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Simple Economies with Multiple Equilibria∗

Theodore C. Bergstrom, Ken-Ichi Shimomura, and Takehiko Yamato

Abstract

We study a general class of pure exchange economies that have multiple equilibria. This
class generalizes an example presented by Shapley and Shubik. For such economies, we find
easily verified conditions that determine whether there are multiple equilibria. We also provide
simple methods for constructing economies in which arbitrary pre-specified sets of prices are
equilibria. These economies have strong comparative statics properties, since prices at interior
competitive equilibrium depend on the parameters of utility but not on the endowment quantities.
We believe that this easily manipulated special case is a valuable addition to the class of simple
general equilibrium economies that can be used as testing grounds in economic theory.

KEYWORDS: competitive equilibrium, multiple equilibria, comparative statics, quasi-linear util-
ity, Shapley-Shubik economy
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this visit and providing a stimulating working environment. Shimomura and Yamato thank the
Division of the Humanities and Social Sciences at California Institute of Technology for their
hospitality during the period when this draft was written.



1 Introduction

Lloyd Shapley and Martin Shubik (1977) used a clever trick to construct a
simple exchange economy that has three distinct competitive equilibria. There
are two consumers and two goods. Both consumers have quasi-linear utility
functions, but their utilities are linear in opposite goods, and each consumer’s
initial endowment includes only the good in which his own utility is linear.
This trick works because strong income effects act in the opposite direction
from substitution effects for both consumers, and consequently the aggregate
excess demand function is increasing in price over part of its domain.

The Shapley-Shubik paper consists of a single specific example, in which
the nonlinear parts of the utility functions are exponential. Although their
example does not admit a closed form solution, Shapley and Shubik exhibit
numerical solutions for three distinct competitive equilibria.

In this paper, we explore several families of two-person1 economies of
the Shapley-Shubik type, where the nonlinear portions of utility functions take
alternative special forms. We find general conditions that are necessary and
sufficient for the existence of multiple equilibria and we show how to solve for
equilibrium prices, given specified utility functions.

In order to create examples to illustrate a theoretical point or to use
in an experiment, it is desirable to “work backwards” from desired equilbrium
prices to parameters of the utility function. To do this, one chooses a set of
distinct prices that are to be the equilibria and then solves for parameters
of the utility functions for which these prices are the competitive equilibria.
This is often much easier than finding the equilibrium prices corresponding to
pre-specified parameters.

We believe that Shapley-Shubik economies are a useful addition to the
collection of tractable, but non-trivial special-case economies for which general
equilibrium comparative statics is relatively easy. This collection includes
economies with Cobb-Douglas utilities, economies with standard quasi-linear
utility, and economies with production satisfying the conditions of Samuelson’s
non-substitution theorem. Such special economies provide instructive testing
grounds on which to explore theories that apply in more general environments.
While the other three special theories imply unique competitive equilibrium
prices, Shapley-Shubik economies allow study of behavior in economies with
multiple equilibria.

Other papers that have explored the problem of equilibrium selection in

1This discussion applies equally well to “replica economies” with two types of consumers
and equal numbers of each type.
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economies with multiple equilibria include Huber, Shubik, and Sunder (2009)
and Shimomura and Yamato (2009). Gjerstad (1996) constructs examples
of relatively simple economies with multiple equilibria in which consumers
have differing homothetic constant-elasticity-of-substitution utility functions.
Kumar and Shubik (2003) use computational methods to explore the geometry
of the core as the number of replicas of the two participants in the Shapley-
Shubik example is increased.

2 Shapley-Shubik Economies

We define the family of Shapley-Shubik economies as follows. There are two
consumers and two goods. Consumer 1 is endowed with a positive amount x̄
of good X and zero units of good Y . Consumer 2 is endowed with a positive
amount ȳ of Y and zero units of X. Consumers 1 and 2 have utility functions

U1(x, y) = x+ f1(y)

U2(x, y) = f2(x) + y, (1)

where the fi(·) are strictly concave, continuously differentiable functions from
[0,∞) to the extended real line and where limz→∞ f

′
i(z) ≤ 0. For i = 1, 2, let

Bi = limz→0 f
′
i(z).2

Excess demand depends only on relative prices. Therefore we can make
good X the numeraire and set its price equal to one. Define xi(p) and yi(p) to
be consumer i’s demands for goods X and Y when the price of X is 1 and the
price of Y is p. In a two-commodity economy, Walras’ law implies that if excess
demand is zero in one market it will also be zero in the other. Therefore if we
denote excess demand for good Y by E(p), a price p̄ will be an equilibrium
price if and only if E(p̄) = 0. An equilibrium price p̄ will be stable or unstable
under the usual competitive dynamics, depending on whether E ′(p̄) < 0 or
E ′(p̄) > 0.

Since f ′i(·) is a strictly decreasing function, we can define the inverse
marginal utility function φi(p) = f ′−1

i (p) on (0, Bi].
3 If Bi is finite, it must be

that φi(Bi) = 0 and for all p ∈ (0, Bi), φi(p) > 0 and φ′i(p) < 0.

2We will consider Shapley-Shubik economies in which Bi = f ′i(0) is finite and positive
as well cases in which f ′i(z) becomes arbitrarily large as z becomes small, in which case
Bi =∞.

3Conversely, if φ1(·) and φ2(·) are positive valued strictly decreasing functions, we can
recover utility functions fi(·) such that φi(p) = f ′−1

i (p).
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Consumer 1’s budget constraint is

x1 + py1 = x̄. (2)

If Consumer 1 demands a positive amount of both goods at price p, her
marginal rate of substitution between y and x must be equal to p. This
implies that f ′1(y1(p)) = p and hence

y1(p) = f ′1
−1(p) = φ1(p). (3)

Consumer 2’s budget equation is

x2 + py2 = pȳ. (4)

At an interior solution for Consumer 2, it must be that f ′2(x2(p)) = 1/p and
hence

x2(p) = f ′−1
2 (

1

p
) = φ2(

1

p
). (5)

If x2(p) is given by Equation 5, then Consumer 2’s budget equation implies
that

y2(p)− ȳ = −1

p
x2(p) = −1

p
φ2(1/p) (6)

From Equations 3 and 6, it follows that: if both consumers choose positive
quantities of both goods at price p, then excess demand for Y at price p is

E(p) = φ1(p)− (1/p)φ2(1/p). (7)

Definition 1. Consumer i’s demands are interior at price p if i demands
positive amounts of both goods at price p. A price p is an interior competitive
equlibrium price if demands of both consumers are interior at price p and if
E(p) = 0.

From Equation 7 and the definition of interior competitive equilibrium,
it is immediate that:

Remark 1. The price p is an interior competitive equilibrium price if and
only if demands of both consumers are interior at p and

φ1(p) =
1

p
φ2(1/p). (8)
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A consumer’s demand can fail to be interior in two different ways. One
possibility is that he demands none of the good in which his utility is non-
linear. If B1 = ∞, then at every price p, Consumer 1 will buy some positive
amount of Y . But if B1 = f ′1(0) is finite, then at any price p ≥ Bi, Consumer
1 will buy none of Y . Consumer 2’s utility is nonlinear in X and the price of
X relative to Y is 1/p. If B2 = ∞, Consumer 2 will buy a positive amount
of X at any price. If B2 = f ′2(0) is finite, then Consumer 2 will demand none
of X if B2 ≤ 1/p. The lowest price at which a consumer demands none of a
good is commonly known as its “choke price.”

Consumer 1’s demand is linear in X and he will demand a positive
amount of X only if after purchasing φ(p) units of Y at price p, he has income
left to spend on X. Since Consumer 1’s income is x̄, this is the case if pφ(p) <
x̄. Consumer 2’s demand is linear in Y and he consumes positive amounts of
Good Y at price p only if after purchasing φ(1/p) units of X, he has income
left to spend on Y . Since Consumer 2’s income is pȳ, this is the case if
φ2(1/p) < pȳ.

These considerations motivate the following interiority conditions:

Definition 2. For a Shapley-Shubik economy, the interiority conditions are
satisfied at p > 0 if 1/B2 < p < B1, pφ1(p) < x̄, and φ2(1/p) < pȳ.

and the following remark:

Remark 2. In a Shapley-Shubik economy, demands of both consumers are
interior at price p if and only if the interiority conditions of Definition 2 are
satisfied at p.

We have the following result:

Lemma 1. In a Shapley-Shubik economy where Bi = limz→0 f
′
i(z) for i = 1, 2

and where B1 > 1/B2, excess demand for Y is negative for all prices p ≥ B1,
and positive at all prices p ≤ 1/B2.

Proof. Let Ei(p) denote excess demand for Y by Consumer i. For all prices
p ≥ B1, E1(p) = 0. Consumer 2’s budget is x2 + py2 = pȳ. Rearranging the
budget constraint we see that E2(p) = −x2(p)/p, where x2(p) is the amount of
good 2 demanded by Consumer 2. Therefore E2(p) will be negative if x2(p) is
positive. Consumer 2 will demand a positive amount of X so long as 1/p < B2.
But p ≥ B1 > 1/B2 and hence 1/p < B2. It follows that x2(p) > 0 and hence
E2(p) < 0. Therefore E(p) = E1(p) + E2(p) < 0 for all p ≥ B1. A similar
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argument shows that if p ≤ 1/B2, then E2(p) = 0 and E1(p) > 0. Therefore
E(p) > 0 for all p ≤ 1/B2.

Applying Lemma 1, we can show that if the choke prices B1 and B2

are finite and if initial endowments are sufficiently large, then there exists an
interior competitive equilibrium.

Theorem 1. In a Shapley-Shubik economy where B1 = f ′1(0) and B2 = f ′2(0)
are finite and B1 > 1/B2, there exists at least one competitive equilibrium
p̄ ∈ (1/B2, B1). The price p̄ is an interior competitive equilibrium if and only
if p̄φ1(p̄) < x̄, φ2(1/p̄) < p̄ȳ, and φ1(p̄) = (1/p̄)φ2(1/p̄).

Proof. In a Shapley-Shubik economy, utility functions are strictly quasi-concave
and continuous, and incomes are positive whenever prices are positive. There-
fore, by a well-known result on the continuity of demand functions, the excess
demand function E(p) is continuous over (1/B2, B1). According to Lemma 1,
E(p) > 0 for all p ≤ 1/B2 and E(p) < 0 for all p ≥ B1. Continuity implies
that E(p) = 0 for some p̄ ∈ (1/B2, B1).

Shapley-Shubik economies yield a strong comparative statics result that
is polar to Paul Samuelson’s Non-substitution Theorem Samuelson (1951).
Samuelson constructs an economy in which commodities are produced from
other commodities with constant returns to scale, with only one non-produced
input. In Samuelson’s economy, competitive equilibrium prices are determined
by the “supply-side” alone, and are not affected by changes in the demand
functions. For a Shapley-Shubik economy, interior competitive equilibrium
prices are determined by the “demand-side” alone and are not affected by
changes in the supply of Goods X and Y so long as endowments remain
sufficiently large to satisfy the interiority conditions. The following “neutrality
theorem” follows from Remark 1 and Theorem 1:

Theorem 2. If p̄ is an interior competitive equilibrium price for a Shapley-
Shubik economy with initial endowments x̄ and ȳ, then p̄ will also be an interior
competitive equilibrium price for endowments x and y, so long as p̄φ1(p̄) < x
and φ2(1/p̄) < p̄y.

5

Bergstrom et al.: Simple Economies with Multiple Equilibria

Published by The Berkeley Electronic Press, 2009



2.1 Mirror-symmetric Shapley-Shubik Economies

We define a mirror-symmetric Shapley-Shubik economy as one in which U1(x, y) =
U2(y, x) for all relevant (x, y) and where x̄ = ȳ. This requires that f1(x) =
f2(x) = f(x) for some function f . The consumers’ utility functions are:

U1(x, y) = x+ f(y)

U2(x, y) = f(x) + y. (9)

Let B = limz→ f
′(0) and let φ1(p) = φ2(p) = φ(p) for all p ∈ (0, B].

Remark 3. In a mirror-symmetric Shapley-Shubik economy where B > 1 and
φ(1) < min{x̄, ȳ}, there is an interior competitive equilibrium at price p = 1.

Proof. When p = 1, E(p) = φ(p) − (1/p)φ(1/p) = φ(1) − φ(1) = 0. From
Theorem 1, it follows that p = 1 will be an interior competitive equilibrium
price if the interiority conditions are satisfied. We see that 1/B < 1 < B. The
remaining interiority conditions are satisfied if φ(1) < min{x̄, ȳ}.

Notice also that in a mirror-symmetric Shapley-Shubik economy, E(1/p) =
φ(1/p)− pφ(p) = −pE(p). Therefore E(p) = 0 if and only if E(1/p) = 0, and
so:

Remark 4. In a mirror-symmetric Shapley-Shubik economy, if p is an interior
competitive equilibrium and if the interiority conditions are satisfied at 1/p,
then 1/p is also an interior competitive equilibrium.

A simple mathematical result allows us to identify mirror-symmetric
economies that have multiple equilibria.

Lemma 2. Let F be a continuous real-valued function on the interval [x1, x2],
and assume that F (x1) > 0 and F (x2) < 0. If for some p∗ ∈ (x1, x2), F (p∗) =
0 and F ′(p∗) > 0, there exist at least three distinct solutions of the equation
F (p) = 0 in the interval (x1, x2).

Proof. Since F (p∗) = 0 and F ′(p∗) > 0, there must be some p̂ ∈ (x1, p
∗) such

F (p̂) < 0. Since limp→x1 F (p) > 0, continuity of F implies that there is some
p′ ∈ (x1, p̂) such that F (p′) = 0. A similar argument establishes the existence
of p′′ > p∗ such that F (p′′) = 0.
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Theorem 3. In a mirror-symmetric Shapley-Shubik economy, if φ(1) < min{x̄, ȳ}
and φ(1) + 2φ′(1) > 0, there must be at least three competitive equilibria; one
at price p = 1, one at a price p̄ > 1 and one at price 1/p̄ < 1.

Proof. From Remark 3 it follows that E(1) = 0. Direct calculation shows that

E ′(p) = φ′(p) +
1

p2
φ(1/p) +

1

p3
φ′(1/p) (10)

and therefore E ′(1) = φ(1) + 2φ′(1). Applying Lemma 2 with p∗ = 1 we know
that there are at least three equilibria. Remark 4 informs us that if p̄ is an
equilibrium, so is 1/p̄.

It is noteworthy that in a mirror-symmetric Shapley-Shubik economy
with multiple equilibria, the “fair” equilibrium outcome in which p = 1 and
where the two consumption bundles are mirror images is unstable. The only
stable competitive equilibria divide the gains from trade unequally.

Remark 5. In a mirror-symmetric Shapley-Shubik economy with three distinct
equilibria, the symmetric outcome with p = 1 is a competitive equilibrium, but
it is unstable. The two stable equilibria are at a reciprocal pair of prices p̄ > 1
which favors Consumer 2 and 1/p̄ < 1 which favors Consumer 1.

2.2 Rescaling Commodities

It is often convenient to reduce a Shapley-Shubik economy to a simpler canon-
ical form by linear transformations of the variables x and y. This is equivalent
to changing the units in which commodities X and Y are measured.

Let preferences be represented by the utility functions in Equations 1.
Where kx > 0 and ky > 0, we can restate these utilities in terms of variables
x′ = x/kx and y′ = y/ky as follows:

U1(x
′, y′) = kxx

′ + f1(kyy
′)

U2(x
′, y′) = f2(kxx

′) + kyy
′. (11)

Since preferences are invariant to monotone transformations of the utility func-
tion, the preferences represented by the utilities in 11 can also be represented
by the utility functions:

Ũ1(x
′, y′) = x′ +

1

kx
f1(kyy

′)
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Ũ2(x
′, y′) =

1

ky
f2(kxx

′) + y′, (12)

Thus a Shapley-Shubik economy with the functions f1(y) and f2(x) can
be transformed into an equivalent Shapley-Shubik economy with the functions
f̃1(y

′) = f1(kyy
′)/kx and f̃2(x

′) = f2(kxx
′)/ky. Equilibrium price p′ for com-

modity Y relative to commodity X in the rescaled economy corresponds to a
price p = (kx/ky)p

′ where goods are scaled as in the original economy.

3 Quadratic Shapley-Shubik Economies

3.1 Mirror-symmetric Quadratic Utilities

There is an easily calculated closed-form solution for the equilibria of quadratic
mirror-symmetric Shapley-Shubik economies. The nonlinear portions of the
utility functions in such economies can be expressed in the canonical form,
f(z) = az − z2/2.4 Then the utility functions are:

U1(x, y) = x+ ay − 1

2
y2

U2(x, y) = ax− 1

2
x2 + y. (13)

3.1.1 Solving for equilibria

With the utility functions of Equation 13, the inverse marginal utilities are
given by φ(p) = f ′−1(p) = a − p. If demands are interior at price p, excess
demand is given by

E(p) = φ(p)− 1

p
φ(1/p) = a− p− a1

p
+

1

p2
(14)

From Equation 14 it follows that E(1) = 0 and that

E ′(1) = φ(1) + 2φ′(1) = a− 3. (15)

Therefore E ′(1) > 0 if and only if a > 3. The interiority conditions of Defini-
tion 2 are satisfied at p = 1 when x̄ > φ(1) = a − 1, and ȳ > φ(1) = a − 1.
These facts together with Theorem 2 allow us to conclude that:

4This discussion can be extended to allow for free disposibility by making the function
f non-decreasing, by letting f(z) = a2/2 for all z ≥ a. None of the results of this section
are altered by this change, since in the economies considered, both consumers have strictly
positive marginal utilities at all equilibrium prices.

8

The B.E. Journal of Theoretical Economics, Vol. 9 [2009], Iss. 1 (Topics), Art. 43

http://www.bepress.com/bejte/vol9/iss1/art43



Remark 6. In a quadratic mirror-symmetric Shapley-Shubik economy, where
f(z) = az− z2/2, where a > 3, and where x̄ > a−1 and ȳ > a−1, there is an
unstable interior competitive equilibrium at p = 1, and there are two additional
distinct competitive equilibrium prices, p̄ > 1 and 1/p̄ < 1, both of which are
stable.

If p is an interior competitive equilibrium price, then E(p) = 0 and
hence pE(p) = 0. Applying Equation 14 and factoring, we find that

pE(p) = pa− a− p2 +
1

p
= (p− 1)

(
a− (1 + p+

1

p
)

)
(16)

The interiority conditions are satisfied at p and

0 = (p− 1)

(
a− (1 + p+

1

p
)

)
(17)

Equation 17 is satisfied at p if and only if p = 1 or a = 1 + p+ 1/p. The latter
equation is equivalent to:

p̄2 + (1− a)p̄+ 1 = 0 (18)

Equation 18 has two distinct real roots if and only if a > 3. These roots, which
can be found by applying the quadratic formula are reciprocals, p̄ and 1/p̄.

3.1.2 Constructing economies with specified equilibrium prices

We can also work backwards, starting with specified prices and finding a pa-
rameter value a such that these prices are competitive equilibria in a mirror-
symmetric quadratic economy with this parameter. To do this, choose any
price p̄ > 1, and set a = 1 + p̄+ 1/p̄. In the mirror-symmetric Shapley-Shubik
economy with quadratic parameter a, the three solutions of Equation 17 will
be p̄, 1, and 1/p̄. It is readily verified that a = 1 + p̄ + 1/p̄ > 3 for all p̄ > 1.
The interiority conditions are satisfied at p = 1, p = p̄, and p = 1/p̄ if x̄ > 1+ p̄
and ȳ > 1 + p̄. Therefore:

Remark 7. For any p̄ > 1, there exists a mirror-symmetric Shapley-Shubik
economy in which the non-linear portion of each consumer’s utility function is
f(z) = az− z2/2 with a = 1 + p̄+ 1/p̄. If the initial endowments are x̄ > 1 + p̄
and ȳ > 1 + p̄, then there are exactly three interior competitive equilibria,
occurring at prices at p = p̄, p = 1, and p = 1/p̄.

9
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Example 1. To construct a mirror-symmetric quadratic economy in which
the three equilibrium prices are 1/2, 1, and 2, let a = 1 + 2 + 1

2
= 7

2
. Then

φ(p) = 7/2− p, and the utility functions are

U1(x, y) = x+
7

2
y − 1

2
y2

U2(x, y) =
7

2
x− 1

2
x2 + y (19)

Theorem 3 implies that prices 1/2, 1, and 2 are interior equilibria if x̄ > 3 and
ȳ > 3.

Figure 1 graphs the excess demand functions of Consumers 1 and 2,
as well as the aggregate excess demand function for Good Y . Consumer 1’s
demand curve for Y is given by the linear equation y = 7/2 − p for p ≤ 7/2
and by y = 0 for p > 7/2. Since Consumer 1 has no initial endowment of good
Y , his excess demand for Y is equal to his demand. Consumer 2’s demand for
Y is given by the equation

ȳ − 1

p

(
7

2
− 1

p

)
(20)

for p ≥ 2/7 and y = ȳ for p < 2/7. Consumer 2’s excess demand for Y is then

−1

p

(
7

2
− 1

p

)
(21)

for p ≥ 2/7 and 0 for p < 2/7. As Figure 1 shows, Consumer 2’s excess
demand for Y is an increasing function of its price over a range of prices.
This is a result of an income effect. As p increases, the value of Consumer 2’s
endowment increases. Since Y is a “normal good” for Consumer 2 and since
her demand for X does not depend on price, the positive income effect of the
price increase outweighs the substitution effect and Consumer 2’s demand for
Y increases with its price. As the figure shows, the aggregate excess demand
curve crosses the horizontal axis three times; at p = 1/2, p = 1, and p = 2.

Figure 2 shows the offer curves for this economy in an Edgeworth box
with initial endowments x̄ = ȳ = 4. The offer curves intersect three times.
At the equilibrium point A, consumption bundles of Consumers 1 and 2, are
(1, 1.5) and (3, 2.5) respectively. At equilibrium B, Consumer 1 consumes
the bundle (1.5, 2.5) and Consumer 2 consumes (2.5, 1.5). At Equilibrium C,
Consumer 1 consumes the bundle (2.5, 3) and Consumer 2 consumes (1.5, 1).

10
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Figure 1: Excess Demand as a Function of Price (Quadratic Utility)

Consumer 1

Aggregate 
Excess Demand

Consumer 2

1 2 3 4
Price

-3

-2

-1

0

1

2

3

Excess Demand for Y

3.2 General Quadratic Utilities

Let us now consider Shapley-Shubik economies in which the nonlinear portions
of consumers’ utility functions are quadratic but not symmetric. For each
consumer i, let

fi(z) =
ai
bi
z − 1

2bi
z2, (22)

where ai > 0 and bi > 0. The corresponding demand functions are φi(p) =
ai − bip for p in the interval (0, ai/bi].

In general, solving for the equilibrium prices of a Shapley-Shubik econ-
omy requires solution of a cubic equation. There will be three distinct com-
petitive equilibria if and only if this equation has three distinct roots. In
the Appendix, we discuss the somewhat complicated general conditions under
which this is the case. On the other hand, it turns out that, given any three
distinct positive prices, simple calculations enable us to find parameters of
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Figure 2: Offer Curves in an Edgeworth Box (Quadratic Utility)

a (possibly asymmetric) quadratic Shapley-Shubik economy, for which these
three prices are the competitive equilibria.

3.2.1 Constructing economies with specified equilibrium prices

For any three distinct positive prices, p1, p2, and p3, if initial endowments are
large enough, we can construct a quadratic Shapley-Shubik economy for which
each of these prices is a competitive equilibrium, where the utility functions
are of the form:

U1(x, y) = x+ a1y −
1

2
y2

U2(x, y) = y + a2x−
1

2b
x2. (23)

We prove this assertion by showing a simple way to choose parameters a1, a2,
and b to construct such an economy.

With the utility functions in 23, if the interiority conditions are satisfied
at price p, excess demand is

E(p) = φ1(p)−
1

p
φ2(1/p) = a1 − p− a2

1

p
+ b

1

p2
. (24)
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At an interior competitive equilibrium, E(p) = 0 if and only if

p2E(p) = −p3 + a1p
2 − a2p+ b = 0. (25)

The cubic equation 25 has three distinct positive roots, p1, p2, and p3 if and
only if

−p3 + a1p
2 − a2p+ b = (p1 − p)(p2 − p)(p3 − p). (26)

If we carry out the multiplication on the right side of Equation 26,
we see that p1, p2, and p3 are equilibrium prices if and only if the following
conditions are satisfied.

p1p2p3 = b (27)

p1 + p2 + p3 = a1 (28)

p1p2 + p1p3 + p2p3 = a2 (29)

From Equations 27 and 29 it follows that

1

p1

+
1

p2

+
1

p3

=
a2

b
. (30)

For any choice of prices p1 > 0, p2 > 0, and p3 > 0, we choose param-
eters b, a1 and a2 to satisfy Equations 27-29.5 The quadratic Shapley-Shubik
economy with these parameters will have competitive equilibria at p1, p2, and
p3 if the interiority conditions are satisfied at each of these prices. From Equa-
tion 28 it follows that φ1(pi) = a1−pi > 0 for i = 1, 2, 3, and from Equation 30
it follows that φ2(pi) = a2 − bpi > 0 for i = 1, 2, 3. The remaining interiority
conditions will be satisfied if x̄ > piφ1(pi) and piȳ > φ2(1/pi) for i = 1, 2, 3.
The equilibria at p1 and p3 will be stable, while the equilibrium at p2 will be
unstable.

Example 2. Let us construct a quadratic Shapley-Shubik economy with equi-
librium prices p1 = 1/2, p2 = 4, and p3 = 5. Using Equations 27-29, we find
b = 10, a1 = 9.5, and a2 = 24.5.

Simple calculations show that pφ1(p) < x̄ for each of these prices if
x̄ > 22.5 and that φ2(1/p) < pȳ if ȳ > 9. Therefore the interiority conditions
will be satisfied at all three prices p1 = 1/2, p2 = 4, and p3 = 5 if x̄ > 22.5
and ȳ > 9. Therefore there are three competitive equilibria prices, p1 = 1/2,
p2 = 4, and p3 = 5 in a quadratic Shapley-Shubik economy with a1 = 9.5,
a2 = 24.5, and b = 10 in Equations 23 .

5This method of choosing parameters for a quadratic equation to generate desired so-
lutions was applied in 1840 by Euler (1972) (pages 253-254) to the study of Diophantine
equations.
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4 Exponential Utilities

The example presented by Shapley-Shubik has utility functions:

U1(x, y) = x+ 100(1− e−y/10)

U2(x, y) = y + 110(1− e−x/10) (31)

This example belongs to a general family of Shapley-Shubik economies
that includes all utilities of the form:

U1(x, y) = x− A1e
−b1y

U2(x, y) = y − A2e
−b2x. (32)

By rescaling units of measurement, as in Section 2.2, we can convert
a “four-parameter” economy with utility functions 32 to an equivalent “two-
parameter” economy with utilities:

U1(x, y) = x− ea1−y

U2(x, y) = y − ea2−x. (33)

where a1 = lnA1b2 and a2 = lnA2b1. The inverse marginal utility functions
are then φ1(p) = a1 − ln p and φ2(p) = a2 − ln p.

4.1 Mirror-symmetric Exponential Utilities

For mirror-symmetric Shapley-Shubik economies, the nonlinear portion of util-
ities take the exponential form f(z) = −ea−z. In this case, we have a very
simple necessary and sufficient condition for the existence of multiple equilib-
ria.

Remark 8. In a mirror-symmetric Shapley-Shubik economy with f(z) = −ea−z,
if 2 < a < x̄ = ȳ there will exactly three equilibrium prices; an unstable equi-
librium with p̄ = 1 and two stable equilibria, p̄ > 1 and 1/p̄ < 1.

Proof. Note that φ(1) = a and φ(1)+2φ′(1) = a−2. Therefore the assumption
that 2 < a < x̄ implies that φ(1) = a < x̄ = ȳ and φ(1) + 2φ′(1) = a− 2 > 0.
From Theorem 3 it follows that there are at least three equilibria. From
Theorem 4 it follows that there are no more than than three equilibria.
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For an arbitrarily chosen parameter a, there is not a closed form solution
for stable equilibrium prices. Solutions must be found by numerical methods.

Working backwards is easier. Starting with an arbitrarily chosen price
p̄ > 1, there is a simple closed form solution for a parameter a such that a
mirror-symmetric Shapley-Shubik economy in which f(z) = −ea−z has com-
petitive equilibria at prices, p̄, 1, and 1/p̄.

Remark 9. For any p̄ > 1, let

a =
p̄+ 1

p̄− 1
ln p̄. (34)

In a mirror-symmetric Shapley-Shubik economy where f(z) = −ea−z and where
x̄ = ȳ > 2p̄ ln p̄/(p̄ − 1), there are interior competitive equilibria at prices at
p = p̄, p = 1, and p = 1/p̄.

Proof. There is an interior competitive equilibrium at p̄ > 1 if and only if the
interiority conditions are satisfied at p̄ and

E(p̄) = a− ln p̄− 1

p̄
(a+ ln p̄) = 0 (35)

Rearrangement of Equation 35 shows that Equation 35 is satisfied if and only
if

a =
p̄+ 1

p̄− 1
ln p̄. (36)

The interiority conditions require that 1/f ′(0) < p̄ < f ′(0), p̄φ(p̄) < x̄, and
φ(1/p̄) < px̄. We have

f ′(0) = ea = p̄
p+1
p−1 . (37)

Then for p̄ > 1, 1/f ′(0) = e−a < p̄ < f ′(0) = ea. Calculations show that
p̄φ(p̄) = p̄(a − ln p̄) = 2p̄ ln p̄/(1 − p̄) and φ(1/p̄) = 2p̄ ln p̄/(1 − p̄). Therefore
the interiority conditions p̄φ(p̄) < x̄ and φ(1/p̄) < ȳ will be satisfied if x̄ =
ȳ > 2p̄ ln p̄/(p̄− 1).

Example 3. To construct an economy with exponential utilities and equilib-
rium prices 2, 1 and 1/2, we set f(z) = −ea−z where a = ((2 + 1)/(2− 1)) ln 2.
Then f(x) = −e3 ln 2−x = −8e−x and φ(p) = ln 8 − ln p. There will be inte-
rior competitive equilibria at p̄ = 2 and p̄ = 1/2 if initial endowments are
x̄ = ȳ > 2p̄ ln (p̄/(p̄− 1)) = 4 ln 2.
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4.2 General Exponential Utilities

We have found a closed-form expression, the sign of which determines the num-
ber of competitive equilibria for any Shapley-Shubik economy of exponential
form. Figure 3, shows parameter regions of utilities for there are one, two, or
three competitive equilibria, when utility is written in the canonical form of
Equations 33. The point S in Figure 3 marks the parameter values a1 and a2

that correspond to the example presented by Shapley and Shubik. In Theorem
4, we characterize the parameter ranges over which there are one, two, or three
equilibria.

Figure 3: Parameter ranges for multiple equilibria

In the appendix of this paper, we prove the following result:

Theorem 4. In a Shapley-Shubik economy where fi(z) = −eai−z for i = 1, 2
and where x̄ > ea1−1 and ȳ > ea2−1,

(i) there are no more than three competitive equilibria.
(ii) there is a closed form function G(a1, a2) such that there are one, two,

or three distinct competitive equilibria, depending on whether G(a1, a2)
is positive, zero, or negative.

(iii) there is exactly one competitive equilibrium if min{a1, a2} < 2.
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5 Power Function Utilities

Consider a Shapley-Shubik economy in which the nonlinear portions of utilities
are power functions, of the form:

fi(z) =
1

bi
zbi (38)

where bi < 1. Then for all z > 0, f ′i(z) = zbi−1 and the inverse marginal utility
function is of the constant elasticity form

φi(p) = p1/(bi−1). (39)

We note that for all b1 < 1, limz→0 =∞.6

Let us consider Shapley-Shubik utility functions with power function
utilities that are also mirror-symmetric. It will be convenient to express these
in the form:

f(x) =
ε

1 + ε
x
ε+1
ε (40)

where ε < 0. The range of f ′(·) is the entire interval (0,∞). The inverse
marginal utility function is φ(p) = f ′−1(p) = pε.

In this economy, if x̄ > 1 and ȳ > 1, there will be an interior competitive
equilibrium at p = 1. At this equilibrium, E ′(1) = φ(1) + 2φ′(1) = 1 + 2ε > 0
if −1/2 < ε < 0. Therefore, according to Theorem 3, there must be at least
three equilibria if −1/2 < ε < 0.

However p = 1 is the only positive real solution to the equation

0 = φ(p)− (1/p)φ(1/p) = pε − p−(1+ε). (41)

To find the other two equilibrium prices, we must look for “corner solutions.”
There are two such equilibria. In one of them, Consumer 1 trades away all of
his holding of good X and consumes only Y . At the other corner equilibrium,
Consumer 2 trades away all of his initial Y and consumes only X.

At the corner equilibrium where Consumer 1 consumes only Y , Con-
sumer 2 must consume x̄ units of X and a positive amount of Y . Therefore it
must be that x̄ = φ(1/p) = p−ε and hence p = x̄−1/ε. At this price, Consumer
1 consumes y1 = x̄/p = p−(1+ε) units of Y . It is straightforward to verify
that with this quantity, Consumer 1’s marginal rate of substitution between
Y and X exceeds the price p, and hence Consumer 1 is at a corner solution.
A similar line of reasoning shows that at the corner solution where Consumer
2 consumes only X, ȳ = pε and hence p = ȳ1/ε.

6In case bi < 0, we must also define fi(0) = limz→0 f(0) = −∞.
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Figure 4: Offer Curves in an Edgeworth Box (Power Function Utility)
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Example 4. Consider the mirror-symmetric Shapley-Shubik economy where
f(x) = −(1/2)x−2 and x̄ = ȳ = 2. In this economy, φ(p) = p−1/3. There is
an interior competitive equilibrium at p = 1. There is a corner equilibrium
where Consumer 1 trades away all of his initial endowment of X and consumes
only Y . This occurs at a price p = 8. At this price, Consumer 2 will demand
φ(1/p) = 2 units of X and 13

4
units of Y . Consumer 1 trades all of his X for

1/4 unit of Y . There is another corner equilibrium where Consumer 2 trades
all of his initial endowment of Y and consumes only X. At this equilibrium,
p = 1/8, Consumer 1 consumes 2 units of Y and 13

4
units of X, and Consumer

2 consumes no Y and 1/4 unit of X.
Figure 4 shows an Edgeworth box and offer curves for this example,

where Consumer 1 is endowed with x̄ = 2 units of x and no y and Consumer
2 is endowed with ȳ = 2 units of y and no x. The competitive equilibrium A
is a corner solution for Consumer 1, who consumes no x. The equilibrium C
is a corner solution for Consumer 2, who consumes no y. The equilibrium C
is symmetric and interior for both consumers but is unstable.
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Figure 5: Endowments Leading to Multiple Equilibria (Quadratic Utility))
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6 Interior Endowments and Generalized Shapley-

Shubik Economies

Our definition of a Shapley-Shubik economy requires the initial endowment
to be at a corner of the Edgeworth box. Each consumer is endowed only
with the commodity in which his utility is linear. Many of our results can
be extended to generalized Shapley-Shubik economies where utility functions
are as in a Shapley-Shubik economy, but where one or both consumers have
positive initial endowments of both goods.

In general, if a Shapley-Shubik economy has multiple equilibria, the
generalized Shapley-Shubik economies constructed by reallocating the same
total endowments will continue to have multiple equilibria so long as the ini-
tial endowments are “not too distant” from the initial endowments in the
corresponding Shapley-Shubik economy. This is illustrated in the Edgeworth
box drawn in Figure 5, which applies to the quadratic utility function used in
Example 1, where the total initial endowments of X and Y are each 4 units.
There are three competitive equilibria if and only if initial endowments are
located in the shaded area.7

7Kumar and Shubik (2003) displayed a similar figure showing the endowments that lead
to multiple equilibria in the Shapley-Shubik example.
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Let us define a generalized Shapley-Shubik economy as follows. There
are two consumers, with utility functions U1(x, y) = x+ f1(y) and U2(x, y) =
f2(x) + y where the functions fi are concave and continuously differentiable,
as in an ordinary Shapley-Shubik economy. Each consumer i is endowed with
x̄i units of X and ȳi units of Y . Then x̄1 + x̄2 = x̄ and ȳ1 + ȳ2 = ȳ are the
total supplies of X and Y .

At an interior competitive equilibrium, Consumer 1’s consumption of
Y is y1(p) = φ1(p) and Consumer 2’s consumption of X is x2(p) = φ2(1/p).
From Consumer 2’s budget constraint, it follows that

y2(p)− ȳ2 =
1

p
(x̄2 − φ2(1/p)) (42)

At an interior equilibrium, excess demand for good Y is given by

E(p) = y1(p) + y2(p)− ȳ2 − ȳ1 = φ1(p)− ȳ1 −
1

p
(φ2(1/p)− x̄2) (43)

Let us define φ̃1(p) = φ1(p) − ȳ1 and φ̃2(p) = φ2(p) − x̄2. Then from
Equation 43 it follows that at an interior competitive equilibrium,

E(p) = φ̃1(p)− (1/p)φ̃2(1/p) = 0. (44)

It follows from the two consumers’ budget constraints that Consumer
1’s consumption of X and Consumer 2’s consumption of Y will be positive if
and only if

p(φ1(p)− ȳ1) < x̄1 and φ2(1/p)− x̄2 < pȳ2. (45)

The inequalities in 45 can be written as pφ̃1(p) < x̄1 and φ̃(1/p) < pȳ1. There-
fore we have the following generalization of Theorem 1.

Lemma 3. In a generalized Shapley-Shubik economy, p is an interior com-
petitive equilibrium price if and only if pφ̃1(p) < x̄1, φ̃2(1/p) < pȳ2, and
φ̃1(p) = (1/p)φ̃2(1/p).

6.1 Mirror-symmetric Interior Endowments

Within the class of generalized Shapley-Shubik economies, there is an interest-
ing subclass of economies with interior endowments but with sufficient sym-
metry to allow clear, simple results. Consider a generalized Shapley-Shubik
economy with mirror-symmetric utilities in which each person has a positive
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initial endowment of each good. We will say that there are mirror-symmetric
endowments if the two consumers have equal initial endowments of the good
in which they have nonlinear utility. When initial endowments are (x̄1, ȳ1) and
(x̄2, ȳ2), this means that ȳ1 = x̄2 = z̄ for some for some z̄ > 0. Where φ(p)
is the inverse marginal utility function, let φ̃(p) = φ(p) − z̄. For an interior
competitive equilibrium, excess demand for good Y is zero if

E(p) = φ̃(p)− 1

p
φ̃(1/p) = 0 (46)

and the interiority conditions will be satisfied at p if

pφ̃(p) < x̄1 and φ̃(1/p) < pȳ2. (47)

From Equation 46 it is immediate that if the interiority conditions are
satisfied, there is a competitive equilibrium at price p = 1 and that if p is an
equilibrium price, then 1/p is also an equilibrium price. Under the conditions
of Theorem 2, there will be multiple equilibria if φ̃(1) + 2φ̃′(1) > 0. Since, by
definition, φ̃(p) = φ(p)− z̄, there will be multiple equilibria if φ(1)+2φ′(1) > z̄
and if the interiority conditions are satisfied.

Example 5. Consider an economy with the same quadratic utility functions as
those in Example 1, but with initial endowments (x̄1, ȳ1) = (4, z̄) and (x̄2, ȳ2) =
(z̄, 4) where z̄ > 0. There will be three distinct competitive equilibria if
E ′(1) > 0 and if price p = 1 satisfies the interiority conditions. For this
economy, φ̃(p) = 7/2 − z̄ − p. Therefore E ′(1) = φ̃(1) + 2φ̃′(1) = 1/2 − z̄
and hence E ′(1) > 0 if and only if z < 1/2. The interiority conditions will
be satisfied at p = 1 if φ̃(1) = 5/2 − z̄ < min{x̄1, ȳ2} = 4, or equivalently if
z < 3/2. It follows that there are three competitive equilibria if and only if
z̄ < 1/2.

Example 6. Mas-Collel, Whinston, and Green (1995) present an example
of an exchange economy with three competitive equilibria in their graduate
economic theory textbook (page 521). This example is a generalized Shapley-
Shubik economy with mirror-symmetric power function utilities. In Section
5, we showed that if the initial endowment is at a corner of the Edgeworth
box then, if there are multiple equilibria, two of these equilibia will be cor-
ner solutions. The Mas-Collel, Whinston, Green example is constructed with
symmetric interior endowments and this example has three interior compet-
itive equilibria. Figure 6 shows offer curves and the Edgeworth box for the
MWG example.
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Figure 6: Offer Curves in an Edgeworth Box (The MWG Example)
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In this example, the utility functions of Consumers 1 and 2 are

U1(x, y) = x− 1

8
y−8

U2(x, y) = −1

8
x−8 + y (48)

The initial endowments are (x̄1, ȳ1) = (2, z̄) and (x̄2, y2) = (z̄, 2). Then φ(p) =
p−1/9 and φ̃(p) = p−1/9 − z̄. If p is an interior competitive equilibrium,

0 = φ̃(p)− 1

p
φ̃(

1

p
) = p−1/9 − p−8/9 − z̄(1− 1

p
). (49)

Price p is a solution to Equation 49 if and only if

z̄ =
p8/9 − p1/9

p− 1
(50)

One can construct an example with any desired pair of equilibrium
prices p̄ > 1 and 1/p̄ by choosing z̄ to satisfy Equation 50. The MWG example
is chosen to have equilibria at p = 2 and p = 1/2. This is the case when
z̄ = 28/9 − 21/9. To ensure that the solutions p = 2 and p = 1/2 are both
interior solutions, we verify that 2φ̃(2) < x̄1 = 2 and 1/2φ̃(1/2) < ȳ2 = 2.
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7 Conclusion

The family of Shapley-Shubik economies is a class of “special general equi-
librium models” that are computationally manageable, yet permit complex
outcomes such as multiple equilibria. Shapley-Shubik economies have interest-
ing comparative static properties. For example, if endowments are sufficiently
large, equilibrium prices depend only on the demand functions and not on the
quantity of goods available.

For mirror-symmetric Shapley-Shubik economies (subject to interior-
ity conditions), we show that a simple calculation of the derivative of excess
demand at price 1 determines whether there are multiple equilibria. We find
conditions on parameters that determine whether a Shapley-Shubik economy
has one, two or three equilibria for the cases where the nonlinear part of utility
functions are quadratic, exponential, or power functions. We also show how
to “work backwards” so as to choose utility parameters of Shapley-Shubik
economies such that any three specified prices are competitive equilibria. Fi-
nally, we show that Shapley-Shubik economies can be generalized to include a
set of economies in which both consumers have positive endowments of both
goods and where there are three distinct competitive equilibria.

A Appendix

A.1 Finding Equilibrium for General Quadratic Utili-
ties

Consider a Shapley-Shubik economy in which the functions fi take the general
quadratic form

fi(z) = aiz −
1

2bi
z2. (51)

The task of finding competitive prices can be simplified by rescaling units of
measurement of X and Y so that in the rescaled economy b1 = 1 and b2 = 1.
To do so, make the linear transformation of variables x′ = x/kx and y′ = y/ky
where

ky = b
2/3
1 b

1/3
2 and kx = b

1/3
1 b

2/3
2 . (52)

In the transformed economy,

fi(z) = Aiz −
1

2
z2 (53)

for i = 1, 2, where A1 = a1ky/b1kx and A2 = a2kx/b2ky.
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The inverse marginal utility functions expressed in the transformed
variables are φi(p) = Ai − p. In competitive equilibrium,

E(p) = A1 − p+
1

p

(
A2 −

1

p

)
= 0. (54)

Equation 54 is satisfied at p if and only if p is a root of the cubic equation

p3 − A1p
2 + A2p− 1 = 0 (55)

Closed form solutions for a general cubic function were first published
in 1545 by G. Cardan and are known as Cardan’s formulas. (A good discussion
of solution methods for cubic equations is found in Dickson (1922).) Cardan’s
formulas can be applied to find the solutions to Equation 55. For general
values of A1 and A2, these expressions are cumbersome and do not readily
yield useful insight. On the other hand, calculating numerical solutions to
Equation 55 for specific values of A1 and A2 is straightforward.8

General necessary and sufficient conditions for the existence of three
positive real solutions to Equation 55 are available. As Dickson (1922) ex-
plains, a cubic equation will have three distinct real roots if and only if its
discriminant is strictly positive. The discriminant of Equation 55 turns out to
be9

∆ = 18A1A2 − 4A3
1 + A2

1A
2
2 − 4A3

2 − 27. (56)

Equation 55 had three real roots if and only if ∆ > 0. These roots will all be
positive valued. To see this, note that if p ≤ 0, then p3 − A1p

2 + A2p− 1 < 0
and so p can not be a root of Equation 55.10 Where ∆ > 0, there will be
competitive equilibria at each of the three positive roots of Equation 55 so long
as the initial endowments x̄ and ȳ are large enough to satisfy the interiority.

A.2 Proof of Theorem 4

To prove Theorem 4, it is useful to define the function

F (p) =
a1p− a2

1 + p
− ln p. (57)

8”Cubic equation solvers” which output the solutions for a cubic with any specified real
parameters are available on the internet. See for example www.1728.comcubic.htm

9The discriminant of any equation is the product of the squares of the differences of its
roots. Dickson shows that the discriminant of a cubic equation of the form x3 + bx2 + cx+d
is ∆ = 18bcd− 4b3d+ b2c2 − 4c3 − 27d2.

10Euler (1972), pages 256-257 provides a similar demonstration that real roots of a cubic
with coefficients of alternating signs must be positive.
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for all p ∈ (0,∞). Our strategy of proof is to show by a series of lemmas that
for all p ∈ (0,∞), the sign of F (p) is the same as that of aggregate excess
demand E(p). Therefore a price p is a competitive equilibrium if and only if
F (p) = 0. We then study the shape of the graph of F (p) and display a closed
form function G(a1, a2) such that the sign of G(a1, a2) determines the number
of solutions to the equation F (p) = 0.

Lemma 4. In a Shapley-Shubik economy with exponential utilities where a1 +
a2 > 0, if p ∈ (0, e−a2 ], then E(p) > 0 and F (p) > 0. If p ∈ [ea1 ,∞), then
E(p) < 0 and F (p) < 0.

Proof. Since fi(z) = −eai−z, we have B1 = f ′1(0) = ea1 and B2 = f ′2(0) = ea2 .
From Lemma 1 it follows that E(p) > 0 for p ≤ e−a2 and that E(p) < 0 for
p ≥ ea1 .

To complete the proof we show that F (p) > 0 for p ≤ e−a2 and F (p) < 0
for p ≥ ea1 . If p ≤ e−a2 , then − ln p ≥ a2, and therefore

F (p) ≥ a1p− a2

1 + p
+ a2 =

p

1 + p
(a1 + a2) > 0. (58)

If p ≥ ea1 , then − ln p ≤ −a1 and therefore

F (p) ≤ a1p− a2

1 + p
− a1 = −a1 + a2

1 + p
< 0. (59)

Lemma 5. In a Shapley-Shubik economy with exponential utilities, if x̄ > ea1−1

and ȳ > ea2−1, then the interiority conditions of Definition 2 apply for all
p ∈ (e−a2 , ea1).

Proof. The interiority conditions are satisfied at p if and only if p ∈ (e−a2 , ea1),
pφ1(p) < x̄, and φ2(1/p) < pȳ. To show that pφ1(p) < x̄, we differentiate
pφ1(p) = a1p − p ln p to find that pφ(p) is maximized when a1 − 1 = ln p
and hence when p = ea1−1. Therefore for all p > 0, pφ(p) ≤ ea1−1φ(ea1−1) =
ea1−1 (a1 − (a1 − 1)) = ea1−1. We have assumed that x̄ > ea1−1. Therefore
pφ1(p) < x̄ for all p < 0. To show that φ2(1/p) < pȳ for all p > 0, we
differentiate (1/p)φ2(1/p) and find that (1/p)φ2(1/p) is maximized when p =
e1−a2 . Therefore, for all p > 0, (1/p)φ2(p) ≤ ea2−1φ2(e

a2−1) = ea2−1. Since we
assume that ȳ > ea2−1, it follows that 1/pφ2(p) < ȳ and hence φ2(p) < pȳ.
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Lemma 6. In a Shapley-Shubik economy with exponential utilities, if x̄ > ea1−1

and ȳ > ea2−1, then for all p ∈ (0,∞), the sign of F (p) is the same as the sign
of E(p).

Proof. According to Lemma 5, the interiority conditions are satisfied at all p
in the interval (e−a2 , ea1). Therefore, for all p ∈ (e−a2 , ea1), E(p) = φ(p) −
(1/p)φ(1/p) = a1 − ln p− (1/p)(a2 + ln p). Rearranging the terms of F (p), we
see that

F (p) =
p

1 + p

(
a1 − ln p− 1

p
(a2 + ln p)

)
=

p

1 + p
E(p) (60)

for all p ∈ (e−a2 , ea1). Since p/(1 + p) > 0, the sign of F (p) must be the same
as that of E(p) for all p ∈ (e−a2 , ea1).

Lemma 4 informs us that the sign of E(p) is the same as that of F (p)
for all p in the intervals (0, e−a2 ] and [ea1,∞). Therefore the sign of F (p) is the
same as that of E(p) on the entire interval (0,∞).

Figure 7 which graphs the function F (p) with parameters a1 = ln 10 =
2.303 and a2 = ln 11 = 2.398 that apply to the Shapley-Shubik example. This
graph will be useful in the exposition of the proof of Theorem 4.

Figure 7: The graph of F (p)
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Proof. of Theorem 4 According to Lemma 6, E(p) = 0 if and only if F (p) = 0.
Calculation shows that

F ′(p) =
a1 + a2

(1 + p)2
− 1

p
. (61)

Then
−p(1 + p)2F ′(p) = p2 − (a1 + a2 − 2) p+ 1 (62)

It follows that the sign of F ′(p) is opposite from the sign of the quadratic
expression on the right side of Equation 62. This quadratic expression has at
most two distinct real roots. Hence the slope of the graph of F (p) can change
signs at most twice over the interval (e−a2 , ea1). It follows that there cannot
be more than three solutions to the equation F (p) = 0 and hence no more
than three distinct competitive equilibrium prices. This proves Assertion (i)
of the theorem.

We will prove Assertion (ii) by exhibiting the desired function G(a1, a2).
To motivate this construction, it is helpful to consider Figure 7. As p ranges
from 0 to ∞, the graph of F (p) first slopes downward, then upward, and
then downward again. We will show that for any exponential Shapley-Shubik
economy with a1 + a2 > 4, the graph of F (·) changes its direction of slope
exactly twice. In the figure, the graph of F (·) crosses the horizontal axis three
times, once in the upward-sloping segment and once in each of the downward-
sloping segments. In general, the upward-sloping portion of the graph may
lie either entirely above or entirely below the horizontal axis, in which case
there is only one competitive equilibrium. If the upward-sloping portion of
the graph crosses the horizontal axis as in Figure 7, then there will be exactly
three competitive equilibria, one stable and two unstable.

If the graph of F (·) has a local minimum and maximum, they must
occur at real roots of the quadratic expression in Equation 62. This equa-
tion has real roots if and only if a1 + a2 ≥ 4. These roots are distinct if
a1 + a2 > 4 and in this case, both roots must be positive. Let pL(a1, a2)
be the smaller of these roots and pH(a1, a2) be the larger. It is readily ver-
ified that pL(a1, a2)pH(a1, a2) = 1 and hence pL(a1, a2) < 1 < pH(a1, a2).
A straightforward calculus argument shows that pL(a1, a2) is a local min-
imum and pH(a1, a2) is a local maximum of F (p). It is also straightfor-
ward to demonstrate that F ′(p) < 0 if p < pL(a1, a2), that F ′(p) > 0 if
pL(a1, a2) < p < pH(a1, a2) and that F ′(p) < 0 if p > pH(a1, a2).

If F (pL(a1, a2)) and F (pH(a1, a2)) are both positive or both nega-
tive, the graph of F (p) can cross the horizontal axis at most once. Hence
there can be no more than one competitive equilibrium. If F (pL(a1, a2))
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and F (pH(a1, a2)) are of opposite signs, then it must be that as in Figure
7, F (pL(a1, a2)) < 0, F (pH(a1, a2)) > 0, and there are exactly three dis-
tinct solutions to the equation F (p) = 0. These include a stable equilib-
rium in the interval (e−a2 , pL(a1, a2)), an unstable equilibrium in the interval
(pL(a1, a2), pH(a1, a2)), and a stable equilibrium in the interval (pH(a1, a2), e

a1).
Define

G(a1, a2) = F (pL(a1, a2))F (pH(a1, a2)) . (63)

Then G(a1, a2) will be positive or negative depending on whether F (pL(a1, a2))
and F (pH(a1, a2)) are of the same or opposite signs. Therefore there are three
equilibria if G(a1, a2) is negative, and one equilibrium if G(a1, a2) is positive.
If G(a1, a2) = 0, then either F (pL(a1, a2)) or F (pH(a1, a2)) is zero. In this
case, the the graph of F (p) is tangent to the horizontal axis either at the local
minimum pL(a1, a2) or the local maximum pH(a1, a2), in which case there
will be exactly two equilibria, including one at the point of tangency. This
completes the proof of Assertion (ii).

From Lemma 1 we see that any competitive equilibrium price must lie
in the interval (e−a2 , ea1) and from Lemma 5 it follows that the interiority
conditions are satisfied for all p in this interval. Therefore, a competitive
equilibrium must be a point p in the interval (e−a2 , ea1) such that

E(p) = φ(p)− 1

p
φ(1/p) = a1 − ln p− 1

p
(a2 + ln p) (64)

Differentiating Equation 64, we obtain

E ′(p) =
1

p2
(a2 − 1 + ln p− p) . (65)

With simple calculus, we see that ln p − p is maximized at p = 1 and that
ln p− p ≤ −1 for all p > 0. Therefore

p2E ′(p) = a2 − 1 + ln p− p ≤ a2 − 2 (66)

It follows that if a2 < 2, then E ′(p) < 0 for all p > 0. In this case, E(p) is a
strictly decreasing function over the entire interval (e−a2 , ea1). It follows that
there can be only one equilibrium when a2 < 2. To show that there is only
one equilibrium if a1 < 2, we note that a competitive equilibrium price p must
solve the equation

0 = pE(p) = p(a1 − ln p)− (a2 + ln p) (67)

Differentiating, we find that

d

dp
pE(p) = a1 − 1− ln p− 1

p
(68)
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With simple calculus, we find that ln p + 1/p is minimized at p = 1 and that
ln p+ 1/p > 1 for all p > 0. Therefore it must be that d

dp
pE(p) ≤ a1− 2 for all

p > 0. Therefore if a1 < 2, then pE(p) is a decreasing function of p and hence
there can be only one competitive equilibrium price. This completes the proof
of Assertion (iii).
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