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Electronic and Vibrational Properties of Molecules at High Pressures. 
Hydrogen Molecule in a Rigid Spheroidal Box 

R. LeSar and D. R. Herschbach" 

Department of Chemistry, Mrvard University, Cambridge, Massachusetts 02138 (Received: Apr//22, I98 1; 
In Final Form: June 72, 198 1) 

A variational calculation employing a five-term James-Coolidge wave function is presented for a hydrogen 
molecule enclosed within an infinite-walled spheroidal box. Properties examined include the pressure dependence 
of the equilibrium bond length, the vibrational force constant, the total energy, the ionization potential, the 
electronic kinetic energy, and the electronic correlation energy. Comparison is made with similar calculations 
for the H2+ molecular ion and the He and H atoms. A Badger's rule correlation of force constant and bond 
length is found to hold over a wide pressure range. Comparisons with the available experimental results show 
that generally the rigid-box model greatly exaggerates the effects of compression. 

I. Introduction 
The plight of an atom imprisoned in an infinite-walled 

box of shrinking volume1 has long served as a compelling 
model for study of electronic perturbations induced by 
high pressure. The prototype example of the hydrogen 
atom in a spherical box2 was treated by de Groot and ten 
Seldam in 1946. Of primary interest were the drastic shifts 
in the energy levels, the increase in electronic kinetic en- 
ergy, and the decrease in polarizability on compression. 
Similar calculations have been done for helium3 and larger 
atoms: and other properties have been examined, in- 
cluding hyperfine interactions in the hydrogen atom6 and 
the correlation energy of two-electron atoms.e The only 
molecular system previously studied is the hydrogen 
molecule ion, H2+, studied first by Cottrel17 in 1951 and 
recently more extensively.8 

This paper gives a variational calculation for a hydrogen 
molecule in a spheroidal box. In addition to the change 
with compression of the ground-state electronic energy and 
bond length, we determined the change in vibrational force 
constant. The results provide evidence that a quantitative 
correlation between force constant and bond length holds 
over a wide range of pressure. This has the same expo- 
nential form as an empirical correlation, known as Badger's 
rule, that holds well for free, gas-phase, diatomic mole- 
cules.*'l Our calculations were prompted by interest in 
such a possible correlation, which may prove useful in 
interpreting vibrational spectra of compressed solids. 
Large pressure-induced changes in vibrational frequency 
have been observed recently in solid hydrogen12 and ni- 
trogen.13 

(1) E. A. Poe, "The Pit and the Pendulum", in The Gift ,  Carey and 

(2) S. R. de Groot and C. A. ten Seldam, Phy~ica,  12, 669 (1946). 
(3) C. A. ten Seldam and S. R. de Groot, Physica 18, 905 (1952). 
(4) E. V. Ludeiia, J. Chem. Phys., 66,468 (1977); 69 (1978). 
(5) J. A. Weil, J. Chem. Phys., 71, 2803 (1979). 
(6) E. V. Ludeiia and M. Gregori, J. Chem. Phys., 71, 2235 (1979). 
(7) T. L. Cottrell, Trans. Faraday SOC., 47, 337 (1951). 
(8) (a) For an improved variational treatment see K. K. Singh, Phys- 

ica, 30, 211 (1964); (b) An exact solution for clamped nuclei has now 
appeared; see E. Ley-Koo and S. A. Cruz, J. Chem. Phys., 74,4603 (1981). 
Comparison with our Table I1 is not feasible as the authors calculated 
the energy for R = 2ao and did not find the equilibrium bond distance. 

(9) R. M. Badger, J. Chem. Phys., 2,128 (1934); 3, 710 (1935); Phys. 
Rev., 48, 284 (1935). 

(10) D. R. Herschbach and V. W. Laurie, J. Chem. Phys., 35, 458 
(1961). 

(11) A. B. Anderson and R. G. Parr, J. Chem. Phys., 53,3375 (1970); 
Chem. Phys. Lett., 10, 293 (1971). 

(12) S. K. Sharma, H. K. Mao, and P. M. Bell, Phys. Reo. Lett., 44, 
886 (1980). 

Hart, Philadelphia, PA, 1842, pp 133-51. 

We employ the James-Coolidge method14 with modifi- 
cations required by the boundary conditions, as outlined 
in section I1 and an Appendix. The results for H2 are 
presented in section I11 and compared with those obtained 
for H2+ by extending Cottrell's calculations to evaluate the 
change in vibrational force constant with box size. The 
Badger's rule correlation and other aspects are discussed 
in section IV in the context of previous theoretical calcu- 
lations on solid hydrogen. 

11. Variational Calculations 
For molecules in boxes only the vibrational method 

appears feasible, although for simpler systems some sys- 
tematic features of exact or perturbative solutions are 
known.15 We use the five-term James-Coolidge trial 
function; l4 for the free H2 molecule this function yields 
more accurate results than a comparable SCF-CI calcu- 
lation.l6 Unless indicated otherwise, we use standard 
notation and give all formulas and numerical quantities 
in atomic units.17 

The spheroidal box is specified by placing its foci at the 
two protons (a and b, separated by bond length R). The 
electrons (i = 1, 2) are located by prolate spheroidal co- 
ordinates ( X i ,  gi, Oi). Since surfaces with constant X are 
ellipsoids, the boundary of the spheroidal box is specified 
by A = ho and its semimajor axis has length l12R&. The 
potential energy is 

(1) 
within the box (both XI and X2 in the range 1 to Xo), and 
V = ~0 elsewhere (either X1 or X2 1 A+). The quantity p = 
2rL2/R is proportional to the interelectronic distance. The 
variation function has the form 

* = M X l , h 2 )  90(Xl,X2,Pl,F2,P;R) (2) 

(13) R. LeSar, S. A. Ekberg, L. H. Jones, R. L. Mills, L. A. Schwalbe, 
and D. Schiferl, Solid State Commun., 32, 131 (1979). 

(14) H. M. James and A. S. Coolidge, J. Chem. Phys., 1, 825 (1933). 
See also: W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys., 32, 219 
(1960); W. Kolos and L. Wolniewicz, J. Chem. Phys., 49, 404 (1965). 

(15) I. Gonda and B. F. Gray, J. Chem. Soc., Faraday Trans. 2, 71, 
2016 (1975). 

(16) F. H. Ree and C. F. Bender, J. Chem. Phys., 71, 5362 (1979). 
(17) Ener : 1 hartree = 2 Ry = 27.21163 eV. Distance: 1 bohr radius 

= 0.5291772% Force Constant: 1 au = 1.55692 X IO6 dyn cm-'. 
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Here N is a normalization factor, \ko is the five-term 
James-Coolidge function 

9 0  = [Cl + C2(P12 + P27 + GPlPU2 + C4hl + A,) + 
GPI exp[-& + (3) 

(4) 

within the box and g = 0 elsewhere. Thus the wave 
function vanishes a t  the surface of the box (Dirichlet 
boundary condition). The boundary condition could be 
satisfied in other ways, but this choice for g(X1,X2) is con- 
venient; it is analogous to that used by Cottrell for H2+. 
The \ko function is symmetric to interchange of electrons 
(l2 + state). The five coefficients Ck(R,X,) and exponent 
or(d,ho) are variational parameters. 

The matrix elements needed for the variational calcu- 
lations are evaluated in Appendix A. The integrals must 
be recalculated for each value of X, considered. However, 
since the integrals do not depend on the internuclear 
separation R,  except as multiplicative factor, we can readily 
scan the semimajor axis (RX,/2)  and hence the volume of 
the box for each A,,. The integrals must also be reevaluated 
for each choice of the exponent. To reduce computing 
time, we optimized the exponent for a t  least three values 
of R for each choice of RA,,/2 and used linear interpolation 
to estimate the exponent for other values of R. In this way, 
essentially optimized wave functions and energies were 
determined as a function of bond length for each RXo. 

Potential curves were thus obtained, and the location 
of the potential minima and vibrational force constants 
were determined by fitting the curves both to a parabolic 
form and to a three-term Dunham expansion'* 

(5) 

with E = ( R  - R,)/R,.  The average kinetic energy was 
evaluated both directly from the expectation value of the 
kinetic energy operator and from the virial theorem. For 
a free diatomic molecule, this providesl9 

and the cutoff function is 
g = (A0 - Al>(XO - A21 

v = aopy1 + a l l  + a2p) 

T = -R(dE/dR)  - E @a) 

where E is the total energy. For a spheroidal box, the 
analogous result' is 

T = -RAo[dE/d(RAo)] - E (6b) 

where the energy derivative with respect to the semimajor 
axis is evaluated along the locus for which (dE/dR)Rp = 
0. The derivatives were obtained by a cubic spline in- 
terpolation. 

The calculated properties for this box model can be 
related to pressure by P = -dE/dV,  where the volume is 
given by 

V = ( 4 ~ / 3 ) ( 7 2 R X , ) ~ ( 1  - X,-2) (7) 

For large X, the spheroid becomes essentially spherical and 

P (2/a)(Rho)-21dE/d(RXo)I (8) 
where the energy derivative is again evaluated along the 
locus of potential minima. The neglect of the second term 
involving &o-~ in eq 7 in computing the volume produces 
an error for the H 2  case of -1% for RX, = 12 and 5% for 
R&, = 2. 

Comparison calculations for the H2+ molecule ion in a 
spheroidal box were carried out by using the same varia- 

R e  

(18) J. L. Dunham, Phys. Reu., 41, 721 (1932). 
(19) J. C. Slater, J .  Chem. Phys., 1, 687 (1933). 
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Flgure 1. Energy (hartree) of H, molecule (soild curves) and He+ 
molecule ion (dashed curves) In a Spheroidal box vs. Internuclear 
distance R (bohr radius) for a series of box sizes speclfled by Rb, the 
major axis of the spheroid. 

I I 

I - 1  

5t 

! 0 
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R X O  

Flgure 2. Varlatlon in size and shape of spheroldal box wlth changes 
in Rand RX, (cf. Figure 1). Dots in each ellipse Indicate location of 
protons. Uppermost row pertains to the equilibrium Internuclear dls- 
tance. 

tional function and procedures described by Cottrell.' For 
the energy and equilibrium bond lengths we found the 
same results at the values of R and X, which he considered. 
However, we calculated more points along each potential 
curve in order to determine the vibrational force constant 
from a fit to a Dunham expansion, eq 5. 

111. Results for H2 and H2+ 
Figure 1 shows potential curves (sum of ground-state 

electronic energy plus nuclear repulsion) as functions of 
internuclear distance R for various box sizes designated 
by the major axis, R&,. Along these curves as R varies the 
shape of the box changes as well as its size, since the ec- 
centricity A,,-1 of the spheroid must change when R&, is 
fixed. As illustrated in Figure 2, this change in shape 
indeed corresponds to the mechanism described by Poe' 
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TABLE I:  Parameters for H, in a Spheroidal Box' 

The Journal of Physical Chemistty, Vol. 85, No. 19, 1981 

Rho P Re E, Fe 

LeSar and Herschbach 

m O . O ( O )  1.403 -1.1716 1.1716 
12 1.6 (0) 1.403 -1.1685 1.1813 
10 7.4 (0) 1.395 -1.1638 1.2048 
8 5.9(1) 1.355 -1.1440 1.2999 
7 1.7(2) 1.301 -1.1136 1.4245 
6 5.5(2) 1.208 -1.0441 1.6584 
5 1.8(3) 1.068 -0.8800 2.1111 
4 7.7 (3) 0.893 -0.4749 2.9963 
3 3.5(4) 0.686 0.6474 4.9725 
2 3.8 (5) 0.455 4.5947 10.6623 

Rho is the a All quantities except P in atomic units. 
major axis of the spheroid; Rho = - indicates results for 
free, gas-phase molecule calculated with the same varia- 
tional function;P is the pressure (in kbar; to be multiplied 
by the power of 10 indicated in the parentheses); R e  is 
the equilibrium bond length, and E, and T, are the cor- 
responding total electronic energy and average kinetic 
energy. 

TABLE 11: Parameters for H,' in a Spheroidal Box' 

m 0.0 (0) 2.024 -0.6022 
12 2.7(-1) 2.024 -0.6021 
10 2.4(0) 2.012 -0.6010 
8 2.4(1) 1.955 -0.5937 
7 8.0(1) 1.874 -0.6800 
6 2.7 (2) 1.731 -0.5455 
5 9.8(2) 1.518 -0.1310 
4 4.1 (3) 1.248 -0.2369 
3 2.2 (4) 0.936 0.3867 
2 2.0 (5) 0.601 2.5901 

' Notation and units as in Table I. 

0.6022 
0.6046 
0.6138 
0.6594 
0.7270 
0.8628 
1.1224 
1.6296 
2.7528 
5.9245 

("...flatter and flatter grew the lozenge..."). In the well 
region, however, the box is essentially spherical for all box 
sizes. As RXo decreases, the equilibrium bond length Re 
corresponding to the potential minimum decreases, 
whereas the energy E, at the minimum and the curvature 
there increase markedly. Comparison of the curves for Hz 
and H2+ shows two features of interest. Just as with the 
free, gas-phase molecules, Re for H2 is substantially smaller 
than for Hz+ for any box size. However, for sufficiently 
small boxes, and at large R for all box sizes, E for Hz lies 
above that for H2+; this indicates that H2 should undergo 
ionization in that domain. 

Tables I and I1 list for Hz and H2+ the values of E,, the 
average kinetic energy T,, and pressure P corresponding 
t_o Re for several values of RX, For both H2 and H2+, the 
T, result from eq 6b was verified by a direct evaluation 
of the expectation value of the Laplacian. A drastic change 
from the virial relation for a free molecule (T, = E,) occurs 
as the box shrinks. Figure 3 plots the change in average 
electronic kinetic energy AT, as a function of pressure. 
Also plotted are results for H2 and He derived from ex- 
perimental data and a theoretical curve for He atom in a 
spherical For comparison, we include the kinetic 
energy for two noninteracting electrons in a spheroidal box, 
calculated as described in Appendix B. At sufficiently high 
pressures AT, for the H2 molecule and He atom appear 
to converge toward the P2I5 dependence exhibited by two 
noninteracting electrons. 

Figure 4 plots the energy E, at the potential minimum 
as a function of the corresponding box volume, V,. For 
Hz, the curve remains relatively flat until V, = 170a03 (or 
RX, == 7ao); at  that point E, is -0.06 hartree (or 1.6 eV) 
higher than the energy of the free molecule. For smaller 
boxes, the energy climbs rapidly. For H2+, the energy 
varies more slowly with V,; indeed, this variation is re- 

01 1 10 102 103 104 105 io6 
PRESSURE, P ( k  b a r )  

Flgure 3. Change in average kinetic energy ATe (kcai/mol) vs. 
pressure (kbar) for H2 molecule and two noninteracting electrons (2e7 
in a spheroidal box and He atom in a spherical box (ref 3). The result 
for two noninteracting electrons (given for A,, = 20) shows a linear 
relation with slope 2/5, as derived in Appendix B. Also shown are the 
experimental results (0) for H2 (ref 22) and (0) for He (calculated here 
from data of ref 23). The results for He atom in a spherical box show 
a curious upsurge at - 1000 kbar; that may be due to numerical error 
in the graphical solution employed in ref 3. The arrows indicate the 
pressure necessary for ionization of H and He atoms (ref 2 and 3) and 
H2 molecule, calculated with the box model. 

\ - 
10 20 50 102 103 

VOLUME, V (bohr3) 

Flgure 4. Energy of H2 and H2+ (hartree) at the equilibrium bond length 
vs. corresponding volume (cubic bohr radlus) of spheroidal box com- 
pared with the energy of an H atom in a spherical box (from ref 2). 
The point corresponding to ro = 1.448 bohr radii from the Katom study 
is not Included because that point gave the H-atom curve a large, 
unphysical bulge. 

markably parallel tothat for the H atomq2 The energy of 
H2 climbs above that of H2+ when V,  C 21aZ (or R& < 
3 . 4 ~ ~ )  and above that of two H atoms when V, I 3.8~03 (or 
RXo 5 2ao). This indicates that for decreasing box size 
ionization would occur before dissociation to atoms. 

The pressures required to ionize or dissociate the hy- 
drogen molecule may be estimated by comparing the free 
energy functions, G = E + PV, for the H2, H2+, and H- 
atom systems. Figure 5 gives these functions. The free 
energy curves for Hz and H2+ intersect a t  P = - 14 Mbar. 
The corresponding volume change on ionization would be 
AV = - 6 . 8 ~ ~ ~  (or 1.0 A3 = 0.60 cm3/mol). The Hz and 2H 
curves do not appear likely to cross unless at pressures well 
above 100 Mbar. 

Figure 6 presents a Badger's rule plotlo of vibrational 
force constant vs. equilibrium internuclear distance. Also 
indicated is a line (shown dashed) obtained from data for 
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TABLE 111: 
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Dunham Parameters for H, in a Spheroidal Boxa 

00- 

0.5- 

I O  

Rh, 
m 

1 2  
1 0  

8 
7 
6 
5 
4 
3 
2 

Hi 
2 H  

H1 

0.3661 
0.3752 
0.3971 
0.4431 
0.5066 
0.6221 
0.9333 
1.1594 
1.7635 
3.0122 

-1.1653 
- 1.5935 
- 1.6007 
- 1.3759 
-1.2152 
- 1.1345 
-0.9178 
-0.8080 
- 0.7953 
-0.6991 

1.7154 
1.4705 
1.2366 
0.9032 
0.6888 
0.6429 
0.3213 
0.3290 
0.3456 
0.3018 

60.64 
60.66 
61.38 
65.05 
70.59 
81.80 

104.68 
148.07 
253.71 
576.36 

4415 
4470 
4626 
5030 
5602 
6684 
9261 

12276 
19819 
39040 

W e X e  

138 
152 
178 
142 
122 
118 
115 
108 
169 
267 

W R  

4139 
4166 
4270 
4746 
5358 
6448 
9031 

12060 
19481 
38506 

a The coefficients a,, a , ,  and a,  are defined in eq 5; a,  is given in atomic units; a ,  and a ,  are dimensionless; B e ,  w e ,  w g e ,  
and W R  are in cm-l units. The quadratic vibrational force constant is given by k ,  = 2a,/Re2 = (1.906 x 1 0 - 8 ) w e 2 ,  with w e  
in cm-’. 

TABLE IV: Dunham Parameters for H,’ in a Spheroidal Boxa 

m 0.2677 -1.5582 
1 2  0.2697 - 1.5376 
10  0.2766 -1.5273 

8 0.3234 - 1.3230 
7 0.3657 - 1.1879 
6 0.4663 -0.9556 
5 0.6181 - 0.9400 
4 0.8942 -0.8816 
3 1.3973 -0.7542 
2 2.4941 - 0.6111 

Notation and units as in Table 111. 

I. 5 r-----m 
I II 

1.0 1 

1.7152 
1.6621 
1.6451 
0.83 20 
1.2146 
0.5941 
1.4842 
1.0825 
0.8511 
0.5661 

Flgure 5. Free energy (hartree) of H2 and H2+ at the equilibrium bond 
length vs. corresponding pressure (kbar). Also plotted is twice the free 
energy of an H atom in a spherical box calculated from the results of 
ref 2 (again omitting the dubious point for ro = 1.448 bohr radii). 

various electronic states of free, gas-phase H2 and H2+ 
molecules.20 Although the force constants for the box 
systems differ considerably from the gas-phase systems, 
the plots are again linear except for small boxes (RXo < 
3 4 .  In computing the force constants, we found that 
taking second differences of the energy with respect to the 
bond length gave good agreement with values obtained by 
fitting the potential minima to a three-term Dunham ex- 
pansion. Tables I11 and IV list the Dunham potential 
parameters ao, al, a2, the rotational constant Be, the vi- 
brational frequency we = ( ~ U , , € I ~ ) ~ / ~ ,  the anharmonicity 
constant a g e ,  and the corresponding Raman frequency20 

(20) G. Herzberg and L. Huber, “Constants for Diatomic Molecules, 
Van Nostrand-Reinhold, New York, 1979, pp 240-53; G. Herzberg, 
“Spectra of Diatomic Molecules”, Van Nostrand-Reinhold, New York, 
1950. 

29.08 
29.17 
29.51 
31.26 
34.00 
39.88 
51.87 
76.68 

136.27 
330.84 

2614 
2628 
2677 
2979 
3304 
4041 
5305 
7759 

12929 
26915 

57 
56 
56 
63 
28 
33 

- 28 
-12 
- 28 
- 48 

2500 
2516 
2665 
2853 
3248 
3975 
5361 
7783 

12985 
27011 

1 1 , / , 1 ,  

I 2 
Re (bohr) 

Flgure 8. Logarithm of the quadratic vibrational force constant k2 
(atomic units) vs. equilibrium bond length Re (bohr radius) for the ground 
electronic states of (0) H, and (A) H,+ in spheroidal boxes. Also 
shown are the empirical resuks for (0) the free, gas-phase H2 molecule 
and (A) the computed result (ref 20) for the free, gas-phase H2+ 
molecular ion. The solid lines were fitted to all but the points at small 
Re for both H, and H,+. The dashed line shows the Badger’s rule result 
derlved from spectroscopic data for gasphase H, molecules. The lines 
correspond to log k,  = mRe + b with (m,b)  = (-1.77,2.08), 
(-1.24,1.64), and (-0.98,0.96) for boxed H,, H,’, and free H2 or H2 , 
respectively. 

given by = we - 2wp,. This frequency is seen to increase 
strongly with decrease in box size or increase in pressure. 

IV. Discussion 
In view of the extreme simplicity of the box model, it 

can offer only a heuristic guide to some aspects of mo- 
lecular compression. However, the electronic and vibra- 
tional properties that can be examined with the box model 
have in fact been largely ignored in most of the theoretical 
calculations treating molecular hydrogen at high pressure.21 
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The intermolecular potential parameters usually used 
pertain to gas-phase molecules. Few results are available 
concerning pressure-induced changes of properties such 
as bond length, vibrational force constant, or electronic 
correlation energy. Here we compare predictions of the 
box model for seven properties with quantites and infer- 
ences obtained from various theoretical calculations or 
experiments. 

Electronic Kinetic Energy. For modest pressures, this 
quantity permits a3ather direct comparison with equa- 
tion-of-state data. The pressure-induced change AT in the 
average total kinetic energy can be determined experi- 
mentally for a gas at pressure P and volume V from 

(9) 

where U is the total energy (for electronic and nuclear 
motion). At low pressures, where the bond length and 
vibrational force constant remain essentially unchanged, 
the contribution to A!$ from nuclear motion is negligible. 
Thus Michels and co-workersZ2 determined the pressure- 
induced change AT, in average electronic kinetic energy 
for Hz and other gases by measuring A(PV) and computing 
AU from PVT data. We have likewise computed ATe for 
He from recent data by Mills et al.= For P = 2 kbar, the 
results are AT, = 2 kcal/mol for H2, 1.4 kcal/mol for He, 
and values between 4 and 7 kcal/mol for Ar, Nz, C02, and 
C2H4 For our box model, P = 2 kbar corresponds via eq 
8 to RA,, = 11.8 for H2, 10.3 for H2+, and 9.6 (2r0, the radius 
of the sphere) for He, with AT, of 7.0,6.4, and 4.6 kcal/mol, 
respectively. The experimental results for H2 and He are 
compared with the box calculations in Figure 3.24 These 
results show that the box model exaggerates the effect of 
compression even for modest pressures. 

At  high pressures, there is no experimental data from 
which to evaluate ATe. The comparison given in Figure 
3 indicates that above P = 100 kbar, the kinetic energy for 
both Hz and He rapidly approaches that for two nonin- 
teracting electrons in a box, so that the Coulombic inter- 
actions become much less significant than the zero-point 
energy imposed by the uncertainty principle. 

Molecular Surface Area. The low-pressure regime al- 
lows another application of the virial theorem% to derive 
an effective molecular surface area, A. In this regime, the 
potential energy curve for a diatomic molecule can be 
considered invariant with P ,  and eq 6a enables the change 
in kinetic energy to be related to a change in bond length 
R and electronic energy AE. The effective area A is ob- 
tained by dividing the force required to change the bond 
length, -BE/BR, by the pressure; thus 

(10) 
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AT = 3A(PV) - AU 

A = (AT + AE)/RP 

LeSar and Herschbach 

~~~~~ ~ ~ ~ ~ 

(21) For a recent review, see: (a) M. Ross and C. Shishkevitch, 
“Molecular and Metallic Hydrogen”, Rand Corp., Santa Monica, CA, 
1977; (b) I. F. Silvera, Reu. Mod. Phys., 62,393 (1980). 
(22) Hydrogen: A Michels and M. Goudeket, Physica, 8,387 (1942). 

Nitrogen: R. J. Lunbeck, A. Michels, and G. J. Wolkers, Appl. Sci. Res., 
Sect. A, 3, 197 (1952). Argon: A. Michels, R. J. Lunbeck, and G. J. 
Wolkers! ibid., 2, 345 (1951). Carbon Dioxide: A Michels and S. R. de 
Groot ibzd., 1,94,103 (1949). Ethylene: A. Michels, S. R. de Groot, and 
M. Geldermans, ibid., 1, 55 (1946); Physica, 12, 105 (1946). 

(23) R. L. Mills, D. H. Liebenberg, and J. C. Bronson, Phys. Rev. B ,  
21,5137 (1980). The equation of state given here is good above 1 kbar, 
so the internal energy was calculated with respect to the value there. The 
value at 1 kbar was found by extrapolation of the data of S. W. Akin, 
Trans. ASME, 72,751 (1950). 
(24) A similar comparison for He over a much smaller range of pres- 

sures was given by ten Seldam and de Groot (ref 3). They found for P 
= 0.5 kbar an experimental ATe = 0.5 kcal/mol whereas the box calcu- 
lation gave 2 kcal/mol. 

(25) T. L. Cottrell, J. Chem. Phys., 18, 1117 (1950); J. 0. Hirschfelder, 
C. F. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids”, 
Wiley, New York, 1954, pp 264-8. 

TABLE V: Estimates of Correlation 
Energy for H, and Heu 

m - 0.0200 - 0.0409 0.49 
12 - 0.0209 -0.0409 0.51 
10 - 0.0214 - 0.0408 0.52 
8 - 0.0224 -0.0407 0.55 
6 -0.0246 -0.0402 0.61 
4 - 0.0279 -0.0401 0.70 
2 - 0.0281 -0.0435 0.65 

Hartree atomic  units. a E p ( H , )  = E, - E,, where E, 
is the energy for H, at  Re (given in Table I) computed 
with the  five-term variational function of e q  13 and E ,  
is the energy obtained by omitt ing the term involving 
C , p  . AE,( He)  is the correlation energy for H e  in a 
spherical b o x  (ref 6) with radius ro = Rho. 

For H2 this yields A = 90 A2 for P = 2 kbar, with the use 
of the experimental AT’ = 2 kcal/mol and a theoretical 
value AE = 0.005 kcal/mol derived from the Kolos- 
Wolniewicz14 potential. From the box model 

A = 4~( j /~Rh , )~ [ l  - h0-2 + ho(l - h{2)1/2 sin-l (l/A,,)] 
(11) 

For P = 2 kbar, we find A = 120 and 90 A2 for Hz and H2+, 
respectively. The corresponding AE = 2.26 and 0.65 
kcal/mol. These numbers show that the box model not 
only exaggerates AT and AE but also predict%$he ratio 
AT/AE to be much smaller (3.72 for H,) than‘the ratio 
found from experimental data (400 for Hz). It is re- 
markable that at low pressures the box model manages to 
overdo so much the effects of compression, despite also 
overestimating substantially the molecular surface area. 

Electron Correlation Energy. Table V provides a com- 
parison with calculations done for two-electron atoms in 
spherical boxes.6 The correlation energy was found to 
increase only slightly as the box shrinks. Our five-term 
variational function yields an energy for the unboxed H2 
molecule that is within 0.0029 hartree of the exact result.14 
However, since Hartree-Fock energies are not available 
for the boxed molecule, we cannot evaluate the correlation 
energy in the usual way, AE, = AEexact - +EHF. Instead, 
we tabulate the difference between calculations done with 
and without the term proportional to the interelectronic 
separation C@ in eq 3; this difference AE is expected to 
be at least roughly proportional to M,. for  unboxed H2, 
the correlation energy is 0.04083 hartreele and thus 
AE,/AE, = 0.489 there. The gradual increase in Up as 
the box shrinks is remarkably parallel to that in the cor- 
relation energy for helium; indeed, AE,(Hz)/AE,(He) = 0.6 
within 0.1 over the full range of box sizes. In view of the 
large increase in the electronic energy (Table I), these 
results indicate that electron correlation or repulsion en- 
ergy becomes relatively much less important at high com- 
pressions, despite the shrinking volume accessible to the 
electrons. 

Transition to Metallic Phase. Since the prediction of 
a high-pressure transition to a metallic hydrogen phase by 
Wigner and Huntington in 1935,26 this phenomenon has 
been explored in many calculations and at least three ex- 
periments.l2Pn Estimates of the transition pressure range 

(26) E. Wigner and H. B. Huntington, J. Chem. Phys., 3,764 (1935). 
The original suggestion of a high-pressure nonmetal-metal transition was 
made earlier by K. F. Herzfeld, Phys. Rev., 29, 701 (1927). 

(27) F. V. Grigor’ev, S. B. Kormer, 0. L. Mikhailova, A. Pp. Tolochko, 
and V. D. Urlin, Pis’ma Zh. Eksp. Teor. Fiz., 16,286 (1972) (JETP Lett. 
(Engl. Trawl.), 16,201 (1972)); P. S. Hawke, T.  J. Burgess, D. E. Duerre, 
J. G. Hebel, R. N. Keela, H. U p p e r ,  and W. C. Wallace, Phys. Rev. Lett., 
41, 994 (1978). 
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from 0.2 to 4 Mbar; tentative theoretical consensus and 
experimental evidence now indicate -2 Mbar.28 Most 
theoretical treatments consider the transition as (a) first 
order with a volume change AV on the order of 0.5 cm3/ 
mol and (b) occurring directly from the molecular phase 
to a conducting atomic phase. However, some treatments 
suggest that the transition is (a’) more gradual and or (b’) 
the molecular phase itself becomes conductingj9 As 
shown in Figure 5, the box model predicts a first-order 
transition at P == 14 Mbar with AV = 0.67 cm3/mol to form 
a conducting molecular phase based on the H2+ ion. The 
work of Singha suggests that a better variational function 
for H2+ may lower the transition pressure, though com- 
parison of the free energy vs. pressure relation in the two 
calculations shows little difference, the result with Cott- 
rell’s function having a slightly lower free energy at  the 
highest pressure studied by Singh (12 kbar). In view of 
its propensity to exaggerate effects of compression, the box 
model yields surprisingly plausible results for the phase 
transition. 

Pressure-Induced Changes in Re and 0,. At present, no 
other calculations seem to be available for the pressure 
dependence of the equilibrium bond length and vibrational 
frequency. The box model predicts (Tables I-IV) large 
pressure-induced changes in all of the parameters required 
to describe the rotational and vibrational motion. For H2 
and H2+, a 5-fold decrease in the box major axis produces 
about a - 10-fold increasew in both the rotational constant 
Be and the vibrational frequency toe. There is no experi- 
mental information about Re or Be. Raman spectra ob- 
tained by Sharma, Mao, and Be1112 show that the vibra- 
tional bond stretching frequency of H2 increased by - 110 
cm-’ as the pressure increased up to 300 kbar (at room 
temperature) and then decreased by -25 cm-’ with further 
pressure increase up to 630 kbar (the maximum pressure 
obtained). The initial increase is attributed to compressive 
shortening and stiffening of the molecular bond,3l and the 
decrease at  high pressure perhaps to the onset of molecular 
dissociation. A Hartree-Fock study of solid H2 by Ra- 
maker, Kumar, and Harris29 indeed found a gradual 
weakening and lengthening of the bond at very high 
pressures and a transition to the metallic phase at -2.1 
Mbar. The box model predicts that the H2 Raman fre- 
quency WR (Table 111) increases by -2100 cm-l as the 
pressure climbs to 300 kbar and continues to increase until 
the neighborhood of the phase transition at 14 Mbar, 
where the H2 - H2+ transformation produces a large in- 
crease in Re (by 65%) and a decrease in wR (by 33%). 
Thus, again the box model caricatures the trends. 

Badger’s Rule Correlation. As seen in Figure 6, the box 
model predicts an accurately semilogarithmic correlation 
between Re, the equilibrium bond length, and k2, the 
quadratic vibrational force constant. This holds over the 
full range of box size or pressure, until the phase transition 
sets in (near RX, = 3ao). The slope of the correlation, 
13 log k2/13R,, is similar for H2 and H2+ but is about twice 
as steep as that found empirically for the free, gas-phase 

(28) For example: M. Ross, J. Chern. Phys., 60, 3634 (1974); R. D. 
Etters, R. Danilowin, and W. England, Phys. Reu. A,  12,2199 (1975). See 
ref 21a for other references. 

(29) D. E. Ramaker, L. Kumar, and F. E. Harris, Phys. Reo. Lett., 34, 
812 (1976); C. Friedli and N. W. Ashcroft, Phys. Rev. B ,  16,662 (1977). 

(30) The large increase in vibrational frequency (the quantum becomes 
-5 eV at RA,, = 2 bohr radii) raises the question whether the Born-Op- 
penheimer approximation remains valid as the box shrinks. This depends 
on the ratio T J T ,  of the nuclear kinetic energy to the electronic kinetic 
energy. On computing T,, taking only the a. term of the Dunham po- 
tential and dividing by T, from Table I, we find that the ratio remains 
small (-4 X 

(31) E. Whalley, Roc.  Znt. Conf. High Pressure, 4th, 1974,37 (1975). 
and roughly constant as the box shrinks. 
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molecules. This suggests that Badger’s rule can be used 
to infer changes in bond length from changes in vibrational 
frequency for compressed molecules, but the appropriate 
slope may be somewhat larger than for the gas-phase case. 
For instance, in this way we estimate that an increase in 
WR by -100 cm-l corresponds to a decrease in Re by - 
O.O1ao (0.8%) according to the box-model correlation or 
- 0 . 0 2 ~ ~  (1.4%) according to the gas-phase Badger’s rule. 

The bond stretching frequency in solid nitrogen also 
increases with pressure,13 by -55 cm-’ up to 370 kbar. 
From Badger’s rule with gas-phase parameters,l0 this 
frequency corresponds to a decrease in bond length by 
- 0 . 0 2 ~ ~  ( l%),  comparible to that for Hz. This contrasts 
with a recent ab initio calculation,32 which found that 
placing two N2 molecules 5ao apart increased the vibra- 
tional frequency by 6000 cm-l but decreased the equilib- 
rium bond length by only 0 . 0 2 6 5 ~ ~  (1.2%). Since these 
numbers imply a Badger’s rule slope on the order of lo4 
times larger than the empirical value,1° the ab initio pre- 
diction appears outlandish. 

Assessment. Should the verdict on the box model be 
“nevermore”? Despite its failings, we think not. The 
excellent experimental studies now available for elec- 
t r ~ n i c ~ ~  and vibrational12J3 properties of compressed 
molecules require a practical theoretical approach, and 
other current methods also have severe limitations. The 
box model might be improved by replacing the “hard-cell’’ 
model considered here by a “padded-cell” model, in which 
the potential at the boundary surface of the box has a finite 
value. This boundary potential as well as the size of the 
box could be determined from experimental PVT data and 
the model thus calibrated used to predict other proper- 
ties.34 Another improvement would be to make the box 
size and shape independent of the location of the atomic 
nuclei. Here, in order to retain simple boundary conditions 
for computing the variational integrals, we followed 
Cottrel17 and fixed the protons at the foci of the spheroid. 
A more general formulation would add flexibility and 
permit study of the pressure-induced “freezing-out’’ of 
molecular rotations.35 
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Appendix A 
We describe here only aspects of the calculation affected 

by the spheroidal box; for other aspects and notation see 
the work of James and Co01idge.l~ 

All of the necessary integrals can be written in terms of 
the quantities 

(32) F. H. Ree and N. W. Winter, J. Chern. Phys., 73, 322 (1980). 
(33) G. Webster and H. G. Drickamer, J. Chern. Phys., 72,3740 (1980); 

G. Chryssomallis and H. G. Drickamer, Chern. Phys. Lett., 67,381 (1979); 
J.  Chem. Phys., 71, 4817 (1979). 

(34) For instance, one possibility suggested by Figure 3 is to w e  the 
AT, derived from experiment to recalibrate the pressure scale. For the 
rigid-box model, this would reduce the predicted change AWR in Hz vi- 
bration frequency at 300 kbar from 2100 cm-’ to only -400 cm-’. For 
a finite-walled box, AUR might be substantially smaller, but a consistent 
procedure for assigning the box size and potential step remains to be 
devised. 

(35) J. C. Raich and R. D. Etters, J. Low Temp. Phys., 6,229 (1972); 
W. England, J. C. Raich, and R. D. Etters, ibid., 22, 213 (1976). 

(36) C. Zener and V. Guillemin, Phys. Reu., 34,999 (1929); N. Rosen, 
ibid., 38, 2099 (1931). 
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where the integrand is 
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I = XlmXznpljp$p~ exp[-6(X1 + X,)]M~ cosv (41 - 
with 6 = 2a and 

M2 = (A12 - 1)(Xz2 - 1)(1 - p&1 - p22) 

Our choice of cutoff function, g(X1,X2) = (Ao - A,)(& - X2), 
introduces terms only of the standard type and changes 
the upper limits for the X1 and h2 integration to X, instead 
of infinity. 

There are two kinds of 2" integrals that we need to 
consider. 

(a) The p = 0 case: 
p(m,nj,k,o) = 4Am(6) An(6) / [ (k  + 1)b' + I)] 

Zl(m,n,j,k,O) = 0 
for j and k even; this is zero for j or k odd. Also 

for any j and K .  Here 

A,(a) = ibe-aAXm dX 

= Am(l;a) - Am(&;a) (A21 
with 

A,(x;a) = $me-ahXm dX 
m 

u=o 
= (m!/a"+l) exp(-ax) C (a'/u!)xu (A3) 

and Am(Xo;6) - 0. For a free, gas-phase molecule Xo - 
(b) The p = -1 case: 

OI 

p(m,nj,k,-1) = C (27 + 1)R,W R,(k)  H,(m,n,G) 
T=o 

Zl(m,nj ,k , - l )  = 
m 

-E [(27 + ~)T- ' (T + 1)-2]R,'~) R,'(k) H,'(m,n,G) 

where the R, quantities are given by James and Coolidge; 
only a few are nonzero so the summations reduce to a few 
terms. For the H ,  quantities, James and Coolidge provide 
a recursion relation that permits them all to be expressed 
in terms of two simpler integrals 
Ho(m,n,@ = 

S(m,n,G) = 

T = l  

Am(6) Fn(6) + Fm(6) - T(m,n,G) - T(n,mJ) (A4) 

m 

u=o 
(m!/P+l) C (6"/~!)An+v(26) - Am(&$) (A5) 

Here 

Fm(6) = ~bQo(X)e-6AXm dX (A61 

with 

LeSar and Herschbach 

Qo(V = YZ In [ (A + 1)/(X - 111 
T(m,n,G) = 

m 

v=o 
(m!/sm+') C (6"//v!)Fn+v(26) - Am(&$) Fn(6) (A7) 

The F integrals for Xo = 
have 
Fm(S) = y2[ln (26) + y - Ei[-6(Xo - l)]]Am(l; 6 )  + 

are a ~ a i l a b l e ; ~ ~  for Xo < m, we 

l/Z[Ei[-S(Xo + l)] - Ei(-26)]Am(-l;6) - 
Qo(Xo) Am(Xo;6) + YzGm (A8) 

where y is Euler's constant, Ei(x)  is the exponential in- 
tegral, and 

m u  *-1 

Kvsk(6) = 
(6k/k!){2ke~6(-1)" + e+[(& - l)k - (-l)ps(Xo + l)k]) 

(A10) 
Only the Z' integrals with p = 0 and p = -1 are required 

since all others can be generated from those by a recursion 
re1ati0n.l~ Since the integrals depend only on the exponent 
6 and the box parameter Xo, the calculation can be most 
efficiently organized by tabulating the 2" integrals for each 
specified pair of 6,Xo values. 

Appendix B 

kinetic energy T has the form 
For the variational wave function used here, the average 

!i' = f(a,Xo)/R2 (BU 
with f(a,Xo) independent of R. For two nonintereacting 
electrons in a spheroidal box, where the total energy is just 
the kinetic energy, the variational minimum occurs at the 
same a and (ck) for all box shes with the same X, (note that 
l / X o  is the eccentricity), and 

Te = F / R 2  = E ,  032) 
where F is a constant dependent on The pressure P 
= -dE/dV is given by 

The kinetic energy can thus be rewritten as 
P = ( ~ / T ) ( R X ~ ) - ~ T  (B3) 

Te = (B4) 
and for a given Xo the constant factor X2F can be deter- 
mined from a calculation for two noninteracting electrons 
in any size box. 

The kinetic energy for two interacting electrons (H = 
T + l/r12) was evaluated for several box sizes (in the range 
RXo = 2-12) and found to have essentially the same 
pressure dependence as that for two noninteracting elec- 
trons. 
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