
Carnegie Mellon University

From the SelectedWorks of Ole J Mengshoel

December, 2012

MapReduce for Bayesian Network Parameter
Learning using the EM Algorithm
Aniruddha Basak, Carnegie Mellon University
Irina Brinster, Carnegie Mellon University
Ole J Mengshoel, Carnegie Mellon University

Available at: https://works.bepress.com/ole_mengshoel/38/

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/38/

MapReduce for Bayesian Network Parameter
Learning using the EM Algorithm

Aniruddha Basak
Carnegie Mellon University

Silicon Valley Campus
NASA Research Park,

Moffett Field, CA 94035
abasak@cmu.edu

Irina Brinster
Carnegie Mellon University

Silicon Valley Campus
NASA Research Park,

Moffett Field, CA 94035
irina.brinster@sv.cmu.edu

Ole J. Mengshoel
Carnegie Mellon University

Silicon Valley Campus
NASA Research Park,

Moffett Field, CA 94035-0001
ole.mengshoel@sv.cmu.edu

Abstract

This work applies the distributed computing framework MapReduce to Bayesian
network parameter learning from incomplete data. We formulate the classical
Expectation Maximization (EM) algorithm within the MapReduce framework.
Analytically and experimentally we analyze the speed-up that can be obtained
by means of MapReduce. We present details of the MapReduce formulation of
EM, report speed-ups versus the sequential case, and carefully compare various
Hadoop cluster configurations in experiments with Bayesian networks of different
sizes and structures.

1 Introduction

Parameter learning is one of the key issues in Bayesian networks (BNs), which are widely used in ar-
tificial intelligence, machine learning, statistics, and bioinformatics [11]. Expectation Maximization
(EM) is an iterative algorithm for learning statistical models, including BNs from data with missing
values or latent variables [3]. EM, which we here use for parameter estimation in BNs, is a powerful
technique as it guarantees convergence to a local maximum of the log-likelihood function [8]. Due
to its numerical stability and ease of implementation, EM has become the algorithm of choice in
many areas. EM has been succesfully applied to Bayesian clustering [7] in machine learning and
computer vision. Other applications span gene clustering, motif finding, and protein identification
in computational biology as well as medical imaging and word alignment in machine translation [4].

One of the ways to speed-up parameter estimation in graphical models, including Bayesian net-
works, focuses on parallelizing the inference step, which introduces the main computational bottle-
neck in many machine learning algorithms. Theoretical analysis of the parallel implementation of
belief propagation has been developed [5]. Near linear parallel scaling has been demonstrated by
parallelization of the junction tree (JT) inference using OpenMP and MPI [10]. A Belief propaga-
tion algorithm has been accelerated on GPU [14] and on a CPU-GPGPU heterogenous system [6].
Though EM has been implemented on MapReduce for a variety of tasks, other than our work [1],
we are not aware of any formulation of MapReduce algorithm for learning from incomplete data in
BNs.

MapReduce is a programming framework and associated implementation for distributed computing
on large data sets [2]. MapReduce requires decomposition of a program into map and reduce steps,
so that multiple mappers and reducers perform in parallel. However, the reducers start only after
all mappers have finished. Hadoop MapReduce provides a framework for distributing the data and
user-specified map-reduce jobs across a large number of cluster nodes or machines. It is based
on the master/slave architecture.1 In the following, a Hadoop node might denote a tasktracker or

1http://wiki.apache.org/Hadoop/ProjectDescription

1

jobtracker machine. A map task describes the work executed by a mapper on one input split and
generates intermediate key-value pairs. A reduce task is the task of processing records with the same
intermediate key. In this work, Hadoop is run on the Amazon Elastic Compute Cloud (EC2) - a web
service that provides reconfigurable compute resources.

This work applies MapReduce to Bayesian parameter learning from incomplete data [1]. In our
MapReduce EM (MREM) formulation, the inference step is performed independently for each data
record. By running inference in parallel, we accelerate each iteration of EM, speeding up the com-
putation as the data set size increases. We present an analytical framework for understanding the
scalability and achievable speed-up of MREM versus the sequential EM algorithm, and test the
performance of MREM on a variety of BNs for a wide range of data sizes. We find, somewhat sur-
prisingly, that for networks with large junction trees MREM outperforms sequential EM from data
sets containing as few as 20 records (samples).

2 MapReduce EM Algorithm (MREM)

In our MapReduce EM algorithm (MREM), we decompose the basic EM algorithm for parameter
learning from incomplete data. Since all records in the input data are independent of each other,
calculation of the expected sufficient statistics can proceed in parallel. The input records can be
split between multiple mappers, each running the E-step. In the maximization step (M-step), the
pseudocounts are used to produce a new estimate of the BN parameters. The M-step is performed
on the reducers.

E-Step: Each mapper takes as input BN structure β, current estimate of parameters θt, a junction
tree (JT) decomposition of the BN structure T , and incomplete data D [9]. It runs the E-step on
its input records and accumulates pseudo-counts M̄ [xi, πxi] for all child-parents combinations in a
hash map. Once the mapper processes all records assigned to it, it emits an intermediate key-value
pair for each hash map entry. The emitted key contains state assignments to parents of the node Xi

πxi
, whereas the value represents the child variable assignment xi appended with the soft counts

M̄ [xi, πxi
] for this entry. This intermediate key makes sure that all variables with the same parents

are grouped and processed in the same reduce task.

M-Step: Each reduce method performs the M-step for families with the same parent assignment: it
iterates through all the values with the same key, parses the value, and fills a hash map, in which keys
correspond to child-parent combinations and their states, and values correspond to the soft counts.
Values are summed up to obtain the parent count. Finally, each reduce function emits an output
key-value pair for each hash map entry. The output key is of the form xi, πxi

; the output value
represents a newly estimated parameter θt+1

xi|πxi
, i.e. θt+1

xi|πxi
= M̄ [xi, πxi

]/M̄ [πxi
]. The pseudo

code and description of our implementation are presented in [1].

3 Analysis of Execution Time

We derive analytical expressions for runtime of one iteration of a sequential EM (SEM) and MREM.
In SEM, the E-step consists of two steps: computing marginals using belief propagation and cal-
culating pseudocounts for all input data records. If the time taken by these steps for each data
record are tbp and tpc respectively, the total time to complete this phase for n input records is
TEs

= [tbp + tpc]n. In the M-step all parameters in the CPT are recalculated and this requires
calculation of parent counts. As the total time required for this phase is directly proportional to the
number of parameters (|θ|) of the Bayesian network, we get TMs

= tc1 |θ|. Since implementation is
sequential, the total time (Tseq) taken by one EM iteration is,

Tseq = [tbp + tpc]n+ tc1 |θ|. (1)

In MREM, the E-step and M-step are done by M mappers and R reducers present in the compute
cluster. Unlike the sequential EM, at the end of each MREM iteration the newly computed BN
parameters need to be updated in the HDFS so that every mapper gets these values before the begin-
ning of the E step in the next iteration. Thus, along with E and M steps there is an Update BN step.
After some derivations (shown in the Appendix), we get the time for one MREM iteration as

Tmr ≈ (tbp + tpc)
⌊ n
M

⌋
+ tc2 |θ|, (2)

2

where tc2 is a constant for a compute-cluster, aggregating the effect of the last three terms in (7).
From (1) and (8) we compute the speed-up (Ψ) for the MREM algorithm compared to SEM,

Ψ =
Tseq
Tmr

≈ (tbp + tpc)n+ tc1 |θ|
(tbp + tpc)

⌊
n
M

⌋
+ tc2 |θ|

=
an+ b

cn+ d
. (3)

As n increases in (3), the numerator (Tseq) increases at a higher rate compared to the denominator
(Tmr). At some point Tseq exceeds Tmr, making Ψ > 1; we call Ψ = 1 a speed-up cross-over
point. The cross-over point is interesting because it tells us the data set size for which we benefit
from using Hadoop. For sufficiently large values of n (depends on network parameters) we get
(tbp + tpc)

⌊
n
M

⌋
� tc2 |θ|. In this situation, MREM algorithm reaches its peak performance with

speed-up Ψmax = M . However, for very small values of n (n ≈M) and tc1 < tc2 , MREM can be
slower than SEM.

4 Experiments on Hadoop

4.1 Experimental Set Up

We experiment with three types of EC2 compute nodes: small, medium, and large instances.2 We
test the SEM and MREM implementations on a number of complex BNs3 with varying size and
structure (see Table 1) that originate from different problem domains. The BNs include several vari-
ants of ADAPT BNs representating electrical power systems, based on the ADAPT testbed provided
by NASA for benchmarking of system health management applications [13, 12].4 All algorithms are
implemented in Java. In the MREM analysis, we calculate speed-ups based on per-iteration execu-
tion time which is measured as the average of the runtime across 10 iterations of the EM algorithm.

4.1.1 Speed-up for varying BNs and Data Sets

From equations (1) and (8), the runtimes of both sequential and MREM increase linearly with in-
creasing number of data records but at different rates. In this section, we compare sequential EM
and MREM for input records varying from 1 to 100K. Both are executed on small Amazon EC2
instances and 4 mapper nodes have been used for MREM, thus M = 4.
Figure 1 shows the plots of achieved speed-ups of MREM relative to the sequential version in semi-
logarithmic scale. Markers denote the experimental data, while continuous lines represent the ratio-
nal function (an + b)/(cn + d) fit to the data. The best fit is achieved for small ADAPT BNs that
also get up to 4x speed-ups (linear with the number of compute nodes). This behavior is consistent
with our mathematical analysis of Ψ, and confirms that the input data-size required to gain close to
optimal performance improvement (Ψ ≈ Ψmax) depends on the BN to a great extent.
The cross-over point for which the sequential runtime exceeds the runtime on Hadoop also depends
on the type and size of network. The cross-over points for different BNs networks run on the Ama-
zon EC2 small instance with four mapper nodes are shown in Table 1. For networks with large JTs
(Munin2, Munin3, or Water), running Hadoop starts giving a meaningful speedup for data sets with
200 records or less (see Table 1 and Figure 1).This result is expected since for complex networks,
the cluster start-up overhead quickly becomes negligible compared to the runtime of inference. In
this case, distributing workload across multiple nodes pays off even for small training sets. Yet, for
ADAPT T1 the cross-over point is shifted to 2.8K data records - a point at which inference runtime
in sequential code becomes comparable to the cluster set-up time.

Figure 1 also shows that for Munin2 having the largest total JT size, Ψ never reaches Ψmax =
4. This reminds us of the limitations of the distributed computing instance we are using. For a
big JT, the heap memory allocated to the Java Virtual Machines is almost exhausted which requires
garbage collection to process more records. Consequently, much longer time is required to complete
iterations of MREM for very large networks with sufficiently high data sizes. Using Medium or
Large instances would help to counteract this effect as they have more memory available to be
allocated as heap space.

2http://aws.amazon.com/ec2/
3Other than ADAPT: http://bndg.cs.aau.dk/html/bayesian networks.html
4ADAPT: http://works.bepress.com/ole mengshoel/29/

3

Table 1: Summary of BNs used in experiments

Bayesian Nodes N Edges E Number Junction Cross-over points
Network (BN) of parameters |θ| Tree (JT) Size (Ψ = 1)
ADAPT T1 120 136 1,504 1,690 2,800
ADAPT P2 493 602 10,913 32,805 160
ADAPT T2 671 789 13,281 36,396 130
Water 32 66 13,484 3,465,948 20
Munin3 1,044 1,315 85,855 3,113,174 10
Munin2 1,003 1,244 83,920 4,861,824 5

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

Data Set Size in Thousands of Records

S
p

e
e

d
−

U
p

ADAPT_T1

ADAPT_P2

ADAPT_T2

Munin3

Water

Munin2

Figure 1: Speed-up of MREM relative to sequential
EM for data set sizes ranging from 1 to 100K records.

0	

100	

200	

300	

400	

500	

600	

700	

800	

0.34	 (1
)	

1.36	 (4
)	

2.38	 (7
)	

3.4	 (10
)	
4.42	 (1

3)	

Ti
m
e	
(s
ec
)	

Cost	 in	 $/hr	 (Hadoop	 nodes)	

T1,	 10K	 records	

T1,	 100K	 records	

T2,	 10K	 records	

P2,	 10K	 records	

Figure 2: Performance of MREM on dif-
ferent networks for varying cost.

4.1.2 Trade-off Between Cost and Performance

It is important to find the Hadoop configuration that gives a good trade-off between cost and per-
formance. In this section we consider five Hadoop configurations, with uniformly increasing cost
associated from one to thirteen nodes. We experiment with four different BNs and data set sizes.
Figure 2 shows the results from these experiments. As cost increases, the execution time generally
decreases, as expected. However, the performance after seven Hadoop nodes is marginal, while the
total cost increases at a linear rate. Hence, we can conclude that for our implementation, the Medium
instance with seven Hadoop nodes (which is a ”knee” point) provides a reasonable trade-off between
cost and performance.

5 Conclusion

We have applied the MapReduce framework to Bayesian network parameter learning from incom-
plete data. We found that the benefit of using MapReduce depends strongly not only on the size of
the input data set (as is well known) but also on the size and structure of the BN. We have shown that
for BNs with large JTs, MapReduce EM can give speed-up compared to sequential EM for just a
handful of input records. More generally, this work improves the understanding of how to optimize
the use of MapReduce and Hadoop when applied to the important task of BN parameter learning.

6 Acknowledgements

This material is based, in part, upon work supported by NSF awards CCF0937044 and
ECCS0931978.

4

References
[1] A. Basak, I. Brinster, X. Ma, and O. Mengshoel. Accelerating Bayesian network parameter

learning using Hadoop and MapReduce. In Proceedings of the 1st International Workshop
on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications, BigMine ’12, pages 101–108, New York, NY, USA, 2012. ACM.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplied data processing on large clusters. In Pro-
ceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI),
page 137150, 2004.

[3] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages 1–38,
1977.

[4] C. Do and S. Batzoglou. What is the expectation maximization algorithm? Nature biotechnol-
ogy, 26(8):897–899, 2008.

[5] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally parallelizing belief prop-
agation. AISTATS, Clearwater Beach, FL, 2009.

[6] H. Jeon, Y. Xia, and V. Prasanna. Parallel exact inference on a CPU-GPGPU heterogenous
system. In Parallel Processing (ICPP), 2010 39th International Conference on, pages 61–70.
IEEE, 2010.

[7] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. The
MIT Press, 2009.

[8] S. Lauritzen. The EM algorithm for graphical association models with missing data. Compu-
tational Statistics & Data Analysis, 19(2):191–201, 1995.

[9] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical Society. Series B
(Methodological), pages 157–224, 1988.

[10] V. Namasivayam and V. Prasanna. Scalable parallel implementation of exact inference in
Bayesian networks. In 12th International Conference on Parallel And Distributed Systems,
2006, volume 1, pages 143–150. IEEE, 2006.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988.

[12] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee, O. Mengshoel, C. Neukom,
D. Nishikawa, J. Ossenfort, et al. Advanced diagnostics and prognostics testbed. In Proceed-
ings of the 18th International Workshop on Principles of Diagnosis (DX-07), pages 178–185,
2007.

[13] A. Saluja, P. Sundararajan, and O. Mengshoel. Age-layered expectation maximization for
parameter learning in bayesian networks. In 15th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), La Palma, Canary Islands, volume 22, 2012.

[14] L. Zheng, O. Mengshoel, and J. Chong. Belief propagation by message passing in junction
trees: Computing each message faster using gpu parallelization. In Proc. of the 27th Confer-
ence on Uncertainty in Artificial Intelligence (UAI-11), 2011.

5

Appendix

Let the tuple β = (X,W,P) be a BN, where (X,W) is a directed acyclic graph, with
n = |X| nodes, m = |W| edges, and associated set of conditional probability distributions
P = {Pr(X1|ΠX1

), · · · ,Pr(Xn|ΠXn
)}. Here, Pr(Xi|ΠXi

) is the conditional probability distri-
bution for Xi ∈ X also called conditional probability table (CPT). If Xi is a root node, we define
ΠXi

= {} and thus P contains the probabilities of the root nodes. We use πxi
for the parent

assignments of node Xi, M̄ [xi, πxi
] for counts of all the child-parents combinations, and ci for

pseudo counts.
Using these notoations, we will calculate the runtime of each iteration of MREM algorithm.

Map phase: In MREM, each mapper processes at most b nM c records from the input file. As
mappers execute concurrently, the time required to complete the E-step in MREM is

TEmr = (tbp + tpc)
⌊ n
M

⌋
+ ttrns|θ|, (4)

where ttrns reflects the time to transmitt each key-vlaue pair over the network. We considered this
time to be a part of E-step. This time is proportional to the size of transmitted data |θ| for each
mapper.

Reduce phase: The mappers emit key-value pairs where keys are parent assignments πxi
. Let us

define a set Ξ to represent all possible parent assignments for the network β, i.e. Ξ = {πxi
|πxi

∈
V al(ΠXi

)∀Xi ∈ X}. We will denote the members of the set Ξ as ξj and its cardinality as |Ξ|. Hence
each mapper can emit at most |Ξ| intermediate keys. All values associated with every intermediate
key ξj for j ∈ [1, |Ξ|] will generate one reduce task which results in |Ξ| reduce tasks. So each of the
R Reducers in the MapReduce framework will be assigned at most d |Ξ|

R e reduce tasks (assuming no
task failed).

Each reduce task obtains the parent counts and re-estimate the parameters θxi|πxi
as mentioned

in Section 3.4. Among all key-value pairs emitted by each mapper, those pairs will have the
same key ξj which correspond to node assignments associated with same parent assignment i.e
{(xi, M̄ [xi, πxi])|πxi = ξj}. We will denote this set as νξj and note that,

|νξ1 |+ |νξ2 |+ |νξ3 |++ |νξ|Ξ| | = |θ|. (5)

As all the intermediate key-value pairs emitted by all mappers are accumulated by MapReduce, the
maximum possible values with key ξj is Mνξj . Hence a reducer with r (r ≤ d |Ξ|

R e) reduce tasks
will take maximum time to finish if (|νξ1 | + |νξ2 | + + |νξr |) is maximum for it. Thus the time
taken by the M-step in MREM is,

TMmr =

r∑
k=1

(M |νξk |th + |νξk |tdiv), r ≤ d|Ξ|
R
e

= (Mth + tdiv)

r∑
k=1

|νξk | (6)

Update phase: At the end of each iteration the file in HDFS containing the CPT is updated with the
recently calculated values. If writing one entry to the file takes twrite (say) time, total time required
to update the entire CPT is TUmr = twrite|θ| .
Hence, the total time taken by one iteration of MREM is,

Tmr = TEmr + TMmr + TUmr (7)

= (tbp + tpc)
⌊ n
M

⌋
+ tprop|θ|+ (Mth + tdiv)

r∑
k=1

|νξk |+ twrite|θ|.

As equation (5) implies
∑r
k=1 |νξk | ≤ |θ|, we can approximate Tmr as follows,

Tmr ≈ (tbp + tpc)
⌊ n
M

⌋
+ tc2 |θ|, (8)

6

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	December, 2012

	MapReduce for Bayesian Network Parameter Learning using the EM Algorithm
	tmp6opkn4.pdf

