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ABSTRACT

Americans drive 2,360,000,000,000 miles each year, far outstripping other nations. Every
time a driver takes to the road, and with each mile she drives, she exposes herself and others to the
risk of accident. Insurance premiums are only weakly linked to mileage, however, and have largely
lump-sum characteristics. The result is too much driving and too many accidents. This paper begins
by developing a model of the relationship between driving and accidents that formalizes Vickrey’s
[1968] central insights about the accident externalities of driving. We use this model to estimate the
driving, accident, and congestion reductions that could be expected from switching to other
insurance pricing systems. Under a competitive system of per-mile premiums, in which insurance
companies quote risk-classified per-mile rates, we estimate that the reduction in insured accident
costs net of lost driving benefits would be $9.8 -$12.7 billion nationally, or $58 -$75 per insured
vehicle. When uninsured accident cost savings and congestion reductions are considered, the net
benefits rise to $25 -$29 billion, exclusive of monitoring costs. The total benefits of uniform per-
gallon insurance charge could be $1.3 -$2.3 billion less due to heterogeneity in fuel efficiency. The
total benefits of “optimal” per-mile premiums in which premiums are taxed to account for accident
externalities would be $32 -$43 billion, or $187 - $254 per vehicle, exclusive of monitoring costs.
One reason that insurance companies may have not switched to per-mile premiums on their own is
that most of the benefits are external and the transaction costs to the company and its customers of
checking odometers could exceed the $31 per vehicle of gains that a single company could

temporarily realize on its existing base of customers.
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...the manner in which [auto insurance] premiums are computed and
paid fails miserably to bring home to the automobile user the costs he im-
poses in a manner that will appropriately influence his decisions.

- William Vickrey

Americans drive 2,360,000,000,000 miles each year, far outstripping
other nations.! The cost of auto accidents is commensurately large: 42,000
fatalities,2 roughly $100 billion in accident insurance,’ and according to
the Urban Institute [1991] over $250 billion in uninsured accident costs
per year. .

Every time a driver takes to the road, and with each mile she drives,
she exposes herse!f and others to the risk of accident. An optimal tort and
insurance system would charge people the full social cost of this risk expo-
sure on the marginal mile of driving. Otherwise, they will drive too much
and cause too many accidents. Unfortunately, neither the tort nor insurance
system comes close to optimality. More unfortunate still, the cost of their
shortfalls is not just too many accidents, but is compounded by the extra
congestion and pollution that over driving causes.

The shortfall of the insurance system is that premiums are only weakly
linked to mileage, so that they have largely lump-sum characteristics. Al-
though premiums do depend upon statements about mileage, the mileage
classifications are coarse, low-mileage discounts are extremely modest and
these mileage figures are self-reported estimates of future mileage with no
implicit or explicit commitment.* Few drivers therefore pay or perceive a
significant insurance cost from driving an extra mile, despite the substan-

1 See table No. 1030, Statistical Abstract of the United States, 1997, U.S. Department of
Commerce. Figure for 1994.

2 See table No. 1020, Statistical Abstract of the United States, 1997. Figure for 1995.

3 After subtracting comprehensive insurance coverage, the remaining premiums for private
passenger vehicles totaled $84 billion in 1995, State Average Expenditures and Premiums for
Personal Automobile Insurance in 1595, National Assaciation of Insurance Commissioners,
Jan. 1997. Commercial premiums are approximately 15 percent of premiums for private
passenger vehicles. The Insurance Information Institute 1998 Fact Book, p. 22.

4 For example, State Farm distinguishes drivers based upon whether they report an esti-
mated annual mileage of under or aver 7500 miles. Drivers who estimate annual mileages of
under 7300 miles receive 15% discounts (5% in Massachusetts). The 15% discount is mod-
est given that those who drive less than 7500 miles per year drive an average of 3600 miles
compared to 13,000 miles for those who drive over 7500 per year, according to the 1994
Residential Transportation Energy Consumption Survey of the Department of Energy. The
implied elasticity of accident costs with respect to miles is .05, an order of magnitude below
what the evidence suggests is the private or social elasticity of accident costs. The link be-
tween driving and premiums may be attenuated in part because there is significant noise in
self-reported estimates of future mileage, estimates whose accuracy does not affect insurance
pay-outs.

Insurance companies also classify based upon the distance of 2 commute to work. These
categories are also coarse, however. State Farm, for example, classifies cars based upon
whether they are used for commuting less than 20 miles per week, in between 20 and 100
miles per week, or over 100 miles per week.



tial accident costs involved.

Drivers would pay closer to the marginal social cost of their activity if
insurance companies quoted premiums at x cents per-mile, where x var-
ied to reflect the per-mile risk and could depend upon territory, driver age,
safety record or other relevant characteristics used today. Such per-mile
premiums are advocated by Litman [1997], Butler [1990], and the Na-
tional Organization for Women [1998], and are currently charged for some
commercial insurance.’ Even a system of per-mile premiums would not,
however; come close to the optimal accident charge.

The shortfall of the tort system is its failure to impose sufficient liabil-
ity to promote efficient behavior. As a result, insurance premiums are less
than the marginal accident cost of driving, whether the cost is measured as
the cost of a marginal driver as it should be under a system of lump-sum
premiums or as the cost of a marginal mile as it should be under per-mile
premiums. The shortfall arises because a driver is not always held respon-
sible for the damages he causes. Liability hinges on negligence, so adriver
only pays for the risk he imposes on others to the extent that he is negli-
gent and they are not. (Liability is even less frequently imposed in no-fault
states). Yet as Vickrey observed, if two drivers get into an accident, even
the safer driver is typically a “but for” cause of the accident in the sense
that had she opted for the metro, the accident would not have occurred.®

For efficient incentives, both drivers should therefore pay the full cost
of two-car accidents, regardless of negligence.” (See Green, 1976, for the
general proposition.) Such a system of “double strict liability™ would give
both drivers the proper incentives to limit their driving and also to drive

5 For private and public livery, taxicabs, and buses, because “rates are high and because
there is no risk when the car is not in operation, a system of rating has been devised on an
eamings basis per $100 of gross receipts or on a mileage basis.” Bickelhaupt [1983, p. 613].
For details on per-mile commercial insurance, see “Commercial Automobile Supplementary
Rating Procedures,” Insurance Services Office, on file with author.

€  Sometimes, of course, only one of the drivers causes the accident such as when a driver
plows into along line of cars. Ifone car wasn't there to absorb the impact, another would have,
so the cars that are hit do not cause the accident in any respect. Such accident substitution
is not accounted for by the theoretical model we present, and reduces the externalities from
driving. This substitution effect is, however, accounted for by cur regression results.

7 Ignoring the incentive compatibility problem in reporting accidents, double strict liability
could be implemented in a world without insurance by fining each driver for the damages she
causes other drivers. If the government keeps the proceeds from fines, then each driver will
bear the fuil accident costs, suffering her own damages and paying a fine equal to the damages
of others. Accident would not, however, be reported frequently tnder such a system, which
lead Green [1976] to dismiss the possibility of making all involved parties pay the full cost
of accidents and motivated him to search for second best policies.



carefully, incentives that account for the “Vickrey™ externality of driving.®
The negligence system, in contrast, can make people drive safely, managing
the caretaking externality, but does not induce them to drive less, managing
the quantity externality (see Cooter and Ulen, 1988, and more generally
Shavell, 1980).

A simple remedy for this situation—— one that avoids the accident report-
ing problem of double strict liability— would be to tax insurance premiums
enough so that a driver pays the expected value of injuries to both herself
and others. If premiums remain lump sum, such a tax would make drivers
pay the full social cost of having an extra driver on the roads when con-
sidering whether to buy a car. The premium tax would also speed the day
when insurance companies decide that transaction costs are low enough
to justify switching to per-mile premiums, because a premium tax would
increase the joint gains of the insurance company and its customers from
reducing driving, accidents, and premiums. Once premiums are per-mile,
the tax would ensure that drivers paid the full marginal accident cost from
their driving,.

Vickrey (1968), Sugarman (1993), Tobias (1993) and others have all
advocated creating a closer link between driving and premiums by sell-
ing insurance with gasoline.® The idea of charging a uniform per-gallon
surcharge on gasoline to fund part or all of the compensation for auto ac-
cidents has come to be called “Pay at the Pump,” and is well-surveyed in
most of its variants by Wenzel {1995]. (In some variants, the surcharge
would vary by territory). One virtue of these plans is that they limit or
eliminate the uninsured motorist problem because gasoline can’t be pur-
chased without buying insurance. However, pay-at-the-pump pians could
also limit caretaking incentives because the per-gallon fee does not vary
with driving record; and, when lump sum fees are charged for bad safety
records as Sugarman [1993] proposes, this limits the resulting driving re-
ductions by lowering the marginal charge. Another fault of these plans is

8 One might worry that since such a system does not depend on fault, people would drive
more carelessly as many argue they do under a system of no-fault. (See, e.g., Devlin, 1992,
for some evidence that no-fault could reduce care; see Dewees, Duff, and Trebilcock [1996,
pp. 22-26] for a review of the empirical literature on no-fault) However, like a tort system,
a system of double strict liability would provide optimal caretaking incentives, absent insur-
ance, because the cost to a driver of getting into an accident is the full cost to both herself
and others. She therefore receives the full benefits of caretaking to the extent that taking care
reduces the frequency of accidents. If a driver were insured, under a system of double strict
liability, this insurance would limit caretaking incentives in just the same way that it does
under a tort system. Experience rating would, however, work to partially restore these incen-
tives just as it does under a tort system (at the usual expense in a principal-agent framework
of shifting risk back from the insurance companies to drivers).

9 Actually, Vickrey's first suggestion was that auto insurance be bundled with tires hoping
that the wear on a tire would be roughly proportional to the amount it is driven. He worried
about moral hazard (using a tire unti! it was threadbare), but concluded that this problem
would be Timited if refunds were issued in proportion to the amount of tread remaining.



that a uniform per-gallon charge is a blunt pricing instrument to reduce the
accidents from driving. Such pricing does not take account of the fact that
per-gallon risk will depend upon the driver, territory, and the fuel efficiency
of the vehicle (a car that gets good gasoline mileage can drive many miles
on a gallon of gas), This creates an inefficiency because bad drivers in
dangerous territories with fuel efficient cars will drive too much. Others
may be overly discouraged from driving.'®

This paper makes several contributions. First, we formalize Vickrey's
insights about the externalities of driving by constructing a model relat-
ing miles driven to accidents. Second, and more important, we make state
by state estimates of the total gains from switching to risk-classified per-
mile premiums, a uniform per-gallon charge, and optimal per-mile premi-
ums {which would include a tax to account for accident externalities). Our
model allows us to account for accident externalities in these estimates and
for the resulting fact that as driving falls, accident rates and hence per-mile
insurance premiums will also fall.

We demonstrate that accident externalities are significant in practice by
showing that states with more traffic density have considerably higher ac-
cident cost per mile driven. The more people drive on the same roads, the
more dangerous driving becomes. Nationally, the insured cost of accidents
is roughly four cents per-mile driven, but the marginal cost — the cost if an
extra mile is driven — is much higher, roughly 7 and a half cents, because of
these accident externalities. In high traffic density states like New Jersey,
Hawaii, or Rhode [sland, we estimate that the marginal cost is roughly 13
cents. For comparison, gasoline costs roughly six cents per-mile, so charg-
ing for accidents at the margin would dramatically increase the marginal
cost of driving (though not necessarily the average cost).

A system of per-mile premiums would result in drivers paying the av-
erage —not the marginal - cost of accidents. We estimate that such a system
would reduce driving nationally by 9.2%, and insured accident costs by $17
billion. After subtracting the lost driving benefits of $4.3-$4.4 billion, the
net accident reductions would be $12.7 billion or $75 per insured vehicle.
Our low estimate of net accident reductions is $9.8 billion or $57 per ve-
hicle. The net savings would be $10.7-$15.3 billion if per-mile premiums
were taxed optimally so that the charge accounted for driving externalities
and equaled the full marginal accident cost of driving. These estimates
do not account for heterogeneity in territory and drivers. Since the most
dangerous drivers in the most dangerous territories would face the steepest
price rise and reduce driving the most, actual benefits could be consider-
ably larger. If state heterogeneity is a useful guide, territory heterogeneity
alone would raise the benefits of either per-mile or optimal per-mile pre-

10 Sugarman [1993} counters that the per-gallon fee does rough justice, and so performs
better than the current system.



miums by 10%.

A uniform gasoline tax (per-gallon premium) would not account for the
heterogeneity in fuel efficiency, Taking this into account, we estimate that
net accident reductions would be $8.5-$10.4 billion, roughly 20 percent
less et al. our per-mile premium estimates. This figure assumes that per-
gallon premiums would be set sufficiently high to fund all compensation.
A more typical pay at the pump plan such as Sugarman’s [1993] that con-
tinues to use substantial lump sum fees would have commensurately lower
benefits. Another disadvantage of per-gallon premiums— one that we do
not model— is that if these premiums are not adjusted for territory, or if
arbitrage limits the feasible adjustments, then the extra benefits mentioned
above from tailored pricing that accounts for intrastate heterogeneity in
traffic density and accident rates would not be realized.

The main reason insurance companies have not switched to per-mile
premiums is probably that monitoring actual mileage with yearly odome-
ter checks seems too costly given their potential gains, as suggested by
Rea [1992] and Williamson et al. {1967, p. 247]. ' However, because of
the gap in tort law pointed out above, their analysis suggests that the gains
a given insurance company could realize by switching to per-mile premi-
ums are considerably less than the social gains. If company A switches to
per-mile premiums and its customers drive less, many of the gains will ac-
crue to company B whase customers will get into fewer accidents with A’s
customers. Because much of the accident reductions are external, a single
company and its customers might stand to gain only $31 per vehicle from
the switch, far less than the $75 or $91 per vehicle of per-mile or optimal
per-mile premiums. '? This discrepancy implies that the social gains from
per-mile premiums might justify the monitoring costs, even if no single
insurance company could profit from the change itself.

Other external benefits make the discrepancy between the private gains
from per-mile premiums and the social gains even larger. As we observed, a
great deal of accident costs are uninsured or underinsured. The cost of fatal-
ity risk, for example, is substantially underinsured. As with other accident
costs, a substantial portion of these costs are external to a given insurance
company and its customers. Taking into account the expected reductions
in these external costs raises our estimates of the gains from per-mile pre-
miums by $9.3-$11.1 billion. The case for policy intervention is strength-
ened further when nonaccident benefits such as congestion are taken into
account. Congestion reductions raise our estimates of the benefits from
per-mile premiums by $5.5-85.7 billion. This brings our estimates of total
national benefits from per-mile and optimal per-mile premiums to respec-

11 Monitoring costs are cited as the principal reason by actuaries | have interviewed (see
also Nelson [1990] and Cardoso [1993}).

12 In a competitive industry, insurance companies cannot profit from a coordinated change,
because the efficiency gains would be competed away in lower prices.



tively, $25-529 billion and $32-43 billion, or $146-§173 and $1 87-254 per
insured vehicle. Benefits would be higher still, if current gasoline taxes
are less than pollution costs, road maintenance costs, and other external-
ity costs such as national security.!® The fact that accident and congestion
externalities could make up more than 80% of the benefits from per-mile
premiums suggests that even if monitoring costs are so large that it is ra-
tional for insurance companies to maintain the current premium structure,
per-mile premiums would probably still enhance efficiency in most states
once one takes account of these externalities.

Finally, the paper provides several policy ideas that could be used to
change the unit of insurance from the car-year to the car-mile. A first step
would be for states to reduce monitoring costs by recording odometer read-
ings at existing safety or emissions checks and distributing the information
free to insurance companies. A bolder proposal is to tax premiums to ac-
count for accident externalities. Such a tax would better align the private
gains from switching to per-mile premiums with the public gains. It would
also increase the total gains from switching, because the switch would lead
to higher marginal charges, closer to optimal charges though still neglecting
the cost of congestion and pollution. We also present a new proposal that
would marry the virtues of pay-at-the-pump with per-mile premiums, by
charging risk-classified per-gallon premiums metered at the pump. Such
a system could make metering cheap, while making it more difficult to
drive uninsured. Unlike pay at the pump, charging risk-classified premi-
ums could address equity concerns and provide caretaking incentives. It
would also keep insurance agents in business so that they don’t oppose re-
form too vocally. In fact, if these premiums are metered at the pump so
that the uninsured motorist problem is limited or eliminated, then insur-
ance agents’ business will actually expand significantly. There would also
be substantial incidental benefits to any individualized metering program
that simple pay-at-the-pump plans can't offer: for example, pollution and
road usage charges could piggyback on the system and be tailored to the
model and age of each vehicle.

The remainder of this paper is organized as follows. Section 2 develops
a simple model of accidents. Section 3 describes our data sources. Section
4 reviews existing evidence and arguments about the relationship between

13 These costs could easily be higher. The marginal cost per gallon of gasoline in terms of
national security interest is difficult to quantify, but it is undoubtedty substantial. National de-
fense involves many common costs, so it would be highly speculative to estimate the amount
spent to defend oil interests. Nonetheless, the total amount of maney the U.S. spends per year
to defend U.S. interests or prepare to defend U.S. interests in oil producing countries could
be comparable to current gasoline tax revenues ( $51 bilion, or 37 cents per gallon, in 1994,
Statistical Abstract of the U.S., 1997, tables 478 and 1029). In the 1990s alone, the U.S. has
had one war and three showdowns with Iraq.

Delucci [1997] estimates that the pollution costs of motor vehicles in terms of extra mor-
tality and morbidity m:ﬁ6.5—461‘9 billion per year in the U.S..



miles driven and accidents and uses the model developed in Section 2 to
estimate the relationship. Section 5 describes our simulations of three pol-
icy changes: per-mile premiums, optimal per-mile premiums, and uniform
per-gallon premiums. Section 6 asks why we don’t see per-mile premiums
now and presents several policy ideas to facilitate their implementation in
a cost-effective fashion.

1. A Simple Model of Accidents and
Congestion.

We now develop a model relating driving to accidents and use it to simu-
late the consequences of various pricing scenarios. For simplicity, we con-
struct an entirely symmetric model in which drivers, territory, and roads
are undifferentiated and identical. The central insights continue to hold in
a world where some drivers, roads, and territories are more dangerous than
others, with some provisos. The relatianship between aggregate accidents
and aggregate miles will only hold exactly if the demand elasticity is the
same across types of driving and drivers. Otherwise, accidents will be ei-
ther more or less responsive to driving according to whether extra miles
are driven by more or less dangerous drivers under more or less dangerous
conditions.

We also limit attention to one and two vehicle accidents, ignoring the
fact that many accidents only occur because of the coincidence of three or
more cars.!* We treat accidents involving two or more cars as if they all
involve only two cars because multi-vehicle accidents are not separated in
ouraccident data. Refined data would increase our estimates of the benefits
from the driving reductions associated with per-mile premiums because the
size of accident externalities increase with the number of cars involved in
collisions.

Let

m; = miles traveled by driver {

M = total vehicle miles traveled

! = total lane miles

D = traffic density = M/ !

fi = probability that < is driving at any given time

8, = damages from one-vehicle accident

&, = damages to each car in a two-vehicle accident

Holding speed constant, the fraction of the time that ¢ is driving, f;, will
be proportional to miles, m;, so let f; = pm,. For convenience, imagine
the { tane miles are divided into L = !z distinct locations. An accident

14 For example, one car may stop suddenly causing the car behind to switch lanes to avoid
a collision— the accident occurs only if another car is unluckily in the adjacent lane.



occurs between driver i and j if they are in the same location and nei-
ther brakes. The chance that 7 is driving and j is in the same location is
fi (f;j/L). Let g be the probability that neither brakes (or takes other suc-
cessful evasive action) conditional upon being in the same location. The
rate of damages to i from two-car accidents with § will then be

azij = 5zf.--%q-

Summing over j and substituting pm for f yields damages to ¢ from two-
car accidents

Qo = 62p2m,-%.
Letting ¢z = 62p%q/ 2, we have
Q9 = C2m|‘"£—,

or, assuming m; is small relative to M,
M
ag; == c2mi—l- = Cgm,’D.
Ignoring multiple car accidents, the total expected accident damages suf-
fered by driver i are then

a; = cym; + ¢ca miD

The first term in the equation reflects the fact that a driver may be in-
volved in an accident even if he is driving alone (e.g., falling asleep at
night and driving into a tree), with ¢; representing the expected accident
costs from driving a mile alone. The second term reflects the fact that the
chance of getting into an accident with other vehicles in that mile increases
as the traffic density D increases. The linearity of this model in m; ignores
the possibility that practice and experience could bring down the per-mile
risk, as well as the offsetting possibility that driving experience (which is
generally a safe experience) could lead to complacency and conceit.

Summing over each driver 7 yields the total accident costs:

A=y M +coMD =M + caM? /L. (1)
Observe that the cost of two-car accidents c; M2 /I increases with the

square of total miles.
The marginal total accident cost from driving an extra mile is

dA

s ey + 2caD. )
In contrast, the marginal cost of accidents to driver ¢ is only

da:

2 +eD, 3)

dm,-

The difference between these two costs, cp D, is the externality effect.



It represents the fact that when driver i gets in an accident with another
driver he is typically the "but for” cause of both drivers’ damages in the
sense that, but for him having been driving, the accident would not have
happened. (Strangely enough, both drivers are typically the "but for” cause
of all damages). This model could overstate the externality effect because
of accident substitution: i.e., because if driver A and B collide, it is possible
that driver A would have hit driver C if driver B weren’t there. '* Sucha
substitution effect would be captured in our regression estimates by a lower
coefficient on traffic density, and hence a lower estimate of the externality
effect.

A different view of the accident externality of driving is found by ob-
serving that the average cost of accidents per mile driven is:

% =c; +cD. 4)
A given driver who drives the typical mile expects to experience the av-
erage damages ﬁ. Yet, this driver also increases D, which means that he
also causes the accident rate for others to rise by S
Let cq denote the social cost of driving a mile, exclusive of accident
costs {i.e., ¢p includes gasoline, maintenance, and environmental costs).
Consider n identical drivers and let V' (m) be each person’s value for driving
m miles V' > 0 and V” < 0. Then, total driving surplus wil be maxi-
mized if m** is chosen to solve

] — negm.

(nm)?
I

max nV(m} — [eynm + ¢2
m

The first-order condition for this program is:

-

nm

{
In contrast, an individual who pays charge p per-mile will maximize
V(m) - pm,
choosing an m* so that V'(m*) = p.
[fpissetequaltoco +cy + 2@%", then each individual will choose
m* = m**. Accordingly, one might hope that a competitive insurance in-
dustry charging per-mile premiums would choose p** = ¢; + 2¢2 ’“’,‘" .

However, the break-even condition for insurance is thatnp*m* = A(m*) =
-2

anm® + ¢ "2'1" . Ifm* = m**, then the per-mile premium will be

cz '“'"“" lower than would be socially optimal, indicating that people witl
drive too much under per-mile premiums. Again, the discrepancy between
actual premiums and efficient premiums arises because both cars in a two-

car accident are the “but for® cause of the accident — if either car had

V/(im** ) =c1 + 2¢,

+ Co.

15 On the other hand, it understates the externality effect to the extent that some collisions
require more than two vehicles.



been absent, the accident would not have occurred. Efficiency therefore
requires that each car pay the full cost of the accident, as Vickrey [1968]
emphasized.'® This efficiency condition necessarily implies that more be
collected in premiums than is required to compensate for damages. If all
accidents were simple two-car accidents, then twice as much would need
be collected. Competition in insurance pricing requires, in contrast, that
insurance companies break even.

Fundamentally, driving causes an externality. If a person decides to go
out driving instead of staying at home or using public transportation, she
may end up in an accident, and some of the cost of the accident will not be
borne by either her or her insurance company; some of the accident cost is
borne by the other party to the accident or that party’s insurance company.

1.1  Gains from Per-mile Premiums.

We now compare the current insurance system, which we characterize {(some-
what unfairly) as involving lump sum premiums, with two alternative sys-
tems: per-mile premiums and optimal per-mile premiums. As derived
abave, the break-even condition for insurance companies charging per-mile
premiums is

A
p=H=C1+CgM/l (5
This equation can be viewed as the supply curve for insured miles.

Let the utility of each of the n drivers be quasi-linear in the consumption
of non-driving goods y and quadratic in miles m:

V{iyym)=y+am— %mz. (6)

Then, the aggregate demand will be linear:
M= My-bp
The equilibrium miles, M*, and per-mile price, p*, are found by solving
these equations:
. My —bc
= 1+bca/l
O+ caMy/l

1+ bep/i
If drivers continued to drive as much under per-mile premiums as they do

16 Another way to derive our formula for accidents, in which two-vehicle accidents are pro-
portional to the square of miles driven, is to begin with the premise that the marginal cost of a
mile of driving is the expected cost of accidents to both parties that will occur during that mile.
Then the marginal cost of accidents will be twice the average: i.e., “:;;"“ = pAz-car
The unigque solution to this differential equation, in which the elasticity of accidents with re-

spect to miles is 2, is A2 —gar = c2 M2,

10



under per-year, then insurance companies would break-even by charging
p=¢; +caMp/l.

However, as driving falls in reaction to this charge, the accident rate per-
mile will also fall (because there will be fewer cars on the road with whom
to collide). As the per-mile accident rate falls, premiums will fall in a
competitive insurance industry, as we move down the average cost curve.

Assuming that the gas price currently reflects the environmental and
road maintenance cost of driving, the social gain from charging per-mile
accident premiums in this model equals the reduction in accident costs less
the lost benefits from foregone driving, the shaded region in Figure 1. This
surplus S is given by

s=1 (ﬁ
2\ dM

By assuming quasi-linear utility, we are ignoring income effects. Asa
per-year premium is shifted to a per-mile charge, driving will not fall by as
much as it would under a pure price change, because people don't have to
pay a yearly premium and can use some of that money to purchase more
driving then they would under a pure price change. These income effects
are, however, overshadowed by our uncertainty about the price responsive-
ness of driving, so it does not seem worthwhile to consider them explicitly.
We ultimately run policy simulations with elasticities of demand chosen to
be below what many estimate. One reason we do so is because we should
properly use a Hicksian, and not Marshallian, efasticity of demand in order
to take income effects into account and calculate “exact consumner surplus.”

Our benefit calculation assumes that the number of drivers would re-
main unchanged in a switch to per-mile premiums. In fact, the number of
drivers would probably increase under a per-mile system because the to-
tal price of driving a small amount (say 2,000 miles per year) would fall.
Although the extra drivers (who drive relatively little) will limit driving
reductions and hence accident reductions somewhat, they would probably
increase the accident savings net of lost driving benefits, and would surely
do so in the case of optimal per-mile premiums. The reason is that these
extra drivers gain substantial driving benefits, as evidenced by their will-
ingness to pay insurance premiums. In the case of optimal per-mile premi-
ums, where the premiums reflect the total accident cost of their driving, the
entry of these extra drivers necessarily increases the benefits from accident
cost reductions net of lost driving benefits.

One way to implement the optimal pricing scheme in this symmetric
world would be to have a competitive insurance market, pricing on a per-
mile basis, with a tax of (2> — 1) x 100% on premiums. This solution
would work under either a fault-based tort system or a no-fault tort system,
as long as every driver stands an equal chance of being at fault. If drivers

L4
Mo amM

) (Mo~ M*) = 257 (Mo = M"). (1)
M-
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differ in ability, then taxing premiums will wark better in a no-fault system
than in a tort system, however, because the optimal tax will not need to
depend upon a driver’s ability (i.e., upon expected share of total damages
from relative negligence). To the extent that a no-fault sytem limits recov-
ery to economic damages, as it commonly does in practice, the tax would
need to be raised to account for the full externality.

1.2  Congestion

Congestion will fall if driving is reduced. In a fundamental respect, con-
gestion is the counterpart to accidents. Congestion occurs when driver i
and j would be in the same location at the same time except one or both
breaks to avoid the accident. The resulting delay is, of course, costly. A
rudimentary model of congestion would therefore have congestion costs
rising with the square of miles, holding lane miles fixed, so that
M2
congestion cost C = a7

As with accident costs, then, the average cost of congestion per-mile equals
one-half the marginal cost:

C oM 1/7dC 3
M~ 1 2\dM /)’ ®

Equation (8) relates the average cost of delay to the marginal cost, so
that we can use estimates of the average cost of delay in order to estimate
the marginal cost of delay, and in particular the external marginal cost of
delay. Schrank, Turner and Lomax [1995] provide estimates of the average
cost of delay, %

Congestion cost savings that are external to the driving decision should
also be added to the benefits from per-mile premiums. Assuming, that the
mile foregone is a representative mile and not a mile drawn from a partic-
ularly congested or uncongested time, the person foregoing the mile will
escape the average cost of delay, _% This savings should not be counted
though among our benefits from driving reductions, because it is intemal-
ized. Viewed differently, the driver derives no net benefit from the marginal
mile, because driving benefits net of congestion cost just equal operating
costs. Yet, as there is less traffic on the road, other drivers will experience
reduced delays and this external effect should be zdded to our calculations.
The external effect, as with accidents, equals the difference between the
marginal and average cost of delay, so the external cost of dM extra miles
driven is

C

E-[-dM
This estimate undoubtedly understates the marginal cost (and hence the ex-
ternal cost) of congestion substantially, because as two vehicles slow down
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they generally force others to slow down as well. A cascade of such effects
becomes a traffic jam. Looking at measured flow rates of traffic as a func-
tion of the number of cars travelling suggests that during periods of con-
gestion the marginal congestion cost of driving is often many times, up to
and exceeding 10 times the average congestion experienced — at least dur-
ing highly congested periods.!” To be conservative, however, we assume
that the marginal cost of congestion is twice the average cost, so that the
portion of the marginal cost that is external to the driving decision equals
the average cost.

2. Data.

As a proxy for auto accident costs, we use state-level data on private pas-
senger auto insurance premiums from the National Association of Auto
Insurance Commissioners Database on Insurance Premiums for 1996. We
subtract premiums paid for comprehensive coverage, so that we are left
only with accident coverage. If the insurance industry is competitive, these
figures represent the true economic measure of insured accident costs, which
includes the administrative cost of the insurance industry and an ordinary
return on the capital of that industry. These premium data are for private
passenger vehicles, so we adjust these figures to account for commercial
premiums by multiplying by 1.14, the national ratio of total premiums to
noncommercial premiums.'3

Insured accident costs do not come close to comprising all accident
costs. As a result, our estimates of the cost of driving are too low, and
correspondingly, our estimates of the benefits from the driving reductions
associated with any of our policy changes are also too low. Fatalities, for
example are substantially underinsured and undercompensated. Viscusi's
[1993] literature review concludes that a statistical life is worth $3-6 mil-
lion, far exceeding typical auto insurance limits.!” Even if coverages were
this high, liability would be limited to lost future wages, not the full value
of life.

Damages are also not fully compensated for those who survive acci-
dents. The pain and suffering of at fault drivers is not insured, and auto in-
surance frequently does not cover their lost wages. (In no fault states, pain
and suffering is also not compensated below certain thresholds). These
omitted damages are probably substantial and their inclusion would raise
our estimates of the cost of driving and the benefit of driving reduction

17 Author’s calculation based upon traffic flow tables. GAO, “Traffic Congestion: Trends,
Measures, and Effects* GAO/PEMD-90-1, November 1989, p. 39.
18  See, p.22, the Insurance Information Institute 1998 Fact Book.
19 The State Farm Pennsylvania ratings manual of standard coverages caps out at $500,600.
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significantly.?® Pain and suffering is often taken to be three times the eco-
nomic losses from bodily injury. Data on the miles of lanes by state come
from Table HM-60, 1996 Highway Statistics, FHWA. Annual vehicle miles
by state come from Table VM-2, 1996 Highway Statistics, FHWA. Data on
the distribution of fuel efficiency among vehicles in the current U.S. fleet,
and the distribution of miles by fuel efficiency of car come from the 1994
Residential Transportation Energy Consumption Survey. We get gasoline
prices by state from the Petroleum Marketing Monthly, EIA, Table 31 ("all
grades, sales to end users through retail outlets excluding taxes™) and Table
EN-1 (federal and state motor gasoline taxes). State level data on fatalities
come from Table 100 and Table 101 of "Traffic Safety Facts 1996,” U.S.
Department of Transportation, Dec., 1997.

3. [Estimates of the driving-accident
relationship.

3.1 The literature,

Opinions differ about the relationship of driving to accidents. Patrick But-
ler and his collegues at the National Organization for Women have argued
in editorials and insurance journals that an individual driver’s accidents will
be proportiona! to miles driven, or put differently, that the elasticity of ac-
cidents with respect to miles is 1. Butler, Butler, and Williams (1988) point
out that women drive roughly half as much as men, and have half as many
accidents. Dougher and Hogarty (1994) of the American Petroleum Insti-
tute, in contrast, argue that an individual driver’s accident costs will depend
little, if at all, upon the amount of driving she does, and that other factors
such as traffic density and type of driving are more determinative.

Credible empirical work relating driving to accidents has been limited
by the scarcity of data pairing mileage and accidents. The ideal study would
take such data and carefully control for the characteristics of drivers and
the type of driving done in addition to mileage. Raw data (controlling for
nothing) collected by the Department of Motor Vehicles in California sug-
gests that the elasticity of an individual’s accidents with respect to mileage
is roughly .5 (See Massachusetts Division of Insurance, 1978, table 1).
Such data would, however, understate this relationship (respectively, over-
state it) if low mileage drivers were worse (respectively, better) drivers or
if they tended to drive under worse (respectively, better) conditions.

The data provided by Butler, Butler and Williams [1988] on accident
and annual miles differences between men and women can be used to esti-

2 In Section’?{, we account for fatalities separately.
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mate a model of the form:

ay = e, )
where a,; is the number of accidents of drivers of sex s and age ¢, m,; is the
number of miles driven by a driver of age ¢ and sex s, and g is the elasticity
of an individual's accidents with respect to miles driven. (Average accident
data stratified by sex and age comes from the Penn. Department of Trans-
portation, 1984, while annual mile data comes from the U.S. Department
of Transportation, 1983.) Although Butler, Butler and Williams {1988] do
not appear to estimate such a model explicitly, my regression estimates of
equation (9) suggest that the elasticity of accidents with respect to miles is
u = .92, close to the Butler-Butler-Williams claim and close to the value of
1 assumed in the theoretical model. Such a regression assumes that except
for the differences in their annual mileage, men and women drive equally
safely and under equally safe conditions. Undoubtedly, this assumption is
overly strong, but one fact stands in our favor: roughly speaking, men and
women live in the same territories and territory is a critical determinant of
risk.

The best controlled study of which [ am aware was done by Hu et
al. (1998), who study the effects of health status on crash rates of elderly
drivers in two rural lowa counties. They control for a driver’s experience
and estimate elasticities of accidents with respect to miles of .35-.5 (mea-
sured at 9,000 miles per year). There are several reasons, however, to think
these figures are biased downward. First, the lowa miles data must have
substantial noise, as the data does not come from odometer checks but from
asking the subjects how many miles they drive in a typical week. Unlike
insurance company data, there is no reason for people to lie, but they may
have highly uncertain estimates. Noisy data would bias the miles coefTi-
cient toward 0 (except of course to the extent that the noise is correlated
with a factor related to accidents). Additionally, even a rural Iowa county
is not homogeneous. People who live in or near towns may drive substan-
tially fewer miles than those who live 20 miles from the nearest grocery
store, but the miles they drive may be in more congested areas where they
have more accidents per mile. Another compositional effect is that those
who are good at driving may drive more (some but not all of this effect
will be picked up by their health status variables). All three of these effects
will tend to mute the apparent relationship between increased driving and
increased accidents. This suggests that the elasticity of an individual’s ac-
cidents with respect to that individual’s miles could be well above .5 and
perhaps even unity as our model assumes and Butler et al. argue.

The social elasticity of accidents with respect to miles of driving must
substantially exceed an individual’s elasticity because of the externality ef-
fect explained in the previous section. Even if the typical individual has
an elasticity of .5, the elasticity of total accident costs with respect to total
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miles driven would be close to 1 because any individual driver will cause
others to have extra accidents when he drives more. One piece of evidence
on the social elasticity comes from a study of California freeways from
1960-1962 (Lundy, 1964 cited in Vickrey, 1968). A group of 32 segments
of four lane freeways with low average traffic had a per-mile accident rate
of 1.18 per million miles compared with 1.45 per million miles on twenty
segments with more traffic, The implied incremental accident rate was
1.98 accidents per million vehicle miles, suggesting an elasticity of acci-
dents with respect to miles of 1.7=1.98/1.18. Because of the externality
associated with driving pointed out in Section 1, we expect the elasticity
of total accidents with respect to total miles to exceed the elasticity of an
individual’s accidents with respect to her driving. In fact, if an individual
has elasticity of 1 as the model assumes, the "aggregate™ elasticity would
be 2 if all accidents involved 2 cars. The California highway data accords
roughly with what one would predict given that roughly 30% of accidents
involve only one vehicle.?!

3.2  Estimates of Marginal Accident Cost.

It is worth comparing accident costs in pairs of states that have similar num-
bers of lane miles but very different numbers of vehicle miles traveled. For
example, New Jersey and Wyoming both have approximately 75,000 lane
miles. New Jersey has eight and a half times as much driving in New Jer-
sey, however, and has an average insured accident cost of 7.7 cents per mile
instead of the 1.8 cents per mile of Wyoming. Comparing Ohio and Ok-
lahoma we see a similar pattern. Ohio has approximately two and a half
times as much driving on a similar number of lane miles and has higher av-
erage accident cost (3.6 vs. 2.6 cents per mile). Likewise, if we compare
Hawaii and Delaware, which have similar numbers of vehicle miles trav-
eled, we find that Hawaii, which has fewer lane miles and so substantially
higher traffic density, has substantially higher accident costs per-mile. In
general, average accident costs are much higher in states that have a lot
more driving, holding lane miles fixed. This feature, which drives the high
insurance rates in dense areas, is just another view of the externality effect.
The fact that marginal accident costs are higher than average accident costs
is what drives up average accident costs as miles increase.

Many other idiosyncratic factors are involved, however, in a state’s in-
surance costs. Maryland and Massachusetts, for example, have an almost
identical number of lane miles and fairly similar vehicle miles traveled.
However, although Massachusetts drivers only drive about 7 percent more
miles per year in aggregate than Maryland drivers their average costs per-
mile is 40 percent higher (6.7 cents vs. 4.8 cents), so that total insured

21 See table 27, U.S. Department of Transportation {[1997].
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accident costs are 45 percent higher. Whether this difference is attributable
to differences between Massachusetts and Maryland drivers or differences
between the roads or weather in the states is unknown. Cars may also be
more expensive to repair in Massachusetts.

Here, we fit the model presented in Section 1 in order to form estimates
of the marginal accident cost from driving an extra mile in each of the 50
states. As explained in Section 3, we use total auto accident insurance pre-
miums paid in a state as a proxy for the total cost of automobile accidents.
We estimate the effects of traffic density on accidents in two ways— by
a calibration method and a regression method— as described below. The
regression method utilizes the cross-state variation in traffic density to es-
timate its effect, while the calibration method relies upon the structure of
model and data on the percentage of accidents involving multiple vehicles.
Each method has weaknesses, and after discussing the likely biases in each
of these methods, we conclude that the true effect of density lies somewhere
between the two estimates. The traffic density effect allows us to estimate
the social marginal accident cost of driving and the extent to which this
cost exceeds the average, or internalized marginal, cost of driving.

We modify the mode! of Section 1, assuming that each state’s idiosyn-
cratic errors €, enter muitiplicatively as follows:

A, (e1 M, + caM,D,)(1 +¢,). (10)

cisMy + e, M, Dy, (L)

where

crs =c1(1 +¢€4)

Cog = C'z(l + E_,)

Once ¢; and c; are estimated, we can find the idiosyncratic component
¢, for each state from the above equation using the observed values of
accident costs, miles traveled and lane miles in the state. We estimate the
coefficients ¢; and ¢z in two ways — one way we call a calibration model
and the other a regression model.

In our calibration model, we utilize national data on the percentage of
accidents involving multiple cars. Recall that national accident costs are
given by

A= M+ caMD,
where the costs of one- and two-car accidents are, respectively,

Al = C}[\/f

and
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Az = C2MD

Let @ be the average damage per vehicle from an accident, so that two-
vehicle accidents have total damages of 2a and one-vehicle accidents have
damages @. Let r denote the ratio of accidents involving two vehicles.
(Nationally, 71% of crashes were multiple-vehicle crashes in 1996, and we
assume that multi-car accidents involve only two cars, since we don’t have
data on the number of cars in multi-car accidents and since this assumption
makes our benefit estimate conservative.)?

If NV is the total number of accidents in a state we have:

A=N(l-r)a+2Nra,
so that

—_ A
Na =4

This implies that the total cost of one-car accidents is

l—r
Ar=1324,
and similarly for two-car accidents
2
Ar = FL A

The one and two-car accident coefficients can then be determined from
the formulas:

& =4 =0-0AL
A T+r M

and

& = 3l= A,

Using the observed national data on accident costs (A), miles traveled
(M), and lane miles ({), we estimate that the one-vehicle coefficient ¢; is
roughly .7 cents per-mile, while ¢z is I x 103 cents per-mile squared per
lane mile. This means that roughly 18% of costs are attributed to one-car
accidents.

In our regression model, we estimate the coefficients ¢; and ¢z with a
cross-sectional regression. Observe that equation implies that the average
accident cost per-mile in state s is A, = [c1+c2D,](1+¢€,). Assuming that
the idiosyncratic components ¢, are i.i.d. mean zero random variables that

22 The statistic 71% is found by taking the ratio of the number of multiple vehicle crashes to
total crashes in table 27, U.S. Department of Transportation [[997). This figure understates
the number of accidents that involve muitiple vehicles because if a single vehicle crashes into
a fixed object, for example, that is a single vehicle crash even if the vehicle swerved to avoid
another car.
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are independent of D,, OLS estimates ¢} and ¢; are consistent under stan-
dard regularity conditions. Table 1 gives the results of the cross-sectional
OLS regression and the calibration method.

The estimate of the one-vehicle coefficient ¢ suggests a cost of 2.2
cents per-mile. The other coefficient, ¢, is 5.5x1078 cents per squared
mile per lane mile. The regression model suggests that 55% of costs are
attributable to one-car accidents, i.e., to the linear term.

In both models, the marginal accident cost is found by differentiating
equation 11 which yields:

dA,

dM,
We find the state-specific coefficients for one and two vehicle accidents as
follows:

= ¢14 + 2¢2;, D,.

éla = 61(1 +E's)
Cas = E2(1 + &)
- 1.

. VA
&s = ZM.¥&M.D,

Table 2 gives the marginal accident costs determined by the calibration
and regression methods. Table 2 allows us to compare these costs with the
average accident cost per-mile driven, which appears in column 3. The last
row models the U.S. as a whole, treating it as a single state. As we see, ac-
counting for the Vickrey externality appears significant regardless of which
method we use, in that the marginal cost of accidents significantly exceeds
the average cost. The reason is that both estimation methods put signifi-
cant weight on the quadratic term. The elasticity of accidents with respect
to miles (i.e. the ratio of marginal to average cost) is higher under the cali-
bration model because that model puts more weight on the quadratic term.
Below, we discuss several reasons why the regression estimates probably
understate the density effect (and hence the marginal cost of driving), and
why the calibration estimates overstate this effect.

The calibration method probably over states accident externalities be-
cause the theoretical model does not account for accident substitution—
i.e., the possibility that if one of the drivers in a two-car accident stayed
home, another accident might have substituted for the one that happened.?
A second upward bias results because in the calibration method, ciand ¢z
are held constant, which does does not account for the fact that as driving
becomes more dangerous, drivers and states both take precautionary mea-
sures. States react to higher accident rates with higher expenditures on
safety by widening roads and lengthening freeway on-ramps. Drivers also

23 Though this bias could be more than offset by the fact that many accidents require the
coincidence of more than two cars at the same place at the same time. Such accidents involve
larger externalities than the theoretical model predicts.
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make financial expenditures, buying air bags or anti-lock brakes, and non-
financial expenditures, by paying more attention and slowing down to avoid
accidents when driving in heavy traffic. All these precautionary measures
mitigate the impact of extra traffic density on accidents. At the margin, if
precautions are chosen optimally so that the marginal cost of precautions
equals their marginal benefit, then the envelope theorem guarantees that the
calibration method would still be properly capturing the sum of accident
and prevention costs (i.e., we can treat prevention as being fixed). How-
ever, to the extent that people take too little precaution at the moment, the
calibration results will overstate the accident externalities. Even if precau-
tions are currently optimal, the calibration results will overstate accident
externalities for large changes in behavior, because the marginal analysis
of the envelope theorem will not be applicable.

The regression method picks up both of the effects above, but unfor-
tunately has several biases of its own that tend to make it understate the
effects of density (accident externalities). Two reasons revolve around the
fact that we use insurance premiums as our measure of accident costs. As
mentioned at the paper's outset, a substantial portion of accident costs are
not insured. If this fraction were constant across states, it would bias our
calibration and regression estimates down equally. However, states with
more miles driven per lane mile and higher accident costs have higher in-
surance premiums, and according to Smith and Wright (1992), states with
higher premiums will have substantially more uninsured motorists.”? With
fewer drivers insured, a smaller share of total accident costs would be in-
sured. This effect could bias our regression estimates of marginal cost
downward significantly. Another downward bias for the regression results
is that as accident rates and insurance costs rise, states tend to adopt no-fault
insurance reform limiting coverage of noneconomic losses so that again the
percentage of costs that are insured would be lower in high-cost states.

A third source of bias, which is probably substantial, is that our measure
of traffic density for a given state is a noisy measure of the traffic density
where the typical mile is driven in that state because of within-state hetero-
geneity. In particular, adding a lot of miles of empty rural roads would not
reduce the traffic density where people drive, nor the number of accidents,
but would reduce the predicted number of accidents from our regression
because the average traffic density would fall. This observation may ex-
plain the large positive residuals in New York, for example. Noise in our
measure of traffic density would tend to lower our estimates of the accident
cost of density. A final source of downward bias is that the precautionary
expenditures discussed above, which are induced by high traffic density,
are not included in our measure of insured accident costs.

24 In fact, they argue that there is a feedback loop so that high premiums cause more unin-
sured motorists and therefore higher premiums.
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To summarize, there are several reasons that the regression estimates
underestimate the effect of density (and hence the marginal cost of ac-
cidents), while the calibration results overestimate the effect. The truth
probably lies between these estimates, so we will treat them as framing the
reasonable range of estimates,

4. Policy simulations.

4.1 Methodology.

This section estimates and compares the potential benefits of charging per-
mile premiums, optimal per-mile premiums, and uniform per-gallon pre-
miums. Per-mile premiums would be a linear insurance charge propor-
tional to miles driven that allows insurance companies 1o break even, ex-
actly covering accident costs. Optimal per-mile premiums would involve
taxing premiums to account for the externalities of accidents. Uniform per-
gallon premiums would be a linear insurance charge proportional to gal-
lons of gasoline consumed that allows insurance companies to break even.
(As discussed in the introduction, most existing per-gallon proposals are
more modest, covering only a portion of insurance costs.) The difference
between per-mile and per-gallon premiums in our model is the variation
among vehicles in fuel efficiency. This estimation paints an overly rosy
picture of uniform per-gallon premiums, because it ignores the substantial
heterogeneity among drivers in per-mile accident risk that a uniform per-
gallon premium would not account for. Such heterogeneity is manifest and
substantial across regions, and may also be present among drivers in the
same region, though Butler {1993) and Butler and Butler (1989) argue that
miles driven is a larger determinant of bad driver experience ratings than
is bad driving.

Our calculations also ignote the costs and difficulty of verifying the
number of miles traveled, two issues addressed in the section on implemen-
tation. However, they do account for the cost of foregone driving benefits
caused by the voluntary reduction in mileage that would result from insur-
ance being charged by the mile or by the gallon, as opposed to the current
system of by the year.

For each of these policy options—per-mile, optimal per-mile, and per-
gallon premiums—we estimate the consequences under three models of ac-
cident determination—linear, calibration, and regression. The linear model
assumes that accidents are proportional to miles driven, i.e. that A, =
¢1sM,. This model takes no account of the externalities from driving, nor
the related fact that as people reduce their driving, accident rates per mile
should fall because there are fewer drivers on the road with whom to have
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an accident.’ We also estimate two models—a regression model and a cal-
ibration model—that include a term that is quadratic in miles to account
for the externality effect, The one and two-car accident coefficients are
determined for these two models as described in the previous section.

We estimate a linear model for two reasons. First, the efficiency savings
under a linear model are what a single company and its customers could
expect to receive if they alone switched to per-mile pricing. Comparing the
linear model with the calibration and regression models, therefore allows
us to see how much of the accident savings are external to a given driver
and his insurance company. The estimates of the linear model are also rel-
evant if there is in fact substantial learning-by-doing in driving that is not
exhausted after the first couple of years. If driving more lowers an individ-
ual’s accident rate so that they typical individual has an accident elasticity
with respect to miles of 1/2,2 then after accounting for the externality ef-
fect, the aggregate elasticity of accidents with respect to miles should be
approximately one as assumed in the linear model.

Our estimates of the results of these policies naturally depend upon the
price responsiveness of driving. Estimates of the price responsiveness of
driving are plentiful and generally come from observed changes in the price
of gasoline.

Our benchmark case assumes that the aggregate elasticity of gasoline
demand with respect to the price of gasoline is .15. This figure is 25%
lower than the short-run elasticity of .2 that the two comprehensive surveys
by Dah! and Sterner [1991 a,b] conclude is the most plausible estimate,
and also substantially lower than the miles elasticities estimated by Gallini
[1983]. Goldberg {1998, p. 15] has recently made an estimate of miles
elasticity near zero, though she argues that for large price changes such
as those we consider here, a figure of .2 is more reasonable ?® Goldberg’s
standard errors are sufTiciently large that her estimate is also not statistically
different from .2 at the five percent level.

From the perspective of social policy, we should be interested in long
run elasticities. Long run elasticities appear to be considerably larger than
short run. Goodwin's [1992] survey suggests that time series studies give
long run elasticities for petrol of .71 compared with .27 for the short run;
cross section studies give .84 compared with .28 for the short run. Inter-
preting these long run elasticities in our context is problematic because in
the long run, there is substantial substitution among vehicles to more fuel-
efficient vehicles which will be driven more miles. Still, Johansson and
Shipper estimate that the long run of elasticity of miles per car with respect
to fuel price is .2. Given vehicle substitution, this figure suggests that the

25 See, for example, the estimates in Hu et al. [1998] that were discussed in section 3.1

26 Miles and gas elasticity differ by the elasticity of fuel efficiency with respect to fuel price.
In the short rum, this elasticity is probably relatively small, though in the long run it could be
substantial.



benefits of per-mile premiums would, in the long run, be much larger than
we estimate.

From our assumed fleet gas price elasticity of .15, we compute the mile-
price elasticity (which we assume is constant across vehicles) as follows.
Let

ui = milestraveled by cars of fuel efficiency ¢ miles per gallon.
e = the point elasticity of a given vehicle’s miles with respect to marginal price per mile
(assumed constant across vehicles).
gi = gas price per mile.
t; = total marginal price per mile = 4.2 cents (maintenance) + 3 cents (depreciation) +
gi(gas price) + p;(insurance price)*’
€ = .15 = aggregate point elasticity of gasoline demand with respect to price of gasoline.

Note that since e is the miles elasticity for each vehicle with respect to
marginal price per mile, it is also the gasoline demand elasticity for that
vehicle with respect to marginal price per mile. Then e is both the mile
elasticity and gasoline elasticity with respect to the price of gasoline for a
vehicle with fuel efficiency i mpg. Since the proportion of gasoline bought

. . « . Hi/ft :
by veh.ic!es of fuel efficiency i is (E,_b?) , we can solve for e using the
following relationship:

#ifi gi
AS=¢= =" | e=—. (12)
z‘-: (Z; ﬁ‘j/]) 2

Since driving demand is linear, and each car of fuel efficiency i is
charged the same per-mile premium p; = p, driving demand becomes

M = My — _ piwed (where the subscript 0 denotes the value variables

take on under current practice, with zero margiinal insurance charges).?!

Solving this equation simultaneously with the per-mile premium zero
profit condition (equation (5)) vields the equilibrium miles M* and per-
mile premiums p*. We first compute this equilibrium for each state. We
then model the U.S. in two ways: first, in a disaggregated model where
the national mile reduction is the sum of state mile reductions and second,
treating the nation in an aggregated fashion as if it itself were a state. We use
the equilibrium values p}, M to compute surplus in each state s according
to equation (7).

Next, we consider a per-gallon charge . The corresponding per-mile
price for a car of fuel efficiency i is p; = 7/i. As we have emphasized,
the per-mile price depends upon fuel efficiency under standard per-gallon
proposals. Driving demand is then given by

31 For a linear demand curve DX(t) with a point elasticity of e at price tg, the reduction in
demand from a price increase At is exactly D(ta)e%l-‘-.
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M= M, Z“"’"’iz,-o (13)

%
The break-even condition under per-gallon premiums becomes:

Z—y(p,-/i) =y M + caM? /1, where pu; = pig (1 - e-i%f-) .14
i i0

Solving these two simultaneous equations in each state s yields the
equilibrium per-gallon charge v and miles M;.*> We can no longer use
equation (7) to compute the sacial gain because each car type faces a dif-
ferent price rise p; under per-gallon charges. We can compute lost driving
surplus from the movement along the gasoline demand curve. The percent-
age change in gasoline demand for a car of fuel efficiency i is the same as
the percentage change in miles: el— Since the initial gasoline demand
for cars of fuel efﬂcnency s i /z the total change in aggregate gasoline

demand is 3, #ioaﬁ. Hence,

lost driving surplus = (Z Hio 3, — ‘. )

The Harberger triangle of lost driving surplus is quite smatl for cars
with high fuel efficiency i, since i is squared in the denominator of the
lost driving surplus expression. The vehicles do not cut their gasoline con-
sumption much because gasoline is a small percentage of their operating
expenses and so the increase in gasoline price results in a refatively small
percentage increase in operating expenses.

Finally, to simulate optimal per-mile premiums, we replace the zero
profit condition with the requirement that premiums equal the marginal
social accident cost of driving. Thus, the “supply” equatien for insured
miles under optimal per-mile premiums is

p=cy + 2ea M/l

We solve this equation simultaneously with equation (??) for each state
to compute the equilibrium under optimal per-mile premiums.

4.2 Results.

Since the consequences of all three premium options depend critically upon
the price responsiveness of driving, we did sensitivity analysis by running
all our nine simulations (the three policy options—per-mile, optimal per-
mile, and per-gallon premiums—under the three models—Ilinear, calibra-
tion, and regression) for aggregate gasoline demand elasticities of .1, .15,

32 golving for 4* requires solving a quadratic equation, but we can ignore the root that
yields negative miles.
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and .2. We report selected results for elasticities .1 and .2, and report com-
prehensive results in Tables 3-11 for our benchmark elasticity of .15.

4.2.1 Per-Mile Premiums

Tables 3 and 4 present our estimates of the consequences of switching
to per-mile premiums. The national reduction in vehicle miles traveled
(VMT) is approximately 10% in all three models. The reduction is some-
what less in the nonlinear models because in those models, as driving is
reduced, the risk of accidents also falls and with it, per-mile premiums.
Since equilibrium per-mile premiums are lower in these models, the total
driving reduction is lower. This effect is much more pronounced in the
calibration model, because of the larger traffic density effect from two-car
accidents in this model. Under the calibration models in Massachusetts,
the per-mile charge falls from 6.7 cents per-mile to 5.8 cents per-mile as
driving is reduced (compare Tables 2 and 3).

Reductions in driving would naturally be much larger in states that cur-
rently have high insurance costs and would thus face high per-mile premi-
ums. For example, if we compare New Jersey with Wyoming (two states
with similar lane miles but very different VMT's) we find that implement-
ing per-mile premiums would reduce New Jersey’s VMT by 16.2 percent
under our calibration model versus 4.4 percent in Wyoming. The reduction
is much larger in New Jersey because the higher traffic density there leads
to higher accident rates: the per-mile premium in New Jersey would be 6.5
cents per-mile as compared to 1.8 in Wyoming.

None of the per-mile premiums have been adjusted for uninsured drivers,
because data on the percentage of uninsured drivers is poor. Estimates of
the percentage of uninsured drivers are often in the neighborhood of 25 %
(see Khazzoom [1997], Sugarman [1993], and Smith and Wright [1992]).
Our estimates of the per-mile premium are calculated by dividing esti-
mated insured accident costs by total miles driven rather than by insured
miles driven. This could substantially understate the actual per-mile premi-
ums if total miles substantially exceed insured miles. However, it wouldn’t
change our estimates of aggregate driving reductions significantly because
even though the per-mile premium would be higher for insured miles, it
would be zero for uninsured miles.*?

The benefits we estimate for accident savings net of lost driving bene-
fits are substantial in all three models. Nationally, these net accident sav-

32 Let u be the fraction of uninsured drivers and p be our estimate of true per-mile pre-
miums. If premium T%C is charged on (1 — u) percent of miles, then the aggregate mile
reduction is identical to our estimate given linear demand. Some revenue shortfall could be
expected because priced miles fall by a larger percerage than in our estimate. However,
this is approximately offset by the fact that insured accident losses could be expected to fall
by more than we estimate, because driving reductions would be concentrated in the insured

population.
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ings range from $5 billion to $12.6 billion. The difference between our $5
billion estimate under the linear model and our $12.6 billion under the cali-
bration model is dramatic: Accounting for accident externalities raises our
estimate of benefits by 150 percent. Such a large difference makes sense.
If a price change for driver A causes her to drive less, much of her reduc-
tion in accident losses is offset by her lost driving benefits. In contrast,
driver B, with whom she might have had an accident, gains outright from
the reduced probability of having an accident with A who is driving less.
Taking this externality effect into account, nationally, the net gain is $75
per insured vehicle under the calibration model. However, since insurance
companies and their customers don’t take the externality benefits into ac-
count, their view of the gain from per-mile premiums is probably closer
to the $31 of our linear mode!. In high traffic density states, the gain per
insured vehicle is quite high — approximately $150 in Massachusetts and
New York and nearly $200 in Hawaii and New Jersey under the calibration
model.

Compare the net accident reductions in the last two rows of Table 4.
Accident reductions are about 10 percent higher when the U.S. is mod-
eled in a disaggregated way. In the national model, the U.S. is modeled
as if it were a state and a uniform per-mile premium is charged in every
state. This estimate therefore does not pick up one of the important bene-
fits of determining per-mile premiums in a competitive insurance market.
In a competitive insurance market, there are no cross-subsidies among ter-
ritories, so high prices are charged in areas that have high accident rates,
where the benefits from driving reduction will be highest. Each of our state
estimates suffers from the same problem. Our benefit estimates from per-
mile premiums are lower than they would be in competitive insurance mar-
kets, because there is substantial variation within a state in traffic density
and accident rates. Areas with high accident rates will be charged higher
per-mile premiums and therefore experience larger driving reductions. If
within-state heterogeneity is similar to across-state heterogeneity, we could
expect that our estimates of net accident gains are 10 percent lower than
actual gains would be. Taking into account heterogeneity among drivers, as
would happen naturally under a competitive system of per-mile premiums,
would increase benefits still further.

All of our benefit estimates depend critically of course on driving elas-
ticities. Driving reductions and net accident savings are both higher (re-
spectively lower) if the aggregate gas demand elasticity is higher (respec-
tively lower) than .15, The relationship between elasticity and accident
savings is somewhat sub-linear, however, because the externality effect
means that gains are smaller when there is less driving. Nationally, net
accident benefits go from $9 billion for an elasticity of .1 to $16 billion for
an elasticity of .2, using the calibration model.

In general, the estimates of net accident cost savings under the regres-
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sion model are significantly smaller than under the calibration model. This
difference results from the regression model putting little weight on the ex-
ternality affect. As we have argued, this is probably due to several likely
biases resulting from state errors being negatively correlated with traffic
density. We therefore concentrate our attention on the calibration results.

Qur calculation of net accident cost savings under the calibration modet
does not account for the possibility that reduced traffic density causes drivers
to drive less carefully, or causes states to spend less money making roads
safe. It is likely that as traffic diminishes, people will exercise less care,
and so actual accident costs will not fall as much as we estimate. However,
this effect is not necessarily a criticism of the calibration model estimates.
At the margin, this observation simply implies that some of our estimated
accident cost reductions will actually materialize as reductions in the cost
of accident prevention. Assuming that the tort system is currently ensuring
an optimal level of care, our calculation will be accurate for small reduc-
tions in driving, Some inaccuracy due to infra-marginal effects are possi-
ble, but these are probably small given that we are only considering driving
reductions of 10-15%.

These calculations also ignore the fact that more drivers will choose to
become insured once they have the option of economizing on insurance
premiums by only driving a few miles. Today, some of these low-mileage
drivers are driving uninsured while others are not driving at all. To the ex-
tent that per-mile premiums (or per-gallon premiums) attract new drivers,

“the reduction in vehicle miles traveled will not be as large as our simula-
tions predict. This observation does not mean that the social benefits are
lower than we predict. In fact, they are probably higher. The per-year in-
surance system is inefficient to the extent that low-mileage drivers who
would be willing to pay the true accident cost of their driving choose not
to drive, because they must currently pay the accident cost of those driving
many more miles. Giving them an opportunity to drive and pay by the mile
creates surplus because their driving benefits exceed the cost (their bene-
fits would always exceed the cost under optimal per-mile premiums since
they are choosing to pay the cost, and benefits probably do under per-mile
premiums since they pay most of the cost).

4.2.2 Uniform Per-Gallon Premiums.

Since we neglect driver heterogeneity, and within-state territory hetero-
geneity, our simulations would estimate the same benefits for per-mile pre-
miums and per-gallon premiums if evervone drove vehicles of the same
fuel efficiency. However, vehicles vary significantly in their gas mileage.
Taking these composition effects into account, we find that the benefits of
per-mile premiums are approximately 22 percent higher than per-gallon
premiums: For £ = .15 national net accident savings are 310.4 billion un-
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der per-gallon premiums compared with $12.7 billion under per-mile pre-
miums. This difference becomes more substantial for higher elasticities
and is 28 percent whene = .2.

It is not immediately obvious why per-gallon premiums perform worse
than per-mile premiums. After all, both are second-best policies. The ex-
planation, however, can be found in standard optimal tax theory. Since
gasoline is a larger proportion of the operating expenses for a car with low
fuel efficiency than for a car with high fuel efficiency, cars with low fuel
efficiency will respond more to the price change given a similar elasticity
with respect to the price of miles. The lesson from Ramsey’s theory of tax-
ation is that the burden of raising a given amount of revenue is minimized
if the revenue is raised in such a way that the reduction in consumption
of each good is equivalent in percentage terms. In this case, that means
that each driver should reduce miles by the same percentage. That goal
is not accomplished by per-gallon premiums. Per-gallon premiums result
in a higher percentage of driving reduction by those who own low fuel-
efficiency vehicles. Hence, if per-gallon premiums and per-mile premi-
ums raised the same amount of revenue in equilibrium (and hence had the
same accident reduction), per-gallon premiums would be worse because
they would entail larger lost driving benefits. The story is more complex,
however, than simply the fact that per-gallon premiums tax relatively elas-
tic goods, because the equilibrium accident reduction under per-gallon pre-
miums is smaller than under per-mile premiums. This fact also contributes
to the under performance of per-gallon premiums.

The comparison of per-gallon and per-mile premiums would naturally
change if existing state and federal gasoline taxes do not take adequate
account of the pollution externalities from gasoline consumption. In that
case, environmental externalities would argue in favor of per-gallon pre-
miums.

423  Optimal Per-Mile Premiums.

Finally, consider Tables 7 and 8, which present our results for optimal per-
mile premiums. Optimal per-mile premiums weuld involve a tax on premi-
ums sufficiently large that a driver pays the full accident cost of his driving
accounting for accident externalities. We calculate the optimal premium
here under the assumption that auto insurance premiums reflect all acci-
dent costs. As we discussed in the introduction, the bulk of accident costs
are not covered by auto insurance. In particular, auto insurance covers a
small fraction of the value of statistical lives lost, and also doesn’t covered
the pain and suffering of at fault drivers. The reader should therefore keep
in mind that truly optimal premium taxes would account for these costs and
would be substantially higher than those used in our optimal per-mile pre-
miums simulations. This fact makes our estimates conservative: the gains
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from these premiums and the gains from truly optimal premiums would be
substantially higher than those that we calculate.**

For the linear model, the average cost of accidents (A/M) equals the
marginal cost {24 ), so optimal per-mile premiums are the same as second
best per-mile premiums. In our calibration and regression models, how-
ever, which take account of the accident externalities, the marginal cost of
accidents exceeds the average cost. In consequence, the optimal pelicy is
to levy a tax on premiums. Under the calibration model, optimal per-mile
premiums would involve a tax of about 90% in high traffic density states
such as New Jersey and about 40% in low density states like North Dakota.
On average across the U.S., the premium tax would be 83% under the cali-
bration mode! compared with 19% under the regression model. Because of
the premium tax, driving reductions are substantially higher under optimal
per-mile premiums. For the calibration model, national driving reductions
are 15.7% instead of 9.2% when ¢ = .15. National net accident savings
grow to $15.3 billion from $12.7 billion. This increase is fairly modest
because of the standard feature of Harberger triangles that small price dis-
tortions (such as those under per-mile premiums) do not cause large wel-
fare losses. However, the premium tax would collect substantial revenues:
$65 billion in the calibration model. These revenues could substitute for
revenues gained from other taxation.

The optimal per-mile premium is quite large in high traffic density
states. Since the marginal cost of accidents falls as driving falls, optimal
premiums are particularly large when gasoline elasticity is low. Fore = .1,
the optimal per-mile premium is approximately 12 cents in New Jersey and
Hawaii. For a car that gets 20 miles to the gallon, this charge would be
equivalent to more than tripling the price of gasoline in New Jersey.

4.3  Additional Cost Savings: Congestion and Fatalities

These policy changes would yield substantial savings in addition to the
accident ¢costs savings estimated above. In particular, congestion and fa-
talities will fall as driving falls. Not all of the cost savings from reduced
congestion and fewer fatalities should be added to the social gain calculated
above, however. Some of these costs are already internalized by drivers and
reflected in the driving demand curve. Also, some of the costs of fatalities
are insured and are therefore part of our measured accident cost savings.
This subsection provides rough estimates of the external portion of these
cost savings.

34 The fact that life insurance or other insurance serves in part to fill the compensation gap
between auto insurance and full compensation does not take away from this point.
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4.3.1 Fatalities

Automobile insurance only ¢overs a small portion of the monetized cost
of fatalities. Responsible estimates of the cost of a “statistical life” vary
widely, but tend to lie between $1-$10 million.3% Viscusi [1993] concludes
that “the reasonable estimates of the value of life are clustered in the $3
million-$7 million range,” and that the value should be higher when con-
sidering the general population. (The value of a statistical life is the re-
vealed willingness to pay for a small reduction in the probability of pre-
mature fatality weighted by that probability.) Automobile insurance limits
rarely exceed $500,000, so most of the cost of fatalities is not insured by
our though insurance. Since we used insurance premiums as a proxy for
accident costs, our accident ¢ost savings do not reflect the full value of
lives saved. We assume that $4.5 million is uninsured and judgment-proof,
either because of bankruptcy or lack of legal liability.® This value is cho-
sen to be conservative, taking the middle value from Viscusi's range and
subtracting $500,000. Some portion of this value is presumably internal-
ized, however. In particular, in deciding how many miles to drive, a rational
driver already considers the cost he places on an increased chance of pre-
mature mortality. To the extent that he is judgment-proof, however, he will
not consider the costs he imposes on others, In 1996, roughly 15 percent of
auto accident fatalities, or 6,300, were to 'non-occupants, largely bicyclists
and pedestrians.’” Roughly 41% of fatalities (17,500) were from colli-
sions with another motor vehicle in transport.®® Since from any driver's
perspective at least 1/2 of the fatalities he expects from multi-vehicle ac-
cidents will be in other vehicles, summing these figures suggests that 36%
of the 42,000 auto fatalities in 1996 were external to the driving decision.
This methodology understates the externalities considerably, since in many
cases, a car will overturn or collide with some fixed object to avoid hitting
another vehicle.

Under the assumption that as driving falls, fatalities fall in proportion to
accidents, Table 10 gives the monetized value of statistical lives saved that
are uncompensated by insurance and are externa! to the driving decision.
This value is a benefit of per-mile premiums in addition to the net reduction
in insured accident costs estimated in Section 4.2. Under our calibration
model, the 10% national driving reduction would lead to approximately
6600 fewer fatalities for ¢ = .15. Under the assumptions discussed above,
we should therefore add about $11 billion = 6600 x .36 x $4.5million to
the benefits calculated in the previous section to account for fatalities. Note

35 See Viscusi (1993) and Fisher et al. {1989).

36 In comparison, the Urban Institute study {1991} used a figure of $2.4 billion per life in
1988 dollars.

37 Table 53, U.S. Department of Transportation {1997].

38 Table 66, U.S. Department of Transpertation {1997].
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that the benefits under optimal per-mile premiums would be even higher if
the optimal premium included a payment to account for external fatalities,
rather than just being the optimal charge to account for external accident
costs.

Life insurance and other non-auto insurance policies do, of course,
helped to fill the compensation gap between auto insurance coverage and
the full value of life, but this fact does not affect the accuracy of the es-
timates above. When one person’s driving saves the life of a pedestrian,
bicyclist, or another driver, the cost savings does not disappear merely be-
cause that person’s life was insured. Such insurance only shifts the cost
to the insurance company. The $500,000 in assumed compensation from
auto insurance was subtracted from our value of life to avoid double count-
ing because the savings was already counted in the previous section as a
reduction in the insured cost of accidents. Since fatality costs insured by
non-auto insurance was excluded from the previous section, it should prop-
erly be included in this calculation.

4.3.2 Congestion

Some portion of congestion cost savings should also be added to the ben-
efits from per-mile premiums. These costs are large and a growing con-
cern.’® A detailed study by Schrank, Turner and Lomax [1995] estimates
that the cost of congestion from delay and increased fuel consumption in
the U.S. exceeded $49 billion in 1992 and $31 billion in 1987.4% This study
valued time at $8.50/hr. in 1987 and $10.50/he. in 1992, which will seem a
considerable undercounting to those who, like myself, would far prefer to
be at work than stuck in a traffic jam. If we project this figure to 360 bil-
lion in 1995, this amounts to 2.5 cents for every mile driven. As discussed
in presenting our model, although the marginal cost of congestion is many
times the average cost of congestion during congested perieds, we conser-
vatively assume that the marginal cost of congestion is twice the average
cost, so that the external marginal cost of congestion equals the average.
Table 9 gives our estimates of the national portion of congestion reduction
that is external and should be added to net accident benefits and fatality
reductions for ¢ = .15. In all models, estimated externalized gains from
congestion reductions are large, ranging from $4.2 billion to $9.4 billion.
Under per-mile premiums, congestion reductions are largest in the regres-
sion and linear models because in those models, accident rates (and hence
per-mile premiums) don’t fall much or at all as driving falls. In contrast,

39 A recent poll by Mark Baldarassare shows that voters in California are “most satisfied
with their jobs™ and “most negative about traffic.” New York Times 6/2/98, Al, “Economy
Fades As Big Issue in Newly Surging Catifornia.”

40 My summation for the 50 urban areas they studied. See Table A-9, p. 13, and Table
A-15, p. 19, in Shrank, Turner and Lomax [1995]. See also Alt +fst [1997], who estimates
congestion costs at $22.5-99.3 billion.
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the congestion reductions for optimal per-mile premiums are largest ($9.4
billion) under the calibration model, because of the large premium tax that
accounts for accident externalities from driving. Congestion reductions are
smallest under per-gallon premiums because this policy yields the smallest
driving reduction of the three, as discussed above.

These calculations are based upon the average cost of delay. Conges-
tion delays, of course, are concentrated during certain peak time periods
and at certain locations. This fact simply means that the congestion reduc-
tions from per-mile pricing are concentrated during these time periods and
these locations. Our calculations are robust provided that the elasticities of
demand for congested miles and non-congested miles are comparable, and
that the externalized marginal cost is a constant multiple of average cost.*!
The concentration of congestion costs simply suggest that we would be
even better off if driving were priced particularly high during congested
periods and somewhat lower otherwise,

4.4 Total Benefits.

Table 11 gives total estimated annual national benefits from per-mile, per-
gallon, and optimal per-mile premiums for ¢ = .15. The total benefits are
expressed both in aggregate and per insured vehicle. These annual benefits
are quite high and using the regression estimates as our lower bound and
the calibration estimates as our upper bound suggests that charging by the
mile would be socially beneficial if verifying miles could be achieved for
less than $146-$173 per car each year. Note that external benefits made up
$20-$24 billion of our estimated benefits since net accident savings were
only $5 billion under the linear model. The gains under optimal per-mile
premiums were higher still at $187-5254 per vehicle. These estimates ne-
glect environmental gains that would result if the current price of gasoline
does not adequately account for emissions, noise pollution and road main-
tenance. Our estimates also did not account for underinsured and uninsured
accident costs to those who survive accidents. Including these latter fig-
ures into our estimates of eliminated accident externalities would raise the
estimated benefits by several billion dollars more.

The total benefits are quite large even for the linear model where acci-

41 T5 understand why, consider a model with two types of miles: A, B. Let the initial
quantities of driving these miles be a, b, and let Ca, C}, be the total cost of delay during
driving of types A, B respectively. Then, the average cost of delay is ¢ = QT;"_'_-'—,,CJ, and
the average cost of delay during driving of the two types is ca = Ca/a,c5 = Cp/b. The
externalized marginal cangestion costs are likewise cq, ¢p. Observe that if a uniform per mile
price p is charged for both types of miles, the congestion savings will be 2!’5 [aca + bey) =
BE (Cq + Cy), where g is the initial gas cost per mile of driving, and ¢ is the elasticity of
miles with respect to the price of gasoline. This is equivalent to what we would calculate
if we treated the two types of miles equivalently, with c as the externalized marginal cost of
miles. Then we would estimate the congestion reduction as: 2% a + bjc = B (Ca + Cs)-
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dents are proportional to mileage. Under the linear model, the total benefits
of per-mile premiums are $107 per vehicle, and the benefits of per-gallon
premiums are $88 per vehicle. This model would be roughly accurate ifin-
dividua! elasticities of accidents with respect to miles were .5, because then
the externality effect would make the social elasticity roughly one, as in a
linear model. Estimates under the regression model lie roughly halfway in
between the linear mode! and the calibration model.

5. Implementation.

This section begins by asking the economist’s standard question: If per-
mile premiums are so great, why don’t we see them already? After dis-
cussing the likely reasons for their absence, we argue that the fact that in-
surance premiums are now only weakly tied to actual miles driven. Finally,
we discuss several options for facilitating or implementing per-mile premi-
ums.

5.1 Why don’t we see per-mile premiums now?

Standard contracting analysis predicts that an insurance company and its
customers would not strike a deal with a lump sum premium if accident
costs increase with miles, and if miles are observable. In that case, as Rea
[1992] has pointed out, the insurance company <¢ould charge for insurance
by the mile and make more money while leaving its customers as well off
or better off. (If the insurance company is a mutual company it could give
this excess back to policyholders.) There are several reasons, however,
why this price restructuring may not be or may not appear to be a Pareto
improvement to the customer and his insurance company. We discuss these
reasons below.

Monitoring costs. As Rea points out, checking odometers is costly, and
the gains to the insurance company and its customers from more efficient
pricing may be less than the cost to the customer and the insurance company
than of bringing a car to a certified odometer checker every year. However,
as this paper has emphasized, many of the gains from the customer driving
less will be realized by other drivers and other insurance companies, be-
cause there will be fewer accidents, less congestion, and less pollution.
Our estimates suggest that these external effects are large and could justify
per-mile premiums, even in cases where insurance companies and their
customers would not want to choose per-mile premiums on their own. Ad-
ditionally, it may be much cheaper to monitor miles if all insurance carriers
charge for insurance by the mile, as we argue below.

Low elasticities. Driving might also be less price sensitive than our
estimates assume. Some in the insurance industry have argued that drivers
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will not respond to price changes and therefore criticize per-mile premiums
(see Nelson [1990]). Certainly, there is no guarantee that drivers will be as
responsive to price changes as we assume. However, our assumed price
elasticities lie in the middle range of existing estimates, and the truth could
be either higher or lower. The possibility that price elasticities could be
lower is therefore a poor justification for current pricing.

Adverse selection. Adverse selection is another reason that a given in-
surance company may not want to switch to per-mile premiums on its own.
Even if the insurance company knows the average miles driven per year by
drivers in a given risk pool, it does not (currently) know the miles that
given individuals drive. If it charges a per-mile premium equal to the cur-
rent yearly premium for the pool divided by the average number of miles
driven by drivers in the pool, it will lose money. Those who drive more
miles than the average will leave the pool for a firm charging per-year
rates and those who drive less miles will stay with this insurance com-
pany. However, low mileage drivers in any given per-year risk class with
a given accident experience level will tend to be worse drivers than high
mileage drivers in the same risk class. {(Accident costs divided by miles
driven would be a sensible measure of per-mile risk.) This adverse selec-
tion means that the insurance company will have to charge a fairly high
per-mile price to break even given the selection problem and the possi-
bility that high-mileage drivers can choose to pay fixed annual premiums
with other insurance companies. In principle, the insurance company could
probably find a sufficiently high per-mile price that would increase prof-
its. However, one could understand the hesitancy of a marketing director
to propose to the CEO that the insurance company change its pricing struc-
ture in a way that would make its prices less attractive than other insurance
companies’ to a large percentage of its current customers. The CEO would
probably balk, even if the finest economic consultants argued that the plan
should increase profits.

Risk aversion. Customers may not know exactly how many miles they
will drive in a year, and so there is an insurance motive to continue charging
them a fixed yearly price. However, we don’t see gasoline clubs that sell
a year’s worth of gasoline for a fixed price, nor vacation clubs that sell a
year’s worth of airplane travel for a fixed price. The moral hazard problem
is simply too large.

Odometer fraud. If premiums are based upon odometer readings, the
first thought to spring to any economist’s mind will be that people will tam-
per with their odometers to reduce insurance premiums. Perhaps surpris-
ingly, insurance industry advocates do not bring up this possibility when
they write in opposition to the idea of charging by the mile. While odome-
ter tampering is certainly a concern, it is probably not a huge problem.
Tampering with an odometer is already a crime, and this simple fact will
be enough to stop most people from tampering. Additionally, tampering
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with an odometer is not trivial and most people will not be able to do this
on their own. Currently, there are substantial incentives to set odometers
back to sell used cars. The odometer fraud unit within the Department of
Transportation believes, however, that such tampering generally does not
occur when individuals sell their cars (despite the fact that they could make
several thousand dollars by tampering), and is generally restricted to the
wholesale car trade. Today, there is apparently no retail market for setting
back odometers, despite large incentives when selling a used car.*? Some
combination of the penalties from violating the law (real or of conscience)
together with the difficulty of adjusting odometers appears to be sufficient
at present to deter most tampering. Penalties could be adjusted upward
somewhat to compensate for the increased incentive to tamper resulting
from insurance premiums being based upon miles.

Prospective nature of insurance. A final reason that some insurance
executives have given to explain why they don’t charge per-mile premiums
is that insurance charges are prospective in nature. They don’t want to
collect ex post surcharges from drivers who drive a lot, particularly if the
driver had no accident. This problem, however, could be surmounted easily
if the charge were guaranteed in advance by a credit card company.

5.2  Policy Ideas for Implementing Per-mile Premiums.

This section presents several policy ideas that address the practical and
political problems involved in switching to a per-mile premium regime.

The first thing the government could do to facilitate the adoption of
per-mile premiums would be to reduce the cost of monitoring miles, which
is probably the principal reason, other than inertia, that per-mile premi-
ums are not currently charged. The simplest thing to do in states such as
Massachusetts that already have regular checks of automobiles for safety
or emissions, would be to record odometer readings at these checks and
transfer this information together with vehicle identification numbers to
insurance companies. This would remove the need for a special trip and
special stations for odometer checking. Even in states that do not have any
safety or emissions checks, there would be substantial economies of den-
sity in checking odometers simply because the time required to travel to the
nearest odometer checking station would be much smaller if all insurance
companies switched to per-mile premiums at once than if a single company
did.

Another way to encourage insurance companies to switch to per-mile
premiums would be to transfer some of the externality gains to them. For
example, since per-mile premiums would help states meet the standards of
the Clean Air Act, states or localities could provide financial incentives to

42 Setting back an odometer 40,000 miles could increase the sale price of most cars by
$2,000 - $4,000.
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insurance companies that switched (e.g., tax credits or valuable pollution
permits). Money might also justifiably be used from the Highway Trust
Fund, since with less driving, fewer roads are needed.

An interesting possibility proposed in March 1998 by the National Or-
ganization for Women is to require insurance carriers to offer customers a
choice between per-mile and per-year premiums. The idea of choice arose
from the Auto Choice Bill currently before Congress that would give cus-
tomers the choice between no-fault and tort regimes. Such a choice plan
would be politically appealing. Additionally, the selection effects under
a choice system would favor per-mile premiums. For any given per-mile
price and per-year price, we would expect drivers below some mileage cut-
off to choose per-mile premiums, and drivers above the cutoff to choose
per-year premiums. As low mileage drivers left the per-year insurance
pool, however, the average per-year accident rate in that pool would rise.
As per-year premiums rose in consequence, the cutoff would rise and more
high-mileage drivers would peel off and sign up for per-mile insurance.
Eventually, the per-year insurance system would disappear entirely if the
per-mile accident risk for an individual were independent of the amount the
individual drove and if monitoring miles were costless. Otherwise, there
might be an equilibrium where both systems survived.

A somewhat more daring approach would be to tax insurance premiums
to account for accident externalities. Such a tax would be sound policy on
its own even if premiums remain weakly linked to mileage, but a premium
tax would also encourage insurance companies to switch to per-mile pre-
miums. A premium tax would raise the private gains from reducing driving
and with it, accident costs and premiums. A tax would align the insurance
company/customer gains with the social gains so that they would ratio-
nally switch premiums if the gains exceeded transaction costs. As we have
pointed out previously, the premium tax could be most efficiently imple-
mented in a no-fault system, because then competitive insurance premiums
would reflect only the frequency of accidents and not the share of accident
damages borne, so that the optimal taxes would not depend upon whether
one was a good or bad driver.

A final possibility, which the government might help initiate and cer-
tify, but could be privately run, would be to meter miles at the pump. This
would marry per-mile premiums with the pay-at-the-pump idea, getting the
benefits of both. Insurance companies could continue to compete much as
they do now, but they would quote risk-classified premiums on a per-mile
basis instead of a per-year basis. The per-mile premium for a car could be
converted to a per-gallon premium via multiplying by the car’s fuel effi-
ciency (in miles per galion). Unlike uniform per-gallon premiums, these
premiums could vary with a driver's risk characteristics. The driver would
be issued an insurance card that would need to be used when buying gaso-
line. The card might double as a credit card so-that it could be used in

36



the electronic card readers that are currently at most pumps. The num-
ber of gallons purchased could be sent electronically to a clearinghouse
that reported this number to the insurance company for billing. This sys-
tem would have the advantage over uniform per-gallon premiums that the
price of driving would vary with the risk characteristics of an individual
and the territory where the individual lives, but not with the fuel efficiency
of the car the individual drives. It would borrow the advantage of pay-at-
the-pump proposals that evading premiums would be difficult because you
could not purchase gasoline without buying insurance (whether the insur-
ance is bought on credit or otherwise). This system would also eliminate
the need for regular odometer checks and the potential problem of odome-
ter fraud. The difficulty with charging non-uniform per-gallon premiums
is arbitrage. One person could use another’s insurance card or his own card
for another vehicle. Such insurance fraud could be limited, however, by
checking odometers when a claim is made. If there is a substantial mis-
match between the odometer reading and the premiums paid on gasoline,
the claim could be denied or pro rated based upon the percentage of premi-
ums paid. The simple principle would be: if you don’t pay your insurance
premiums, you haven™t bought insurance.

6. Conclusions

[n all three models, the benefits of per-mile premiums are quite large. Ben-
efits reach $18 billion nationally, or over $100 per car even under the lin-
ear model, and are substantially larger ($25-29 billion) under our preferred
regression or calibration models. (The linear model would be roughly ac-
curate if individual elasticities of accidents with respect to miles were not
unity as we have assumed, but were .5, because then the total social elas-
ticity of accidents would be roughly unity as in a linear model, once one
takes into account the externalities from two vehicle accidents.)®

Most of the benefits, however, are externalities, which is surely one rea-
son that insurance companies have not adopted per-mile premiums on their
own. This observation suggests several policy interventions worth con-
sidering. States could work to reduce the monitoring costs for insurance
companies by reading odometers or certifying odometer checkers. Another
approach would be to impose a tax on insurance premiums to account for
accident externalities. Such a tax would gather substantial revenue, per-
haps $60-70 billion, and would also speed the day when insurance compa-
nies charge per-mile premiums. Because the tax would make drivers pay
the full accident cost of their driving, it would provide insurance compa-
nies and drivers the incentive to strike a contract that would economize on

43 pecall that Hu et al. [1998] estimates of individual elasticities were in this range, though
we argue that they were probably biased downward substantially.



these costs by giving drivers the incentive to drive less. Alternatively, the
government could use a carrot, sweetening the pot by providing insurance
companies with financial incentives that reflected gains from reducing ac-
cident, congestion, and pollution externalities.

Qur estimates of the benefits of uniform per-gallon premiums suggest
that they are substantially inferior to per-mile premiums (unless transaction
costs are substantially reduced). However, per-gallon premiums could be
individually tailored at relatively low cost either now or in the near future
(per-mile premiums metered at the pump). Uniform per-gallon premiums
could be a highly attractive option in countries that do not have fully de-
veloped insurance markets and where gasoline does not already carry high
taxes.
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Table 2
Insured Accident Cost

11/30/98 D:00
State Vehicle Miles Lane Avg. Cost Estimated Marginal Cost

Traveled Miles per mile

{billions (cents) Calibration Methed Regression Method

per year) {cents per mile) (cents per mile)
Alabama 51 193,000 24 43 33
Alaska 4 27,000 5.2 8.9 6.6
Arizona 40 117,000 44 82 6.4
Arkansas 27 156,000 3.0 5.2 3.9
California 276 381,000 41 7.8 6.6
Colorado 35 174,000 47 8.3 62
Connecticut 28 43,000 6.5 12.4 10.4
Detaware 8 12,000 4.9 9.3 7.8
Florida 128 244,000 4.3 8.2 6.7
Georgia 85 -233,000 3.1 58 4.6
Hawaii 8 8,000 7.9 15.3 13.3
Idaho 12 121,000 2.4 3.9 29
linois 94 286,000 42 7.7 6.0
Indiana 65 191,000 3.0 5.6 4.4
lowa 26 230,000 30 4.9 386
Kansas 25 271,000 3.1 5.0 3.7
Kentucky 41 151,000 33 6.1 4.6
Louistana 39 126,000 4.4 8.2 6.3
Maine 13 46,000 3.0 55 4.2
Marytand 45 65,000 48 9.2 7.8
Massachusetts 48 65,000 6.7 12.9 11.0
Michigan 86 247,000 4.6 85 6.7
Minnesota 44 267,000 4.0 6.9 5.1
Mississippi 30 150,000 2.4 4.2 3.2
Missourt 5% 250,000 3.0 54 4.1
Montana 9 141,000 26 4.0 3.0
Nebraska 16 187,000 30 4.8 3.5
Nevada 14 92,000 4.9 8.4 6.2
New Hampshire 11 31,000 43 8.0 6.3
New Jersey 61 76,000 7.7 14.8 12.7
New Mexico 21 127,000 2.9 5.0 3.7
New York 115 237,000 6.4 12.0 9.8
North Carolina 76 202,000 3.5 6.4 5.1
North Dakota 7 175,000 2.1 29 2.3
Ohio 101 241,000 36 6.8 5.4
Oklahoma 38 231,000 2.6 4.6 3.4
Oregon 30 171,000 3.8 6.7 5.0
Pennsylvania 85 247,000 52 9.7 7.7
Rhode Island 7 12,000 7.3 13.8 11.4
South Caralina 38 134,000 3.5 6.5 5.0
South Dakota 3 168,000 25 36 2.7
Tennessee 56 178,000 28 5.1 40
Texas 181 626,000 32 5.8 45
Utah 19 85,000 3.2 5.8 4.3
Vermont 6 29,000 3.2 57 4.3
Virginia 70 148,000 35 6.5 5.3
Washington 49 164,000 3.9 7.2 5.6
West Virginia 17 72,000 4.1 7.4 5.6
Wisconsin 51 228,000 3.0 53 4.0
Wyoming 7 73,000 1.8 3.0 2.2
National Mode!
(aggregated ) 2423 8,158,000 4.0 7.4 5.7




Table 3
Per Mile Premiums & Driving Reductions
{Not Adjusted for Uninsured Drivers)

Gas Elasticity 0.15 11/30/98 0:0G
Modet A=e,M Asc,M+cM*IL A=c)M+e,MAL
Linear Mcdel Calibration Model Regression model
marginal charge  VMT reduction marginal charge  VMT reductions marginai charge VMT reductions

States (cents/mile) {cents/mile} (cents/mile)
Alabama 2.4 6.0% 23 5.7% 23 5.5%
Alaska 5.2 12.0% 4.8 11.0% 5.0 11.6%
Arizona 4.4 10.6% 41 9.7% 4.2 10.1%
Arkansas 3.0 7.7% 2.8 7.3% 2.9 7.5%
California 4.1 9.8% 37 9.0% 33 9.2%
Calorado 4.7 11.2% 4.3 10.3% 45 10.8%
Connecticut 6.5 15.2% 5.7 13.4% 5.8 13.9%
Delaware 4.9 12.1% 4.4 10.9% 4.5 11.3%
Flarida 43 1.1% 39 10.1% 4.1 10.4%
Georgia 3.1 B.4% 29 7.8% 30 8.0%
Hawaii 7.9 18.0% 6.8 15.4% 7.0 16.0%
ldaho 2.4 5.7% 2.3 5.5% 2.4 5.6%
lllincis 4.2 10.5% 38 9.6% 4.0 10.0%
Indiana 3.0 7.8% 28 7.3% 29 7.5%
lowa 3.0 7.5% 2.8 7.2% 29 7.4%
Kansas 3.1 8.1% 3.0 7.7% 3.1 7.9%
Kentucky 33 8.5% 31 7.9% 32 8.2%
lL.ouisiana 4.4 11.2% 4.1 10.2% 42 10.6%
Maine 3.0 7.4% 28 7.0% 28 7.2%
Maryland 4.8 11.8% 4.3 10.6% 4.5 11.0%
Massachusetts 6.7 16.4% 58 14.2% 6.1 14.8%
Michigan 46 12.0% 4.2 10.9% 4.4 11.4%
Minnesota 4.0 9.7% 7 9.1% 39 9.5%
Mississippi 2.4 6.0% 2.3 5.7% 2.3 5.9%
Missouri 3.0 7.8% 28 7.3% 2.9 76%
Montana 26 6.1% 2.5 6.0% 26 6.1%
Nebraska 3.0 7.5% 2.9 7.2% 3.0 7.4%
Nevada 4.9 11.5% 4.5 10.7% 4.7 11.2%
New Hampshire 4.3 10.6% 4.0 8.8% 4.1 10.2%
New Jersey 7.7 19.4% 6.5 16.4% 6.8 17.2%
New Mexico 29 7.0% 2.7 6.6% 2.8 €.9%
New York 6.4 15.6% 5.6 13.7% 59 14.4%
North Caroclina 35 8.7% 32 8.1% 33 8.3%
North Dakota 2.1 5.1% 2.1 5.0% 21 5.1%
Chio 36 9.1% 33 8.4% 35 8.7%
Oklahoma 2.6 6.8% 2.5 6.5% 2.6 6.7%
Oregon 38 9.0% 36 8.5% 3.7 8.8%
Pennsylvania 5.2 12.9% 4.7 11.6% 49 12.1%
Rhode Isfand 73 ) 17.6% 6.3 15.2% 6.6 16.0%
South Carolina 35 9.2% 3.3 8.5% 3.4 8.8%
South Cakota 25 6.1% 2.4 6.0% 2.5 6.1%
Tennessee 2.8 7.0% 26 6.6% 2.7 6.8%
Texas 3.2 8.0% 30 7.5% 31 7.8%
Utah 3.2 7.7% 3.0 7.3% 3.1 7.5%
Vermont 3.2 7.9% 30 7.4% 31 7.7%
Virginia 35 8.7% 3.2 8.1% 33 8.3%
Washington 39 9.3% 36 8.6% 38 9.0%
West Virginia 4.1 10.3% 3.8 9.5% 4.0 10.0%
Wisconsin 3.0 7.4% 2.8 7.0% 2.9 7.2%
\Wyoming 1.8 4.6% 1.8 4.4% 1.8 4.5%
U.S. Total
(disaggregated sum) 10.0% 9.2% 9.5%
National Model

aggregated ) 4.0 10.2% 3.7 9.4% 3.9 9.7%




Accident Savings from Per Mile Premiums

Table

4

{Net of Lost Driving Benefits)

Gas Elasticity 0.15 11/30/58 0:00
Model A=c,M AmgMte;MYL A=o,M+o; ML
Lincar Model Calibration Model Regression model
total per insured vehicle total per insured vehicle total per insured vehicle
States (dollars in millions) 3 (dollars in millions $ {dollars in millions $
Alabama 36 14 89 34 63 24
Alaska 13 38 28 83 17 51
Arizona 93 33 223 79 157 56
Arkansas 31 16 70 338 48 26
California 548 34 1391 s 1111 68
Colorado 91 34 207 76 137 50
Connecticut 138 59 328 141 256 109
Delaware 22 43 54 106 44 85
Florida 308 36 752 88 615 72
Georgia 112 21 277 52 224 42
Hawaii 57 81 132 188 105 150
Idaho 8 11 18 23 11 14
lllincis 205 27 491 65 365 48
Indiana 75 18 187 45 142 34
lowa 28 13 63 29 41 19
Kansas 32 15 66 31 44 21
Kentucky 58 21 140 50 102 37
Louisiana 96 39 227 92 167 68
Maine 14 15 34 37 24 26
Maryland 127 38 314 93 255 76
Massachusetts 263 66 622 155 511 128
Michigan 237 33 562 78 442 61
Minnesota 85 26 191 58 126 as
Mississippi 21 15 50 35 34 24
Missouri 65 19 166 45 121 33
Maontana 8 11 15 22 9 13
Nebraska 18 13 38 27 23 17
Nevada 39 39 86 85 54 54
New Hampshire 24 28 59 68 43 S0
New Jersey 453 86 1040 198 901 171
New Mexico 21 18 43 44 32 28
New York 574 60 1339 139 1045 109
North Carolina 114 19 282 43 PR 36
North Dakota 4 7 3 13 4 8
Ohia 165 21 410 52 314 40
Okiahoma 35 15 80 34 56 24
Oregon 52 22 118 51 74 32
Pennsylvania 37 38 749 90 565 68
Rheode island 44 63 101 157 80 124
South Carolina 63 23 151 56 113 42
Sauth Dakota 6 10 10 18 7 12
Tennessee 55 16 136 39 99 28
Texas 230 24 559 59 409 43
Utah 23 18 55 43 36 28
Vermont 8 17 18 41 13 28
Virginia 105 21 264 54 206 42
Washington Q0 27 216 64 148 44
West Virginia a7 28 86 68 61 48
Wisconsin 56 15 134 37 a 25
Wyoming 3 8 ] 16 4 10
U.S. Total
(disaggregated sum) 5310 31 12686 75 9782 58
National Model
(aggregated ) 4954 29 11813 70 8476 50




Table §
Per Gallon Premiums & Driving Reductions
(Not Adjusted for Uninsured Drivers)

Gas Elasticity 0.15 11/30/98 Q:00
Model A=cM A=, M+e;MYL AmcM+c; ML
Linear Model Calibration Model Regression model
marginal charge VMT reductions marginal charge VMT reductions marginal charge VMT reductions
States (cents/gallon) (cents/gallon) {cents/gallon)
Alabama 45 5.5% 41 51% 43 5.3%
Alaska 92 10.5% 82 2.2% as 10.0%
Arizona 80 9.3% 70 8.2% 74 8.7%
Arkansas 55 6.9% 50 6.3% 53 6.7%
California 73 8.7% 64 7.6% 67 7.9%
Colorado 84 9.8% 74 8.7% 79 9.3%
Connecticut 113 13.0% 94 10.8% 99 11.4%
Delaware 87 10.6% 74 9.0% 78 9.5%
Florida 69 8.8% 61 71.7% 89 8.7%
Geaorgia 48 6.1% 43 5.7% 50 66%
Hawaii 117 13.0% 98 10.9% 111 12.4%
Idaha 40 4.6% 38 4.4% 43 4.9%
lincis 64 7.8% 58 7.1% 68 8.4%
Indiana 48 5.8% 43 5.4% 49 6.2%
lowa 43 5.3% 42 5.2% 5 6.3%
Kansas 47 5.9% 45 5.7% 54 6.8%
Kentucky ) 6.4% 43 6.0% 56 7.0%
Louisiana 71 8.7% &3 7.8% 72 8.9%
Maine 44 5.3% 42 5.0% 51 6.1%
Maryland 78 9.5% 68 8.2% 74 9.0%
Massachusetts 101 12.1% 85 10.2% 97 11.6%
Michigan 73 9.4% 64 8.3% 73 9.4%
Minnesota 65 7.8% 59 7.1% 66 7.9%
Mississippi 39 4.9% 37 4.6% 41 5.1%
Missouri 49 6.2% 45 57% 51 6.4%
Montana 41 4.8% 40 4.6% 46 5.3%
Nebraska 50 6.1% 47 5.8% 52 5.4%
Nevada 74 8.6% 68 7.8% 81 9.3%
New Hampshire 62 7.5% 57 6.9% 89 8.4%
New Jersey 110 13.7% 92 11.4% 106 13.2%
New Mexico 45 55% 43 5.1% 43 5.8%
New Yoark 101 12.2% 86 10.3% 96 11.5%
North Carolina 56 6.9% 51 6.3% s7 7.0%
North Dakota - 36 4.3% 35 4.2% 37 4.5%
Ohio 58 7.2% 53 6.5% 59 7.2%
Oklahoma 41 5.2% 39 4.9% 44 5.6%
QOregon 61 7.0% 56 6.5% 64 7.4%
Pennsylvania 72 8.8% 66 8.0% 80 9.8%
Rhode Island 113 13.4% 94 1.2% 106 12.5%
South Carolina 51 6.5% 43 6.1% 57 7.3%
South Dakota 40 4.9% it} 4.8% 44 5.3%
Tennessee 47 5.8% 43 5.4% 47 5.8%
Texas 50 6.3% 46 5.8% 53 6.6%
Utah 54 6.3% 50 5.8% 55 6.4%
Vermont 51 6.2% 47 5.7% 53 6.5%
Virginia 53 6.6% 49 6.0% 56 6.9%
Washington 58 6.5% 53 6.1% 63 7.4%
West Virginia 66 8.1% 59 7.3% 67 B.3%
Wisconsin 50 6.0% 46 5.6% 50 6.1%
Wyoming 3t 3.7% 30 3.6% 33 4.0%
U.S. Total
{disaggregated sum} 7.9% 7.0% 7.9%
National Model
{aggregated ) 64 8.0% 58 7.2% 65 8.1%




Table 6
Accident Savings from Per Gallon Premiums
(Net of Lost Driving Benefits)

Gas Elasticity 0.15 11/30/98 0:00
Mode! A=c;M A=c,M+c; ML A=¢,M+c, ML
Linear Model Calibration Model Regression model
totat per insured vehicle total per insured vehicle total per insured vehicle
States (dollars in millions) $ (doltars in millions) 3 {dollars in millions) $
Alabama 34 13 81 31 57 22
Alaska 12 35 24 73 17 50
Arizona 86 30 196 69 147 52
Arkansas 28 15 63 34 43 23
California 507 H 1222 75 1019 63
Colorado 84 3 182 67 129 47
Connecticut 127 54 280 120 235 101
Delaware 20 40 47 92 39 76
Florida 277 33 619 73 519 61
Georgia a9 19 219 41 178 34
Hawait 50 71 103 147 a5 136
Idaha 8 10 15 20 11 13
Ilinois 183 24 385 52 319 42
Indiana 67 16 150 36 120 29
lowa 25 12 50 23 36 17
Kansas 28 13 53 25 38 18
Kentucky 52 19 113 41 88 32
Louisiana 87 35 186 75 146 59
Maine 12 13 27 29 22 23
Maryland 13 34 259 77 223 66
Massachusetlts 234 58 491 123 441 110
Michigan 214 30 4680 64 367 51
Minnesota 77 24 160 49 114 35
Mississippi 19 13 43 29 30 21
Missouri 63 17 138 38 103 28
Montana 7 10 12 19 9 13
Nebraska 16 12 31 23 21 16
Nevada 35 35 69 69 51 51
New Hampshire 21 25 46 53 38 44
New Jersey 396 75 803 153 740 141
New Mexico 18 17 40 36 29 26
New Yark 518 54 1080 114 913 95
North Carolina 104 18 234 40 186 32
North Dakota 3 7 S 1 4 8
Ohio 150 19 338 43 272 34
Oklahoma 31 13 65 28 47 20
Oregon 47 20 97 42 7 30
Pennsylvania 273 33 573 69 491 59
Rhode Island 40 61 82 126 70 108
Secuth Carolina 55 20 118 44 85 35
South Dakota S 9 g 16 5 11
Tennessee S0 14 116 33 87 25
Texas 208 22 451 49 356 38
Utah 21 17 47 37 34 27
Vermont 7 16 15 34 11 25
Virginia 94 19 213 43 178 36
Washington 78 23 169 S50 137 41
West Virginia 33 26 71 56 54 42
Wisconsin =1 14 113 31 82 23
Wyoming 3 7 5 14 4 9
U.S. Total
(disaggregated surn) 4776 28 10402 61 8520 50
National Maodel
|(aggregated } 4480 26 9727 58 7526 44




Table 7
Optimal Premiums & Driving Reductions
(Not Adjusted for Uninsured Drivers)

Gas Elasticity 0.15 11/30/98 0:00
Model A= M A=c,M+e;MYL A=c M+c;MVL
Linear Model Calibration Model Regression model
marginal charge VMT reductions marginal charge VMT reductions marginal charge VMT reductions

States {cents/mile) (cents/mile) {cents/mile)
Alabama 24 6.0% 3s 9.9% 3.2 8.0%
Alaska 5.2 12.0% 76 17.6% 6.2 14.3%
Arizona 44 10.6% 7.0 16.6% 5.9 14.0%
Arkansas 3.0 7.7% 4.7 12.0% 37 9.5%
Caiifornia 41 9.8% 6.6 16.0% 5.9 14.2%
Colorado 47 11.2% 7.0 16.9% 58 13.8%
Connecticut 6.5 15.2% 9.7 22.8% 8.8 20.6%
Defaware 4.9 12.1% 7.6 18.9% 6.8 16.9%
Florida 43 M.1% 68 17.5% 6.0 15.4%
Georgia 31 8.4% 5.1 13.6% 43 11.4%
Hawaii 7.9 18.0% 115 26.1% 10.7 24.3%
ldaha 24 5.7% 37 8.7% 28 6.7%
llinois 42 10.5% 6.5 16.4% 55 13.8%
Indiana 3.0 7.8% 49 12.7% 41 10.5%
lowa 3.0 7.5% 45 11.3% 35 8.8%
Kansas 31 8.1% 4.6 11.8% 3.6 9.3%
Kentucky 33 8.5% 53 13.6% 44 11.1%
Louisiana 4.4 11.2% 6.9 17.3% 58 14.5%
Maine 3.0 7.4% 49 12.0% 4.0 9.8%
Maryland 4.8 11.8% 7.6 18.6% 6.8 16.7%
Massachusetts 6.7 16.4% 8.9 24.2% 9.1 22.2%
Michigan 4.6 12.0% 71 18.5% 6.0 15.7%
Minnesota 4.0 9.7% 6.0 14.3% 438 11.8%
Mississippi 2.4 6.0% 3.9 9.7% 3.0 7.6%
Missouri 30 7.8% 4.8 12.4% 38 10.0%
Montana 26 6.1% a7 8.8% 29 6.9%
Nebraska 3.0 7.5% 4.4 10.9% 34 8.5%
Nevada 4.9 11.5% 7.2 17.0% 5.8 13.8%
New Hampshire 43 10.6% 6.8 16.7% 57 14.1%
New Jersey 7.7 19.4% 10.9 27.5% 10.1 25.6%
New Mexico 29 7.0% 45 11.0% 35 86%
New York 6.4 15.6% 9.4 23.1% 8.4 20.6%
North Carolina 35 8.7% S8 14.0% 47 11.8%
North Dakota 21 51% 28 6.8% 22 5.5%
Ohio 36 9.1% 5.8 14.7% 5.0 12.5%
Oklahoma 26 6.8% 4.1 10.8% 33 8.5%
Oregon 38 9.0% 59 13.9% 4.7 1.1%
Pennsylvania 5.2 12.9% 79 19.7% 6.8 17.0%
Rhode Island 7.3 17.6% 10.5 25.4% 95 23.0%
South Carolina 3.5 9.2% 56 14.5% 4.6 12.0%
South Dakota 25 6.1% 34 8.3% 27 6.6%
Tennessee 28 7.0% 46 11.6% 37 9.5%
Texas 32 8.0% 5.1 13.0% 4.2 10.6%
Utah 3.2 7.7% 5.1 12.3% 4.1 9.8%
Vermont 3.2 7.9% 5.0 12.5% 4.0 10.0%
Virginia 35 8.7% 5.7 14.3% 48 12.2%
Washington 39 9.3% 6.2 14.8% 51 12.3%
West Virginia 4.1 10.3% 6.4 16.0% 52 13.1%
Wisconsin 30 7.4% 4.8 11.8% 38 9.4%
Wyaming 1.8 4.6% 28 7.0% 2.1 5.3%
U.S. Total

(disaggregated sum) 10.0% 15.7% 13.4%
National Model

aggregated ) 4.0 10.2% 63 15.9% 5.3 13.3%




Table 8

Accident Savings from Optimal Premiums
(Net of Lost Driving Benefits)

Gas Elasticity 0.15 11/30/98 0:00
Model A=c;M A=c,M+e;MY/L T A= M+eMUL
Linear Model Calibration Model Regression model
total per insured vehicle total per insured vehicle total per insured vehicle

States (dollars in millions) $ (dolfars in millions} $ (doltars in millions) $
Alabama 36 14 109 42 67 26
Alaska 13 38 32 96 19 58
Arizana 93 33 269 a5 178 63
Arkansas 31 16 a3 45 49 26
California 548 34 1719 106 1305 80
Colorado 9 34 244 90 150 55
Connecticut 138 59 396 170 301 129
Delaware 22 43 66 129 49 96
Florida 306 36 918 108 659 78
Georgia 112 21 338 64 223 42
Hawaii 57 81 159 226 129 183
Idaho 8 11 21 27 12 15
Winois 205 27 593 79 390 52
Indiana 75 18 228 55 148 35
lowa 29 13 72 33 42 19
Kansas 32 15 75 35 43 20
Kentucky S8 21 169 61 106 38
Louisiana 96 38 272 110 177 72
Maine 14 15 42 45 26 28
Maryland 127 38 384 114 292 87
Massachusetfts 263 66 749 187 585 146
Michigan 237 33 676 94 452 63
Minnesota 85 26 224 68 133 41
Mississippi 21 15 61 42 36 24
Missauri 69 19 199 54 122 33
Montana 8 11 16 25 10 15
Nebraska 18 13 41 30 24 18
Nevada 39 39 100 99 €60 59
New Hampshire 24 28 71 82 47 54
New Jersey 453 86 1241 236 991 189
New Mexico 21 19 58 52 34 30
New York 574 60 1604 167 1162 121
North Carolina 114 19 344 59 229 39
North Dakota 4 7 6 14 4 9
Ohio 165 21 501 63 341 43
Oklahoma 35 15 95 40 55 23
Oregon 52 22 139 60 83 36
Pennsylvania 317 3s 900 108 616 74
Rhode Island 44 68 121 188 80 140
South Carolina 63 23 182 67 116 43
South Dakota 6 10 11 20 7 12
Tennessee 55 16 166 47 106 30
Texas 230 24 678 72 429 45
Utah 23 18 66 52 40 31
Vermont 8 17 22 49 13 29
Virginia 105 2 325 66 226 48
Washington 80 27 261 77 168 S0
West Virginia 37 29 103 81 64 50
Wisconsin 56 15 161 44 97 27
Wyoming 3 8 7 19 4 10
U.S. Total
(disaggregated sum) 5310 H 15319 91 10707 63
National Model

aggregated ) 4936 29 14174 84 1N 54
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