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Abstract

Advanced autonomous robotics space missions rely
heavily on the flawless interaction of complex hardware,
multiple sensors, and a mission-critical software system.
This software system consists of an operating system, de-
vice drivers, controllers, and executives; recently highly
complex AI-based autonomy software have also been
introduced. Prior to launch, this software has to un-
dergo rigorous verification and validation (V&V). Nev-
ertheless, dormant software bugs, failing sensors, unex-
pected hardware-software interactions, and unanticipated
environmental conditions—likely on a space exploration
mission—can cause major software faults that can endan-
ger the entire mission.

Our Integrated Software Health Management
(ISWHM) system continuously monitors the hardware
sensors and the software in real-time. The ISWHM uses
Bayesian networks, compiled to arithmetic circuits, to
model software and hardware interactions. Advanced
reasoning algorithms using arithmetic circuits not only
enable the ISWHM to handle large, hierarchical models
that are necessary in the realm of complex autonomous
systems, but also enable efficient execution on small
embedded processors. The latter capability is of extreme
importance for small (mobile) autonomous units with lim-
ited computational power and low telemetry bandwidth.
In this paper, we discuss the requirements of ISWHM.
As our initial demonstration platform, we use a primitive
Lego rover. A Lego Mindstorms R© microcontroller is
used to implement a highly simplified autonomous rover
driving system, running on the OSEK real-time operating
system. We demonstrate that our ISWHM, running on
this small embedded microcontroller, can perform fault
detection as well as on-board reasoning for advanced
diagnosis and root-cause detection in real time.

1 Introduction

The role of robotic explorers in space science mis-
sions is set to grow in this new space age. The launch of
“the most technologically advanced”1 exploration rover to
date, the Mars Science Laboratory rover, Curiosity, boldly
illustrate this fact.

The development of advanced robotics space mis-
sions is highly multidisciplinary and requires integration
of various functional modules from diverse science and
engineering teams. Systems integration and software de-
velopment must proceed rapidly to meet project budget
and schedule. Thus, robotic space mission systems con-
sist of several complex subsystems (propulsion, avionics,
communications, and science instruments), which must
work together flawlessly. However, oftentimes budget
constraints might limit the use of redundant hardware
or software components, which would otherwise allow
the system to detect failures (e.g., by a voting scheme)
and to switch to a working component in the case of
faults. Software to detect, isolate, and mitigate failures
are highly primitive or missing altogether in most current
small projects.

Clearly, a powerful FDIR (Fault Detection, Isolation,
Recovery) or ISHM (Integrated System Health Manage-
ment) system for hardware and software has great po-
tential for ensuring the operational reliability of robotic
space missions.2 The role of software in robotic space
missions is increasing as the mission complexities and ad-
vanced technology require more sophisticated software.
Just as software has taken over more functionality in other
systems such as aircraft, automobiles and other machin-
ery, more and more functionality for autonomous space
exploration systems is realized by using software rather
than by dedicated (typically heavy or expensive) hardware

1http://www.jpl.nasa.gov/missions/details.cfm?id=

5918
2Recovery or mitigation aspects, which are especially important for

fully autonomous operations, are beyond the scope of this paper.
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components. The Mars Science Laboratory Curiosity
rover, for instance, is a good illustration of how mission
complexity and advanced technology have spurred even
more software functionality and autonomy. The critical
EDL (Entry, Descent and Landing) scheme—consisting
of a combination of parachute, thrusters, “sky crane”,
and radar—heavily relies on advanced complex software
adding up to at least 500,000 lines of code.3

The amount and complexity of embedded software
running on robotic spacecraft has increased tremendously
over the last few years. With budget limitations for devel-
opment as well as for verification and validation (V&V),
problems are unfortunately very likely. In this paper, we
focus on robotic space mission system health manage-
ment, including both software and sensor health manage-
ment.

A number of missions have failed due to software er-
rors or problematic software-hardware interactions. Al-
though ISWHM will not be able to detect all such prob-
lems, the reliability of a software system can be enhanced
with a system that can detect and diagnose software fail-
ures. The following examples illustrate how simple soft-
ware problems can jeopardize expensive missions.

In 1999, the Mars Polar Lander (MPL) crashed onto
the surface of Mars. An incident investigation concluded
that “the most probable cause of the failure was the gen-
eration of spurious signals when the lander legs were de-
ployed during descent. The spurious signals gave a false
indication that the spacecraft had landed, resulting in a
premature shutdown of the engines[...]” [13]. It seems
that the software was ill-equipped to deal with such spu-
rious signals. An on-board ISWHM could have taken ad-
ditional available information into account (e.g., from the
radar altimeter) and potentially have mitigated the engine
shutdown and consequently the crash.

With the extremely high complexity of mission soft-
ware for the Mars rover Curiosity, ISWHM is even more
critical. Indeed, due to radio communication latency be-
tween Earth and Mars, the rover Curiosity will be entirely
autonomous during the whole 7 minutes of EDL, the so-
called “7 minutes of terror” that can break or make this
mission. Evidently, it is of utmost importance to effi-
ciently monitor software and hardware interactions to en-
sure successful autonomous landing and avert a disastrous
crash like the MPL’s.

The Mars rover SPIRIT also experienced a software
problem. A short time after landing, SPIRIT encountered
repeated reboots, because a software fault during the boot-
ing process caused an immediate reboot. According to
reports [1], an on-board file system for intermediate data
storage caused the problem. After this storage was filled
up, the boot process failed while trying to access that file

3http://news.sciencemag.org/sciencenow/2012/06/

scienceshot-seven-minutes-of-ter.html

system. The problem was detected on the ground and
solved successfully. This example shows how, despite
careful V&V, hard to detect errors can still remain dor-
mant in the software. This example also shows that cer-
tain kinds of software failures could be detected by the
ISWHM system by monitoring and reasoning before the
actual faults occur.

A powerful, on-board Software and Sensor Health
Management (ISWHM) has the potential to detect many
possible faults as soon as they occur and can thus substan-
tially contribute to overall mission safety and reliability.
Such an ISWHM

• monitors the behavior of the software, the operating
system, and the attached sensors during system op-
eration. Information about operational status, sig-
nal quality, quality of computation, reported errors,
etc., is collected and processed on-board. Most of
this information is readily available without the need
to instrument or otherwise modify the software.

• performs substantial diagnostic reasoning in order to
identify the most likely root cause(s) for the fault and
a quality measure for that result. This diagnostic
capability is extremely important, because teleme-
try bandwidth of a small autonomous system (e.g.,
a rover) is very limited. So, only a small subset of
the system information can be down-linked, which
makes accurate ground-based failure diagnosis im-
possible.

Simple diagnostic routines, as often used with current
systems, typically process symptoms in isolation, which
can result in incorrect diagnoses or a large number of con-
tradictory results. This problem became evident in a re-
cent A380 incident,4 in which the pilots reported more
than 400 diagnostic messages, some of which contradicted
each other.

Finally, a proper probabilistic treatment of the diag-
nosis process, as we accomplish with our Bayesian ap-
proach [8, 3], can not only merge information from multi-
ple sources but also provide a posterior distribution for the
diagnosis. We note that this approach has been very suc-
cessful for electrical power system diagnosis [10, 11, 6].

Such an ISWHM system must, to be useful for an au-
tonomous system, satisfy several important properties, in-
cluding the following.
(1) Have a small memory and resource footprint. Here,
resources do not only mean low computational require-
ments, but the may ISWHM also need to “compress” the
system and software status into few, relevant, and reliable
pieces of health information, which can be transmitted us-
ing a low telemetry bandwidth. In such cases, the ISWHM

4http://www.aerosocietychannel.

com/aerospace-insight/2010/12/

exclusive-qantas-qf32-flight-from-the-cockpit/



system performs an intelligent compression of raw sensor
data into system health information.
(2) Be able to fuse information from hardware sensors and
software monitors. For an ISWHM system, it is not suf-
ficient to just monitor software and hardware separately,
because many software problems occur due to problem-
atic software-hardware interactions. For example, the Ar-
iane 5 (software) error [14] was triggered because the
hardware sensor produced sensor readings with a range
of values that was larger than acceptable by the software,
which had been constructed for the much smaller Ari-
ane 4. In our ISWHM approach, we use Bayesian net-
works to model SW and HW, as well as their interaction,
in a probabilistically principled way.
(3) Exhibit a low number of false positives and false neg-
atives. False alarms (false positives) can produce nui-
sance signals; missed adverse events (false negatives)
can endanger mission success. We ensure a high-quality
ISWHM by taking a BN-based approach, where there is
a clear mapping from the structure of the rover hardware
and software to the structure of the BN.
(4) Should not require instrumentation or other changes
to the software. Most of the information required by the
ISWHM is already available within the software system
and can be read from global storage or buses. Thus a pow-
erful ISWHM can be developed, which does not interfere
with other software. Where necessary and suitable, sen-
sors implemented in software can provide additional in-
formation to the ISWHM.
(5) Be V&V-able. Any software that is running on-board
a complex system must undergo rigorous V&V. Our ap-
proach of using ISWHM models, in the form of BNs that
have been compiled into arithmetic circuits, is amenable
to V&V [9].
(6) Be constructed in a modular, hierarchical, and re-
usable way. In order to support modular construction of
an autonomous system, the health management model-
ing paradigm also must support modular, hierarchical, and
reusable models.

Once a fault has been detected and its causes diag-
nosed properly, a multitude of different autonomous or
ground based mitigation strategies could be applied to
deal with that problem. However, successful mitigation
requires a reliable detection and diagnosis of the software
faults. Thus, in this paper, we focus on the detection and
diagnosis part of ISWHM.

The rest of the paper is structured as follows: In Sec-
tion 2 we present background on Bayesian modeling and
reasoning as well as the compilation of Bayesian networks
into efficient arithmetic circuit data structures. Section 3
discusses how our sensor and software health manage-
ment model is constructed. We demonstrate our approach
using a small and simple rover (Section 4). We describe
the system and software architecture, which is built upon

the OSEK operating system, discuss the ISWHM model,
and present a number of nominal and off-nominal scenar-
ios, which are executed on the rover. Finally, in Section 5
we conclude.

2 Bayesian Software and Sensor Health
Management

The goal of our Bayesian ISWHM is to detect and iso-
late bugs that may be software-only or involve both soft-
ware and hardware. In our approach, we use the well-
established technology of Bayesian networks (BNs).

empty  0.05

OK              0.2  0.99 0.7

Error           0.8  0.01 0.3

high_eff        0.0  0.95 0.0

low_eff         1.0  0.05 0.05

empty           0.0  0.0  0.95

Status_Filesys  full ok   empty

Status_Filesys  full ok   empty

full   0.05

ok     0.9

Sensor_Filesys

Sensor_FilesysError

Filesys_Status

Figure 1. Simple Bayesian network for
system health management. Condi-
tional probability tables (CPTs) are
shown near each node.

Figure 1 shows a very simple BN; in fact it is a small
fragment of the network used for experimentation in this
paper. We have a node Filesys Status (FS ) represent-
ing the status of a file system in a rover, a sensor node
Sensor Error (S E) representing whether a file system
error is reported or not, and a node Sensor Filesys
(S F) representing file system utilization. Clearly, the sen-
sor readings (nodes S E and S F) depend on the status of
the file system, and this is reflected by the directed edges.
The degrees of influence are defined in the two Condi-
tional Probability Tables (CPTs) depicted next to the sen-
sor nodes. For example, if there is a problem, the prob-
ability that p(FS , ok) increases. To obtain the status
of the file system, we input (or clamp) the states of the
BN sensor nodes and compute the posterior distribution
(or belief) over FS . The prior distribution of failure, as
reflected in the CPT shown next to FS , is also taken into
account in this calculation.

Our example network in Figure 1 represents the joint
probability p(FS , S E, S F) and is shown in Table 1. For
simplicity, we replace all CPT entries with θx (i.e., θok ↔

“FS is ok,” and θ f ↔ “FS is full”). Here, we also use
indicators λx to incorporate evidence when the state of



a variable is observed [3], where λx = 1 if x is consis-
tent with our observations and λx = 0 if x is inconsistent
with our observations.5 Part of the probability distribu-
tion p(FS , S E, S F) represented by the Bayesian network
is shown in Table 1.

FS S E S F p(FS , S E, S F)
ok er he λokλerλheθer|okθokθhe|ok

ok er le λokλerλleθer|okθokθle|ok

ok er e λokλerλeθer|okθokθe|ok

ok ok he λokλokλheθok|okθokθhe|ok

ok ok le λokλokλleθok|okθokθle|ok

ok ok e λokλokλeθok|okθokθe|ok

f er he λ fλerλheθer| f θ f θhe| f

f er le λ fλerλleθer| f θ f θle| f
f er e λ fλerλeθer| f θ f θe| f
f ok he λ fλokλheθok| f θ f θhe| f

f ok le λ fλokλleθok| f θ f θle| f
f ok e λ fλokλeθok| f θ f θe| f
e er he λeλerλheθer|eθeθhe|e

. . . . . . . . . . . .

Table 1. Probability distribution for p(FS , S E, S F).

According to this joint probability distribution ta-
ble, the first row (λokλerλheθer|okθokθhe|ok) is representing
the probability that the status of the file system is okay
(FS = ok and λok = 1) and that file system error and high
efficiency are observed (S E = er, S F = he, λer = 1, and
λhe = 1). Given the corresponding numerical CPT entries,
the probability can be calculated as indicated in Table 1.

In general, the rows of this table define a joint distri-
bution:

p(FS , S E, S F) =
∏
λx

λx

∏
θx|u

θx|u,

where θx|u are the parameters of the Bayesian network,
i.e., the conditional probabilities that a variable X is in
state x given that its parents U are in the joint state u, i.e.,
p(X = x | U = u). Further, λs are indicators that indi-
cate whether or not state s is consistent with the observa-
tions. Posterior marginals representing the health state of
the system can be computed from the joint distribution.

To avoid the inefficiencies associated with the full
distribution shown in Table 1, BNs are often compiled,
off-line, to secondary data structures such as clique trees
or arithmetic circuits [3]. These secondary data struc-
tures are then used for on-line computation. For resource-
restricted and embedded settings, this compilation ap-
proach is especially suitable [5]. During on-line com-
putation, the arithmetic circuit-based diagnostic software

5For example, if we observe an error on sensor S E, then λer = 1 and
λok = 0; if we observe no vibration on sensor S E, then λok = 1 and
λer = 0. If there is no observation for the sensor S E, we leave λok = 1
and λer = 1.

reads commands and sensor data, performs preprocess-
ing including discretization, inputs evidence into the arith-
metic circuit, evaluates it, and outputs diagnostic results
based on the posterior distribution over the health random
variables [10, 11, 6].

3 Constructing the Model

As discussed above, a BN has several kinds of differ-
ent nodes and has certain directed arcs between nodes. In
the following, we discuss in more detail how the Bayesian
networks for our ISWHM models are constructed.

Nodes. Our Bayesian ISWHM models are set up using
several kinds of nodes. All nodes are discrete, i.e., each
node has a finite number of mutually exclusive and ex-
haustive states.

CMD node C: Signals sent to these nodes are handled as
ground truth and are used to indicate commands, ac-
tions, modes, or other (known) states. For example,
a node Write File System represents that an ac-
tion, which eventually will write some data into the
file system, has been commanded. For our reasoning
it is assumed that this action is in fact happening.6

The CMD nodes are root nodes (no incoming edges).
During the execution of the ISWHM, these nodes are
always directly connected (clamped) by the appropri-
ate command signals.

SENSOR node S : A sensor node S is an input node sim-
ilar to the CMD node. The data fed into this node is
sensor data, i.e., measurements that have been ob-
tained from monitoring the software or the hardware.
Thus, this signal is not necessarily correct. It can
be noisy or wrong altogether. Therefore, a sensor
node is typically connected to a health node, which
describes the health status of the sensor node.

HEALTH node H: The health nodes are nodes that re-
flect the health status of a sensor or component.
Their posterior probabilities comprise the output of
an ISWHM model. A health node can be binary
(with states, say, ok or bad), or can have more states
that reflect health status at a more fine-grained level.
Health nodes are usually connected to sensor and sta-
tus nodes.

STATUS node U: A status node reflects the (unobserv-
able) status of the software component or subsystem.

6If there is a reason that this command signal is not reliable, the com-
mand node C is used in combination with a H node to impact state U
as further discussed below. Alternatively, one might consider using a
sensor node instead.



BEHAVIOR node B: Behavior nodes connect sensor,
command, and status nodes and are used to recognize
certain behavioral patterns. The status of these nodes
is also unobservable, similar to the status nodes.
However, usually no health node is attached to a be-
havioral node.

The following informal way to think about edges in
Bayesian networks are useful for knowledge engineering
purposes: An edge (arrow) from node C to node E indi-
cates that the state of C has a (causal) influence on the state
of E. Generally, the types of influences typically seen in
ISWHM BNs are as follows:

{H,C} → U represents how status node U may be com-
manded through command C, which may not always
work as indicated. This is reflected by the health H
of the command mechanism’s influence on the status.

{C} → U represents how the status U may be changed
through command C; the health of the command
mechanism is not explicitly represented. Instead, im-
perfections in the command mechanism can be rep-
resented in the CPT of U.

{H,U} → S represent the influence of system status U
on a sensor S , which may also fail as reflected in
H. We use a sensor to better understand what is hap-
pening in a system. However, the sensor might give
noisy readings; the level of noise is reflected in the
CPT of S .

{H} → S represents a direct influence of system health H
on a sensor S , without modeling of status (as is done
in the {H,U} → S pattern).

{U} → S represents how system status U influences a
sensor S , as demonstrated in Figure 1. Sensor noise
and failure can both be rolled into the CPT of S .

Once the nodes and edges are in place, the conditional
probability tables (CPTs) need to be considered. The CPT
entries are set based on a priori and empirical knowledge
of a system’s components and their interactions [10, 6].
This knowledge may come from different sources, includ-
ing (but not restricted to) system schematics, source code,
analysis of prior software failures, and system testing. As
far as a system’s individual components, mean-time-to-
failure statistics are known for certain hardware compo-
nents, however similar statistics are not well-established
for software. Consequently, further research is needed to
determine the prior distribution for health states, including
bugs, for a broad range of software components. As far as
the interaction between a system’s components, CPT en-
tries can also be obtained from understanding component
interactions, a priori, or testing how different components
impact each other.

Figure 2. Small Lego rover demonstration platform.

We note that traditional diagnostics (“flight rules”)
can easily be integrated into a Bayesian network. Here,
many relationships between variables can be described by
functional dependencies, which lead to CPT values that
are only 0 or 1. With our approach, we are thus able to
incorporate flight rules into our models and reason about
them. For example, different flight rules (or even parts
thereof) can be “weighted” differently and their probabil-
ity of occurring merged in a principled way. In addition,
with an appropriate ISWHM BN, Bayesian network can
be exploited for sensor validation as well as for diagnosis
[7].

4 Experiments and Results

4.1 Demonstration System
In order to conduct realistic experiments, we used a

simple autonomous hardware platform. The aim of this
study is to demonstrate that our approach to ISWHM can
be executed on a small embedded system in real-time. A
small rover, built with Lego R© and Lego NXT R© served as
the hardware platform. Figure 2 shows a photo of this
simple platform. Each of the treads are controlled by a
servo motor (DC motor with attached wheel-rotation sen-
sor). Additional sensors, like another wheel rotation sen-
sor for each axis, a 3-axes accelerometer, an ultrasound
distance measuring sensor (in lieu of a RADAR instru-
ment), and a (on purpose poorly designed) touch sensor
complements this hardware system. Figure 3 shows a
schematic of the sensors and actuators. The NXT uses a
32-bit ARM7 processor with 64kB of RAM and 256kB of
flash7. We have implemented a simple software version of
sensor and rover control in C and use the OSEK real-time
operating system8 as the underlying operating system. A
NXT-specific version9 provides a tool chain and drivers
for that platform. While the OSEK RTOS is most widely

7http://en.wikipedia.org/wiki/Lego Mindstorms NXT
8http://www.osek-vdx.org/
9http://lejos-osek.sourceforge.net/



used in the automotive industry, we decided on this RTOS
platform rather than other RTOSes well established in the
aerospace industry such as Wind River’s VxWorks10 and
GreenHills’ INTEGRITY.11 OSEK’s basic functionalities
and availability were sufficient for the purpose of our ex-
periments [12] and show how ISWHM can be used even in
very restrictive embedded systems. In addition, Lego and
its microcontroller have already been used for robotics re-
search [4, 2].

Touch

NXT  [ARM7 CPU]

Accel
Obstacle

Figure 3. Sensor schematics for our rover
hardware platform.

4.2 Software Architecture
The entire control software and the ISWHM is run-

ning as a set of OSEK Tasks on the NXT processor. All
tasks used predefined task priorities, stack sizes, and rates,
which range from a fast 10ms sensor acquisition task to
the ISWHM, and data logging tasks, which are only ex-
ecuted every 200ms, and 500ms, respectively. Drivers
for sensors and motors were used as provided in NXT-
OSEK.12 Figure 4 shows the software architecture; OSEK
resources were used to govern access to global rover sta-
tus variables. Despite the simple structure, this software
architecture shows all typical ingredients needed for the
implementation of GN&C and autonomy software on a
small embedded system. For our experiments we assume
that the entire “software load” (except for the ISWHM
task) is given. Injected errors and on-purpose software
design flaws are used to drive the scenarios as discussed
below.

The control software consists of a fast sensor acquisi-
tion task and a control task. Sensor data and actuator data
are transmitted using a message queue with a fixed length.
For some scenarios, the task handling the message queue

10http://www.windriver.com
11http://www.ghs.com
12http://lejos-osek.sourceforge.net/
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Figure 4. Software architecture: The
ISWHM task is highlighted as it is
the only addition to the given software
load.

can log each message into an on-board file store.

Listing 1 Core functionality of the ISWHM
task (resource protection is not shown.)

TASK( TaskISWHM 500ms ) {
i s w h m p r e p r o c e s s d a t a ( ) ;
i s w h m s e t e v i d e n c e ( ) ;
i swhm reason ( ) ;
i s w h m r e s u l t s ( ) ;
Te rmina t eTask ( ) ;
}

void i s w h m s e t e v i d e n c e ( ) {
o b s e r v e ( v a r I n d e x ( ” S e n s o r F i l e S y s t e m ” ) ,

r o v e r p s e n s o r s . s e n s o r F S ) ;
. . .
}

void i swhm reason ( ) {
e v a l u a t e ( ) ;
d i f f e r e n t i a t e ( f a l s e ) ;
e v a l u a t i o n R e s u l t s ( ) ;
}

void i s w h m r e s u l t s ( ) {
p o s t = g e t P o s t e r i o r s ( ) ;
rove r i swhm . h e a l t h F S=p o s t [ 7 ] ;
}

4.3 ISWHM
The ISWHM task (Listing 1) runs on a low priority

and only interacts with the rest of the software system
by reading the sensor values and returning the posterior
probabilities of the health nodes for logging. More specif-
ically, this task preprocesses the sensor values, and pro-
vides them as evidence (observe()) to the Arithmetic
Circuit. Then reasoning (reason()) is carried out, evalu-
ating and differentiating the Arithmetic Circuit to extract



Name Type States
Cmd fwd CMD idle, on
Cmd backwd CMD idle, on
Sensor touch SENSOR idle, active
Sensor obstacle SENSOR invalid, near, far
Sensor acc[3] SENSOR negative, zero, positive
Sensor spd[2] SENSOR negative, zero, positive
Sensor motorspd[2] SENSOR negative, zero, positive
Sensor batt SENSOR ok, load, low
SW FS SENSOR ok, filling, full
SW stack SENSOR ok, ovflow
SW time SENSOR ok, deadline
SW res SENSOR ok, deadlock
Health L motor HEALTH ok, low eff, bad
Health R motor HEALTH ok, low eff, bad
Health obstacle HEALTH ok, fault
Health touch HEALTH ok, fault open, fault closed
Health acc[3] HEALTH ok, fault
Health SW HEALTH ok, ctrl fault

Table 2. Command, sensor (hardware and
software) signals, and health nodes for
ISWHM (selection).

the posteriors of the health nodes, which are placed back
into the system memory. All accesses to the global mem-
ory have to be protected by calls to the OSEK functions
GetResource and ReleaseResource (not shown here).

Table 2 shows selected sensor nodes for hardware and
software sensors, their type and possible states. In gen-
eral, additional preprocessing steps might take place to
derive the appropriate data from the stream of sensor sig-
nals (e.g., discretization, moving average, minimum, max-
imum).

The overall development process and tool chain is
shown in Figure 5. Independently of the actual rover soft-
ware development, the ISWHM Bayesian model is devel-
oped (based upon requirements and SW/HW character-
istics) using the tool SamIam.13 The Bayesian network
then is compiled into an arithmetic circuit, which serves
as the ISWHM model (the knowledge base) using UCLA’s
ACE14 Arithmetic Circuit compiler package. The result-
ing C data structure is integrated with ISWHM inference
engine and the rest of the software system. The Bayesian
network model is compiled “offline”—only once—into
an Arithmetic Circuit serving as the knowledge base—
amortizing compilation overheads with real-time execu-
tion in the running system. Figure 6 shows a graphi-
cal representation of the BN. On the given architecture,
a full reasoning cycle using the compiled arithmetic cir-
cuit could be accomplished in approximately 15ms. Most
of that time is spent on floating-point additions and mul-
tiplications. It is expected that with the use of fixed-point

13http://reasoning.cs.ucla.edu/samiam/
14http://reasoning.cs.ucla.edu/ace/
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arithmetic, this time can be reduced substantially.

4.4 Analyzed Scenarios
During each experiment, the status of the rover, sen-

sor and command signals as well as the health information
of the ISWHM task are transferred to an external PC using
Bluetooth.

In the nominal case for this Lego rover ISWHM
demonstrator, the inference engine reports a high degree
of belief in the health of the software and hardware sys-
tems. After idling, the rover executes a drive-forward
command toward its target and stops after a few seconds.
It is driving toward an obstacle at a larger distance. The
health of the motors, wheel, battery, touch and obstacle
sensors, as well as the posterior probabilities of the health
of the software and control systems are consistently high
except for transient lows—i.e., during idle time. All prob-
abilities are well above 0.5, indicating nominal (no-fault)
operation.

However, the ISWHM inference engine indicates a
low degree of belief in the health of the software and con-
trol systems in the the following failure scenario—which
is loosely modeled after the Mars Polar Lander incident
discussed above. A mechanical touch sensor is supposed
to stop both motors whenever the rover hits an obstacle.
Figure 7 shows a temporal trace. The rover starts moving
forward around t = 4500ms. Before then, as the system is
idle, the posterior probability of the health of the software
is ”neutral,” 50/50, (red in bottom panel). The obstacle
sensor indicates that the rover is gradually approaching the
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Figure 6. Simplified ISWHM model for the rover demonstrator.

obstacle though it is still distant (second panel from top).
The battery voltage sensor indicates an expected drop at
start-up around t = 4700ms as the load is applied (pink in
top panel), while wheel and speed sensors indicate activa-
tion (black and green respectively in third panel from top).
And the ISWHM inference engine infers a high degree of
belief in the health of the software system (high posterior
distribution) as the rover operates smoothly from start-up
to about t = 6000ms (red in bottom panel). A small rock
under one of the treads triggers a short (and spurious) sig-
nal of the touch sensor around t = 6000ms. The poorly
designed software interprets this signal as the rover hitting
the obstacle, and thus shuts down the motors. The battery
voltage sensor subsequently indicates an increase around
t = 6500ms as the wheels stop moving (pink in top panel
and black in third panel from top respectively). However,
the obstacle sensor signals that the obstacle was not even
close (second panel from top). This scenario, though not
nearly as dangerous for a driving rover as for a landing
probe, illustrates how faulty signal processing and soft-
ware can wreak havoc. In the bottom panel of Figure 7, the
ISWHM inference engine clearly indicates that the signal
processing and control software are to blame, as the pos-
terior distribution (degree of belief) of the software health
dips (red in bottom panel). The ISWHM inference engine
uses additional information from the obstacle, speed, and
motor sensors for reasoning and disambiguation. In addi-
tion, the actual length of the signal could be used to further
strengthen the ISWHM reasoning.

A number of pre-analyzed scenarios were executed in
our experiments to validate the ISWHM model. Many of
these experimental scenarios were inspired by actual inci-
dents. Automated reasoning with our ISWHM approach
can perform real-time diagnosis and disambiguation in
cases such as these experimental software and hardware
related fault scenarios:

• right tread not operational: motor blocked

• right tread not operational: tread “stuck” in sand (see
Mars rover SPIRIT)

• accelerometer fault

• faulty software-induced violation of control laws
(overlapping dead-bands)

• a software fault in the on-board data storage system
and signal delay induces oscillations

5 Conclusions

In this paper, we have presented a powerful approach
for the monitoring of software and sensors of an au-
tonomous system, while it is in operation. Our ISWHM
approach uses advanced Bayesian methods to decide if
the system status is nominal or if any problems occur. In
the latter case, the posterior probability of the Bayesian
health nodes provide information on which component(s)
are most likely faulty. By combining health management
of sensors with dynamic monitoring of the on-board soft-
ware, we are able to detect and identify a multitude of
software errors, which may have gone undetected during
the V&V phase for the autonomous software, or which
arise from unexpected hardware-software interactions.

The Bayesian methods underlying the ISWHM pro-
vide a powerful modeling mechanism, which can incor-
porate information from hardware sensors, the operating
system, and available status signals from selected software
components. Local conditional probability values help to
disambiguate the diagnosis.

The Bayesian health model is compiled into an arith-
metic circuit (AC), which can be executed very efficiently
even in severely constrained real-time environments. We
demonstrate our approach with a small rover-like vehicle
built out of Lego, which is controlled by software running
under the OSEK realtime operating system on the Lego
NXT (ARM7) processor. Our compiled ISWHM model
is running as a separate low-priority task and can provide
onboard diagnostic results. Our approach does not require
any modifications to the autonomy software itself.

Since size and complexity of software for even tiny
autonomous systems increase dramatically, we think that



powerful on-board means for real-time fault detection and
diagnosis can provide a crucial additional layer of relia-
bility.
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Figure 7. Temporal traces for failure scenario: spurious signals. The ISWHM inference engine indicates a
low degree of belief in the health of the software despite signals from the touch sensor.
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