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Abstract 20 

In the face of a changing climate, questions regarding sub-lethal effects of elevated habitat temperature on 21 

the physiology of ectotherms remain unanswered. In particular, long-term responses of ectotherms to the 22 

warming trend in tropical regions are unknown, and significantly understudied due primarily to the 23 

difficulties in specimen and community traceability. In freshwater lakes employed as cooling reservoirs 24 

for power plants, increased physiological stress from high water temperature can lead to an increase in 25 

mortality, reduce growth and potentially alter the community structure of fishes. Throughout this study, 26 

we employ this highly tractable system to assess how elevated thermal regimes can alter the physiology 27 

and consequently the ecology of aquatic species. We documented a significantly reduced lifespan, growth 28 

performance, and a shift in the age structure towards younger individuals in the thermally-impacted 29 

population of bluegill (Lepomis macrochirus) in Coffeen Lake in Illinois, compared to a non-impacted 30 

control group (Lake Mattoon). Average age calculated for the Lake Mattoon population was 2.42 years, 31 

whereas the average age of bluegill from Coffeen Lake was only 0.96 years. The average specimen mass 32 

in Lake Mattoon was more than six times that of Coffeen Lake average (Mattoon = 60.26g; Coffeen = 33 

9.42g). During laboratory cross-acclimation studies of bluegill from Lake Mattoon at 17.5 and 35.0°C, 34 

citrate synthase activity obtained from white muscle was regulated through acclimation, whereas cold-35 

acclimated specimens exhibited twice the activity at 25°C, if compared to CS activity values from warm-36 

acclimated specimens. This study raises the questions about the causal relationships between 37 

physiological performance and habitat temperature, in particular how thresholds in an organism’s 38 

physiology may modulate their community structure, and consequently their ecological success. 39 

 40 

Key-words: bluegill, teleostei, temperature, warm adaptation, physiological ecology, aging, metabolism, 41 

growth, Lepomis, accelerated senescence 42 

  43 
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1. Introduction 44 

In the face of a changing climate, the adaptive capacity of many species to rising temperature regimes 45 

remains unclear. Physiological adaptation to rising habitat temperatures is likely to occur and attenuate 46 

the effects on a species’ energetics (Hochachka and Somero, 2002). However, short-term physiological 47 

adaptation is energetically expensive, and likely not an effective long-term strategy to cope with the 48 

effects of global warming. In temperate regions, for example, shifts of population centers of marine fishes 49 

towards proximal, colder regions are well documented (Perry et al., 2005; Pörtner et al., 2001; Pörtner 50 

and Farrell, 2008). This accumulating body of evidence suggests that species with a capacity to move 51 

towards colder regions may temporarily escape the present warming trends. On the other hand, due to the 52 

thermally homogeneous nature of tropical regions, population shifts like those observed in temperate 53 

regions are unlikely (Urban et al., 2012). In addition, tropical species are often found within the upper 54 

thermal maximum, and further warm adaptation of those species already at their upper thermal limit 55 

might come with an energetic cost as a tradeoff (Gunderson and Leal, 2012; Huey et al., 2009; Stork et 56 

al., 2009; Tewksbury et al., 2008). This energetic cost is associated with activities contributing to 57 

behavioral thermoregulation, rising costs of minimum metabolic activity as well as a potential reduction 58 

in the mitochondrial energy transduction efficiency (Divakaruni and Brand, 2011). As a result, species 59 

adapted to year-round elevated temperatures are more susceptible to further habitat warming, and thus 60 

more likely to show direct signs of how organism-level thermal physiology influences upper-level 61 

processes such as growth, community structure and reproductive performance (Angilletta, 2009).   62 

 63 

Although a robust body of literature has unveiled the links between the physiological thresholds and the 64 

ecology of terrestrial species in a changing climate, long-term responses of aquatic species facing 65 

elevated temperatures in tropical regions remains understudied (Roessig et al., 2004). A laboratory 66 

acclimation study of a tropical reef fish (Acanthochromis polyacanthus) indicated a high variability of 67 

acclimation capacity for this species (Donelson and Munday, 2012), and the authors conclude that the 68 

thermal metabolic reaction norm may not be a good indicator of the species’ acclimation ability. 69 
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Therefore, a more tractable field study system may be instructive to evaluate population-level, cross-70 

generational responses to rising temperature in aquatic ectotherms. 71 

 Analogous to tropical aquatic systems, freshwater lakes employed as cooling reservoirs for power plants 72 

are characterized by year-round elevated temperatures, compared to lakes that are not anthropogenically 73 

impacted. Elevated water temperatures in these systems can lead to increased physiological stress and 74 

mortality in fish assemblages, unless thermal refuges are available (De Stasio et al., 1996). Fishes able to 75 

survive in thermally-impacted lakes without thermal refuge are forced to physiologically adapt to 76 

suboptimal temperatures. 77 

Aquatic organisms have the ability to adapt to environmental changes, and it is possible to raise or lower 78 

tolerable temperatures through acclimation (Cossins and Bowler, 1987; Hochachka and Somero, 1968; 79 

Somero, 2002; Somero, 2004; Tarzwell, 1970). Environmental temperature can alter various components 80 

of the metabolic machinery, including enzyme catalytic properties and phospholipid membrane stability. 81 

Short-term acclimation is often characterized by a quantitative strategy, where biochemical reactions are 82 

regulated via changes in the abundance of the enzyme catalyzing the reaction. This has been observed in 83 

fishes, where thermal acclimation induced changes in key enzyme concentrations is often observed within 84 

days or weeks of thermal acclimation (Cossins and Bowler, 1987; Hochachka and Somero, 1968; 85 

Hochachka and Somero, 2002; Shaklee et al., 1977; Sidell et al., 1973; Somero, 2004). 86 

The biological purpose of metabolic compensation is to shift energy allocation from metabolism to 87 

growth (e.g. reproductive and/or somatic). In essence, an organism will be able to operate with an 88 

energetic surplus over a temperature range influenced by the width of the fitness thermal reaction norm 89 

(Angilletta Jr et al., 2003; Angilletta, 2009). This reaction norm is classically illustrated as a thermal 90 

tolerance polygon (Brett, 1956; Brett and Groves, 1979; Brett, 1952; Eme and Bennett, 2009), where the 91 

size of the tolerance polygon is a direct reflection of the organism thermal window of tolerance. Within an 92 

organism’s thermal tolerance window, metabolic adjustments allow for the allocation of energy towards 93 

somatic and reproductive growth. However, physiological compensation may come with an energetic cost 94 
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to organisms experiencing suboptimal temperatures such as those organisms inhabiting thermally-95 

impacted lakes. 96 

Bluegill, Lepomis macrochirus (Rafinesque, 1819) is a centrarchid that is ubiquitous in reservoirs of 97 

North America. L. macrochirus are often one of the dominant species in cooling reservoirs. This 98 

dominance is primarily due to their well-documented ability to withstand and survive elevated 99 

temperatures (Holland et al., 1974; Pierce and Wissing, 1974). For example, Holland et al. (1974) 100 

investigated the acclimation capacity of L. macrochirus from various cooling reservoirs and found that 101 

individuals can rapidly adjust their physiology and acclimate to temperatures ranging from 25 – 35°C. 102 

The critical thermal maximum (CTM), defined by the temperature where the organism exhibits a loss of 103 

equilibrium, obtained for these individuals increased with increasing acclimation temperature, with CTM 104 

registered as high as 42.8 °C. As an example of the differences in thermal regimes between cooling 105 

reservoirs and natural lakes, the average temperature of a thermally-impacted reservoir in the mid-western 106 

US (Coffeen Lake, Donnellson, IL) was 36.67°C, 9.66°C above the average water temperature in non-107 

impacted lakes (Lake Mattoon, Mattoon, IL) during the 2012 summer season (Martinez, unpublished). 108 

This observed difference is further amplified during the winter season, which could lead to even more 109 

pronounced effects of temperature in the aquatic community. Thus, cooling reservoirs such as Coffeen 110 

Lake may serve as useful study systems to judge long-term, cross-generational effects of elevated 111 

temperature regimes in aquatic species, including L. macrochirus.  112 

The primary goals of this study were two-fold; 1) to employ an integrative framework evaluating the sub-113 

lethal effects of warm adaptation of an ubiquitous eurytherm and  2) to evaluate the usefulness of power 114 

cooling reservoirs as long-term experiments to judge the consequences of climate change in aquatic 115 

species. We hypothesized that due to the prevalence of elevated temperature in thermally-impacted lakes, 116 

a reduction on growth performance and longevity will become tradeoffs of surviving this thermal regime.  117 

In the present study we found evidence of a severe shift in the community structure and physiology of the 118 

bluegill, Lepomis macrochirus, characterized by younger individuals in a population exposed to elevated 119 

thermal regime. We documented significant differences in growth rate, age structure, and lifespan 120 
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between a thermally-impacted population of L. macrochirus, compared to a non-impacted control lake. In 121 

addition, we address potential physiological and biochemical mechanisms underlying our findings, to 122 

provide a mechanistic basis to the differences in growth rates and population structure found in this study. 123 

Considering the rapid increase of 1.35°C in marine ecosystems during the past 25 years (Belkin, 2009), 124 

power-cooling reservoirs may serve as tractable systems to judge consequences of climate change on the 125 

physiology of aquatic ectotherms. 126 

  127 
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2. Methodology 128 

2.1 Chemicals. All chemicals for enzymatic measurements were purchased from Sigma-Aldrich (St. 129 

Louis, MO) or Fisher Scientific (Fair Lawn, NJ). Water for solution preparation was purified with a Milli-130 

Q Reagent Water System (Billerica, MA) to an electrical resistance of 18 mΩ. 131 

2.2 Study sites. Coffeen Lake is a 4.5 km
2
 power-cooling reservoir, 4.8 km east–northeast of Donnellson, 132 

and approximately 3.2 km west–southwest of Coffeen, Illinois. Since 1972 the reservoir has supplied 133 

cooling water to a power station with a generating capacity of 945 MW of electricity. About 73% of the 134 

surface water of Coffeen Lake is affected by heated discharge through a cooling loop covering 135 

approximately 6.6 km, resulting in an average annual surface water temperature of 22.7°C. Our control 136 

lake was Lake Mattoon, a 4.2 km
2
 water reservoir located in Mattoon, IL. Annual water temperature in 137 

Lake Mattoon range from 0.3 °C to 32.9 °C. Annual water temperatures are substantially higher in 138 

Coffeen Lake and range from 6.5 °C to 42.9 °C (data not shown).  139 

 140 

2.3 Specimen collection. Both Lake Mattoon and Coffeen Lake were sampled during August 2011 using 141 

pulsed DC electrofishing (Gutreuter et al., 1995). Water temperatures within the sampling depth of our 142 

electrofishing rig ranged 29.7°C to 36.1°C in Coffeen Lake and 21.2°C to 27.5°C in Lake Mattoon. 143 

Sampling consisted of two, 15-min transects, randomly selected from five separate sites on both Lakes. 144 

Sampling by DC electrofishing was done using a Wisconsin rig, which consisted of dropper electrodes 145 

suspended at equal intervals from a horizontal ring (Reynolds, 1996). All collected L. macrochirus 146 

specimens were kept for age determination. During each sampling event, specimens were kept in aerated 147 

90 L coolers filled with lake water for transport to the fisheries laboratory at Eastern Illinois University. 148 

Upon arrival, 30 specimens were randomly sampled from the pool for thermal acclimation experiments. 149 

The remaining specimens were weighed to the nearest 0.01 g, total length (TL) was determined to the 150 

nearest millimeter.  151 
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Sagittal otoliths were excised for aging purposes (Maceina and Betsill, 1987). Otoliths were removed by 152 

disconnecting the operculum and accessing the cranial chamber anteriorly. Whole otoliths were placed in 153 

immersion oil and viewed with a stereo microscope under low magnification (7 – 40 x) using reflected 154 

light (Colombo et al., 2010). Age of fish was estimated by counting the number of annuli (visual growth 155 

bands), using two independent readers. Disagreements on ages were corrected by a consensus among the 156 

two readers. All procedures were performed in compliance with the Eastern Illinois University 157 

Institutional Animal Care and Use Committee (approved protocol #12-002). 158 

2.4 Thermal acclimation studies. Individual specimens collected from both Coffeen Lake and Lake 159 

Mattoon were acclimated at two thermal regimes to assess the effects of temperature on routine 160 

metabolism. To achieve this, 10 - 15 individuals from each location were acclimated for a period of 30 161 

days to 17.5°C or 30.0°C ± 1.0°C. Acclimation tanks consisted in 114 L glass aquaria (one aquarium at 162 

17.5°C, one aquarium at 30.0°C), each connected to a custom biological filtration system to condition the 163 

water prior and during acclimation. A split-tank design was employed, where specimens from each 164 

population were separated by a screen within each temperature treatment. Water quality parameters were 165 

monitored every 48 h, and periodical water changes were performed to reduce waste accumulation. Since 166 

a correlation between protein and caloric intakes and O2 consumption has been reported previously 167 

(Schalles and Wissing, 1976), specimens were fed ad libitum with high lipid and protein food pellets 168 

(Wardley fish pellets, Hartz Mountain Corporation, Secaucus, NJ), and remaining unconsumed food 169 

pellets were removed. 170 

2.5 Critical Thermal Maxima (CTM) measurements. Individual specimens were placed in a 10-liter 171 

container with circulating water controlled by a thermal ramp-capable water bath (NesLab RTE, Thermo 172 

Fisher, Fair Lawn, NJ). Heating ramp was configured to 0.3ºC min
-1

. CTM was obtained according to 173 

Holland et al. (1974). Briefly, the temperature where the onset of balance loss (fish loosing upright 174 

position) was observed constituted a critical thermal maxima data point. 175 
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2.7 Whole animal respiration. Oxygen-consumption rates were determined following the methods 176 

described by Torres and Somero (1988), with minor modifications. Individuals were placed in a sealed 177 

water-jacketed acrylic chamber filled with dechlorinated tap water. The rectangular chambers were 178 

constructed of Lucite
®
 and contained a perforated Lucite false-bottom that isolated the fish from a stirring 179 

bar. A low stirring speed (30 RPM approx.) was used to minimize disturbance. All experiments took 180 

place in the dark, with brief periods of observation in low light. Oxygen partial-pressure was continuously 181 

monitored using Clark-type, polarographic oxygen electrodes (Clark Jr, 1956). Temperature was 182 

maintained at each thermal regime (17.5 and 30.0°C ± 0.1 °C) using a circulating refrigerated water-bath 183 

(Forma Scientific, Model 2067), as an individual bluegill reduced oxygen levels to intermediate (~80 mm 184 

Hg) partial pressures. Electrodes were calibrated using air- and nitrogen-saturated water at the 185 

experimental temperature (Torres et al., 1979). Run times varied from 1-3 h, depending on the specimen 186 

size and overall activity. Streptomycin and neomycin (each at 25 mg L
-1

) were added to the water prior to 187 

experimentation to minimize microbial growth. To control for possible oxygen consumption by 188 

microorganisms, an individual was removed after selected runs, its volume was replaced with freshwater, 189 

and oxygen consumption was again measured for 1 h. In all cases microbial oxygen consumption was 190 

negligibly low (< 5%). 191 

Data were recorded using a computer-controlled digital data-logging system. Each oxygen probe was 192 

scanned once per second, its signal averaged over a period of 1 minute, and then recorded. Data obtained 193 

during the first half hour were discarded due to the activity of the fish after its introduction into the 194 

chamber. All 1-min average points thereafter, down to an oxygen partial-pressure (PO2) of 80 mm Hg, 195 

were plotted and a linear regression fitted to produce a routine respiration rate for each individual in mg 196 

O2 hr
-1

 Kg wet mass
-1

. After respirometry trials, specimens were immediately processed for enzyme 197 

activity measurements. Due to the physical trauma exerted during handling and the short acclimation 198 

period (30 min) to the chamber, respiration rates reported in this study should be regarded as routine 199 

metabolic rates. 200 
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2.8 Citrate synthase and lactate dehydrogenase activity measurements. Epaxial muscle tissue of L. 201 

macrochirus was excised from fresh specimens, flash frozen in liquid nitrogen and stored at -80°C for 202 

enzymatic characterization. Frozen tissue was processed as described (Childress and Somero, 1979; 203 

Torres and Somero, 1988). Briefly, a piece of frozen and skinned epaxial muscle (200 mg) was thawed in 204 

1.0 mL of ice-cold homogenizing medium containing 50 mM imidazole/HCl buffer (10 mM, pH = 7.2 at 205 

20°C). Tissue was homogenized manually in a 7 mL, ice-cold Duall
®
 glass homogenizer having ground 206 

glass contact surfaces (Kontes, Vineland, New Jersey). The homogenates were centrifuged at 2,500 g for 207 

10 min at 4°C to pellet undisrupted tissue. The supernatant was used for enzyme analysis.  208 

To evaluate both anaerobic as well as aerobic metabolic capacity of white muscle from L. macrochirus, 209 

the activity of two intermediary enzymes were assayed. Citrate synthase (CS) and L-lactate 210 

dehydrogenase (LDH) enzymatic activity was assayed with supernatants of freshly homogenized muscle 211 

tissue, following Childress and Somero (1979) with minor modifications (Torres et al., 2012). Activities 212 

of both enzymes were assayed at an intermediate temperature of 25°C, in a temperature controlled Varian 213 

Cary IE UV/Vis spectrophotometer, coupled with computer-based analysis software (Cary, North 214 

Carolina). CS activity was assayed in a solution of 42.5 mM Imidazole buffer (pH = 7.2 at 20°C), 0.2 mM 215 

DTNB, 1.5 mM MgCl2·6H2O, and 124 µM acetyl-CoA. To 1 mL of the assay solution, 40 µL of 216 

homogenate supernatant was added, and the absorbance at 412 nm was monitored until reaching a 217 

plateau. Background NADH oxidation was monitored from 2-4 minutes and was negligible prior to 218 

addition of oxaloacetate. The enzymatic reaction was initiated by adding 12.5 µL of 40 mM oxaloacetate, 219 

and the increase in absorbance, as the reduced acetyl CoA reacts with DTNB, was monitored for 4 min. 220 

Considering that the molar absorbance coefficient for TNB at 412nm is 13.6 cm
2
/µmol (Ellman, 1959; 221 

Eyer et al., 2003), the following formula was deduced for the calculation of the catalytic concentration: 222 

U/ml = ΔA/min x 4.89. 223 

For LDH, 10 µL of fresh homogenate was added to 1 mL assay medium consisting of 80 mM imidazole 224 

buffer (pH = 7.2 at 20°C), 5.0 mM sodium pyruvate and 0.15 mM NADH. LDH activity was determined 225 
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by quantifying the decrease in absorbance at 340 nm resulting from the oxidation of NADH for 60 226 

seconds, immediately after adding the fresh homogenate. Considering that the molar absorbance 227 

coefficient for NAD at 340nm is 6.22cm
2
/µmol (McComb et al., 1976), the following formula was 228 

deduced for the calculation of the catalytic concentration: U/ml = ΔA/min x 10.73. 229 

 230 

2.9 Statistical analyses. Enzyme activity and critical thermal maxima data were analyzed with an 231 

unpaired t-test.  Life history (TL, mass, age) and metabolic rate data were analyzed with a two-way 232 

analysis of variance (ANOVA) followed by a pairwise comparison of groups between sampled 233 

populations (Holm-Sidak method). SigmaPlot 12.5 (Systat Software Inc., San Jose, CA) was used for the 234 

analyses. 235 

  236 
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3. Results 237 

3.1 Population structure. Two populations of L. macrochirus with disparate thermal regimes were 238 

sampled, with the objective of describing the overall size and age structure in both fish communities. 239 

Although the catch per unit of effort, expressed as individuals captured per hour of sampling effort, were 240 

similar between locations (Table 1), population structure results derived from the samples were strikingly 241 

different from each other. As shown in Fig. 1, size and age frequency distribution of L. macrochirus 242 

inhabiting a thermally impacted lake showed significant differences from those specimens living in non-243 

impacted conditions (two-way ANOVA, P < 0.001). It is worth noting that no specimens older than two 244 

years were found in Coffeen Lake, whereas specimens up to 5 years were commonly observed in Lake 245 

Mattoon. In conjunction with total length (TL) and age, population differences were strikingly reflected in 246 

mass differences between fish from both populations (two-way ANOVA, P < 0.001). The average mass in 247 

Lake Mattoon was more than 6 times that of Coffeen Lake average. 248 

In addition to differences in the age distribution within a given population, differences in size and mass 249 

were found, particularly within age-2 fish (Fig. 2).  Average mass of age-2 L. macrochirus from Lake 250 

Mattoon was found to be more than triple of the observed mass in Coffeen Lake specimens (Fig. 2b). 251 

Furthermore, we found a significant increase in total length of age-2 L. macrochirus from Lake Mattoon 252 

(Fig. 2a; two-way ANOVA; P < 0.001). Although significant differences were found in age corrected size 253 

between populations, there was a strong correlation (r
2
 = 0.99) between mass at length in both populations 254 

(Fig. 3). 255 

 256 

3.2 Critical thermal maxima. Tolerance towards increasing water temperature, after a 30 day acclimation 257 

period at 17.5°C, was similar between both populations. Average CTM for both populations was 40.56 ± 258 

0.29 °C (Table 2). 259 

 260 

3.3 Metabolism. Aerobic metabolism of L. macrochirus acclimated to 17.5°C and 30.0°C did not 261 

significantly differ among treatments or locations. Acute response of oxygen consumption rate to a 10-262 
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degree change in temperature (Q10) was measured in Lake Mattoon specimens acclimated to 17.5°C, 263 

which averaged to a Q10 of 1.8 ± 0.04 (n = 3; ± SEM). 264 

 265 

3.4 Enzyme activity. Key aerobic and glycolytic enzyme activities at a fixed temperature (25°C) were 266 

determined for Lake Mattoon specimens acclimated to 17.5°C and 30.0°C. As shown in Table 4, 267 

regulation of CS is apparent between acclimation regimes, where cold-acclimated specimens exhibited 268 

twice the activity at 25°C, if compared to CS values from warm-acclimated specimens. A calculated 269 

enzyme activity derived using the mean Q10 reported previously is reported for each acclimation 270 

temperature. Citrate synthase activity indicates a regulatory response through the course of acclimation, 271 

where cold-acclimated specimens expressed a higher CS activity than warm-acclimated specimens. 272 

However, LDH activity results did not show evidence of such temperature-dependent regulation (Table 273 

4). 274 

  275 
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4. Discussion 276 

4.1 Population structure: thermally impacted vs. non-impacted L. macrochirus. Thermal regimes of 277 

habitats have profound implications in aquatic ectotherms, both in freshwater as well as saltwater 278 

systems.  We found both age-size and age-mass structures were significantly different between the 279 

thermally altered Coffeen Lake and the undisturbed Lake Mattoon population, with a trend of a smaller, 280 

younger population inhabiting Coffeen Lake (Fig.1). From the temperature size rule perspective, which 281 

postulates that elevated habitat temperatures favor growth in ectotherms (Atkinson et al., 1996), results 282 

obtained from Coffeen Lake are puzzling since no growth enhancement was observed at elevated 283 

temperatures. Although this relationship has been confirmed and often generalized to many ectothermic 284 

taxa this ‘rule’ should only be interpreted cautionary on a species-specific basis ( Angilletta and Dunham, 285 

2003), as exemplified by our data. 286 

Growth rates obtained for L. macrochirus inhabiting Lake Mattoon, showed a pronounced spike between 287 

ages one and two (Fig. 2). This spike in growth rate was not documented in Coffeen Lake specimens, 288 

where growth rates were found to be rather constant between age classes 1 and 2. Werner and Hall (1988) 289 

documented an ontogenic shift in the diet in L. macrochirus, where specimens 80 mm or larger shift from 290 

feeding within vegetation to feed upon planktonic prey items. This shift towards open water feeding 291 

coincides with the observed shift in growth rates between year one and two in Lake Mattoon specimens. 292 

Moreover, this shift involves an additional energetic cost of locomotion associated with foraging as well 293 

as predator avoidance, and our study suggest that Coffeen Lake specimens a) do not display a shift in prey 294 

selection b) pelagic prey availability might be limited during the winter months or c) that the energetic 295 

requirements of a warm thermal regime and additional foraging energetic requirements might balance out 296 

the energetic benefit of the ontogenic diet shift observed in non-impacted populations. A study evaluating 297 

all three aforementioned aspects is currently underway. 298 

4.2 Thermal response at whole-organism and sub-cellular levels. Oxygen consumption rates obtained for 299 

L. macrochirus fall between metabolic rates reported previously (30.7 to 160.9 mg O2 kg
-1

 hr
-1

) for the 300 
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same species (Pierce and Wissing, 1974; Schalles and Wissing, 1976). Interestingly, Pierce and Wissing 301 

(1974) reported temperature-dependent oxygen consumption rates that reflect a similar Q10 as the acute 302 

response we observed in our study. However, these differences in respiration rates with temperature were 303 

not evident in the post-acclimation respiration rates obtained in our study, and may be attributed to 304 

differences in the acclimation period between studies (14 days vs. 30 days). In addition, oxygen 305 

consumption rates reported in our study are in the higher end of the range reported for L. macrochirus, 306 

which could be attributed to the type of respirometric apparatus (continuous flow vs. closed system), 307 

where our closed–chamber respirometric apparatus does not allow of a more extended chamber 308 

acclimation period before the trial. Although no visible stress was observed for the specimens, handling 309 

stress and a short chamber acclimation period could have masked subtle responses to the thermal regime. 310 

Metabolic homeostasis observed in cross acclimated L. macrochirus involved a biochemical 311 

reconfiguration that includes alterations in the abundance of key aerobic enzymes but not in the anaerobic 312 

enzyme LDH (Table 4). A quantitative strategy was adopted in the L. macrochirus specimens studied, 313 

where metabolic control was modulated by regulating CS levels (Table 4). This quantitative 314 

compensatory mechanism has been widely documented in aquatic organisms (see Hazel and Prosser 315 

(1974); Somero (2004) for review), and explains to an extent why no significant differences were 316 

observed in oxygen consumption rates for whole organisms. Citrate synthase, along with 2-oxoglutarate 317 

dehydrogenase, constitute flux-regulating checkpoints in the citric acid cycle (Newsholme and Crabtree, 318 

1981), which could in turn regulate NADH and FADH2 supply into the Electron Transport System (ETS). 319 

Acclimation induced regulation of CS has been documented at both transcriptional and enzyme levels in 320 

temperate fishes (Lucassen et al., 2006; Lucassen et al., 2003), showing that changes in mRNA for CS 321 

and enzymes activity occurred as soon as 3 - 5 days of acclimation. 322 

Short-term acclimation responses to temperature are physiologically costly, potentially posing an 323 

energetic constraint to those populations already at their upper thermal limit (Pörtner 2001; Pörtner 2002; 324 

Pörtner et al. 2006). In fishes, slight increases in water temperatures are known to induce shifts in 325 
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population structure, and a reduction in growth as well as reproductive output (Perry et al., 2005; Pörtner 326 

et al., 2001). At pejus (i.e. getting worse) temperatures, compensatory responses could tap on the 327 

energetic surplus otherwise allocated to both somatic and reproductive growth, compromising the 328 

ecological success of a given population. Results obtain in this study suggest that L. macrochirus 329 

inhabiting Coffeen Lake are experiencing such pejus temperatures, reflected on their short life span and 330 

small sizes. 331 

 332 

4.3 Tradeoffs in a warming world - live fast and die young? Our study may provide insights into the 333 

consequences of warmer thermal regimes on fish populations. Analog to marine species with little or no 334 

thermal refuge, fish population in Coffeen Lake are unable to avoid thermal stress by moving into a 335 

habitat that is not impacted by the increase in ambient temperature. We observed an overall smaller, 336 

younger population structure as a tradeoff for survival in warm waters. In fact, this study placed into 337 

perspective an often overlooked repercussion of thermal adaptation in fishes; an accelerated senescence as 338 

a tradeoff for survival. Most studies dealing with thermal tolerance in teleosts focus primarily on critical 339 

thermal limits (Eme et al., 2011; Mora and Ospina, 2001; Mora and Ospina, 2002; Ospina and Mora, 340 

2004; Rajaguru and Ramachandran, 2001), metabolism (Brett, 1952; Somero and DeVries, 1967) and 341 

growth (Baras et al., 2001; Mwangangi and Mutungi, 1994). Those studies that have dealt with 342 

senescence in teleosts do so without considering temperature as an effector (Finch, 1998; Reznick et al., 343 

2002). Currently, various thermal tolerance models contemplate mitochondrial function and oxidative 344 

stress, and mitochondrial senescence in invertebrates (Philipp et al., 2005a; Philipp et al., 2005b), but a 345 

model that relates temperature with mitochondrial senescence for fishes is currently lacking.  346 

The uncoupling of mitochondrial respiration and ATP formation, either by uncoupling proteins or by 347 

intrinsic membrane proton leakage, has been shown to act as a safety valve to reduce the formation of 348 

reactive oxygen species (ROS), thus reducing oxidative stress. This “uncoupling to survive” strategy 349 

(Brand, 2000) reduces the mitochondrial energy transduction efficiency, and could explain to a certain 350 

extent the differences in size and mass of L. macrochirus between lakes if proton leak significantly 351 



17 
 

reduces overall ATP-production with only little impact on ROS production at elevated temperatures. 352 

However, ATP-coupled respiration must be employed, even at high temperatures, in order to meet the 353 

minimal energetic requirements of the organism. At high temperatures such as those found in Coffeen 354 

Lake, mitochondrial respiration could result in moderate ROS formation, leading to the accelerated 355 

senescence of L. macrochirus. Further studies on mitochondrial thermal tolerance and oxidative stress 356 

that consider the mitochondrial membrane potential will be highly insightful to confirm this hypothesis 357 

and are currently under study. 358 

  359 



18 
 

Acknowledgments 360 

The authors will like to express our gratitude to all students involved during the sampling portion of the 361 

project (C. Carpenter, J. Stuck, J. West, S. Huck), as well as those students who contributed to the 362 

acquisition of CTM (N. Camp, C. Phillips) and age determination efforts (M. Pant, V. Nepal, K.C.).  363 

Funding 364 

This research was funded by an Eastern Illinois University Council on Faculty research (CFR) Grant to 365 

M.A.M. and R.C. 366 

Author Contributions 367 

EM performed specimen collection, respirometry data collection and processing, enzyme activity 368 

measurements and contributed to manuscript drafting. AP preformed specimen collection, age 369 

determinations and manuscript drafting. MAM provided laboratory infrastructure, participated in CTM 370 

measurements, experimental design advice, data analysis and manuscript preparation. RC provided 371 

laboratory infrastructure, field collection gear and instrumentation for age determination, and contributed 372 

to the experimental conception, data analysis and manuscript preparation. 373 

  374 



19 
 

References 375 

 Angilletta, M.J.J., Dunham, A.E., 2003. The Temperature‐Size Rule in Ectotherms: Simple 376 
Evolutionary Explanations May Not Be General. The American Naturalist 162, 332-342. 377 

Angilletta Jr, M.J., Wilson, R.S., Navas, C.A., James, R.S., 2003. Tradeoffs and the evolution of 378 

thermal reaction norms. Trends in Ecology & Evolution 18, 234-240. 379 
Angilletta, M.J., 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford 380 

University Press. 381 
Atkinson, D., Johnston, I., Bennett, A., 1996. Ectotherm life-history responses to developmental 382 

temperature. Animals and temperature: Phenotypic and evolutionary adaptation, 183-204. 383 

Baras, E., Jacobs, B., Mélard, C., 2001. Effect of water temperature on survival, growth and 384 
phenotypic sex of mixed (XX–XY) progenies of Nile tilapia Oreochromis niloticus. 385 
Aquaculture 192, 187-199. 386 

Belkin, I.M., 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81, 387 
207-213. 388 

Brand, M., 2000. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. 389 
Experimental gerontology 35, 811-820. 390 

Brett, J., 1956. Some principles in the thermal requirements of fishes. Quarterly Review of 391 
Biology, 75-87. 392 

Brett, J., Groves, T., 1979. 6 Physiological Energetics. Fish physiology 8, 279-352. 393 
Brett, J.R., 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. Journal 394 

of the Fisheries Board of Canada 9, 265-323. 395 

Childress, J., Somero, G., 1979. Depth-related enzymic activities in muscle, brain and heart of 396 
deep-living pelagic marine teleosts. Marine Biology 52, 273-283. 397 

Clark Jr, L., 1956. Monitor and control of blood and tissue oxygen tensions. ASAIO Journal 2, 398 
41-48. 399 

Colombo, R.E., Phelps, Q.E., Miller, C.M., Garvey, J.E., Heidinger, R.C., Richards, N.S., 2010. 400 
Comparison of Channel Catfish Age Estimates and Resulting Population Demographics 401 

Using Two Common Structures. North American Journal of Fisheries Management 30, 402 
305-308. 403 

Cossins, A.R., Bowler, K., 1987. Temperature biology of animals. Chapman and Hall. 404 

De Stasio, B.T., Hill, D.K., Kleinhans, J.M., Nibbelink, N.P., Magnuson, J.J., 1996. Potential 405 
effects of global climate change on small north-temperate lakes: Physics, fish, and 406 
plankton. Limnology and Oceanography 41, 1136-1149. 407 

Divakaruni, A.S., Brand, M.D., 2011. The regulation and physiology of mitochondrial proton 408 
leak. Physiology 26, 192-205. 409 

Donelson, J.M., Munday, P.L., 2012. Thermal sensitivity does not determine acclimation 410 
capacity for a tropical reef fish. Journal of Animal Ecology 81, 1126-1131. 411 

Ellman, G.L., 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82, 70-412 
77. 413 

Eme, J., Bennett, W.A., 2009. Critical thermal tolerance polygons of tropical marine fishes from 414 

Sulawesi, Indonesia. Journal of Thermal Biology 34, 220-225. 415 
Eme, J., Dabruzzi, T.F., Bennett, W.A., 2011. Thermal responses of juvenile squaretail mullet 416 

(Liza vaigiensis) and juvenile crescent terapon (Terapon jarbua) acclimated at near-lethal 417 
temperatures, and the implications for climate change. Journal of experimental marine 418 
biology and ecology 399, 35-38. 419 



20 
 

Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., Reiner, E., 2003. 420 

Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical 421 
biochemistry 312, 224-227. 422 

Finch, C.E., 1998. Variations in senescence and longevity include the possibility of negligible 423 

senescence. The Journals of Gerontology Series A: Biological Sciences and Medical 424 
Sciences 53, B235-B239. 425 

Gunderson, A.R., Leal, M., 2012. Geographic variation in vulnerability to climate warming in a 426 
tropical Caribbean lizard. Functional Ecology 26, 783-793. 427 

Gutreuter, S., Burkhardt, R., Lubinski, K.S., 1995. Long term resource monitoring program 428 

procedures: fish monitoring. National Biological Survey, Environmental Management 429 
Technical Center (575 Lester Ave., Onalaska 54650). 430 

Hazel, J.R., Prosser, C.L., 1974. Molecular mechanisms of temperature compensation in 431 
poikilotherms. Physiological Reviews 54, 620-677. 432 

Hochachka, P.W., Somero, G.N., 1968. The adaptation of enzymes to temperature. Comp 433 
Biochem Physiol 27, 659-668. 434 

Hochachka, P.W., Somero, G.N., 2002. Biochemical adaptation: mechanism and process in 435 
physiologica evolution. Oxford University Press, New York. 436 

Holland, W.E., Smith, M.H., Gibbons, J.W., Brown, D.H., 1974. Thermal tolerances of fish from 437 
a reservoir receiving heated effluent from a nuclear reactor. Physiological Zoology 47, 438 
110-118. 439 

Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Pérez, H.J.Á., Garland, T., 440 
2009. Why tropical forest lizards are vulnerable to climate warming. Proceedings of the 441 

Royal Society B: Biological Sciences 276, 1939-1948. 442 
Lucassen, M., Koschnick, N., Eckerle, L., Pörtner, H.-O., 2006. Mitochondrial mechanisms of 443 

cold adaptation in cod (Gadus morhua L.) populations from different climatic zones. 444 

Journal of Experimental Biology 209, 2462-2471. 445 

Lucassen, M., Schmidt, A., Eckerle, L.G., Pörtner, H.O., 2003. Mitochondrial proliferation in the 446 
permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and 447 
temperate zoarcid fish. Am J Physiol Regul Integr Comp Physiol 285, R1410-1420. 448 

Maceina, M., Betsill, R., 1987. Verification and use of whole otoliths to age white crappie. Age 449 
and growth of fish. Iowa State University Press, Ames, 267-278. 450 

McComb, R., Bond, L., Burnett, R., Keech, R., Bowers Jr, G., 1976. Determination of the molar 451 
absorptivity of NADH. Clinical chemistry 22, 141. 452 

Mora, C., Ospina, A., 2001. Tolerance to high temperatures and potential impact of sea warming 453 
on reef fishes of Gorgona Island (tropical eastern Pacific). Marine Biology 139, 765-769. 454 

Mora, C., Ospina, A., 2002. Experimental effect of cold, La Niña temperatures on the survival of 455 
reef fishes from Gorgona Island (eastern Pacific Ocean). Marine Biology 141, 789-793. 456 

Mwangangi, D., Mutungi, G., 1994. The effects of temperature acclimation on the oxygen 457 

consumption and enzyme activity of red and white muscle fibres isolated from the 458 
tropical freshwater fish Oreochromis niloticus. Journal of Fish Biology 44, 1033-1043. 459 

Newsholme, E.A., Crabtree, B., 1981. Flux-generating and regulatory steps in metabolic control. 460 
Trends in Biochemical Sciences 6, 53-56. 461 

Ospina, A.F., Mora, C., 2004. Effect of body size on reef fish tolerance to extreme low and high 462 
temperatures. Environmental Biology of Fishes 70, 339-343. 463 

Perry, A.L., Low, P.J., Ellis, J.R., Reynolds, J.D., 2005. Climate change and distribution shifts in 464 
marine fishes. Science 308, 1912-1915. 465 



21 
 

Philipp, E., Brey, T., Pörtner, H.O., Abele, D., 2005a. Chronological and physiological ageing in 466 

a polar and a temperate mud clam. Mech Ageing Dev 126, 598-609. 467 
Philipp, E., Pörtner, H.-O., Abele, D., 2005b. Mitochondrial ageing of a polar and a temperate 468 

mud clam. Mechanisms of Ageing and Development 126, 610-619. 469 

Pierce, R.J., Wissing, T.E., 1974. Energy Cost of Food Utilization in the Bluegill (Lepomis 470 
macrochirus). Transactions of the American Fisheries Society 103, 38-45. 471 

Pörtner, H.O., Berdal, B., Blust, R., Brix, O., Colosimo, A., De Wachter, B., Giuliani, A., 472 
Johansen, T., Fischer, T., Knust, R., 2001. Climate induced temperature effects on growth 473 
performance, fecundity and recruitment in marine fish: developing a hypothesis for cause 474 

and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces 475 
viviparus). Continental Shelf Research 21, 1975-1997. 476 

Pörtner, H.O., Farrell, A.P., 2008. Ecology. Physiology and climate change. Science 322, 690-477 
692. 478 

Rajaguru, S., Ramachandran, S., 2001. Temperature tolerance of some estuarine fishes. Journal 479 
of Thermal Biology 26, 41-45. 480 

Reynolds, J.B., 1996. Electrofishing. Fisheries techniques, 2nd edition. American Fisheries 481 
Society, Bethesda, Maryland, 221-253. 482 

Reznick, D., Ghalambor, C., Nunney, L., 2002. The evolution of senescence in fish. Mechanisms 483 
of Ageing and Development 123, 773-789. 484 

Roessig, J., Woodley, C., Cech, J., Jr., Hansen, L., 2004. Effects of global climate change on 485 

marine and estuarine fishes and fisheries. Rev Fish Biol Fisheries 14, 251-275. 486 
Schalles, J.F., Wissing, T.E., 1976. Effects of Dry Pellet Diets on the Metabolic Rates of Bluegill 487 

(Lepomis macrochirus). Journal of the Fisheries Research Board of Canada 33, 2443-488 
2449. 489 

Shaklee, J.B., Christiansen, J.A., Sidell, B.D., Prosser, C.L., Whitt, G.S., 1977. Molecular 490 

aspects of temperature acclimation in fish: Contributions of changes in enzyme activities 491 

and isozyme patterns to metabolic reorganization in the green sunfish. Journal of 492 
Experimental Zoology 201, 1-20. 493 

Sidell, B.D., Wilson, F.R., Hazel, J., Prosser, C., 1973. Time course of thermal acclimation in 494 

goldfish. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and 495 
Behavioral Physiology 84, 119-127. 496 

Somero, G.N., 2002. Thermal physiology and vertical zonation of intertidal animals: optima, 497 
limits, and costs of living. Integrative and Comparative Biology 42, 780-789. 498 

Somero, G.N., 2004. Adaptation of enzymes to temperature: searching for basic "strategies". 499 
Comp Biochem Physiol B Biochem Mol Biol 139, 321-333. 500 

Somero, G.N., DeVries, A.L., 1967. Temperature tolerance of some Antarctic fishes. Science 501 
156, 257-258. 502 

Stork, N.E., Coddington, J.A., Colwell, R.K., Chazdon, R.L., Dick, C.W., Peres, C.A., Sloan, S., 503 

Willis, K., 2009. Vulnerability and Resilience of Tropical Forest Species to Land‐Use 504 
Change. Conservation Biology 23, 1438-1447. 505 

Tarzwell, C.M., 1970. Thermal requirements to protect aquatic life. Journal (Water Pollution 506 
Control Federation), 824-828. 507 

Tewksbury, J.J., Huey, R.B., Deutsch, C.A., 2008. Putting the heat on tropical animals. 508 
SCIENCE-NEW YORK THEN WASHINGTON- 320, 1296. 509 



22 
 

Torres, J., Belman, B., Childress, J., 1979. Oxygen consumption rates of midwater fishes as a 510 

function of depth of occureence. Deep Sea Research Part A. Oceanographic Research 511 
Papers 26, 185-197. 512 

Torres, J., Somero, G., 1988. Metabolism, enzymic activities and cold adaptation in Antarctic 513 

mesopelagic fishes. Marine Biology 98, 169-180. 514 
Torres, J.J., Grigsby, M.D., Clarke, M.E., 2012. Aerobic and anaerobic metabolism in oxygen 515 

minimum layer fishes: the role of alcohol dehydrogenase. The Journal of experimental 516 
biology 215, 1905-1914. 517 

Urban, M.C., Tewksbury, J.J., Sheldon, K.S., 2012. On a collision course: competition and 518 

dispersal differences create no-analogue communities and cause extinctions during 519 
climate change. Proceedings of the Royal Society B: Biological Sciences 279, 2072-520 
2080. 521 

Werner, E.E., Hall, D.J., 1988. Ontogenetic Habitat Shifts in Bluegill: The Foraging Rate-522 

Predation Risk Trade-off. Ecology 69, 1352-1366. 523 
 524 
 525 

  526 



23 
 

Figure Legends 527 

Figure 1: Age and total length (TL) distribution of Lepomis macrochirus collected from Lake Mattoon (a) 528 

and Coffeen Lake (b). 529 

 530 

Figure 2: Average size and mass as a function of age class for Lepomis macrochirus from a thermally 531 

impacted lake (○; Coffeen Lake) and a control lake (●; Lake Mattoon). Biomass accumulation rates are 532 

shown to increase after the first year in Lake Mattoon specimens (n = 285 - 291, ± SEM). Statistically 533 

significant differences within age classes are shown with an asterisk (*; two-way ANOVA; P < 0.001). 534 

 535 

Figure 3: Mass – total length relations of bluegill, L. macrochirus, from a thermally impacted (○ Coffeen 536 

Lake) lake and a control (● Lake Mattoon) lake.  537 

  538 
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 Figure 1 539 
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Figure 2:  542 
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Figure 3:  545 
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Table 1: Population structure of L. macrochirus sampled from a thermally impacted (Coffeen lake), and a 548 

non-impacted lake (Lake Mattoon). Average total length (TL) and wet mass (WM) were obtained for all 549 

specimens collected. The catch per unit effort (CPUE) was evaluated for both sampling sites. CPUE is 550 

expressed as the number of individual L. macrochirus captured per hour of electrofishing (ind h
-1

) 551 

 552 

 553 

  554 

Location Avg. Age (yrs) Avg. TL (mm) Avg. WM (g) CPUE* (ind h
-1

 ±SEM) 

Coffeen Lake 

N = 291 
0.96 75.35 9.42 293 ± 98.19 (n = 4) 

Lake Mattoon 

N = 285 
2.42 134.84 60.26 292 ± 86.24 (n = 4) 
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 555 

Table 2: Critical thermal maxima of two populations of L. macrochirus acclimated to 17.5°C.  556 

 557 

 558 

*No significant differences were found between population (t-test, P = 0.08, 95%CI). CTM = Critical 559 

thermal maximum 560 

 561 

  562 

Location Avg. mass (g) (min-max) Avg. CTM (°C) (min-max)* 

Mattoon (n = 5) 67.72 (33.2-90.6) 40.06 ± 0.503 (38.2-41.1) 

Coffeen (n = 5) 23.8(10.2-31.5) 41.08 ± 0.12 (40.7-41.3) 



29 
 

 563 

Table 3: Oxygen consumption of bluegill Lepomis macrochirus acclimated to 17.5°C and 30°C collected 564 

from a thermally impacted (Coffeen Lake) and control lake (Lake Mattoon).  565 

 566 

Location Acclimation Temperature (°C) Sample size (n) Respiration rate* 

Lake Mattoon 
17.5 7 129.14 ± 16.19 

Lake Mattoon 
30.0 11 143.91 ± 10.80 

Coffeen Lake 
17.5 9 160.06 ± 12.02 

Coffeen Lake 
30.0 8 136.02 ± 11.30 

*No significant differences were found among acclimation temperatures or populations (two-way 567 

ANOVA, P = 0.131). Average respiration rates are expressed in mg O2 hr
-1

 Kg wet mass
-1 

± SEM. 568 

  569 
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Table 4: Lactate Dehydrogenase (LDH) and Citrate Synthase (CS) relative activities from white epaxial 570 

muscle of bluegill obtained from Lake Mattoon and acclimated to 17.5°C or 30°C.  571 

 572 

Acclimation Temperature (°C) Sample Size Activity (U) Calc. Act. (U) 

Lactate Dehydrogenase 

17.5 4 0.437±0.111 0.281 

30.0 4 0.436±0.0532 0.585 

Citrate Synthase 

17.5 4 0.898±0.101 0.578 

30.0 4 0.369±0.0863 0.495 

 573 

Enzyme activity was measured at 25°C, Units are µmol substrate converted to product min
-1

. Calculated 574 

activity at acclimation temperature was obtained using a Q10 of 1.8, derived from respirometric 575 

measurements (n = 4, ± SEM). 576 

 577 


	University of Louisville
	From the SelectedWorks of Michael A. Menze
	August, 2015

	Tradeoffs of warm adaptation in aquatic ectotherms: Live fast, die young?
	Manuscript

