Carnegie Mellon University

From the SelectedWorks of Ole] Mengshoel

December, 2012

Scaling Bayesian Network Parameter Learning
with Expectation Maximization using

MapReduce

Erik B Reed, Carnegie Mellon University
Ole] Mengshoel, Carnegie Mellon University

Available at: https://works.bepress.com/ole_mengshoel/37/

B bepress®

http://www.cmu.edu/
https://works.bepress.com/ole_mengshoel/
https://works.bepress.com/ole_mengshoel/37/

Scaling Bayesian Network Parameter Learning with
Expectation Maximization using MapReduce

Erik B. Reed Ole J. Mengshoel
Carnegie Mellon University Carnegie Mellon University
Silicon Valley Campus Silicon Valley Campus
NASA Research Park NASA Research Park
Moffett Field, CA 94035 Moffett Field, CA 94035
erikreed@cmu.edu ole.mengshoel@sv.cmu.edu
Abstract

Bayesian network (BN) parameter learning from incomplete data can be a compu-
tationally expensive task for incomplete data. Applying the EM algorithm to learn
BN parameters is unfortunately susceptible to local optima and prone to prema-
ture convergence. We develop and experiment with two methods for improving
EM parameter learning by using MapReduce: Age-Layered Expectation Maxi-
mization (ALEM) and Multiple Expectation Maximization (MEM). Leveraging
MapReduce for distributed machine learning, these algorithms (i) operate on a
(potentially large) population of BNs and (ii) partition the data set as is tradition-
ally done with MapReduce machine learning. For example, we achieved gains
using the Hadoop implementation of MapReduce in both parameter quality (like-
lihood) and number of iterations (runtime) using distributed ALEM on for the BN
Asia over 20,000 MEM and ALEM trials.

1 Introduction

Bayesian networks (BNs) are fundamental structures for probabilistic inference and modeling [14].
Parameters to BN networks, their conditional probability tables, may need to be learned. When
the BN structure is known, but data is incomplete, several algorithms have been used: Expectation
Maximization [4, 8,9, 15], Markov Chain Monte Carlo methods such as Gibbs sampling [10], and
gradient descent methods. In this paper, we investigate Expectation Maximization (EM). EM op-
erates by first performing inference over a dataset, finding the states of all hidden nodes (E-step),
followed by an MLE estimate over the now complete data to calculate an improved set of parameters
(M-step). The EM algorithm iterates in this manner until it no longer earns any gains in likelihood,
resulting in convergence. The likelihood of BN parameters increases monotonically as EM iterates,
resulting in guaranteed convergence.

Unfortunately, depending on initial conditions, solution quality can vary greatly: EM is very suscep-
tible to local optima. Methods of making EM less prone to these problems have been investigated,
including: adjusting the initialization phase of the EM algorithm [4]; introducing stochastic variants
of EM [3,7]; and exploiting parameter constraints [13]. An age-layered approach for EM (ALEM)
has also been developed [16], based on research on preventing premature convergence in genetic
algorithms [5]. Scaling EM for large BNs and data sets has also been explored on single machines
with parallel processing [2, 17]. MapReduce for BN learning from complete and incomplete data,
using a single BN, has been developed as well [1].

This papers aims to address two of the main problems for BN parameter learning using EM: high
computation time and convergence to local optima (i.e. low likelihoods and poor solution quality).
For BN learning using the EM algorithm, computation time for the E-step is a linear function in the

amount of data (or evidence), and each E-step can take a substantial amount of time even when an
efficient junction tree algorithm is used [1]. Since EM is iterative, an increase in data has a multi-
plicative effect on computation time. EM convergence is greatly influenced by the initial parameters,
which can result in convergence to local optima with poor solution (likelihood) quality.

The above problems motivate our use of populations of BNs and distributed computing, in particu-
lar MapReduce (MR) and Hadoop with the EM algorithm. In this paper, we develop and perform
experiments with Multiple Expectation Maximization (MEM) and Age-Layered Expectation Max-
imization (ALEM) for MapReduce. This work integrates two existing research directions: EM on
MapReduce [1] and age-layered EM [16]. In particular, this paper discusses an approach to use
MapReduce with a population of BNs. In other words, we are executing multiple EM runs (each run
updates a separate BN) distributed according to the MapReduce framework, leading to substantial
reductions in wall clock time for EM computation. Originally, ALEM did not use MapReduce [16]
and previous work on EM with MapReduce did not operate on a population of BNs [1].

2 MapReduce for EM: Multiple BNs and Data Partitioning

2.1 MEM on MapReduce

To adapt both MEM and ALEM to MR, we fully distribute the E-step. The MR input is evidence for
the BN, a list of n observations. The expectation values collected by the inference are serialized and
transferred, in the M-step, to a single reducer to be summed. The reducer collects all the inference
data and computes the MLE of the parameter values to be used in the next iteration of EM.

For a single BN, this procedure allows MEM and ALEM to be parallelized in a manner similar
to what has been done for traditional EM [1]. However, since MR enables massive computation,
each mapper can potentially compute the E-steps for multiple BNs (Figure 1a), and that is what
we do in this paper. Each mapper operates on multiple BNs, while BN evidence (the data set) is
partitioned and split among the mappers. BN inference is performed on each piece of evidence
for the population of BNs. MEM terminates when BN in its population have all converged. This
allows both ALEM and MEM to be performed with coarse-grained parallelism while enabling a
large amount of evidence to be processed. We are unaware of other existing research where both
multiple BNs and partial evidence is distributed to multiple mappers.

2.2 ALEM on MapReduce

This paper adopts the ALEM algorithm [16], which is based on the genetic algorithm concept of
creating and computing with a population of randomly initialized individuals. Each individual has
a fitness, which is to be optimized, as well as an age corresponding to the amount of time the
individual has been in a population [5]. Individuals are separated in layers with other individuals
of like ages. Lower layers have young individuals in the GA, while the higher layers has the oldest
(and often the fittest) member of the population. As individuals age, they ascend to high layers. The
maximum age of each layer is determined by the age gap parameter; once individuals reach this age,
they ascend to the next layer. Additionally, there are limits to the maximum number of individuals
per layer. The age-layered structure reduces the possibility of fit, old individuals, stuck in a local
optima, overtaking the population due to their high fitness.

In ALEM, a population of EM runs is created and updated [16]. The age of each EM run corresponds
to its number of iterations, and the fitness of each EM run is its likelihood. EM runs are randomly
initialized in the 1st layer, iterate until an age where they ascend to the next layer, and may need to
compete for a spot in the next layer. Competition occurs when a layer is full: if an ascending EM
run has greater likelihood, the non-ascending EM run is discarded to make room. Otherwise, the
ascending EM run is not competitive enough and is discarded. ALEM continues until a given number
of EM runs successfully converge using a pre-defined convergence criterion e. ALEM terminates
when a specified number of EM runs converge.

For both MEM and ALEM, multiple BNs are being processed for each MR operation. However,
they differ in their treatment of the population of EM runs (i.e., BN parameters). MEM has a fixed
population. ALEM, on the other hand, both terminates and starts new BNs. ALEM also performs
likelihood checks for BNs changing layers as illustrated in Figure 1b. Since ALEM operates on a

Expectation Step . S
Xpectation Step __

EM: Evidence Set 1 [~

Evidence Set 1

A —7

Evidence Set 2 7 Evidence Set 2 e
Evidence Set 3 e 9 Evidence Set3 [~ e

= -

Pt -

EEEE

Evidence Set 4 [
Maximization Step Maximization Step J

(a) MEM on MapReduce (b) ALEM on MapReduce

Evidence Set 4

Figure 1: EM with populations of BNs on MapReduce. (a) shows MEM being applied on MR,
each mapper performs expectation computation on a single evidence set and multiple BN instances.
A single reducer performs MLE on the expectations. In (b), the reducer now performs MLE and
creates/terminates new EM runs according to the ALEM layers.

dynamic population structure, the number of EM runs performed for each MR operation varies. In
a way, we transition from random restart, which has been shown to be effective against premature
convergence [6,11], to ALEM using MapReduce.

3 Experimental Results

The C++ software library libDAI [12] is used extensively in our experiments.! The libDAI library
has many inference algorithms built-in, including Junction Tree, Variable Elimination, and Gibbs
sampling. We extend 1ibDAI with Hadoop Streaming MapReduce to perform ALEM and MEM in
both local and cluster environments. For experimentation, we rely on the Junction Tree algorithm
for BN inference; to generate a dataset of evidence for the BNs, we use forward sampling.

For MR experiments, 16 small instance (single core, IGB RAM) machines on Amazon EC2 perform
computation. For ALEM, we use the following parameters: number of layers = 5; age gap = 5; and
minimum runs in lowest layer = 5. For both ALEM and MEM, the convergence tolerance was set to
e = 10~%, the maximum number of iterations was set to 100, and the population size was set to 15
(this means that ALEM and MEM halted when 15 EM runs converged).

-1634 0
-1634.5} -500
-1000
g s MUEEILLLLLL 3
o o]
< 3 £ -1500 ‘
L 163551 E E Y
= 3 -2000 %
8 1638} g > i %
] = o500) —= MEM - 2 hidden Y
s MEM - 4 hidden
-1636.5 -3000 | =—=— ALEM - 2 hidden %
weeiions: ALEM - 4 hidden F
-1637 -3500
0 5 10 15 100 200 400 800 1600
Iterations to Convergence Size of Dataset
(@) (b)

Figure 2: Experimental results for 20,000 trials of ALEM and MEM on the BN Asia. (a) shows the
mean MEM and ALEM likelihoods versus the number of iterations to convergence for a dataset of
size 800 and four hidden nodes; (b) shows the mean of converged likelihoods of ALEM and MEM
for five dataset sizes (100, 200, 400, 800, and 1600 samples) and two sets of hidden nodes.

"http://libdai.org

—=— MEM - 2 hidden 1200

)
< MEM - 4 hidden —— MEM
S 15 ~—=— ALEM - 2 hidden % 1000] —©—ALEM
g ALEM - 4 hidden % e MEM MR
8 é 800 @ ALEM MR
2 o Py
o Q.) £
S =
a X
I) 3
= (@]
5 =
° 0 o}
g =
£
3
Z 0
100 200 400 800 1600 50 100 150 200
Size of Dataset Size of Dataset

(a) (b)

Figure 3: Comparing the performance of MEM and ALEM for varying data set sizes. (a) shows the
impact on the mean number of iterations for ALEM and MEM over 20,000 trials of the BN Asia of
varying dataset size and number of hidden nodes. (b) shows a linear reduction in wall clock time
from running both MEM and ALEM on a single machine versus 16 machines on the BN Water for
a fixed 15 iterations.

First we investigate the performance of ALEM versus MEM. A set of 20,000 ALEM and MEM trials
were performed on the BNs Asia and Alarm to measure differences in likelihood and iterations until
population convergence. Trials were run using MR due to the amount of computation. Each trial
used a data set sampled from an existing BN using forward sampling. After forward sampling, a
random set of nodes was hidden. We observe in Figure 2a the converged likelihoods and number of
iterations for trials with a dataset of size 800 with four hidden nodes on the BN Asia. For this con-
figuration, ALEM performs as well as MEM for finding a high likelihood, attaining a log-likelihood
mean/standard-deviation of —1.635/0.308, compared to MEM’s —1.635/0.171. Figure 2b shows
the means and standard deviations of the likelihood over several dataset sizes, as well as for two and
four hidden nodes. For four nodes, there is negligible difference in log-likelihoods, while two nodes
demonstrates an increase in mean and standard deviation using ALEM. Figure 3a shows the number
of iterations required for convergence of MEM and ALEM for the same trials. ALEM requires fewer
iterations when two nodes are hidden, whereas MEM requires fewer iterations when four nodes are
hidden. The reason for this is a topic for future research.

Next, we test ALEM and MEM on the BN Water, which takes 19.5 hours on a single machine to
perform 15 iterations of MEM. Figure 3b shows the wall clock time of non-distributed ALEM and
MEM versus MR ALEM and MEM. With and without MR, ALEM shows a speedup versus MEM.
For a dataset size of 200, the wall clock time of MEM reduces from 1146 to 247 minutes, a 78.5%
decrease, while the wall clock time of ALEM reduces from 729 to 169 minutes, a 76.8% decrease.
The dataset size has a linear effect on wall clock time in all cases, with the proportional speedup
of MR increasing as the dataset size increases. MR ALEM shows a further 30% reduction in wall
clock time versus MR MEM (see Figure 3b).

4 Conclusion and Future Work

In this paper we adapted Multiple Expectation Maximization and Age-Layered Expectation Maxi-
mization to the MapReduce framework; we partitioned the dataset across multiple machines, each
running a population of BNs. For both ALEM and MEM, scalability is achievable when inference
computation time is high, when there are large amounts of evidence, or when there is a large pop-
ulation of BNs. Further work will look at testing more BNs, better understanding the differences
between MEM and ALEM, increasing the amount of evidence available, and investigating how well
ALEM and MEM on MapReduce scale when the population size (and potentially the number of
mappers) grows to hundreds or thousands.

Acknowledgements: This material is based, in part, upon work supported by NSF awards
CCF0937044 and ECCS0931978.

References

[1] A. Basak, I. Brinster, X. Ma, and O.J. Mengshoel. Accelerating Bayesian network parameter
learning using Hadoop and MapReduce. In Proceedings of the Ist International Workshop
on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming

Models and Applications, BigMine "12, pages 101-108, Beijing, China, 2012. ACM.

[2] P.S. Bradley, U. Fayyad, and C. Reina. Scaling EM (Expectation-Maximization) clustering to
large databases. Microsoft Research Report, MSR-TR-98-35, 1998.

[3] B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation version
of the EM algorithm. Annals of Statistics, (27):94—128, 1999.

[4] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal Of The Royal Statistical Society, Series B, 39(1):1-38, 1977.

[5] G.S. Hornby. ALPS: The age-layered population structure for reducing the problem of prema-
ture convergence. In Proceedings of the S8th annual conference on Genetic and evolutionary
computation, pages 815-822. ACM, 2006.

[6] S.H. Jacobson and E. Yucesan. Global optimization performance measures for generalized hill
climbing algorithms. Journal of Global Optimization, 29(2):173—-190, 2004.

[7] W. Jank. The EM algorithm, its randomized implementation and global optimization: Some
challenges and opportunities for operations research. In F. B. Alt, M. C. Fu, and B. L. Golden,
editors, Perspectives in Operations Research: Papers in Honor of Saul Gass 80th Birthday.
Springer, 2006.

[8] H. Langseth and O. Bangsg. Parameter learning in object-oriented Bayesian networks. Annals
of Mathematics and Artificial Intelligence, 32(1):221-243, 2001.

[9] S.L. Lauritzen. The EM algorithm for graphical association models with missing data. Com-
putational Statistics & Data Analysis, 19(2):191-201, 1995.

[10] W. Liao and Q. Ji. Learning Bayesian network parameters under incomplete data with domain
knowledge. Pattern Recognition, 42(11):3046-3056, 2009.

[11] O.J. Mengshoel, D.C. Wilkins, and D. Roth. Initialization and restart in stochastic local search:
Computing a most probable explanation in Bayesian networks. IEEE Transactions on Knowl-
edge and Data Engineering, 23(2):235-247, 2011.

[12] J.M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in
graphical models. Journal of Machine Learning Research, 11:2169-2173, August 2010.

[13] R.S. Niculescu, T.M. Mitchell, and R.B. Rao. Bayesian network learning with parameter
constraints. The Journal of Machine Learning Research, 7:1357-1383, 2006.

[14] 1. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988.

[15] M. Ramoni and P. Sebastiani. Robust learning with missing data. Machine Learning,
45(2):147-170, 2001.

[16] A. Saluja, PK. Sundararajan, and O.J. Mengshoel. Age-Layered Expectation Maximization
for parameter learning in Bayesian Networks. In Proceedings of Artificial Intelligence and
Statistics(AlStats), La Palma, Canary Islands.

[17] B. Thiesson, C. Meek, and D. Heckerman. Accelerating EM for large databases. Machine
Learning, 45(3):279-299, 2001.

	Carnegie Mellon University
	From the SelectedWorks of Ole J Mengshoel
	December, 2012

	Scaling Bayesian Network Parameter Learning with Expectation Maximization using MapReduce
	tmpSqSdyc.pdf

