
local optima themselves are of considerable interest to the
EA user. Our introduction of a desired number of niches
or local optima (a high-level parameter) as a set-point in a
feedback control loop is key, and distinguishes the present
work from previous efforts.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results using the
FCGA with Generalized Crowding. Our aim is to vali-
date the behavior of FCGA when faced with the problem
of achieving a user’s desired number of niches in the pop-
ulation. Before discussing experimental results, we present
the experimental setting, test functions, and metrics that we
use for evaluation.

4.1 Experimental Setting

For all experiments, we simulate 100 runs of all GAs. For
FCGA we explore different set-points r(t) to illustrate the
versatility of the algorithm. For each experiment, we look
at the mean number of niches present in the population as
generations progress. Further, unless specified otherwise,
the initial scaling factor ¢ for FCGA is set to 1. Table 1
showcases the GA parameters that are used in all exper-
iments unless specified otherwise. Generally, these values
are close to those used in previous studies [4, 7].

4.2 Fitness Functions

Experiments are concerned with maximizing multi-modal
fitness functions. We consider m-dimensional real-valued?
fitness functions f : R™ — R. Normalized versions of the
1D functions we use are shown in Figure 2. Both functions

2For the GA implementation used in all experiments in this
paper, we use Java doubles to represent reals in R. Doubles
are 64-bit double precision floats that follow the IEEE 754
standard. This is the highest precision available in Java.



are representative of multi-modal problems. They also en-
able comparison as they have been used in several previous
studies. Note that we add 1000 to the Schwefel function to
make it positive for the range we focus on.

We also experiment with the 2D version of the Schwefel
function:

f(z,y) = zsin(v/]z]) + ysin(y/[y]) + 2000,
where z,y € [—-500,500].

0.25¢
Damped Sine
= = = Schwefel
021 :
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Figure 2: Normalized versions of the 1D Damped
Sine function f(z) = e 255 5inf 572 and the
Schwefel function f(x) = xsin(y/|z|) + 1000.

4.3 Metrics

It is desirable to not only find the required number of
niches but also to have the most fit solutions as evaluated
by the fitness function f. In order to measure the over-
all quality of solutions, we report a statistic which is com-
puted by dividing the mean of the sum total fitness of the
best fit individuals in each desired niche (say, the top r(t)
niches) over all runs by the ideal value. The ideal value for
some 7(t) is the total optimal fitness value attainable within
the best 7(¢) number of niches. This statistic, which we
term the Solution Quality Coefficient (SQC), lies between
0 and 1, and would ideally be 1. If the complete search
space is denoted by 2, then Q = UiZ:1 wi,Vi = 1,..,7,
where w; is the i*" partition of Q (i*" niche) such that
each w; contains just one local optimum of fitness f;. If
{wjlj =1,..., A} is the set of partitions of Q containing the
top r(t) local optima as measured by the fitness function,
then {f;|7 =1,..., A} is the set of the corresponding fitness

values. Further, {fj l7=1,.., /\} is the set of the fitness val-

ues for the solutions found in each of {w;|j =1, ..., A}. Then
for set-point r(t), SQC:mean(z:;:1 E/ Z;:l f3), with the
mean taken over the individual SQC values of all runs. Note
that this does not measure any statistic of non-desired niches
and that this SQC metric changes as we change the set-
point.

We use another metric to effectively measure the total
deviation of the number of niches from the set-point. We
term this metric p, and define it as p = vazl(W(l) —r(t))?,
where W (i) is the number of niches present at the end of
the i** run out of the N runs. A low p signifies that the
distribution of niches present in the population over multiple
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Figure 4: Mean number of niches for different al-
gorithms on the 2-dimensional Schwefel function
(Pn =0.3 and v =1).

runs is not only sharp but is actually close to the desired
ideal distribution as expressed by the set-point.

4.4 Feedback Control for Crowding

In this experiment, we develop a broader understanding
of FCGA. We explore r(t) = 3 and r(t) = 5 for the Damped
Sine function, and for the Schwefel function we set r(t) =
2 and r(t) = 4. We choose these set-points so that other
algorithms do not converge to this many niches on average.
This illustrates the control that we introduce in FCGA.

Varying Control Rate: We first vary v to study its ef-
fect on the behavior of FCGA for the Damped Sine function.
The left part of Table 2 shows the SQC values for feedback
control on every generation. While SQC values vary along
with generations, we always report the SQC value at the end
of the run (for the last generation). We also report the stan-
dard deviation of the number of niches across the end of the
100 runs. A lower deviation reflects a better control through
a sharper distribution of the number of niches. However, this
statistic does not measure how close the distribution is to
the desired r(¢) which is measured by p. Figure 3 showcases
a number of scaling factor schedules affecting the number
of niches as generations progress. We see that reasonable
control of the actual number of niches is only possible with
FCGA, wherein the mean number of niches present in the
population closely matches the set-point r(t).

Here we briefly examine the effect of varying ~-values on
the convergence towards the set-point for feedback control.
We choose to focus on the Damped Sine function for this
study and vary the control rate v through 0.1, 1, 10 and 100
for the set-points r(t) = 3 and r(¢) = 5. Figure 5 shows the
results for this study. Generally, the converge properties are
not very different for the different ~-values, while v = 0.1



SQC: Control every generation SQC: Control every 5th generation
v=0.1 y=1 v =10 v = 100 v=0.1 y=1 v =10 v = 100
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Table 2: Mean p and standard deviation o of measured SQC values for FCGA with control on every generation
(left in table) or every five generations (right in table) for the Damped Sine function. This is for varying

setpoints r and control rates v with P,, =0.3.
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different algorithms evaluated on the 1D Schwefel function (left) and

the 1D Damped Sine function (right). FCGA, using varying r(t), allows us to converge to a desired number
of niches, making the algorithm more versatile than previous niching methods (P, = 0.3 and v =1).
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Figure 5: Effect of varying 7 on FCGA’s perfor-
mance using different set-points r(t) for the Damped
Sine function (P, =0.3 and v =1).

and v = 1 perform the best overall as measured by the SQC
in the left part of Table 2.

Immediate versus Delayed Control: Since GAs are
inherently stochastic, once we change the scaling factor ¢,
the effects in the population might not be immediate. In
fact, it might take a few generations to reflect change, dur-
ing which time an estimate [(t) would not be very accu-
rate since the population would have “not settled” in distinct
clusters after the last change. In order to compensate, we
explore a minimal gap of tmin generations between each con-
trol attempt. A control attempt is estimation of I(t), using
k-means clustering, followed by a potential change in ¢(t).

We now briefly explore the effect of immediate control ver-
sus delayed control. In immediate control, control attempts
are made on every generation and in delayed control, they
are made more sparingly. In this study, we examine tmin =

—&—r(t)=3, immediate, SQC = 0.95

—&—r(t)=3, delayed, SQC = 0.94

1r —&— r(t)=5, immediate, SQC = 0.85
—>%—r(t)=5, delayed, SQC = 0.89

100

Mean number of niches

200 300
Generation

400

Figure 6: Effect of control attempts at every genera-
tion (immediate control) versus every 5" generation
(delayed control) for FCGA, using varying r(¢), on
the Damped Sine function. SQC is reported for the
last generation (P, =0.3 and v =1).

0 (immediate control) and tmin = 5 (delayed control). We
set y=1 for this experiment. Figure 6 shows the mean num-
ber of niches for the two cases. Table 2 shows results where
also v is varied. Overall, varying v has a bigger impact than
varying tmin, and using v = 0.1 or v = 1 is reasonable for
both immediate and delayed control.

4.5 Varying GA Parameters

We now conduct a study of the effect of varying the pop-
ulation size M and the mutation rate P,, when FCGA eval-
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Figure 7: Effect of varying the size of the GA pop-
ulation on FCGA for the 1D Damped Sine func-
tion. SQC value is reported for the last generation
(Pn =03 and v =1).

uates the Damped Sine function. We examine population
sizes M € {25,100,400} and mutation probabilities P, €
{0.0125,0.025,0.3} while keeping r(t) = 3 and v = 1. Fig-
ure 7 and Table 3 show the results of these studies. While
using a larger population has a higher computational cost,
it seems to provide better solutions in terms of SQC, as ex-
pected. Regarding varying the mutation probability P, we
observe in Table 3 that FCGA performs competitively over
a broad range of mutation probabilities.

4.6 Changing the Set-point Mid-run

We now investigate the impact of a mid-run change of the
FCGA set-point. In particular, we change r(t) = 3 to r(t) =
5 at t = 500 generations while keeping v = 1. Figure 8 shows
how changing the set-point r(¢) mid-run has a drastic and
desired effect on the number of niches in the population.
This experiment validates that the PID controller works, at
least in this case.

In addition, this experiment illustrates an FCGA user’s
meaningful control over the exploitation/exploration trade-
off through the set-point 7(¢). Such control is not offered
by previous niching methods when applied to multi-modal
optimization. A use case for such a mid-run change is when
an FCGA user wants to see a larger (and more diverse) set
of candidate solutions starting at ¢ = 500.

4.7 Different Scaling Factor Schedules

We now experiment with different scaling factor sched-
ules. The schedules that we compare against FCGA are
the following. Fixed Generalized Crowding [5] uses a
constant scaling factor ¢. For ¢ = 0 this becomes Deter-
ministic Crowding and for ¢ = 1 it becomes Probabilis-
tic Crowding. We also experiment with ¢ = 0.5 (Mixed
Crowding). Exponentially-Decaying Scaling decreases
the scaling factor, following an exponentially decaying func-
tion [7]. Diversity-Adaptive Scaling is a scheme where
the population entropy is computed and the scaling factor
is varied accordingly [7]. Self-Adaptive Scaling embeds
the scaling factor in each individual’s chromosome and the
GA changes it adaptively in each generation [7].

We run all schedules with 100 individuals for 500 gener-
ations. Only for FCGA do we expect to see a change in
the mean number of niches in response to a change in the
set-point. Figure 3 shows the mean number of niches for
multiple scaling factor schedules for the 1D Damped Sine

o]

(o)

o

200 400 600 800
Generation

Mean number of niches
w E>

Figure 8: Effect of changing the set-point, at gener-
ation ¢ = 500, from r(¢) = 3 to r(t) = 5 on FCGA
for the 1D Damped Sine function. The vertical line
signifies the point of the set-point change (P, = 0.3
and v =1).

and the Schwefel functions. Figure 4 showcases the means
for the same scaling factor schedules for the 2D Schwefel
function. As we see, all schedules other than FCGA seem
to converge to an arbitrary mean number of niches. On the
other hand, FCGA is able to converge quite reliably to the
user defined set-point r(t). Thus, FCGA allows us to have
reasonable control over the number of niches, which opens
up a new dimension in versatility for GAs.

Table 4 shows the run statistics for the 1D Damped Sine
and Schwefel functions. For FCGA, we used the control loop
at every 5" generation with v = 0.1 and ¢ was initialized
at 1 for the comparison. For the Damped Sine function in
Table 4, we find that feedback control performs the best
for r(t) = 5. For r(t) = 3, it performs very competitively
while keeping the number of niches very close to the set-
point. For the Schwefel function in Table 4, we see that
FCGA performs the best overall for r(t) = 2, however, the
Schwefel function presents a more challenging scenario for
r(t) = 4. Here we see that though FCGA returns a lower
SQC, it provides a better distribution of niches close to that
defined by r(t) as seen by p being relatively smaller. Even
though Deterministic Crowding seems to obtain a more ideal
distribution (a lower p), it fails at achieving a high SQC.

S. CONCLUSION AND FUTURE WORK

This paper formulates and develops a Feedback Control
GA (FCGA) with Generalized Crowding as the GA. The
FCGA algorithm is used to better control the number of
niches that a user wants the GA to explore. Thus, the
algorithm is able to allocate more resources to exploring
desired niches, resulting in a higher-quality and more di-
rected search. The FCGA sensor is designed using k-means
clustering while the controller uses proportional control. In
experiments, FCGA reliably controls the number of niches
and finds high-quality solutions as evaluated by the fitness
function.

This work brings to the table many questions which we
leave for further investigation. One of the key steps in FCGA
is using k-means to determine the number of niches in the
population. However, determining the “optimal” number of
clusters in a population is still an active area of research



Control every generation Control every 5th generation
P, =00125] P, =002 P,=03 | P,=00125] P, =0025] P, =03
r| u o m o 1 o 1 o m o m o
31098 1.18 [098 098 [095 083]09 1.09 [099 1.08 [0.94 0.85
51090 175 [095 1.60 | 0.85 2.13]0.92 1.32 |0.95 1.28 |[0.89 1.72

Table 3: Mean p and standard deviation ¢ of measured SQC values for FCGA with control on every generation
(left in table) or every five generations (right in table) for the 1D Damped Sine function for varying values
of P,, and r; here v = 1.

Damped Sine Function Schwefel Function

Setpoint r(f) = 3 | Setpoint r(t) = 5 | Setpoint r(f) = 2 | Setpoint r(f) = 4
Schedule SQC o 2 SQC o p SQC o 2 SQC o 2
FCGA (r(t) varies) 0.95 0.69 6.92 | 095 0.82 8.24 | 1.00 0.40 4.00 | 0.75 238 2391
Exponential Decay 0.87 1.33 18.08 | 0.85 1.33 1532 | 0.98 2.66 44.77| 0.82 2.66 31.00
Self-Adaptive 090 1.22 1783 | 0.88 1.22 14.07| 099 276 4252 | 0.82 2.76 30.19
Diversity Adaptive 083 139 1794 | 081 139 16.03 | 096 2.64 43.10| 0.80 2.64 32.26
Deterministic Crowding | 0.38 0.92 11.61 | 0.30 0.92 28.61 | 1.00 0.81 8.18 [ 0.54 0.81 20.37
¢=0.5 099 0.89 12.00 | 0.75 0.89 1496 | 098 2.85 43.78 | 0.81 2.85 31.38
Probabilistic Crowding 098 1.16 18.16 | 092 1.16 13.03 | 093 2.64 44.66 | 0.83 2.64 30.83

Table 4: Experimental results for different scaling factor schedules, including FCGA with varying setpoints,
for the Damped Sine and Schwefel functions (P, = 0.3 and v =1).

in machine learning. Also, although we show that the sim-
ple approach of proportional control works reasonably well,
more sophisticated control schemes might bring substantial
improvements. Further improvements can only help make
FCGA more effective as a multi-modal optimization scheme.
Finally, interesting results are expected from having set-
points for parameters other than the number of niches and
also exploring the control perspective for evolutionary algo-
rithms other than crowding.
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