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ABSTRACT 

 

The tetra-anionic form of ATP (ATP
4-

) is known to induce monovalent and divalent ion 

fluxes in cells that express purinergic P2X7 receptors (Steinberg et al., 1987; Sung et al., 1985), 

and with sustained application of ATP it has been shown that dyes as large as 831 daltons can 

permeate the cell membrane (Steinberg et al, 1987).   The current study explores the kinetics of 

loading α,α-trehalose (342 daltons) into ATP stimulated J774.A1 cells, which are known to 

express the purinergic P2X7 receptor (Steinberg et al., 1987).  Cells that were incubated at 37˚C 

in a 50 mM phosphate buffer (pH 7.0) contailing 225 mM trehalose and 5 mM ATP, were shown 

to load trehalose linearly over time.  Concentrations of ~50 mM were reached within 90 min of 

incubation.  Cells incubated in the same solution at 4 ˚C loaded minimally, consistent with the 

inactivity of the receptor at low temperatures.    However, extended incubation at 37 ºC (>60 

min) resulted in zero next-day survival, with adverse effects appearing even with incubation 

periods as short as 30 min.   By using a two-step protocol with a short time period at 37 ºC to 

allow pore formation, followed by an extended loading period on ice, cells could be loaded with 

up to 50 mM trehalose while maintaining good next day recovery (49% ± 12 % by Trypan Blue 

exclusion, 56 ± 20% by Alamar Blue
TM

 assay).  Cells porated by this method and allowed an 

overnight recovery period exhibited improved dehydration tolerance suggesting a role for ATP 

poration in the anhydrous preservation of cells. 
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INTRODUCTION 

A variety of organisms, such as encysted embryos of the brine shrimp Artemia 

franciscana, tartigrades, many seeds, bacteria and yeast cope with freezing and desiccation by 

producing disaccharides such as trehalose and sucrose (Crowe et al., 1992; Crowe and Crowe, 

2000).  In naturally desiccation-tolerant organisms trehalose is thought to offer protection by 

several means.  Because of the unique orientation of the hydroxyl groups on the trehalose 

molecule, structurally it can effectively replace water molecules that are fundamental to 

maintaining proper folding of proteins during dehydration and storage in the dry state (Crowe et 

al., 1992).  In a similar manner the trehalose hydroxyl groups can bind to phospholipid 

headgroups of the lipid bilayer, lowering the liquid-to-gel transition temperature and thereby 

preventing cytoplasmic leakage during rehydration (for review see Oliver et al., 1998).  This 

protection mode is referred to as the ‘water replacement hypothesis’ (Crowe, 1987).  

Additionally trehalose is known to form a glass at low water contents.  The formation of a glass 

is thought to reduce the mobility of molecules and consequently the rates of deleterious chemical 

and physical interactions, thereby allowing cells to withstand sustained storage in the dry state 

(Sun and Leopold, 1997; Oliver et al., 1998). 

 Recently there has been an increased interest in engineering mammalian cells to achieve 

desiccation tolerance to facilitate biopreservation in the dry state.  Trehalose has been shown to 

effectively improve the survival of a number of organisms and structures following drying, 

including liposomes (Crowe et al, 1987; Sun et al, 1996), mammalian cell membranes (Chen et 

al., 2001), bacteria (Conrad et al, 2000; Israeli et al, 1993; Leslie et al, 1995; Potts, 1994), 

enzymes (Carpenter et al 1987ab), retroviruses (Bieganski et al, 1998), platelets (Wolkers et al., 

2001), human mesenchymal stem cells (Gordon et al., 2001), and murine fibroblasts (Acker et 
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al, 2002).  Trehalose has also been shown to improve the post-thaw viability of cryopreserved 

cells.  The utility of trehalose as a cryoprotectant has been demonstrated for pancreatic islets 

(Beattie et al., 1997), human oocytes (Eroglu et al., 2002), as well as for fibroblasts and 

keratinocytes (Eroglu et al., 2000). 

Sugars do not easily penetrate mammalian cells unless specific proteins are present in the 

cell membrane to facilitate transport, such as is the case for glucose.  Consequently a number of 

methods have been explored to introduce non-native sugars such as trehalose into mammalian 

cells.  Beattie et al. (1997) exploited the thermotropic lipid phase transition event of the cell 

membrane to load trehalose intracellularly.  Guo et al (2000) transfected human embryonic 

kidney epithelial cells with genes that encode for trehalose synthesis.  Puhlev et al. (2001) 

compared both of these methods to osmotic shock as a permeabilization method and determined 

that the cytotoxic effect of osmotic shock outweighed the benefits of using it as a delivery 

method.  Toner and colleagues used a switchable engineered hemolysin-H5 pore to deliver 

trehalose intracellularly to a number of cell types including 3T3 fibroblasts and human 

keritinocytes (Russo et al., 1997; Eroglu et al. 2000).  Using the H5 technology it was possible to 

generate intracellular concentrations as high as 0.5 M within 60-min of exposure to an 

extracellular solution of the same trehalose molarity (Acker et al., 2003).  Eroglu et al. (2002, 

2003) successfully used microinjection to infuse oocytes with trehalose.  Various levels of 

endocytotic uptake of trehalose were reported by Hubel et al. (2002) depending on the cell type 

and incubation temperature.  The maximum intracellular concentration was determined to be 100 

mM in hepatocytes.  Oliver et al. (2004) have reported that human mesenchymal stem cells can 

be loaded with trehalose by fluid phase endocytosis.  In that study the intracellular localization of 

endocytosed trehalose was studied by fluorescence microscopy, using endocytosed Lucifer 
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Yellow as a substitute for trehalose.  The data indicated that the endocytosed material was 

initially encapsulated within endosomes but that it left the vesicle and distributed throughout the 

cytosol over time.  Intracellular trehalose concentrations were reported to be in the range of 10 - 

20 mM.     

The current work explores the activation of P2X7 purinergic receptor channels to provide 

a means of loading trehalose into cells.  The P2X7 receptor belongs to a family of ATP-gated 

ionotropic receptors (North and Benard, 1997).  These ATP-sensitive receptors are multimeric 

membrane proteins, with two trans-membrane regions.    These receptors are predominantly 

expressed in antigen-expressing immune cells and epithelia (Virginio et al, 1999, Coutinho-Silva 

et al, 1999), as well as cells of hematopoietic origin (Gudipaty et al., 2001).  For a review of cell 

types expressing purinergic receptors see Dubyak and El-Moatassim (1993) and Collo et al. 

(1997). 

The tetra-anionic form of ATP (ATP
4-

) is known to induce monovalent and divalent ion 

fluxes and membrane depolarization in cells that express purinergic receptors, in a dose-

dependent manner (Steinberg et al, 1987; Sung et al, 1985, Rassendren et. al, 1997).    The 

membrane depolarizing effect of ATP is very specific.  Other analogs of ATP such as ADP, 

AMP, GTP, and numerous others have been shown to have no effect on membrane potential 

(Sung et al, 1985).  With sustained or repeated application of ATP the ion channel dilates and 

forms a large non-selective pore.  It has been shown that dyes as large as 831 da can pass through 

these channels (Steinberg et al, 1987) and that membrane-impermeant metabolic effectors can be 

loaded in this manner as well (Menze et al, 2005).  It was therefore hypothesized that trehalose 

could be effectively delivered into the intracellular space using these channels as a gateway.   
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The time course of trehalose uptake following ATP stimulation of J774.A1 mouse 

macrophages was explored in this study.  Intracellular trehalose concentrations of ~50 mM could 

be achieved with acceptable survival levels. without compromising long-term survival and 

growth potential.  Cells that had been porated and loaded with trehalose were also tested for 

desiccation tolerance over a range of final moisture contents.   Next day survival of cells was 

better for trehalose loaded cells at all levels of desiccation.   

 

MATERIALS AND METHODS 

Cell Culture 

J774.A1 mouse macrophage cells were obtained from American Type Culture Collection 

(Manassas, VA).   An ATP-resistant subclone of mouse macrophage cells (ATP-R) derived from 

J774.A1 cells were a generous gift from Thomas Steinberg (Washington University, St. Louis, 

MO); these cells express greatly reduced levels of the functional P2X7 receptor channel.  All 

cells were maintained as a suspension in spinner flasks with Dulbecco’s Minimum Essential 

Medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) 

(HyClone, Logan, UT) and penicillin (100U/mL)–streptomycin(100ug/mL) (Invitrogen).  Cells 

were maintained at a density of less than 1 x 10
6
 cells / mL. 

 

Trehalose Loading by ATP Dependent Channel 

Cells were collected from spinner flasks, washed once with phosphate buffered saline (PBS) 

(Invitrogen), and counted using a Z1 Cell and Particle Counter (Beckman-Coulter, Miami, FL).  

Cells were pelleted and resuspended in an intracellular-like poration buffer solution containing 

250 mM trehalose, 1 mM MgSO4, 5 mM glucose, 1X MEM Vitamin Solution (Invitrogen, 
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Carlsbad, CA), and 1 X MEM Non-Essential Amino Acids Solution (Invitrogen, Carlsbad, CA) 

buffered to pH 7.0 in 50 mM potassium phosphate buffer (KH2PO4/K2HPO4) (Menze et al, 

2005).  To each sample the appropriate amount of stock 50 mM ATP (Sigma, St. Louis, MO) in 

PBS pH 7.0 was added to yield a final concentration of 5 mM ATP.  This resulted in a final 

extracellular trehalose concentration of 225 mM.  In control non-porated samples, the equivalent 

amount of PBS pH 7.0 was added to each sample instead of ATP solution.  Cells were porated at 

a final density of 4 x 10
6
 cells/mL.  Two basic poration and loading schemes were utilized.  In 

the isothermal scheme, cells were suspended in poration buffer supplemented with ATP 

(trehalose concentration: 225 mM) and then incubated at 37 C in a water bath or on ice, for the 

prescribed amount of time.  For studies involving 500 mM extracellular trehalose, the 

appropriate amount of 1 M trehalose stock solution was added together with ATP to bring the 

final concentration to 500 mM.  In the two-step protocol, the samples were incubated with ATP 

supplemented poration buffer (trehalose concentration: 225 mM) in a 37 C water bath for 5, 10, 

or 15 min and then moved to ice for the duration of loading.  For two-step studies involving 500 

mM extracellular trehalose, the appropriate aliquot of 1 M trehalose solution in poration buffer 

containing 5 mM ATP was added to each sample at the end of the poration period to adjust the 

concentration up to 500 mM, prior to incubation on ice.    

 

HPLC quantification of Trehalose Uptake  

The time course of trehalose uptake was followed by sampling from a 6-8 mL volume of 

cell suspension in ATP-containing poration buffer.  Aliquots of 1 mL were removed from the 

primary volume and diluted in 10 mL of DMEM supplemented with 1 mM MgCl2 at each time 

of interest.  The samples were incubated at room temperature for 5 min to achieve pore closure 
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and then washed three times with PBS (10 mL volumes).  The cells were centrifuged after every 

wash. This aggressive washing regimen was intended to remove extracellular trehalose as well as 

the cellular debris resulting from any cell lysis and damage that occurred during poration.  

Because cells are very fragile after poration and loading, this washing procedure was not used 

during routine trehalose loading.  To investigate whether the trehalose would persist after an 

overnight recovery period, an extra set of samples (10 min incubation at 37°C, followed by 90 

min incubation on ice) were returned to overnight culture and then analyzed exactly the same 

way after this recovery period.  In preparation for intracellular trehalose extraction, the final cell 

pellet was resuspended in HPLC grade H2O (Sigma), and transferred to a 1.5 mL Eppendorf tube 

for frozen storage at –20 C.  At the time of analysis the samples were heated for 20 min in a 95 

C hot block (VWR Scientific).  After 10 min of heating, the caps were opened momentarily to 

release the gases expelled from the hot sample.  The cell lysate was then centrifuged at 15,000 g 

for 10 min to pellet the cellular debris and denatured protein. The sugar-containing supernatant 

was filtered through a 13 mm 0.2 m PTFE syringe filter (Fisherbrand) into 2 ml HPLC vials, 

and the remaining pellet used for total protein analysis.  Carbohydrate peaks were separated 

using an Agilent 1100 Series HPLC with a Hamilton RCX10 column operating at 35 C.  The 

mobile phase was 100 mM NaOH, operating at a flow rate of 0.75 mL/min.   The eluted peaks 

were quantified using pulsed amperometric detection (ESA Coulochem II, Cambridge, MA), 

with pulse characteristics as follows: E1=200 mV, t1=500 ms, E2=-2000mV, t2=10 ms, and 

E3=600 mV, t3=10 ms. Three-point trehalose standard curves were generated for every 8 

samples injected.   

The total protein in each HPLC sample was determined by Coomassie Plus Protein Assay 

(Pierce, Rockford, IL) per manufacturer’s instructions for 96-well method.  Optical density (570 
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nm) was measured on ThermoMax Microplate Reader (Molecular Devices, Sunnyvale, CA).  

Trehalose concentrations were normalized to total cell protein as determined per the Coomassie 

assay.  A standard curve of total cellular protein as a function of cell number was determined for 

J774 cells, to allow a calculation of moles of trehalose per cell.  Any data points falling outside 

of the linear range of the protein assay were discarded and re-analyzed at the appropriate 

dilution. 

 

Cellular Water Content.  To calculate the intracellular concentration of trehalose, it was 

necessary to estimate cell volume, as well as determine the free water content of the cell 

accessible to the loaded sugar.  To determine the osmotically active fraction of cell water, cell 

volumes were measured as a function of extracellular osmolality. Solutions of varying tonicity 

(300 - 880 mOsm) were prepared by dilution of 10 x PBS solution with water.  The osmolarity of 

the final solution was measured in triplicate using a microOsmette osmometer (Precision 

Systems, Natick, MA).  Cells were incubated for 15 min in the various PBS solutions and then 

the mean cell volume was obtained using the cell and particle counter described previously.  

Prior to each data acquisition the coulter counter system and aperture were filled with PBS 

solution of appropriate osmolality and the aperture re-calibrated using latex beads of 10 m 

diameter.  All measurements were made at room temperature. 

 

Cell Viability Assays.  After ATP poration, cells were transferred to spinner flasks for suspension 

culture. After culture for 0, 24, 48 and 72 hrs, aliquots of cell suspension were taken from the 

flask and membrane integrity was assessed by trypan blue exclusion (0.4% solution, Sigma). The 

number of viable cells was determined by counting with a hemocytometer. The immediate cell 
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survival after poration was normalized to that of the non-treated control.  For 24, 48, and 72 h 

time periods the total number of viable cells in each sample was normalized to the corresponding 

original plated viable cell numbers.  AlamarBlue
TM

 (BioSource International Inc., Camarillo, 

CA) was also used to monitor the metabolic activity of the cells (Menze et al, 2005).  Briefly, 

AlamarBlue™ stock solution was added to a final concentration of 10 % (v/v) in 2 ml of 

standard culture medium containing equal numbers the same amount of viable cells (between 

20,000 to 40,000 cells per well) in a 12-well multidish (Fisher Scientific, Pittsburg, PA). The 

change in the absorbance at λ = 570 nm and λ = 600 nm was measured with a microplate 

spectrophotometer (Benchmark Plus
TM

, BIO-RAD, Hercules, California) at various time 

intervals. The percent of reduced alamarBlue™ (RA %) was calculated as: RA % = [A570 – 

A600 •Ro] • 100, where A570 and A600 are the wavelength-specific absorbances after 

subtracting the absorbance of standard culture medium without alamarBlue™. Ro is the ratio of 

A570/A600 of standard medium containing 10 % alamarBlue™.  The data was normalized to 

that of corresponding non-treated control cells. 

  

Drying Studies.  After trehalose was loaded via the P2X7 receptor channel, cells were tested for 

improved desiccation tolerance. Prior to drying, cells were incubated at 37°C for 10 min in 

poration buffer containing 225 mM trehalose.  Cells in suspension were then transferred to an ice 

bath for 90 min.  Cells were then diluted into CO2-equilibrated culture medium without 

centrifugation and given an 18-h recovery period in spinner culture.  Control J774 cells received 

no poration treatment prior to drying.  Immediately prior to desiccation experiments, cells were 

pelleted by centrifugation and re-suspended in either isotonic RPMI (1 part RPMI and 2 parts 

H20) containing 200 mM trehalose or in an intracellular-like buffer of similar composition as the 
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loading buffer (50 mM K2HPO4/KH2PO4, 250 mM trehalose, 1 mM MgSO4, 5 mM glucose, 1x 

MEM vitamin solution and essential amino acids, 0.5 mM alpha-lipoic acid, 10 mM NaCl, 0.1 

mM EDTA, 10 mM pyruvate, pH 7.0, ~365 mOsm).  Cells were washed one time in this buffer 

(10 mL aliquot) prior to re-suspension of the cells at the appropriate dilution for drying studies.  

Ten 15 L droplets of cell suspension were pipetted onto 35 mm tissue culture dishes and placed 

in a desiccation cabinet containing Drierite desiccant (W.A. Drierite Co., Xenia, OH) at ambient 

temperature (20 – 25 C).  Samples were dried to a range of final moisture contents, as 

determined gravimetrically.  Water content was expressed as grams water per gram of dry mass.  

Sample dry mass was determined by drying parallel samples for 12 h at 60 C.  Upon reaching 

the target moisture content, samples were then immediately rehydrated with excess DMEM 

containing 10% FBS and penicillin/streptomycin and placed in a 10 % CO2 incubator at 37 C 

overnight.   To quantify dehydration tolerance, cells were scored for Trypan Blue exclusion  after 

the poration recovery period just prior to drying, and again after rehydration and overnight 

recovery.  Cell counts after drying and recovery were normalized to cell counts immediately 

prior to drying.   

 

Statistical Analysis.  All trehalose loading experiments were repeated four to six times, using a 

minimum of three different batches of cells (i.e., different culture dates and passage levels).  The 

data were analyzed using Statgraphics Plus 5.1 (Rockville, ML).  Differences between groups 

were analyzed by ANOVA using the Tukey test for significant differences.  When groups 

contained unequal numbers of observations, the Bonferroni test of significance was used.  

Significance was evaluated at both the 95 and 99 % level and reported accordingly.  Slope 

analyses for the data in Figure 6 were performed following the procedures of Zar (1999). 
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RESULTS 

Cellular Volume and Osmotically Active Water.  To estimate the average volume of cells under 

physiologic conditions as well as determine the osmotically active component of the cell volume, 

the volume of J774 cells was measured in PBS solutions of various osmolalities.  A classic Boyle 

van’t Hoff plot was generated by plotting cell volume as a function of inverse osmolality, as is 

shown in Figure 1.  The measured cell volume in each hyper- or hypotonic solution was 

normalized to the volume measured at 342.5 mOsm, as this was the average osmolality of the 

full complement DMEM solution in which the cells were routinely cultured.  The volume at this 

osmolality was 1742  358 fL (AVE  SD, n = 5). This value was also used in subsequent 

calculations of intracellular molarity to represent the normal physiological volume of the cell.  A 

linear curve fit of the data revealed an intercept of 0.317, which corresponds to the osmotically 

inactive fraction of the cell volume.  Conversely, 1190 fL of the total cell volume were 

considered osmotically active water and available in a volumetric sense for loaded trehalose.   

 

Trehalose Quantification.  HPLC sample peaks were integrated against trehalose standard 

concentration curves, yielding the total mass of trehalose in the cell lysate.  Total protein in the 

same lysate was measured per the Coomassie protein assay.  Using a calibration curve of cell 

number versus total cell protein (data not shown) the mass of trehalose measured per cell was 

computed.  The conversion to intracellular molarity was achieved by utilizing the average 

volume of osmotically active water  per cell, as determined in prior experiments.  It should be 

noted that by normalizing to the cellular protein in the final extract, the trehalose signals reported 

are expected to represent only the healthy portion of the cell population that survived both the 

poration and the aggressive washing protocol.  Trehalose that had loaded into cells that 



 13 

subsequently lysed during the poration period or during the washing steps would have been 

washed out prior to preparation of the final cell extract.  The final cell wash prior to suspension 

in water was also analysed for trehalose content to rule out sample contamination from 

extracellular trehalose.  Typical chromatograms of the sample and wash solutions are shown in 

Figure 2, along with a trehalose standard chromatogram.  The average trehalose concentration in 

the final PBS wash solution was 0.40  0.07 μg /ml (mean  SEM, n = 42), or approximately 1.2 

μM.  Assuming a conservative final dilution in water of 1:10 (100-l residual PBS wash solution 

in 1 mL final suspension volume), this procedure yielded a signal-to-noise ratio greater than 400 

for all samples analyzed in this study.   

 

Isothermal Trehalose Loading Protocol.  The kinetics of trehalose loading at 37 ˚C in porated 

cells and control cells is shown in Figure 3, for both the J774 cell line and the J774.ATPR cell 

line.  After 90 min of ATP stimulation, the intracellular trehalose concentration reached a level 

of 48 ± 2 mM (mean ± SEM).  This value represents a loading efficiency (intracellular versus 

extracellular concentration) of 21 %.  The rate of uptake was linear throughout the duration of 

the experiment, (R
2 

= 0.996).   Conversely, untreated J774 cells and the treated and untreated 

ATP-resistant J774 cells loaded very slowly and non-linearly, achieving intracellular molarities 

of < 25 mM in the same time period.  The difference between stimulated and non-stimulated 

J774 cells was statistically significant at the 99 % confidence level, whereas a significant 

difference between ATP-stimulated and non-stimulated J774.ATPR cells was not observed.   

 

Two-Step Loading Protocol.   In an effort to minimize the adverse effects of extended poration 

on next day survival (discussed in next section), while still promoting the loading of being able 

trehalose to levels useful for biopreservation, a two-step poration scheme was investigated.  
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Because pore formation is temperature-dependent and optimal at 37 ºC, J774 cells in poration 

buffer containing 5 mM ATP and 225 mM trehalose were placed at 37 C for a period of 5, 10 or 

15-min.   The samples were then placed on ice (0 C) to investigate whether the pore would 

remain open and allow trehalose loading to proceed.  As a control, cells in an identical solution 

were placed on ice, without the preliminary period at 37 C to promote pore opening.   The 

results obtained using this loading protocol are shown in Figure 4(A).  ATP-stimulated cells that 

had been incubated for 15 min at 37 C and then moved to an ice bath (2-step scheme) continued 

to load trehalose at a rate comparable to the loading rate at 37 C (isothermal scheme).  The 

difference between ATP-stimulated and non-stimulated J774 cells was significant at the 99 % 

confidence level for all incubation times at 37°C (5, 10, and 15 min).  Trehalose levels in 

samples that were returned to overnight culture prior to analysis were statistically the same 

(p<0.01) as samples that were not cultured overnight but analyzed immediately after the poration 

time period (data not shown). When a 5 min incubation at 37 °C was used, the trehalose-loading 

appeared to be slightly less efficient when compared to the 10 or 15 min pre-incubation period, 

perhaps due to a reduction in the total number of pores that formed within this shorter time 

period.   

 The loading results of J774 cells incubated on ice without a preliminary incubation step at 

37 C are shown in Figure 4(B).  These cells loaded very slowly and nonlinearly, reaching a 

concentration < 15 mM at 90-min, consistent with previous negative controls without ATP for 

pore activation.  A small but statistically significant difference was noted between stimulated and 

non-stimulated ATP resistant cells (p<0.01).  The effect of 500 mM extracellular trehalose on the 

intracellular accumulation of trehalose was also investigated.  At the end of the 15-min pore 

formation step in poration buffer containing 225 mM trehalose, the trehalose concentration was 
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increased to 500 mM, and the samples were then moved to the ice bath.  For comparison, J774 

cells were also incubated at 37 C in poration buffer containing 5 mM ATP and 500 mM 

trehalose, with no change in incubation temperature.  As can be seen in Figure 5, the loading at 4 

C (2-step) is comparable to that seen at 37 C (isothermal), resulting in equivalent amounts of 

intracellular trehalose at 60 and 90-min.   

General observations on next day survival following poration revealed that cell losses 

were high when the poration time at 37 °C exceeded 15 min in both 225 mM and 500 mM 

trehalose solutions.  Next day survival was generally better when the osmotic stress was reduced 

(i.e. 225 mM solutions were better than 500 mM solutions at equivalent incubation times).  

Based on these loading results and general viability observations, specific poration and loading 

protocols were further evaluated for poration toxicity and their ability to confer desiccation 

protection to J774 cells. 

 

Poration and Cell Surviorship.  The effect of poration time on next day survival was determined 

by monitoring cells that were returned to overnight culture following different periods of ATP 

exposure at 37°C and on ice.  As can be seen from Table 1, the membrane integrity of cells was 

high immediately after poration and loading for all of the treatments investigated.   Survival 

studies revealed that although a 15 minute poration period at 37°C yielded good next day 

survival (59%), when a 60 or 120 min loading period on ice was added, the next day survival of 

cells diminished to 24 and 11%, respectively.   Increasing the poration time to 30 min at 37°C 

resulted in the loss of ~90% of cells, and the small proportion of cells that remained 

demonstrated no growth potential by 48 h.   Reducing the poration time at 37°C to 5 or 10 min 

gave better overall survival results even with extended time on ice.  For example, the membrane 
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integrity results revealed that a 10 min poration period at 37 °C followed by 60 or 120 min on ice 

resulted in survival of approximately half of the cell population, with the surviving cells 

retaining their proliferative potential, as evidenced by a doubling time similar to control.  The 

consistent rate of Alamar Blue
TM 

reduction compared to control over extended time periods 

(Table 2) suggested that the surviving fraction 24 h following poration retained its metabolic and 

proliferative potential.  These survival and metabolic data are consistent with those reported in 

Menze et al (2004) for comparable loading conditions.    

 

Dehydration Tolerance of Trehalose-Loaded Cells.   The dehydration tolerance of trehalose-

loaded cells was investigated using the two-step method of poration and loading (10 min of 

poration at 37 ºC followed by 90 min of loading at 4 ºC).   The effect of drying on cell viability, 

as measured by the membrane integrity dye trypan blue, is shown in Figure 6.  Untreated cells 

and cells that had been loaded with trehalose via the P2X7 receptor channel were dried to a range 

of moisture contents in a desiccation cabinet (0.75-3.5 gH2O/gdw).  Untreated cells were dried 

either in an isotonic RPMI-based trehalose containing buffer or an intracellular-like high 

potassium buffer (described in Materials and Methods).  Because the intracellular-like buffer 

gave better overall survival in controls, trehalose-loaded cells were dried exclusively in this 

buffer.  Cells that were dried immediately after trehalose loading, i.e., without a recovery period, 

exhibited poor survivorship that was even lower than non-porated cells (data not shown).  

However, adding a recovery period of 18-h improved the survivorship over non-manipulated 

cells.  The slopes of all three lines in Fig. 6 were statistically different from one another (P<0.05) 

ATP-poration using the 2-step poration and loading scheme, followed by an 18-h recovery 

phase, significantly improved dehydration tolerance as compared to controls.   
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DISCUSSION 

The experiments performed in this work indicate that ATP stimulation of J774 cells to 

reversibly permeabilize the cell membrane is an effective means to load trehalose intracellularly.  

The poration medium used in these experiments was optimized to produce the best next-day 

survival of porated cells, the details of which are presented in Menze et al. 2004.  In the present 

paper, the primary efforts were to maximize the overall loading efficacy and final intracellular 

concentration of trehalose, without sacrifice of next day cell survival.  The optimized loading 

strategy involved reduction of the incubation or loading temperature to 4 C after the initial pore 

formation period at 37 C.  This modification allowed the loading period to be extended to 

several hours before irreversible cell disruption occurred, approximately a 6-fold improvement 

over the non-toxic loading window of 15-min at 37 C.    This step was crucial to achieve 

enough intracellular trehalose to be practical for cell preservation. 

A number of factors and assumptions go into determining an estimate of intracellular 

trehalose concentration.  Various investigators normalize the raw sugar signal in different ways.  

In the current work, the osmotically inactive volume was determined for the particular cell type 

in question in order to understand the water volume that was available to solvate the loaded 

sugar.   This approach was also used by Acker et al (2003) for an equilibrium loading case with 

good success, thereby suggesting overall validity for this method of normalization.   An 

intermediate step between normalizing the HPLC signal to cell volume, is the determination of 

the amount of trehalose per cell.  Because sampling error is inherent in any aliquot-based 

experiment despite efforts to homogenize samples, it was essential to determine the cell number 

in each extract prepared for sugar analysis.   This was done by analyzing the total protein in each 

sample and estimating the cell number from a standard curve.   
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Because some of the poration protocols utilized in this study are known to induce cellular 

damage, the question can be raised as to whether the intracellular trehalose concentrations 

reported truly reflect sugar levels in reversibly porated cells or instead originate from cells that 

internalize trehalose because they have become leaky and damaged.  A number of arguments can 

be put forward that rule out the latter scenario.  The isothermal 37 ºC loading data will be used as 

an example, since this protocol induced considerable cell damage very early in the trehalose 

loading process.  Although identical volumes of cell suspension (1 ml) were removed at each 

poration endpoint, the total cell protein in the final extract was found to decrease with increasing 

poration time.  The results of the total cell protein analysis for this data set were consistent with 

the observed pattern of cell viability following poration, i.e. a declining cell number with 

increasing poration time.  If the membrane-compromised cells were not adequately removed 

from the population by the washing steps, then this population would contribute to the total cell 

protein signal determined for the sample and one would not expect to see any decrease in cell 

protein signals over time.   The observation of protein loss over time, though not an independent 

indicator of cell death, does support the notion that only healthy cells are included in the final 

extract for sugar analysis.   

Further evidence supporting the validity of the intracellular trehalose concentration 

estimates can be found in the raw HPLC signals.  If trehalose was loading into an increasingly 

irreversibly permeated population of cells, one would expect the raw HPLC signals from the 

identical volume aliquots to increase with time, in a manner consistent with the observed cell 

degradation (i.e. exponentially).  An examination of the raw HPLC signals for the isothermal 

loading data revealed no such pattern, and within the range of sampling error, the signals 

generally increased initially (consistent with loading into all cells), and then decreased over time 
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(consistent with loss of part of the population).  When the raw signals were corrected for cell 

number using the measured protein data, a highly linear pattern of trehalose uptake was observed 

over the 90 minute time period (correlation coefficient = 0.998), consistent with progressive 

loading into a healthy population of cells.    

Additional evidence that the extracts are populated by only healthy porated cells is 

demonstrated in the mathematical consistency of data from experiments involving different 

extracellular conditions.  Cells porated in 500 mM trehalose versus 225 mM trehalose reveal a 

~2.2-fold difference in intracellular concentration at all time points, consistent with simple 

diffusion through a uniform population of non-selective pores.   

Finally, trehalose quantification was performed on samples immediately after poration 

and after they were returned to overnight culture.   No statistical difference could be resolved 

between these groups.  If only dead cells were loading trehalose, the overnight recovery period in 

trehalose-free culture media would result in leakage of trehalose from the dead cells and 

therefore a change in the measured intracellular trehalose levels.  This was not observed. 

It is both possible and likely that a small percentage of cells that have not undergone cell 

lysis during poration and processing but that eventually go into an apoptosis cascade, are 

included in the population analyzed for sugar content.  It is also equally likely that a small 

percentage of cells that are sub-lethally damaged are also removed from the sample due to the 

robustness of the washing steps.  Because both of these effects are expected to be minimal and to 

contribute oppositely to the reported trehalose concentration, it is believed that the estimated 

intracellular trehalose concentrations are both relatively and absolutely valid. 

Activation of native P2X7 receptors to load sugars or other compounds to protect against 

freezing or desiccation damage is a novel preservation methodology.  Consequently, there is very 
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little literature relevant to the kinetics and toxicity of loading millimolar amounts of sugars into 

cells.  Studies of various aspects of pore formation have been examined by others by studying 

the loading fluorescent dyes and other markers of cellular influx (Bennett et al., 1981; Steinberg, 

1987, Virginio et al., 1999).  Many of these dyes were of similar size as glucopyranosal-based 

mono- and di-saccharides (170-342 daltons).  Virginio et al. (1999) have examined the kinetics 

of YOPRO fluorescence dye uptake as a function of the constitution of the external milieu in 

human embryonic kidney (HEK293) cells expressing the P2X7 receptor.  They found rapid dye 

uptake (detectable cellular fluorescence within seconds) with only a 5-s application of agonist.  

The uptake rate was higher in low divalent ion solution, such as was used in the current work.  

However, these experiments were performed with 2’3’-O-(benzoyl-4-benzoyl)-ATP (BzATP), a 

more potent agonist than ATP, making it difficult to extrapolate results to the current 

experiments.  Gudipaty et al. (2001) demonstrated that P2X7 receptor function in human 

monocytes is very sensitive to the ions that are present extracellularly.  They found that 

replacement of extracellular Na+ and Cl- with K+ and non-halide anions facilitated ATP-

dependent poration, as well as increased the ATP affinity of the receptors.  For these reasons 

potassium phosphate buffer was chosen as the base buffer for the poration medium used in this 

study (Menze, 2004). 

In the current experiments uptake of trehalose was shown to be substantial in J774 cells 

even without the presence of ATP in the incubation medium.  The ATP experiments performed 

at 4 C with normal J774 cells and the experiments performed at 37 C incubation with J774 

ATP-resistant cells show very similar uptake patterns, suggesting that the baseline trehalose 

uptake in the absence of ATP-induced pore formation is not temperature dependent.  Because 

functional pores are thought to be absent in both of these cases, the similarity of the response 
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curves is expected.  However, the magnitude of uptake was somewhat unexpected.  

Contamination from residual extracellular trehalose was ruled out by examining the level of 

trehalose in the final wash solutions.  Although detectable amounts of trehalose were present, the 

magnitude was such that it was expected to contribute less than 0.25% to the intracellular signal.  

It is possible that a fluid phase endocytosis mechanism is responsible for the baseline level of 

uptake observed in J774 cells. 

The goal of the current work was to take advantage of non-selective endogenous pore 

formation to load trehalose intracellularly while retaining good long-term cell viability.  It is well 

recognized that ATP can induce or potentiate apoptosis in cells expressing P2X7 receptors and 

that prolonged exposure to ATP will ultimately result in cell death (Coutino-Silva et al., 1999).     

However, there are a number of mediating factors that play a role in modulating the sensitivity of 

cells to ATP-induced cytolysis. Steinberg et al., (1987) found that the dose dependency of 

poration agonists was not directly correlated with apoptosis sensitivity.  It is also clear that 

permeability precedes the first stages of any observed apoptotic cascade (Zoetewij et al, 1996, 

and Coutino-Silva et al, 1999).  Coutino-Silva et al (1999) indicated that at least 10 min of 

exposure at 37 ºC was necessary to cause the earliest stages of apoptosis.  In contrast, 

permeabilization occurs almost immediately after exposure.  This suggests that even if apoptosis 

is triggered by poration, there is the potential to intervene at the earliest stages to reverse the 

process.  The time-temperature-concentration history necessary to induce apoptosis or necrosis, 

is not known, and the nature of the damage as well as the sensitivity to these variables is cell-

type dependent (Zanovello, 1990).  Data acquired in this study indicates that temperature can 

also play a key role in preventing damage associated with permeabilization.  
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The ionic environment of the cell can also play a very significant role in the transport of 

species across the cell membrane, as well as in mediating cytolytic events.  Virginio et al. (1999) 

measured the time course of ionic currents as a function of the constitution of the external milieu 

in human embryonic kidney (HEK293) cells expressing the P2X7 receptor.  In patch clamp 

experiments with various ionic constitutions, they demonstrated that extracellular sodium 

promotes cell disruption, whereas intracellular sodium retards it.   In this work extracellular 

sodium was minimized to maintain the highest level of cell integrity. 

The improvement in cell viability that results from carrying out the ATP exposure at 

lower temperature is consistent with the current understanding of cellular metabolism and simple 

diffusion.  The Q10 value (defined as the factor by which the rate changes following a change of 

10 ºC in temperature) is of order 2 for most enzymatic reactions, including those involved in the 

degradative processes of cell injury and the functioning of ion pumps (Schmidt-Nielson, 1997).  

A change in temperature from 37 ºC to 4 ºC therefore results in ~10-fold reduction in the rates of 

many cellular reactions.  In contrast, the temperature sensitivity of the coefficient of mass 

diffusion is very low, varying less than 2-fold over the same temperature range.  A temperature 

drop from 37 ºC to 4 ºC would therefore result in a minimal loss of trehalose loading ability, as 

was observed in this study, while potentially preventing some cellular degradative processes 

from proceeding, a result that was also observed in the current study.  

 Although the physiologic role of the P2X7 receptor has not been fully characterized in 

any cell type or species, this receptor is thought to play a role in the inflammatory response.  The 

levels of ATP required to activate receptors (mM range) are not normal physiologic levels, but 

can be generated at the site of injury where cytoplasmic ATP can leak into the extracellular 

space.  Some have hypothesized that the P2X7 receptor acts as cytolytic pore with the primary 
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purpose being to elicit cell death in the activated molecule, however later studies have suggested 

its role was much more elaborate, facilitating cell-cell communication (Falzoni, 1995).   

The current work has provided evidence that ATP-induced cell permeabilization of P2X7 

expressing cell types can load high levels of intracellular trehalose (up to 130mM) in a manner 

that provides dehydration tolerance to cells, consistent with studies that have delivered trehalose 

into the intracellular space by other methods.  The ATP poration technique does not involve 

genetic manipulation of cells or the insertion of foreign materials into the cell membrane, and is 

therefore believed to have certain practical benefits over other loading techniques.  Also, the 

sugar loaded via these non-selective pores is believed to be uniformly distributed throughout the 

cytoplasm (Coutinho-Silva, 1999), making it fully accessible to protect membranes, cellular 

proteins, and cell organelles.   

In this work, it was found that stimulation of J774 cells with ATP could induce the 

formation of pores that were permeable to trehalose, presumably by activating P2X7 receptors.  

Decreasing the incubation temperature during the exposure period to ATP made it possible to 

extend the exposure time to ATP prior to onset of cytolysis, with negligible impact on the 

loading efficiency of trehalose.  Furthermore, it was shown that under optimized loading 

conditions, the levels of intracellular trehalose that were achieved were adequate to confer 

improved dehydration tolerance to J774 macrophages.  The findings in this work demonstrate the 

overall utility of using ATP stimulation of native P2X7 receptors to load trehalose and other 

protectants that otherwise cannot effectively permeate the cellular membrane.   Further work is 

needed to look at long term survivability and function of cells that have been porated using ATP 

stimulation of P2X7 receptors, as well as the long-term functionality of cells dried to various 

critical moisture levels.    
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CONCLUSIONS 

 

 The time course of trehalose uptake following ATP stimulation of J774.A1 mouse 

macrophages was explored in this study.  The pattern of trehalose uptake revealed that although 

it was necessary to maintain samples at 37 ºC for a short period of time (~5 min) during ATP 

exposure to achieve formation of a non-selective pore, the pore appeared to remain open when 

the sample was moved to ice.  This was a critical finding in that the next day recovery of cells 

that were porated and exposed to trehalose at 37 ºC for extended periods of time (>30-min) 

resulted in zero next-day survival of cells.   By using a two-step protocol that involved a short 

time period at 37 ºC to allow pore formation, and then continuing the incubation period on ice, 

trehalose loading could progress for up to 2 h before the next day survivability was significantly 

affected.  This low temperature incubation allowed a 6-fold increase in the amount of trehalose 

that could be loaded before survival was adversely affected, compared to isothermal 37ºC 

incubation.  Cells that had been ATP-porated and loaded with trehalose were also tested for 

dehydration tolerance over a range of final moisture contents.   Next day survival of cells was 

better for trehalose-loaded cells at all levels of dehydration.   
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Figure 1. Normalized cell volume as a function of inverse extracellular osmolality.  Cells 

were suspended in sodium chloride solutions of varying osmolarity and allowed to equilibrate 

volumetrically for 15 min.  The cell volume was normalized to the isotonic volume and plotted 

as a function of inverse osmolality.  The intercept represents the osmotically inactive fraction of 

the cell volume (n=3). 
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Figure 2. Characteristic HPLC chromatograms of sample, standard, and final PBS wash 

solutions.  Based on signals from final wash solutions, residual extracellular trehalose was found 

to contribute insignificantly to the signals recorded for cell extracts.  Signal-to-noise was >400.   
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Figure 3. Time course of intracellular trehalose uptake in J774 and J774.R cells under 

isothermal conditions (37 C).  Cells were incubated in an intracellular-like trehalose buffer 

containing 225 mM trehalose.  ATP+ cells were exposed to 5 mM ATP.  ATP- samples were 

exposed to an equivalent volume of PBS.  The J774.R cell line is a subclone of the J774 line that 

is resistant to ATP-poration and expresses greatly reduced levels of the functional P2X7 receptor 

channel.  ATP stimulated J774 cells showed a significantly higher amount of intracellular 

trehalose compared to non-treated controls (mean ± SEM; p<0.01).  Stimulated and non-
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stimulated J774.R cells had equivalent amounts of intracellular trehalose, consistent with the 

absence of pore formation. 
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Figure 4. Time course of intracellular trehalose uptake in J774 cells using a 2-step loading 

procedure with 225 mM extracellular trehalose.   Cells were incubated in an intracellular-like 

trehalose buffer containing 225 mM trehalose for various times (A) at 37°C to open the P2X7 

receptor channel, followed time periods on ice for additional loading,  or (B) on ice alone.  ATP+ 

cells were exposed to 5 mM ATP.  ATP- samples were exposed to an equivalent volume of PBS.  

ATP-stimulated J774 cells showed a significantly higher amount of intracellular trehalose 

compared to non-treated cells for all incubation times at 37°C (mean + SD; p<0.01).   

Appreciable levels of trehalose were not observed for any sample incubated only on ice.  
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Figure 5. Time course of intracellular trehalose uptake in J774 cells using a 2-step loading 

procedure with 500 mM extracellular trehalose.   Cells were incubated in an intracellular-like 

trehalose buffer containing 225 mM trehalose for 15 min at 37 C.  ATP+ cells were exposed to 

5 mM ATP.  ATP- samples were exposed to an equivalent volume of PBS.   After this pre-

incubation period the concentration of extracellular trehalose was increased to 500 mM and 

samples were either held at 37°C or transferred to an ice bath.  ATP-stimulated cells showed a 

significantly higher amount of intracellular trehalose compared to non-treated cells for both 

loading temperatures (mean + SEM; p<0.01).   Both the isothermal and 2-step treatment resulted 

in equivalent amounts of intracellular trehalose at 60 and 90-min following ATP stimulation.  
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TABLE 1.  Survival and growth of porated cells.  For the Trypan Blue assay survival is 

expressed as the percentage of cells with an intact membrane at the indicated time period post-

poration compared to the number of intact cells immediately following poration.  For the Alamar 

Blue assay survival is expressed as the percent reduction of Alamar Blue compared to control at 

the indicated time following poration.  n=3-5 replicates 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Survival and Growth (%) 

Mean (SD) 

Trypan Blue exclusion Alamar Blue
TM

  

Immediate 24-h 48-h 72-h 22-h 46-h 70-h 

Control 100 141 (47) 324 (75) 640 (87) 100 100 100 

15’@37°C/0’ ice  59 (4) 86 (44)     

30’@37C/0’ ice  11 (5) 9 (8)  25 (6) 15 (10) 15 (9) 

5’@37°C/60’ ice 89 (16) 54 (7) 135 (37)  54 (16) 49 (8) 49 (17) 

5’@37°C/120’ ice 96 (9) 45 (16) 125 (16)  56 (12) 46 (11) 51 (16) 

10’@37°C/90’ ice 90 (19) 49 (12) 132 (43) 233 (104) 56 (20) 45 (29) 48 (31) 

15’@37°C/60’ ice 89 (16) 24 (9) 85 (52)     

15’@37°C/120’ ice 83 (9) 11 (5) 9 (8)     
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Figure 6.  Recovery of J774 cells after drying to various moisture contents.  Cells were dried in 

15 ul droplets in a desiccation cabinet to a range of final moisture contents.  Cells were porated 

at 37C for 10 min followed by loading on ice for 90 min.  Cells were returned to overnight 

culture for a recovery period prior to drying in high K
+
 buffer.  Control cells received no 

treatment prior to drying and were dried either in RPMI-based buffer with 200 mM trehalose or 

in high K+ buffer with 250 mM trehalose.  All slopes were statistically different from one 

another based on slope analysis (p < 0.05). 
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