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(ABSTRACT) 

Monoploid genotypes (2n = x = 12), derived by anther culture of a diplandrous 

genotype of Solanum phureja, a South-American diploid potato species, \Vere 

examined for their utility in germplasm development. 

Nine monoploid genotypes and the diploid anther-donor plant were grown in 

photoperiod chambers at The Southeastern Plant Environment Laboratories 

(SEPEL) at North Carolina State University to examine the effect of 

photoperiod on tuber yield and to determine the variability for critical 

photoperiod for tuberization. Significant differences were found among the 

monoploid genotypes for total tuber weight and tuber number. Longer 

photoperiod treatments both decreased and delayed tuberization. Axillary tuber 

formation from single-node cuttings was used to estimate the onset of tuber in

duction and demonstrated variability among monoploid genotypes for critical 

photoperiod for tuberization. 



Leaf-disc culture of 24 monoploid genotypes yielded calli which regenerated 

plants from three genotypes. SDS-polyacrylamide gel electrophoresis of leaf ex

tracts demonstrated variability among diploid and tetraploid calliclones of one 

monoploid genotype for total protein banding pattern. Absence of stainable 

pollen and lack of seed set after crosses to diploid species and tetraploid 

cultivars illustrated infertility among doubled (2n = 2x = 24) and twice doubled 

(2n = 4x = 48) monoploid-derived lines. 

Flow-cytometric analysis of pollen obtained from the diploid anther-donor 

genotype grown under three photoperiods at SEPEL yielded two populations 

of pollen based on propidium iodide staining of DNA. These populations cor

responded to pollen separation based on size parameters alone, introducing the 

potential for flo\v sorting of pollen to increase seed set in 4x-2x crosses to 

tetraploid cultivars. 

Protoplast isolation from in vitro material and extraction of leaf nuclei both in 

vitro and in vivo were performed on the anther-donor plant, one of its anther

derived monoploids, and a diploid and tetraploid plant derived from callus cul

ture of the monoploid genotype. Flow-cytometric analysis of propidium-iodide 

stained cells and nuclei showed a greater ploidy stability for plant material 

grown in vitro and a limit to endopolyploidization imposed by initial ploidy 

level. 



Flow-cytometric analysis of .protoplast-derived nuclei from nine monoploid 

genotypes derived from anther culture of a single diploid genotype exhibited 

significant differences for 4C DNA content, but not for 1 C DNA content, indi

cating that ploidy stability, rather than monoploid status per se, is influenced 

by genotype. 
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Chapter 1 - Introduction 

Historical Background 

The cultivated potato, Solanum tuberosum L., is a crop species of major eco

nomic in1portance. It ranks fourth in world production, yet it is superior to 

wheat, corn, and rice in its ability to produce a more nutritious food in less space 

and in less time. Dependence upon the potato as a world food source is ex

pected to increase into the next century (International Potato Center, 1984). 

Much of the increased yield of potato over the last forty years has been the re

sult of optimizing environmental conditions for the limited number of commer

cially gro\vn cultivars. Future strategies must focus on improving the genetic 

composition of the crop (Hooker, 1983). 

Although the potato has traditionally been vegetatively propagated, production 

of potatoes from true seed has several advantages over tuber propagation (Ross, 

1986). Seed certification, a process designed to screen tubers for disease, is an 

expensive, time-consuming, and labor intensive process (Callison et al., 1982; 
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Shepard and Claflin, 1975). Transmission of diseases, particularly viruses, is a 

serious problem with any vegetatively propagated species, and the potato is 

particularly vulnerable (Shepard and Claflin, 1975). By comparison, many vi

ruses are not transmitted through botanical seed. 

Progenies from sexual crosses of cultivated varieties, however, are generally in

ferior to either parent, due in part to the multi-allelic nature of tuber yield and 

in part to the very narrow genetic base of present cultivars (Howard, 1970). 

This lack of genetic diversity among cultivars is, fortunately, richly compensated 

by a wealth of native species. Interploid hybridization between tetraploid 

Solanum tuberosum and tuber-bearing, South American, diploid species is one 

method by which new sources of germplasm can be incorporated into potato 

cultivars (Ehlenfeldt and Hanneman, 1984; Haynes, 1972; Mok and Peloquin, 

1975a, 1975b, 1975c; Ramanna, 1979; Stelly and Peloquin, 1986; Veilleux, 1985; 

Veilleux and Lauer, 1981). 

Solanum phureja (2n = 2x = 24) is a cultivated potato species with tremendous 

potential for incorporating variability and characteristics such as disease resist

ance and heat tolerance into potato cultivars. Indigenous to South America, it 

is cultivated for its regionally superior yield and vigor. It is genetically distant 

from present-day cultivars and thus represents a source of alleles different from 

those of Solanum tuberosum. Interploid crossing barriers (which are often 

caused by imbalances in embryo/endosperm ploidy levels) have been overcome 

via unreduced gametes with the somatic rather than gametic chromosome 
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number (Hoglund, 1970; Veilleux and Lauer, 1981; Veilleuxet al., 1982). Re

sulting 4x-2x hybrids (between a tetraploid cultivar and a diploid, diplandrous 

species) have demonstrated a yield potential equivalent to the tetraploid parent 

(Kidane-Mariam et al., 1985; Veilleux and Lauer, 1981). 

This relatively unadapted, diploid species, however, has many undesirable 

characteristics for tuber quality (deep eyes, dark skin pigmentation, yellow flesh, 

small tuber size, many tubers per plant) and for breeding value (self

incompatibility, short photoperiod requirements for tuberization, and variable 

frequencies of 2n pollen production). A population of Solanum phureja has been 

developed through mass selection with tuberization under long days as the only 

selection criterion (Haynes, 1972). This "semi-adapted" population \Vas devel

oped primarily to facilitate its further study in northern climates. Mass selection 

is a conventional breeding method for improving heterozygous, self

incompatible species, but it is a time-consuming process. Selection for desirable 

traits would be simplified by using homozygous lines. This usually is accom

plished via inbreeding (Wenzel et al., 1979), a difficult procedure for many po

tato species, due to self-incompatibility (Abdalla and Hermsen, 1971 ). A 

non-conventional method for developing inbred lines which circumvents self

incompatibility is provided by anther culture. 
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Anther Culture 

Embryogenesis and seed development normally occur as a result of the union 

of haploid gametes, forming a diploid zygote. Androgenesis (embryogenesis 

from microspores) is a process by which haploid sporophytes may be produced 

by redirecting the process of microsporogenesis and pollen development (Collins, 

1977; Guha and Maheshwari, 1966; Keller and Stringham, 1978; Maheshwari 

et al., 1980, 1982; Pandey, 1973; Vasil and Nitsch, 1975). Veilleux et al. (1985) 

derived monoploid genotypes (2n = x = 12) from anther cultures of a diplandrous 

(2n pollen-producing), semi-adapted genotype of Solanum phureja. The poten

tial for this type of material in a germplasm development program is far

reaching. 

Use of Monoploid Genotypes 

Monoploid plants are more useful than their diploid counterparts for develop

mental, genetic, and evolutionary research for several important reasons 

(Cappadocia et al., 1984; Hermsen, 1984; Maheshwari et al., 1980; Melchers, 

1972). Because monoploid plants contain only one set of chromosomes, segre

gation of alleles and dominance effects (which complicate genotypic selection via 

phenotypic evaluation) are eliminated. In other words, the phenotype is a direct 

reflection of the genotype. Recessive alleles which are rarely found in the 

homozygous state (due to polyploidy or linkage to deleterious genes) can be ex-
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pressed in the hemizygous state (Howard, 1973). Similarly, all mutations 

(spontaneous or mutagen-induced) will be expressed. Direct expression of 

genotype, along with recent successes in protoplast isolation, fusion, culture, and 

regeneration, allows plant scientists to manipulate plant cells in much the same 

manner as microbiologists have manipulated microorganisms. 

An added advantage to generating monoploid genotypes is that any genomic 

combination containing one or more lethal alleles will be eliminated. Wenzel et 

al. (1979) have labeled this selection process "the monoploid sieve", because it 

eliminates deleterious combinations prior to regeneration. Thus, screening for 

desirable monoploid genotypes from among the genotypes that regenerate 

should be more rapid (because lethals are already eliminated) as well as more 

direct (because dominance is eliminated). Also, screening can be done early in 

germ plasm development (i.e., prior to either chromosome doubling, if the aim is 

to create homozygous diploid genotypes, or somatic hybridization, if the aim is 

to create heterozygous diploid genotypes). These two processes are described 

below. 

Chromosome Doubling 

Callus cultures, particularly of monoploid tissues, often are unstable with regard 

to ploidy level and may undergo one or more cycles of endopolyploidization in 

culture. Spontaneous chromosome doubling has been reported in callus cultures 
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of potato (Jacobsen, 1977; Karp, et al., 1985). Maintenance of monoploid status 

in vitro is desirable for somatic hybridization. On the other hand, spontaneous 

chromosome doubling is desirable if the objective is the production of 

homozygous diploids. Thus, the occurrence and predictability of 

endopolyploidization in vitro will determine whether genetic manipulation (fa

cilitated by monoploid stability) and restoration of fertility (requiring chromo

some doubling) is feasible. Callus cultures may also regenerate somaclonal 

variants (Smith, 1986). Likewise, the occurrence and type of genetic variation 

produced by this technique will determine whether clonal propagation (requiring 

monoploid stability) or creation of novel genetic variation (via somaclonal vari

ation) is possible. 

Caulogenesis (shoot regeneration from callus tissue) is influenced by many en

vironmental and physiological factors, including ratio of growth regulators in 

the culture medium, genotype, explant tissue type and tissue age (Ahloowalia, 

1982; Behnke, 1975; Webb et al., 1983). The ability of callus tissue to regenerate 

whole plants is desirable for storage, maintenance, and multiplication of 

monoploid genotypes. In addition, regeneration is needed after chromosome 

doubling to produce homozygous diploid plants. 

Sterility in existing potato cultivars is not uncommon (Grun, 1970). Similarly, 

sterility may occur after chromosome doubling. This can be caused by many 

factors, including interactions between ploidy levels and self-incompatibility 

systen1s, meiotic abnormalities encountered after cell and tissue culture, or se-
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vere inbreeding depression (de Jong and Rowe, 1971). However, if they are 

fertile, calliclones (callus-derived clones) may be useful for later sexual 

hybridization. 

Somatic Hybridization 

Fusion of protoplasts from unrelated monoploids may restore fertility by 

complementation and could produce highly heterozygous diploids for 4x-2x 

hybridization (unilateral sexual polyploidization), 2x-2x hybridization (bilateral 

sexual polyploidization), or somatic fusion to an unrelated, reconstructed diploid 

(bilateral somatic polyploidization). 

Protocols exist for the isolation and purification of viable protoplasts, as well as 

plant regeneration from tetraploid and dihaploid potatoes (Barsby and Shepard, 

1983; Binding et al., 1978; Bokelmann and Roest, 1983; Debnath et al., 1986; 

Foulger and Jones, 1986; Haberlach et al., 1985; Schumann and Koblitz, 1983; 

Secor and Shepard, I 981; Shahin, 1984; Shepard, 1980, 1982; Shepard and 

Totten, 1977; Thomas, 1981). Somatic hybridization between Solanum species 

also has been reported (Austin et al., l985, 1986; Ehlenfeldt and Helgeson, 

1987). 
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Objectives 

The objectives of the following research were to assess the utility of monoploid, 

anther-derived genotypes of Solanum phureja in a genomic reconstruction 

scheme for potato germplasm development. Initially, the anther-donor genotype 

(PP5) of Solanum phureje was exan1ined for two characteristics of importance 

to this type of breeding scheme, namely 2n pollen production and anther culture 

response, and the effect of environment (photoperiod) on these two processes 

was also studied (Chapter 2). Next, nine monoploid genotypes derived from 

anther culture of PP5 were examined for their inherent variability for an eco

nomically important trait (tuber yield) and a yield parameter (critical 

photoperiod f~r tuberization), with the intent of selecting superior genotypes 

(those possessing the highest yield and longest critical photoperiod for 

tuberization) directly and very early in the reconstruction process (Chapter 3). 

Next, callus culture was used to induce chromosome doubling of a monoploid 

genotype followed by regeneration of an array of clones from callus. Fertility 

tests and analyses of leaf proteins were conducted simultaneously to determine 

the somaclonal variation present and the usefulness of this material for later 

sexual hybridization (Chapter 4). Finally, the utility of monoploids in a somatic 

hybridization scheme was examined (Chapter 5). This study used a technique 

relatively new to plant science research (flow cytometric analysis) to reveal the 

genetic variability for ploidy stability amo~g cell preparations from monoploid 
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tissues. By this method, genotypes exhibiting a high degree of monoploid stabil

ity may be selected for later somatic fusion. 
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Chapter 2 

Photoperiod effects on 2n pollen production, response to anther culture, 

and net photosynthesis of a diplandrous clone of Solanum phureja 

Introduction 

Interploid hybridization between tetraploid S. tuberosum cultivars and diploid 

potato species is currently being exploited to introduce new germplasm into po

tato cultivars (Mok and Peloquin, 1975a; Ramanna, 1979; Veilleux, 1985). This 

technique has relied primarilly upon 2n pollen formation in a diploid species and 

subsequent crossing to a tetraploid cultivar, producing a 4x-2x hybrid. Tuber 

yield of such hybrids have approached the tetraploid parent (Veilleux and 

Lauer, 1981). Unfortunately, seed set in 4x-2x crosses is highly variable and 

generally inferior to intraploid crosses (Kidane-Mariam et al., 1985). Frequency 

of 2n pollen formation has been shown to be affected by physiological (Haynes 

et al., 1987) and morphological factors (Veilleux and Lauer, 1981), as well as 

genotypic predispositions (Mok and Peloquin, 1975b). 
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Estimations of 2n pollen frequency have commonly been based on microscopic 

examination and visual scoring of large pollen grains (Janssen and Hermsen, 

1976). Flow-cytometric analysis of pollen samples labeled with a fluorescent 

DNA stain, on the other hand, is able to offer simultaneous measurement of size 

and DNA content of a large number of pollen grains with great rapidity and 

accuracy (Muirhead, 1984). In addition, it is able to display DNA distributions 

of sub-populations within a sample based on size parameters alone, thus allow

ing for separate DNA analysis of two size classes, such as large and small pollen 

grains. 

Extraction of monoploid genotypes from diploid species has been envisioned as 

a useful first step in germplasm development, because it allows for direct 

phenotypic selection prior to genomic reconstruction (Hermsen, 1984). Recon

struction utilizing monoploid, anther-derived genotypes could be accomplished 

via somatic hybridization (cell fusion) between two unrelated genotypes which 

have been selected for superior characteristics, or by sexual hybridization via a 

4x-2x cross after chromosome doubling and restoration of fertility. As with 2n 

pollen formation, response to anther culture has been shown to vary with envi

ronment (Maheshwari et al., 1980) and genotype (Collins, 1977). 

Selection for increased photosynthetic capacity has been examined as a method 

for improving yield of many existing crop species (Huber et al., 1984). In addi

tion to genotype, photosynthetic capacity is strongly influenced by environ

mental factors (Ma and Hunt, 1983; Casano et al., 1984), and thus selection 
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efforts require strict environmental control to. reduce variability within 

genotypes. Photoperiod has been shown to influence several developmental and 

physiological processes in Solanum species, most notably tuberization (Hammes 

and Beyers, 1973; Mendoza and Haynes, 1977) and flowering (Gregory, 1956; 

Haynes et al., 1987), which generally are favored under short and long day cy

cles, respectively. Detection of genotypes which demonstrate greater net 

photosynthesis may depend upon whether vegetative or floral development is 

favored. 

The objectives of this study were to examine the effect of photoperiod on the 

three aforementioned characteristics of interest to current breeding efforts, i.e. 

2n pollen production, anther culture response, and net photosynthesis utilizing 

a diplandrous (2n pollen-producing) clone of Solanum phureja. This clone has 

been selected for enhanced response to anther culture, but has not previously 

been examined for net photosynthetic rate. 

Materials & Methods 

The following studies were conducted on plants grown at the Southeastern Plant 

Environment (Phytotron) Laboratories of North Carolina State University. 

Tubers from a diploid, diplandrous clone of Solanum phureja, P.I. 225669, 

genotype PP5, were planted in flats containing 1/3 Peat-lite (Redi Earth, W. R. 

Grace Co.) and 2/3 gravel (standard phytotron substrate), and place~ in 3 
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photoperiod rooms (chamber size B). The chambers were set for 3 photoperiods, 

10, 14 and 18 hrs. After the initial 10 hr day length ( 650 llmol m- 2 s- 1 

photosynthetic photon flux density, or PPFD), low-intensity incandescent lights 

(50 llmol n1- 2 s- 1 PPFD) were used to extend the photoperiods in the remaining 

2 chambers to 14 and 18 hrs. All chambers were maintained at l8°C for the 

minimum 10 hr light period and 14°C for the remaining 14 hr period. Plants 

were watered 3 times weekly throughout the experiment with a nutrient solution 

containing 106 ppm N, 10 ppm P, and 111 ppm K. Sprouted tubers were 

transplanted into individual 15cm pots 6 wks after planting (6 plants per 

chamber). 

Flow cytometric analyses: Pollen samples from each photoperiod treatment were 

collected 10 wks after experiment initiation and placed in a dessicator at 4°C. 

Pollen samples from the 3 photoperiods were placed in 1 ml of buffer solution 

[882 mg sodium citrate, 419 mg morpholinopropanesulfonic acid (MOPS), 915 

mg MgCh, 0.25 ml Triton X-100/250ml]. To each sample, 0.5 ml of RNAase 

solution (80 mg ribonuclease-A in 100 ml buffer solution) was added and the 

samples were incubated at 23°C for 30 min. Subsequently, 0.25 ml of 

propidium iodide (PI) solution ( 40 mg PI in 100 ml buffer solution) was added 

to each sample, incubated on ice for an additional 30 min., and analyzed within 

3 hrs. Stained samples were filtered through a 37 Jlm nylon mesh and analyzed 

using an Epics V, Model 752 laser flow cytometer and cell sorter (Coulter Elec

tronics, Hialeah, FL). Laser excitation was 300 mW, 488 nm from a 5 W 
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lnnova 90 Argon Laser (Coherent Inc., Palo Alto, CA). Three parameters were 

recorded: forward angle light scatter (F ALS) and 90 degree light scatter (90LS, 

488 nm dichroic filter) for size measurements, and red fluorescence (RFL, 590 

nm dichroic, 610 nm long pass filter) for DNA measurements. Multiparameter 

Data Aquisiiton and Display System (MDADS) and Easy 88 microcomputer 

analysis (Coulter Electronics) were used for data collection and analysis. F ALS 

was collected linear integral, 90LS log integral, and RFL linear peak red. 

Histograms of number of nuclei per fluorescence channel contained 256 chan

nels and were gated on FALS and 90LS dual parameter 64 X 64 channels re

solution histograms defining the populations of interest. The fluorescence signal 

from PI-stained preparations is proportional to the DNA content of particles 

(pollen grains) passing through the flow sheath. Chicken red blood cells and a 

microsphere standard (Coulter Electronics) were used as calibration standards. 

Pollen grain counts were set at 5,000/sample. · 

Anther cultures: Pre-anthesis floral buds from plants in the 14 and 18 hr 

photoperiod chambers were collected at 8, 10, .12, and 14 wks, wrapped in moist 

paper, and kept at 4°C for 3 days prior to anther culture. Flowering in the 10 

hr chamber was insufficient for anther culture. Floral buds were dis infested by 

a 30 sec. dip in 70°/o ethanol, followed by immersion in a 5.25°/o sodium 

hypochlorite solution for 20 min. and 3 rinses in sterile, distilled water. Anthers 

were dissected from the buds and plated on a solid/liquid bilayer medium (7 ml 

bottom layer containing MS salts and vitamins (Murashige and Skoog, 1962), 
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60 g/1 sucrose, 5 g/1 activated charcoal, 7 g/1 agar, and 1 mg/1 N6-

benzylaminopurine (BAP), pH 5.8; 1 ml top layer containing same as bottom, 

but lacking activated charcoal and agar) as described by Veilleux et al. (1985). 

Ten anthers were placed in each petri plate and incubated at 25°C under a 16 

hr photoperiod for 4 wks. Embryos arising from within the cultured anthers 

were transferred to 25x150 mm culture tubes containing 20 n1l of filter-sterilized 

embryo medium (MS salts, 100 mg/1 inositol, 0.4 mg/1 thiamine, 0.1 mg/1 

gibberellic acid (GA3), 20 g/1 sucrose, 7 g/1 agar, pH 5.8). and incubated as 

above (Wenzel and Uhrig, 1981 ). After 6 wks, plantlets were transferred to 

MS basal medium for rooting. 

Photosynthesis and yield measurements: After 8 wks of growth, measurements 

of net photosynthesis (carbon dioxide exchange rate, CER) were taken for all 

plants during the middle of the light period using an infrared gas analyzer 

(Anarad, Model AR-500R) equipped with an external reference (ambient 

C02). CER measurements were taken 3 times on fully expanded leaflets from 

nodes 4, 5, and 6. Measurements were repeated at 10 and 12 wks after exper

iment initiation. Total tuber weight and tuber number (greater than lcm diam.) 

were recorded for each plant at harvest ( 16 wks after planting). 
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Results 

2n pollen fonnation: Pollen size was found to correspond reasonably well with 

DNA content in each of the 3 photoperiods (Fig. 1). As the photoperiod in

creased, the pollen population shifted to a more obvious bimodal distribution, 

indicating increasing 2n pollen frequency based on size parameters (Fig. 1 a-c) 

and DNA content (Fig. ld-t). The major and minor peaks occurred at channels 

60 and 90 (out of 256 channels total) and corresponded to small (Fig. lg-i) and 

large (Fig. lj-1) pollen subpopulations, respectively. 

In the sample from the 10 hr photoperiod, 62o/o of the particles which recorded 

a positive fluorescent event were contained within the major population. Simi

larly, samples from the 14 and 18 hr photoperiod recorded major populations 

corresponding to 59 and 62°/o of their total counts (Figure la-c). By contrast, 

minor populations, corresponding to the larger-sized pollen grains, were 7, 8, 

and 16°/o of the total counts from the 10, 14, and 18 hr photoperiods, respec

tively. Remaining counts fell outside of the populations of interest and consisted 

mainly of particles (debris, aborted pollen) recording very low size values in the 

scattergrams. This increased frequency of particles recording large size and 

DNA values in the 18 hr sample indicates a twofold increase in 2n pollen in the 

sample taken from plants grown under an 18 hr photoperiod. However, the 

subpopulation of larger pollen did include a small frequency of In pollen, as 

determined by DNA content (Figure 1, 1). 
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Figure 1. Flow-cytometric analyses of pollen size [measured by forward angle (x-axis) and 90° 

(y-axis) light scatter) and DNA distribution (measured by fluorescence of propidium iodide) of a 

2n pollen-producing clone of Solanum phureja grown under three photoperiods. After elimination 

of debris appearing in the lower left of figures a-c, the pollen populations were analyzed for DNA 

content (d-f). X-axis equals channel number, y-axis equals frequency of nuclei per channel (of 

5,000 analyzed). The pollen populations in figures a-c were then divided (vertical line) and the 

subpopulations reanalyzed for DNA content (g-i, major population of mostly ln pollen and j-1, 

minor population of mostly 2n pollen). 
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Response to anther culture: The highest response to anther culture was observed 

on anthers taken from the first flowers on plants in the 14 hr chamber (Table 

1). The number of pre-anthesis floral buds formed varied weekly and by 

photoperiod. Both flowering frequency and duration reached a maximum in the 

18 hr chamber. Anthers taken from plants grown under an 18 hr photoperiod 

produced fewer embryoids and plantlets, even though a greater number of 

anthers were cultured from this photoperiod. Frequency of embryoids and 

plantlets was superior from plants grown under a 14 hr photoperiod, as dem

onstrated by mean embryoids/anther. This increased response, however, was 

almost entirely the result of anthers cultured at 8 wks. By contrast, anthers 

cultured from the 18 hr photoperiod did not produce embryoids or plantlets 

from 8 wk old plants; positive response to anther culture from the 18 hr cham

ber was both later in occurence and longer in duration. Maximum response to 

anther culture also appears to occur later in the 18 hr photoperiod, as indicated 

by mean plantlets/anther. 

Net photosynthetic rate: CER did not vary significantly among the 8, 10, and 

12 wk measurements. In addition, no significant interaction was found (5°/o 

level) between week and photoperiod treatments (data not shown); thus, weekly 

measurements of CER were combined for further data analysis. Mean sepa

ration of CER by Student-Newman-Keuls' test at the 1 °/o level was significant 

between photo periods. Mean CERs were 2. 7, 1.3, and 0.8 JJ.l C02 dm- 2 s- 1 for 

the 10, 14, and 18 hr photoperiods, respectively. In addition, significant corre-
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Table 1. Anther culture response of Solanum phureja, genotype PPS, taken 

from plants grown under 14 and 18 hr photoperiods for 8, 10, 12, and 14 wks. 

Photoperiod 

14 

14 

14 

14 

Total 

18 

18 

18 

18 

Total 
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Age of 
plant 

8 

10 

12 

14 

8 

10 

12 

14 

Anthers 
plated 

40 

300 

80 

0 

420 

20 

340 

200 

200 

760 

Embryo ids 
formed 

43 

6 

·0 

0 

49 

0 

16 

7 

2 

25 

Plant lets 
regenerated 

22 

0 

0 

0 

22 

0 

3 

7 

0 

10 

Embryo ids 
per anther 

1.08 

0.02 

0 

0 

0.12. 

0 

0.05 

0.04 

0.01 

0.03 

Plant lets 
per anther 

0.55 

0 

0 

0 

0.05 

0 

0.01 

0.04 

0.01 

0.01 
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lations (5°/o level; N =54) were found between CER and both final tuber weight 

(0.54) and tuber number (0.74). 

Table 2. Mean C02 exchange rate (CER), mean tuber number, and mean tuber wt of PPS at 3 
photoperiods. 

Discussion 

Photoperiod 

10 hrs 14 hrs 18 hrs 

Tuber number 7.3 

Tuber wt. (g) 106.0 

1.3 

5.7 

95.0 

0.8 

2.5 

33.4 

Pollen size was found to be a fairly accurate gauge of DNA content, and allo\vs 

for estimation of 2n pollen frequency based upon visual scoring of pollen prep-

arations. In addition, it makes possible the separation of 2n from ln pollen 

based solely on size parameters. Because flow sorting of pollen samples based 

upon size does not require fluorescent staining, the potential exists for recovery 

of viable pollen grains within size classes. 
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A preliminary experiment to sort fresh, unstained preparations of pollen col

lected from a diplandrous clone of Solanum phureja for later use in a cross to a 

tetraploid S. tuberosum cultivar (Atlantic) was attempted. Sorted samples of 2n 

pollen were collected, centrifuged to remove sheath fluid, and applied to 

emasculated Atlantic flowers using a 50J.Ll pipette. Both unsorted and sorted 

pollen samples were applied by hand to emasculated Atlantic flowers to com

pare seed set between the two treatments. Difficulties in removing the sheath 

fluid from the sorted pollen samples and using moist pollen samples for poll

inations may have contributed to senescence of flowers pollinated with sorted 

samples. 

For S. phureja genotype PP5, 2n pollen frequency was found to increase under 

an 18 hr daylength. Thus, screening of several genotypes for 2n pollen fre· 

quency may not give an accurate measurement of maximum frequency unless 

the genotypes being tested behave similarly for the given photoperiod under 

which the plants are grown. 

For PP5, net photosynthesis and tuberization reached their maximum under 

short photoperiods. Conversly, flowering and 2n pollen formation peaked under 

long daylengths. Thus, vegetative development was favored under short 

daylengths, whereas long daylengths stimulated floral development. Response 

to anther culture in this genotype was greatest from 8 wk plants grown under a 

14hr photoperiod. Anther culture itself involves a redirection from floral devel

opment (pollen formation) to vegetative development (embryo formation); 
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therefore, the best physiological and environmental conditions for embryoid 

formation and plantlet regeneration may be from young anthers grown under a 

moderate photoperiod. 

This work demonstrates that vegetative and floral development in vivo and plant 

regeneration from anther culture each impose their own unique set of environ

mental conditions for maximum response, including photoperiod exposure. This 

dichotomization of developmental processes caused by photoperiod may useful, 

for example, when determining environmental conditions to maximize either 

harvest index, seed set, or in vitro response. 
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Chapter 3 

Variability for critical photoperiod for tuberization and tuber yield 

among monoploid, anther-derived genotypes of Solanum phureja 

Introduction 

Tuberization of potato is a. critical process by which photosynthates are redi

rected from above ground growth to storage tissues. Many factors have been 

shown to affect its induction and degree. It was first postulated that 

tuberization was regulated by a sybiotic fungus (Bernard, 1902). Later, an as

sociation between tuberization and carbon-nitrogen (C = N) ratio was noted 

(Werner, 1934). Driver and Hawkes (1943) demonstrated the influence of 

photoperiod on the degree and timing of tuberization. Under strict environ

mental controls at California Institute of Technology, Gregory (1956) was able 

to demonstrate an interaction between photoperiod and temperature on 

endogenous substances which regulated the process of tuberization. A range of 

growth substances has been implicated in the tuberization process, including 

cytokinins and abscisic acid (Palmer and Smith, 1969), gibberellins (Hamn1es 
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and Beyers, 1973; Hammes and Nel, 1975), and ethylene (Mingo-Caste! et al., 

1976). The role of calcium and calcium inhibitiors has also been examined 

(Balamani et al., 1986). The exact controlling mechanism, however, has not 

been determined and probably consists of a combination of exogenous and 

endogenous factors, both of which are affected by genotypic predispositions. 

Regarding the critical photoperiod for tuberization, Solanum species have ex

hibited a wide range of photoperiodic behaviors, from day-neutral, character

istic of Solanum tuberosum cultivars, to strongly short-day regarding the critical 

photoperiod for tuberization (i.e. will only tuberize under photoperiods shorter 

than the critical photoperiod), illustrated by many diploid species, both wild and 

cultivated. Due to the polyploid nature of S. tuberosum cultivars, the highly 

heterozygous nature of the species, and the multigenic nature of tuber yield 

(Mendoza and Haynes, 1976,1977), conventional breeding methods for exploit

ing germplasm exhibiting a short critical photoperiod for tuberization (for the 

development of cultivars adapted to northern climates) have been limited. 

Monoploid clones may simplify selection efforts because their phenotypes are a 

direct reflection of their genotypes. In the present study, variability among nine 

monoploid genotypes, derived from anther culture of a diplandrous clone of 

Solanum phureja Juz. & Buk., was examined with regard to critical photoperiod 

for tuberization. A modification of Ewing's screening technique (1978b) was 

used to determine the critical photoperiod for each genotype. By his technique, 

sin~le-node cuttings are taken from plants grown under successively shorter 
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photoperiods, placed in moist sand under long days, and examined for 

root/axillary tuber formation. Cuttings which tuberize indicate that the mother 

plants were grown under photoperiods shorter than the critical photoperiod 

necessary for tuber induction. In this study, plants were grown under three 

photoperiods (10, 14, and 18 hour daylengths) for their entire life cycle to elim

inate the confounding effects of plant age on tuberization. 

The objectives of this study were twofold: 1) to demonstrate variability among 

monoploid genotypes extracted from a single, highly heterozygous, diploid 

- genotype for a multigenic trait of economic importance, namely tuber yield, and 

a morphological trait, namely plant height, and 2) to demonstrate segregation 

in both directions from the anther-donor (i.e. some higher, some lower) among 

its monoploid genotypes for a yield· parameter, namely critical photoperiod for 

tuberization. 

Materials and Methods 

Nine monoploid genotypes (AM2, AM3, AM4, AM6, AM7, AM20, AM21, 

AM26, and AM27) and the anther-donor genotype [PP5, selected from Solanum 

phureja P.I. 225669 (Veilleux et al., 1985)] were grown under greenhouse con

ditions, harvested simultaneously to minimize any effects of the mother tubers, 

and stored at 6°C for at least one month to break dormancy. The tubers were 

transferred to the Southeastern Plant Environment (Phytotron) ~aboratories of 

Chapter 3 37 



North Carolina State University, planted in flats containing 1/3 peat-lite (Redi 

Earth, W. R. Grace Co.) and 2/3 gravel (standard substrate), and placed in 3 

photoperiod rooms (chamber size B). 

After the minimum 10 hr daylength (650 Jlmol m - 2 s- 1 photosynthetic photon 

flux density, or PPFD), low-intensity incandescent lights (50 J.Lmol m- 2 s- 1 

PPFD) were used to extend photoperiods in 2 of the chambers to 14 and 18 hrs. 

All chambers were maintained at l8°C for the minimum 10 hr light period and 

14°C for the remaining 14 hr period. A nutrient solution (Phytotron Procedural 

Manual, 1983) containing 106 ppm N, 10 ppm P, and 111 ppm K was applied 

3 times weekly throughout the experiment. 

Six weeks after planting, sprouted tubers were transplanted into individual 15 

em diam. pots (6 plants per genotype per chamber). Eight weeks after exper

iment initiation, measurements of node number and plant height were taken for 

all plants. At 8, 10 ,12, and 14 wks, 3 single-node cuttings were taken from each 

plant, placed in moist sand, and transported to the greenhouse at Virginia 

Polytechnic Institute and State University in Blacksburg, Virginia. Ambient 

autumn light conditions were supplemented with incandescent lights to extend 

the photoperiod to 20 hrs, and the cuttings were placed under intermittent mist. 

After 3 wks, cuttings were scored on a scale from -1 to + 1 for root or axillary 

tuber formation. Tubers from each plant were harvested at 16 wks. Total tuber 

weight and tuber number (greater than l em diam.) were recorded for each 

plant. 
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Data were analyzed using the General Linear Models procedure of the Statis .. 

tical Analysis System (SAS Institute, 1982). Mean separation of tuber weight, 

tuber number, and internode length were by Student-Newman Keuls' test, 5°/o 

level. 

Results 

Response of single node cuttings: Single node cuttings of 8 of the monoploid 

genotypes, as well as the anther-donor genotype, taken from the 10 hr 

photoperiod, produced axillary tubers (Figure 1 ). Therefore, as expected, it can 

· be concluded that most of the genotypes had a critical photoperiod for 

tuberization which was longer than 10 hrs. Only AM26 demonstrated a con

sistent rooting response at this photoperiod. 

Segregation for critical photoperiod for tuberization among the monoploid 

genotypes was more apparent at the 14 hr photoperiod (Figure 2). At 8 wks, 

cuttings from most of the genotypes demonstrated a rooting response, although 

many formed axillary tubers at later sampling dates. PP5 and AM4 showed a 

strong rooting response at this photoperiod, suggesting that their critical 

photoperiods for tuberization were shorter than 14 hrs. AM26 again demon .. 

strated only a rooting response, as it did under the 10 hr photoperiod. AM21 

was the only monoploid genotype which demonstrated a tuberizing response at 

all sampling dates. 
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Figure 1. Rooting ( -1) vs. axillary tuber formation ( + 1) of single-node cuttings from 

nine monoploid (AM) genotypes and their diploid, anther-donor genotype (PP5) of 

Solanum phureja taken from plants after 8, 10, 12, and 14 wks of growth under a 10 

hr photoperiod. Zero values indicate equal response; N = 18. 
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Figure 2. Rooting (-1) vs. axillary tuber formation ( + l) of single-node cuttings from 

nine monoploid (AM) genotypes and their diploid, anther-donor genotype (PP5) of 

Solanum phureja taken from plants after 8, 10, 12, and 14 wks of growth under a 14 

hr photoperiod. Zero values indicate equal response; N = 18. 
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Figure 3. Rooting (·1) vs. axillary tuber formation ( + 1) of single-node cuttings from 

nine monoploid (AM) genotypes and their diploid, anther-donor genotype (PP5) of 

Solanum phureja taken from plants after 8, 10, 12, and 14 wks of growth under a 18 

hr photoperiod; N = 18. 
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Under an 18 hr photoperiod, AM2, AM3, and AM27 had switched to a rooting 

response, placing their critical photoperiods for tuberization between 14 and 18 

hrs (Figure 3). By contrast, cuttings from AM6, AM7, AM20, and AM21 still 

were able to form axillary tubers at one sampling date under this photoperiod, 

suggesting a longer critical photoperiod for these genotypes. 

Tuber yield: With the exception of AM4 grown under an 18 hr photoperiod, all 

of the n1onoploids exhibited measurable tuber yield by 16 wks regardless of their 

critical photoperiod preference. The monoploid genotypes varied significantly 

for total tuber weight at all photoperiods (Figure 4). PP5 was consistently 

higher in tuber weight than the monoploid genotypes, but decreased to such an 

extent under 18 hrs that it no longer significantly differed from AM21, one of 

the monoploids which showed a tuberization response under an 18 hr 

photoperiod. In addition, AM21 showed the greatest tuberization response 

among the monoploids in all photoperiods and was the least affected by in

creasing photoperiods. 

The anther-donor (PP5) characteristically produced a large number of tubers 

per plant. At 10 hrs, none of the monoploid genotypes had significantly differ

ent numbers of tubers per plant from PP5 (Figure 5). Ho\vever, at longer 

photoperiods, segregation for tuber number among the monoploids was evident 

by low (AM4 at 14 hrs) and high (AM21 at 18 hrs) tuber numbers compared 

with their anther-donor genotype. 
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Plant height: As with critical photoperiod for tuberization, segregation for mean 

internode length was most apparent at the 14 hr photoperiod (Figure 6). Mean 

internode length of PP5 was reduced at the 10 hr photoperiod, under which 

AM6 was significantly taller than PP5. At 14 and 18 hr photoperiods, however, 

the monoploids were generally shorter than PP5, although there were significant 

differences among them. 

Discussion 

Response of single-node cuttings: Segregation for a multigenic trait, such as 

critical photoperiod for tuberization, may be exposed by analysis of monoploid 

genotypes and their subsequent study under strict environmental control. Tuber 

initiation is believed to be a multi-genic trait (Howard, 1970; Mendoza and 

Haynes, 1976, 1977). Solanum phureja is a heterozygous, self-incompatible, 

diploid species and would be expected to produce a heterogeneous array of 

genotypes via androgenesis. Results of this experiment confirm the inherent 

variability of the anther-donor genotype. 

Single-node cuttings have been used to estimate the onset ·or tuberization in a 

potato plant, while allowing the plant to continue its growth (Ewing, 1978a, 

1978b; Lauer, 1977). This method of assessment, however, did not appear to 

be entirely accurate in this study. For example, AM26 exhibited a consistent 

rooting response over 4 sampling dates even under the 10 hr photoperiod (Fig-
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Figure 6. Mean internode length (em) of nine monoploid (AM) genotypes and their anther-donor genotype 

(PP5) of Solanum phureja grown under 10, 14, and 18 hr photoperiods. Mean separation by SNK, 5°/o level; N = 6. 



ure 1), yet it produced a reasonable tuber crop compared with other monoploid 

genotypes that exhibited strong axillary tuber formation (Figure 4). This sug

gests that rooting and axillary tuber formation are not mutually exclusive. Re

moval of single-node cuttings from the environment of the mother plant may 

cause some genotypes to switch back to a rooting response, prior to axillary 

tuber formation. In general, however, genotypes vvhich formed a large number 

of axillary tubers from cuttings of plants exposed to a given photoperiod also 

produced high tuber yields at that photoperiod. Single-node cuttings of AM21 

formed tubers even when taken from plants grown under an 18 hr photoperiod, 

and the mother plant correspondingly produced a consistently high mean tuber 

yield. The utility of this technique to screen a large number of genotypes prior 

to maturity would compensate for its limitations in accuracy. 

Physiological age of the plant also affects tuber induction. Plants grown under 

non-inductive photoperiods will tuberize eventually, but much later than plants 

grown under inductive conditions. This response is mirrored by the tendency for 

older single-node cuttings to begin forming axillary tubers even if taken from 

plants grown under non-inductive photoperiods (see Figure 3). Cuttings from 

AM6, AM7, and AM20 under 14 and 18 hr photoperiods began to form axillary 

tubers only when taken from plants which were at least 14 wks old, suggesting 

that tuber induction in these genotypes occurred much later than on similar 

plants grown under shorter photoperiods. By contrast, cuttings taken from 

AM21 eight wks after planting already had been induced to tuberize. This 

tuberization response of AM21, however, was not demonstrated by subsequent 

Chapter 3 48 



cuttings. Regardless, for this method to be effective in selecting genotypes pos

sessing higher critical photoperiods for tuberization, cuttings should be taken 

before the plants have reached physiological maturity. 

Tuber yield: Variability for mean tuber yield was apparent among the 

monoploid genotypes; however, all monoploid genotypes, with the exception of 

AM21 grown under the 18 hr photoperiod, had lower mean tuber weights than 

their anther-donor. This was expected, since tuber yield is affected by both 

ploidy level and genotype (Mendoza and Haynes, 1976). Segregation in both 

directions was better illustrated by mean tuber number (Figure 5), where PP5 

exhibited an intermediate phenotype. Ideally, improvement of tuber yield would 

require high tuber weight and low tuber number even under a long photoperiod. 

Unfortunately, the monoploid genotype producing the highest yield at the long

est photoperiod (AM21) also produced a mean tuber number which was signif

icantly higher than PP5. It is important, therefore, to assess genotypes for both 

characteristics simultaneously and at the photoperiod for which the crop is being 

developed. 

Plant height: Photoperiod has been shown to affect internode elongation in 

tuber-bearing Solanum species (Victorio et al., 1986). Potato plants grown un

der short photoperiods have exhibited a corresponding reduction in internode 

length. Reduction of internode length may facilitate carbohydrate partitioning 

to underground tissues by reducing translocation distances, or may be an inde-
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pendent response to competition for assimilates (Gregory, 1956). In this exper

iment, mean internode length was reduced under short photoperiods, but it is 

unclear whether this was in response to tuberization, a stimulus for it, or an in

dependent event. PP5 exhibited a dramatic decrease in tuber yield (Figure 4) as 

photoperiod increased, yet its increase in internode length was less dramatic 

(Figure 6), suggesting independent, though competing, processes. 

Variability for multi-genic traits can be exposed directly through the use of 

monoploid, anther-derived genotypes. The number of characters and the num

ber of genes controlling them, however, will determine the minimum number of 

regenerants required for detection and recovery of a monoploid genotype pos

sessing all desired traits. This is true for conventional selection efforts as \vell. 

Given the segregation ratios for tetraploid cultivars, the incompatibility and 

·sterility which characterize many of them, and the time, space, and labor re

quired for conventional screening, however, monoploid genotypes may reduce 

selection efforts considerably. 
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Chapter 4 

Variation and fertility among calli clones of an anther-derived, 

monoploid genotype of Solanwn phureja 

Introduction 

Ploidy stability during cell and tissue. culture is an important criterion for de

termining the usefulness of monoploid plant material for microbial-type manip· 

ulations. Aneuploidy, mixoploidy, and endopolyploidy have been reported in 

callus cultures of monoploid tissues and plants subsequently r~generated from 

them (Karp et al., 1985; Khvilkovskaya, 1982). Monoploid cell cultures or 

protoplast preparations are useful for somatic hybridization and mutation se

lection schemes. For example, monoploid cell preparations simplify selection for 

stress tolerance and/or disease resistance because their phenotypes are direct 

reflections of their genotypes. Similarly, detection of useful mutations (either 

natural or induced) would be more likely if monoploid cells were used. 

Maintenence of monoploid status in vitro, however, is critical during these ma

nipulations. 

Chapter 4 54 



Whole plant regeneration from potato callus tissue has been accomplished 

(Ahloowalia, 1982; Behnke, 1975; Wang and Huang, 1975) and has produced 

regenerants of several ploidy levels, either by spontaneous chromosome doubling 

(Jacobsen, 1977; Karp et al., 1985; Lu et al., 1985) or colchicine-induced 

diploidization (Ross et al., 1967). Both methods allow for the production of 

homozygous euploids which may be fertile, or somaclonal variants which may 

introduce useful genetic variation not previously encountered. 

Many factors have been shown to affect ploidy stability and regeneration from 

callus tissue, including ratio and type of growth regulators in the medium, tissue 

type, and genotype (Lam, 1977; Webb et al., 1983). Sterility of homozygous 

clones is not uncommon, however, due to the deleterious effects of inbreeding 

to which Solanum species are particularly vulnerable (de Jong and Rowe, 1971 ). 

Somaclonal variation after regeneration from callus also may occur (Smith, 

1986). Thus, screening for fertility and genetic uniformity in calliclones is nec

essary prior to their further use in germplasm development. 

The objectives of the following research were to: 1) examine the effect of 

hormone ratio and hormone type on callus proliferation and plant regeneration 

from callus, 2) determine ploidy levels of calliclones, 3) test diplQid and 

tetraploid calliclones for male and/or female fertility, and 4) determine if 

somaclonal variation existed among calliclones. 
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Materials & Methods 

Leaf-disc culture: All 24 monoploid genotypes were grown under greenhouse 

conditions for leaf-disc culture. Leaves were disinfested by a 30 s dip in 70°/o 

ethanol, followed by immersion in 0.525°/o sodium hypochlorite for 10 min. and 

3 rinses in sterile, distilled water. Using a sterile cork-borer, 5 mm discs con

taining the midrib were removed from 10 wk old plants and placed abaxial 

surface down into 25xl50 mm culture tubes containing 20 ml agar-solidified 

Murasli.ige and Skoog (MS) basal medium (1962) and 2 mg/1 

2,4-dichlorophenoxyacetic acid (2,4-D). Ten discs were cultured from each 

genotype and placed on light benches (16 hr photoperiod, 23°C). After 12 wks, 

callus which formed from the leaf discs was excised and subcultured onto IVIS 

medium containing 2 mg/12,4-D and 0.5 mg/1 N6-benzylaminopurine (BAP) for 

callus proliferation. 

Regeneration from callus: Callus from 24 monoploid genotypes was tested for 

regeneration capacity. Uniform 5 mm 3 pieces of callus were excised from cul

tures of the monoploid genotypes and placed in culture tubes containing 20 ml 

agar-solidified MS basal medium, 0.1 mg/1 naphthalene acetic acid (NAA) and 

5 mg/1 kinetin (KIN) according to Wang and Huang (1975). Ten tubes per 

genotype were incubated under light as above. 
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In addition, a factorial experiment was conducted using callus from monoploid 

genotype AM 13 to test the effect of auxin level, cytokinin level, and cytokinin 

type on plant regeneration from callus. Three levels of 2,4-D (0.5, 1.0, and 2.0 

mg/1), 4 levels of ·cytokinin (0, 0.5, 1.0, and 2.0 mg/1), and 3 types of cytokinin 

[KIN, BAP, zeatin (ZEA)] were added to MS basal medium with 10 tubes of 

AM 13 callus cultured for each treatment (360 tubes total). Cultures were placed 

on light benches and examined after 16 wks for callus proliferation and/or plant 

regeneration. 

Plants regenerated from callus were subcultured onto MS basal medium for 

rooting and acclimated to greenhouse conditions via one of two procedures. In

itially, in vitro calliclones were removed from the tubes, planted in moist sand, 

and placed in the greenhouse under intermittent mist. Some calliclones, how

ever, did not survive this procedure and were transferred from culture tubes to 

Plantcons (Flow Laboratories, Inc.) containing autoclaved Pro-Mix (Premier 

Brands, New Rochelle, NY) and allowed to grow to a larger size prior to trans

fer to the greenhouse. Calliclones were allo\ved to complete a life cycle in the 

greenhouse prior to further testing. 

Ploidy determination: Ploidy levels of the calliclones were estimated by counting 

the number of chloroplasts per pair of guard cells from an abaxial epidermal leaf 

section. Confirmation of the ploidy levels was accomplished by examination of 

root tip cells. Young root tips of greenhouse-grown plants were fixed in 3: I 

ethanoljacetic acid, transferred to 70°/o ethanol, Feulgen stained, squashed in a 

Chapter 4 . 57 



drop of aceta-carmine, and examined microscopically for determination of 

ploidy level. 

Fertility testing: Tuber-propagated calliclones which reached flowering stage 

were examined for both male and female fertility. Pollen viability was estimated 

by aceto-carmine staining and microscopic examination. Female fertility was 

tested by emasculating the flower prior to anthesis and pollinating the stigma 

with pollen from a fertile, diploid S. phureja genotype (NBP-2 and NBDT-5) or 

tetraploid cultivar (Atlantic), depending on the ploidy level of the calliclone. 

Electrophoresis: Leaf tissue extracts of 27 tuber-propagated calliclones, the 

n1onoploid callus-donor genotype (AM 13), and the diploid anther-donor 

genotype (PP5), were homogenized in a phosphate buffer, centrifuged, and fro

zen prior to 1 0°/o SDS-polyacrylamide gel electrophoresis. Protein assays (Esen, 

1978) were performed on samples to adjust the volume of samples to contain 

equal protein content. Bovine serum albumin (BSA) samples were included as 

molecular weight markers. Gels were stained with Comassie brilliant blue R, 

destained in 25°/o ethanol and 10°/o acetic acid, flXed in 7.5°/o acetic acid and 

5°/o glycerol, and vacuum dried. GelBond (FMC Corporation, Rockland, ME) 

plastic support film was used for gel preservation. 
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Results 

Callus production and plant regeneration: All24 monoploid genotypes produced 

callus from leaf discs cultured on MS medium containing 2 mg/1 2,4-D. 

Genotypic differences were evident, however, with respect to the amount of 

callus produced and its friability. Genotypes AM8, AM9, and AM13 regener

ated 6, 5, and 51 calliclones, respectively, after transfer to MS medium con

taining 0.1 mg/1 NAA and 5.0 mg/1 KIN. 

Effects of auxin level, cytokinin level, and cytokinin type on callus growth of 

AM 13 are listed in Table 1. Few significant differences (5o/o level) were found 

between cytokinin types. ZEA at 2 mg/1 produced a greater quantity of callus 

than either KIN or BAP, but only at the lowest level of 2,4-D (0.5 mg/1). There 

appears to be a trend, however, for increasing callus production with increasing 

levels of cytokinin, regardless of the cytokinin type. By contrast, increasing levels 

of 2,4-D did not significantly increase callus fresh weight. Qualitative differ

ences were apparent between cytokinin types; ZEA generally produced a 

greenish callus, KIN a tan callus, and BAP a brownish callus. Rhizogenesis was 

not evident in any of the treatments; plant regeneration occurred from only l 

callus section (2 mg/1 2,4-D, 2 mg/1 KIN treatment). 

Ploidy determinations and fertility tests: Data from ploidy determinations (by 

chloroplast and chromosome counts) and female fertility tests (by pollinations) 
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Table 1. Callus fresh weight (mg) of ANI13 at 12 wks as influenced by auxin 

concentration (mg/1 2,4-D), cytokinin concentration, and cytokinin type 

[kinetin, zeatin, N 6 -benzylaminopurine (BAP)], ± SE, N = 10. 

With 0.5mgjl2,4-D: 

None 
0.5 mg/1 
1.0 
2.0 

With l.Omg/1 2,4-D: 

None 
0.5 mg/1 
1.0 
2.0 

With 2.0mg/l 2,4-D: 

None 
0.5 mgjl 
1.0 
20 
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Kinetin 

0.8 + 1.2 
2.5 + 1.0 
2.8 + 1.2 
1.6 + 1.5 

Kinetin 

1.2 + 1.5 
2.5 + 1.7 
3.6 + 2.1 
2.5 + 1.5 

Kinetin 

0.3 + 0.3 
1.4 + 1.3 
2.1 + 1.6 
2.3 + 1.8 

Zeatin 

2.4 + 1.3 
4.4 + 0.9 
4.8 + 0.9 
5.0 + 0.9 

Zeatin 

1.3 + 1.4 
5.1 + 0.5 
5.0 + 0.8 
5.3 + 0.9 

Zeatin 

0.6 + 0.8 
4.2 + 2.0 
4.8 + 1.9 
5.1 + 1.8 

BAP 

1.7 + 1.4 
2.8 + 1.2 
2.9 + 0.8 
3.0 + 1.0 

BAP 

0.7 + 1.2 
3.3 + 1.2 
3.2 + 1.7 
4.1 + 1.0 

BAP 

0.3 + 0.3 
3.0 + 1.7 
2.3 + 1.6 
3.5 + 1.4 
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Table 2. Ploidy determinations (by chloroplast and· chromosome counts) and 

female fertility testing (by pollinations) of calliclones of a monoploid, 

anther-derived genotype (AM 13) of Solanum phureja. 

Chloroplasts per 
Clone guard cell pair1 Ploidy levef2 Pollinations3 

AM13- 1 11.5 + 1.6 D 31 
AM13- 2 13.2 + 1.1 D * 
AM13- 3 12.6 + 1.2 D * 
AM13· 4 1"2.1 + 2.0 D 10 
AM13- 5 13.5 + 1.4 D * 
AM13- 6 13.5 + 2.4 D • 
AM13- 7 26.1 + 4.4 T • 
AM13- 8 16.1 + 2.1 D * 
AM13- 9 28.7 + 4.7 T 5 
AM13-10 19.4 + 3.0 D 14 
AM13-ll 23.5 + 5.6 T 5 
AM13-t2 29.1 + 3.7 T * 
AM13-13 26.5 + 3.7 T * 
AM13-14 23.2 + 2.9 T 4 
AM13-15 17.6 + 3.6 D 29 
AM13·16 25.1 + 3.9 T • 
AM13-17 29.3 + 3.5 T • 
AM13-18 19.6 + 6.0 D 30 
AM13-19 17.3 + 2.6 D 20 
AM13-20 15.3 + 1.8 D * 
AM13-21 15.3 + 2.3 D 11 
AM13-23 19.0 + 2.7 D • 
AM13-27 22.5 + 3.8 D * 
AM13-28 23.0 + 3.3 T * 
A~t 13-29 18.7 + 2.2 D 10 
AM13-30 22.7 + 3.3 T * 
AM13-3l 18.1 + 2.8 D * 
AM13-33 15.9 + 1.4 D * 
AM13-35 14.0 + 1.6 D * 
AM13-38 26.6 + 2.2 T 19 
AM13-39 29.1 + 4.1 T 36 
AM13-43 28.7 + 4.7 T 15 

1 ± s.d., N= 10 
2 0 =diploid, T =tetraploid, by Fculgen staining of root tip cells 
32x pollinators= NJJDT-5, NBP-2; 4x pollinator= S. tuberosum cv. Atlantic 
* did not produce floral buds, or floral buds aborted 
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of 32 AM13 calliclones are listed in Table 2. Of the 51 clones regenerated, 19 

did not survive transfer from culture tubes. Examination of root tip chromo

somes (1 0 counts per clone) confirmed that all calliclones were euploids and had 

undergone either one or two cycles of spontaneous chromoson1e doubling. Of 

the 32 clones which survived greenhouse acclimatization, only 14 produced 

normal or nearly normal-appearing floral buds necessary for female fertility 

testing. After pollinations with testers, no seed set was observed on any of the 

14 clones tested. In addition, no stainable pollen was detected in these clones, 

indicating a complete absence of fertility in calliclones derived from AM 13. 

Electrophoretic banding patterns: SDS-polyacrylamide gel electrophoresis of 

leaf-protein banding patterns from anther-donor genotype PP5, monoploid 

genotype AM 13, and the first 6 callus-derived clones (AM 13-1 through 

AM13-6) are shown in Figure 1. AM13 exhibited a banding pattern similar its 

anther-donor (PP5), indicating a high degree of leaf protein conservation. On 

the other hand, a few of the callus-derived clones showed distinct differences in 

banding patterns, both among calliclones and between calliclones and their 

anther-donor and callus-donor genotypes. For example, AM13-2 does not ap

pear to show a band at approximately 50 kd, although it is evident in the other 

calliclones tested and both the anther-donor and callus-donor genotypes. At 

approximately the position of a 25 kd protein, a dark band is evident in 

AM13-3, PP5, and AM13, but not in the other calliclones from the same run. 
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BSA PPS AM13 13-1 13-2 13-3 13-4 13-5 13-6 BSA 

205 Kd 
116 Kd 

97 Kd 

66 Kd 

45 Kd 

29 Kd 

Figure 1. SDS-Polyacrylamide electrophoresis gel stained with Comassie Brilliant Blue 

R for leaf protein banding patterns from anther-donor genotype (PP5), anther-derived 

monoploid (AM 13 ), and callus-derived clones (13-l through 13-6) of Solanum phureja. 
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No relationship between banding pattern and ploidy level was evident among 

calliclones. 

Discussion 

Genotype and hormonal composition of regeneration medium were shown to 

affect the ability of leaf-disc-derived callus to regenerate whole plants. Thus, 

screening of monoploid genotypes for regeneration capacity may be useful prior 

to their incorporation into genomic reconstruction programs, especially if re

generation is needed later in the germplasm development protocol. 

Monoploid instability was also shown after callus culture, since all calliclones 

underwent one or two cycles of endopolyploidization. It is encouraging, how

ever, that neither aneuploidy nor mixoploidy was encountered in the calliclones. 

Absence of fertility in doubled and twice doubled clones of AM 13 is unfortu

nate, but not surprising, because Solanum species are particularly susceptible to 

the effects of inbreeding depression. Screening of diploid and tetraploid 

calliclones derived from other genotypes and the utilization of additional 

pollinator sources may result in generating and detecting fertile clones, respec

tively. 

Electrophoresis of leaf proteins exposed some degree of variation among 

calliclones of AM 13, but lack of fertility in these clones made them unusable for 
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the incorporation of desired traits to S. tuberosum cultivars via 4x-2x 

hybridization. Therefore, characterization of the specific genetic differences 

among them by isozyme analysis was abandoned. Production of diploid and 

tetraploid clones via monoploid callus culture was useful, however, in that it 

generated a ploidy series representing a single genotype. Separation of genotypic 

from ploidy influences would be possible from this type of material and, thus, 

they are being utilized in further studies. 
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Chapter 5 

Environmental, genotypic, and ploidy effects on endopolyploidization 

within a genotype of Solanum phureja and its derivatives 

Introduction 

Protoplast fusion· is a procedure for producing hybrids which cannot be 

produced through sexual means (Austin et al., 1985,1986; Hein and Schieder, 

1986; Helgeson et al., 1986). By this process, somatic cells, rather than germ 

cells, fuse and generate an entire organism. The union of somatic cells may re

sult in hybrid cells or organisms with mitotic and meiotic irregularities (Sree 

Ramulu et al., 1986), which may be due, in part, to the corresponding doubling 

of the chromosome number in the fusion product. Protoplasts derived from 

monoploid, anther-derived genotypes may, when fused, result in somatic hybrids 

which exhibit fewer chromosomal abnormalities because the fusion partners in 

this instance contain the gametic, rather than the somatic, chromosome com

plement. 
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Monoploid genotypes may be useful in potato germplasm development for se

veral reasons. Protoplasts isolated from monoploid tissues would be more suited 

to microbial techniques, due to their hemizygous state, than their diploid 

counterparts (Maheshwari et al., 1982; Melchers, 1972). Protoplast fusion of 

unrelated monoploid genotypes derived from diplandrous donors would produce 

a heterozygous diploid which, if fertile, could be used in 4x-2x (unilateral) sex

ual polyploidization to create highly heterozygous, tetraploid progeny. If the 

unreduced gametes of the diploid parent are produced via first division 

restitution, the heterozygosity inherent in the diploid parent produced by 

protoplast fusion would be conserved (Veilleux, 1985; Wenzel et al., 1982) 

Unfortunately, isolated plant cells and tissues in vitro are subject to mitotic ir

regularities, including chromosomal rearrangement, mutation, and an uncoupl

ing of DNA replication from cell division, a process known as 

endopolyploidization (Pijnacker et al., 1986; Puite et al., 1986). Plant regener

ation from callus or isolated protoplasts would be simplified by using genetically 

uniform and stable plant material, but this cannot always be maintained, par

ticularly in long term cultures which pass through a callus phase (Karp et al., 

1985). Over time, in vitro cultures of differentiated or non-meristematic tissues 

may contain cells with a wide range of ploidy levels. Similarly, plants regener

ated from these cells and tissues may contain nuclei of several ploidy levels, 

creating a polysomatic condition. It has been demonstrated that n1onoploid 

plants may not be entirely monoploid; some proportion of cells may undergo one 
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or more cycles of endopolyploidization in vivo (Sree Ramulu and Dijkhuis, 1986; 

Uijtewaal, 1987). 

It is necessary, therefore, to assess the cultural, genotypic and ploidy influences 

on the process of endopolyploidization in order to select· plant material and 

conditions conducive to monoploid stability. Flow-cytometric analysis has been 

used to analyze structural and nuclear components in plant cell preparations 

with great accuracy and rapidity (Alexander et al., 1985; Arndt-Jovin and Jovin, 

1977; Galbraith et al., 1984; de Laat and Blaas, 1984; Muirhead et al., 1984). 

The objectives of the following study were to determine: 1) if the level of 

endopolyploidization of a monoploid genotype in vivo differs from that in vitro, 

2) if protoplast isolation selects for a particular ploidy level, 3) if initial ploidy 

level limits endopolyploidization, and 4) if monoploid genotypes, derived from 

anther culture of a single diploid genotype, differ for their level of 

endopolyploidization. To address the first three objectives the level of 

endopolyploidization between in vivo, in vitro, and protoplast-derived nuclei 

from plant material of 3 ploidy levels was compared. The last objective was 

addressed utilizing 9 monoploid genotypes, all derived from anther culture of 

Solanum phureja genotype PP5, a diploid, South American, cultivated potato 

species possessing several traits useful to breeding programs. 
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Materials & Methods 

Origin of plant material: Monoploid genotypes (AM2, AM3, AM4, AM6, AM7, 

AM13 AM20, AM21, AM26, AM27) were. obtained via anther culture of 

Solanum phureja, P.I. 225669, genotype PP5 (Veilleux et al., 1985). Diploid 

(AM 13-2) and tetraploid (AM 13-9) calliclones were generated by leaf-disc cul

ture of AM13 according to Wang and Huang (1975). The plants \Vere 

acclimated to greenhouse conditions and taken through at least 2 tuber cycles 

prior to reintroduction of shoot tips and nodal cuttings in vitro. Plants were 

propagated in vitro according to Haberlach et al. ( 1985) for at least 8 wks prior 

to protoplast isolation. 

Protoplast isolation: All steps in protoplast isolation were conducted under 

sterile conditions. All media (flotation, conditioning, enzyme, and rinse) were 

filter-sterilized and prepared according to Haberlach et al. (1985). Due to the 

small size of leaves in vitro, both stem and leaf material were removed from 3 

Magenta boxes (Carolina Biological Supply Co.), cut into single-node sections, 

and placed in a 15 em diam. Petri plate containing a single sheet of filter paper 

(Whatman #3) and 30 ml of flotation medium. Plates were wrapped in parafilm 

(American Can Co., Greenwich, CT) and foil and incubated at 23°C for 24 hrs. 

The plant material was transferred to 250 rrll shaker flasks containing 125 ml 

of conditioning medium and incubated in the dark for an additional 24 hrs at 

4°C. The plant material was poured through a sieve to remove the conditioning 

ChapterS 71 



medium, placed in a 15 em diam. glass petri plate, sliced between two scalpels 

(#10) to form a coarse sample (approximately 2 mm sections) and placed in 

another 250 ml flask containing 50 ml enzyme medium. The flasks were sealed 

with parafilm, placed on a oscillating shaker at 40 opm, and incubated for 15 

hrs at 23°C under fluorescent light. The enzyme/plant material mixture \Vas 

poured through a 63 t!m filter, transferred to 50 ml Babcock bottles (Kimble 

Glass), and centrifuged at 500 rpm for 10 min. The band of protoplasts was 

removed with a Pasteur pipet, dispersed into a Babcock bottle containing rinse 

medium, and recentrifuged. A 0.25 ml sample of the pro top lasts was placed into 

a microcentrifuge tube containing 1 ml of chopping buffer (882 mg sodium 

citrate, 419 mg MOPS, 915 mg MgCb, 0.1 ml Triton X-100/250 ml) to burst the 

protoplast membranes prior to RNAase treatment and DNA staining (Sharma 

et al., 1983). 

Preparation of chopped nuclei: One gram of leaf material was chopped on ice 

for 3 min. with a razor blade in a 6 em diam. glass Petri plate containing 3 ml 

chopping buffer. The mixture was poured through a 300 t!m filter and then 

through a 60 t!m filter to remove debris. One ml of the filtrate was placed in a 

microcentrifuge tube for RNAase treatment. 

RNA removal and DNA staining: Both protoplast-derived and chopped nuclei 

were incubated in 0.5 ml RNAase solution (80 mg Sigma R 5503 ribonuclease-A 

in 100 ml chopping buffer) at 23°C for 30 min. A 0.25 ml aliquot of propidium 
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iodide (PI) solution ( 40 mg PI in 100 ml chopping buffer) was added to each 

sample, incubated on ice for at least an additional 30 min., and analyzed within 

3 hrs. 

Flow cytometry: Stained· samples were filtered through a 37 J.tm nylon mesh and 

analyzed with an Epics V, Model 752 laser flow cytometer and cell sorter 

(Coulter Electronics, Hialeah, FL). Laser excitation was 300 m W at 488 nm 

from a 5 W lnnova 90 Argon Laser (Coherent Inc., Palo Alto, CA). Three pa

rameters were recorded: forward angle light scatter (F ALS) and 90 degree light 

scatter (90LS, 488 nm dichroic filter) for size and granularity determinations, 

and red fluorescence (RFL, 590 nm dichroic, 610 nm long pass filter) for DNA 

measurements. The Multiparameter Data Aquisition and Display System 

(MDADS) and Easy 88 microcomputer analysis (Coulter Electronics) were used 

for data collection and analysis. F ALS, 90LS, and RFL were collected linear 

integral, log integral, and linear peak, respectively. Histograms of number of 

nuclei per fluorescence channel contained 256 channels and were gated on 

FALS and 90LS dual parameter histograms defining the population of interest. 

The fluorescence signal from PI-stained preparations is proportional to the 

DNA content of particles (nuclei) passing through the laser beam. Chicken red 

blood cells and a microsphere standard (Coulter Electronics) were used as cali

bration standards. Nuclear counts were set at 1 0,000/sample. Samples of in vivo 

chopped nuclei, in vitro chopped nuclei, and protoplast-derived nuclei from PP5, 

AM 13, AM 13-2, and AM 13-9 were prepared and analyzed on the same day. 
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Likewise, a complete set of protoplast~derived nuclei from the 9 monoploid 

genotypes and PP5 were prepared and analyzed on each of 3 days. DNA 

measurements of protoplast-derived nuclei from the 9 monoploid genotypes and 

PP5 were repeated after 7 and 14 days. 

Results 

DNA histograms of the anther-donor genotype (PP5) from leaf nuclei both in 

vivo and in vitro and protoplast-derived nuclei illustrate DNA peaks character

istic of diploid populations (Figure 1 ). All 3 histograms exhibit a large 2C peak 

containing approximately 70°/o of the nuclei, corresponding to GoG1 phase, and 

a smaller 4C peak, which includes G2 + M phases of the cell cycle. Protoplast

derived nuclei produce cleaner histograms due to the removal of chloroplasts 

and other cellular components during sample preparation (protoplast flotation 

and rinsing) and/or the elimination of mechanical shearing of DNA during 

sample preparation. 

Histograms of the monoploid, anther-derived genotype (AM 13) contained 1 C, 

2C, and 4C peaks for both in vivo and in vitro chopped nuclei. Because the 

second peak includes both G2 and M phases, it is not possible to discriminate 

between a single cycle of endoreplication and DNA replication prior to 

cytokinesis in this peak. However, because the 4C peak either results from M 

phase cells of single-cycle endoreplicated cells, or G2 cells which have undergone 
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Figure 1. Flow·cytometric analyses of propidium-iodide stained nuclear DNA of 4 

genotypes of Solanum phureja, PP5 (anther-donor, 2n= 2x= 24), AM 13 (anther-derived 

monoploid, 2n = x = 12), AM 13-2 (doubled monoploid, 2n = 2x = 24), and AM 13-9 

(twice-doubled monoploid, 2n= 4x= 48). Samples were taken from leaf nuclei in vivo, 

leaf nuclei in vitro, and protoplast nuclei extracted from in vitro plantlets. The x-axis 

represents the channel number and the ordinate the frequency of nuclei (of 10,000 

counted) in each channel. 
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two cycles of endoreplication, it is clear that endopolyploidization has occurred 

in the monoploid preparations. The DNA distribution of protoplast-derived 

nuclei from monoploid genotype AM13 did not contain a 4C peak, so 

endopolyploidization is not certain in this sample. 

Preparations from diploid (AM 13-2) and tetraploid (AM 13-9) clones in vivo also 

contain 1 C, 2C and 4C peaks, with the peak of highest frequency corresponding 

to the ploidy level determined for the clone by examination of Feulgen-stained 

root tip cells. This suggests that endopolyploidization was not complete within 

the whole plant in vivo, creating a mixoploid condition. Preparations of leaf 

nuclei in vitro for both clones did not contain DNA of lower ploidy levels. Be

cause these preparations are from plant material reintroduced in vitro from 

shoot tips or single node cuttings of the in vivo plants, endopolyploidization was 

either complete within the explants, the conditions of plant growth in vitro fa

vored replication of the cells of higher ploidy levels. 

DNA peaks of nuclei from the 9 monoploid genotypes (Figure 2) show l C, 2C, 

and 4C peaks, demonstrating endopolyploidization in protoplast-derived prepa

rations. Chicken red blood cells recorded a peak channel number of 41, which 

overlapped with the 1 C peak of the monoploid genotypes, thus necessitating its 

use as an external standard only. Variability among the monoploid genotypes 

for frequency of nuclei exhibiting the 1 C DNA content was not evident (Table 

1), allowing for analysis of the effect of sampling date on frequency of 1C DNA 

content by disregarding genotypes. A significant difference was found among 
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Figure 2. Flow-cytometric analyses of propidium-iodide stained, protoplast-derived 

nuclear DNA of 9 monoploid (2n=x= 12), anther-derived genotypes (AM2-AM27) 

and diploid (2n= 2x= 24), anther-donor genotype (PP5) of Solanum phureja. The x

axis represents the channel number and the ordinate the frequency of nuclei (of 10,000 

counted) in each channel. 
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Table 1. Mean fluorescence channel number and percent of protoplast-derived nuclei in lC, 2C, 

and 4C DNA peaks for 9 monoploid (A:\.1) genotypes and diploid, anther-donor genotype PP5. 

Channel number Percent of nuclei ± s.d. 

lC 2C 4C lC 2C 4C 

AM2 41 73 130 39.9 ± 9.9 44.4 ± 7.4 8.2 :I: 2.5 cd • 

AM3 38 68 126 25.1 :I: 8.1 53.5 :I: 2.0 12.9 ± 3.7 bed 

AM4 39 68 126 31.5 ± 12.0 59.0 ± 10.1 5.0 ± 2.6 d 

AM6 39 69 130 27.3 :1: 11.1 49.8 :1: 5.1 13.4 :I: 4.2 bed 

AM7 39 69 128 22.8 :1: 7.8 56.7 ± 12.9 14.7 ± 3.0 be 

AM20 37 68 127 23.4 :!: 9.0 51.5 ± 7.2 8.8 :!: 3.3 cd 

A!'A21 40 69 128 19.2 :!: 3.5 61.5 ± 8.4 14.4 :i:: 5.0 be 

AM26 43 73 137 15.8 ± 11.0 50.4 ± 6.7 18.8 ± 7.0 b 

AM27 39 70 130 22.6 :!: 7.1 46.4 ± 1.0 19.7:!: 0.7b 

PPS 70 130 61.6 ± 0.7 31.8 :!: 1.6 a 

• mean separation of 4C percent by Student·Newman-Keuls' test, 5°/o level, N = 3. 
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sampling dates (P < .0001), with a mean frequency of 1 C nuclei of 42.9, 38.9, 

and 35.8°/o for protoplasts extracted on May 21, May 28, and June 4, 1987, re

spectively. Variability among the monoploid genotypes was demonstrated, 

however, for frequency of cells exhibiting endopolyploidization at the 4C DNA 

content, and a significant negative correlation was found between 1 C and 4C 

DNA content (-0.63, P < 0.0005). In addition·, the frequency of cells exhibiting 

the 1 C DNA content from the monoploid genotypes was consistently lower 

(mean = 25.3°/o) than that for cells with the 2C DNA content of the diploid, 

anther-donor genotype (mean = 61.6°/o). Similarly, the frequency of nuclei with 

the 2C DNA content from the monoploid genotypes was higher than that of 

nuclei with the 4C DNA content of the diploid, anther-donor genotype (52.6°/o 

and 31.8°/o respectively). 

Discussion 

As cells and tissues become more differentiated and removed from meristematic 

zones or growth stages, DNA synthesis and cytokinesis become less synchronous 

(Pijnacker et al., 1986). For plant cell isolation, manipulation, and regeneration 

to be useful in germplasm improvement, genetic and genomic stability should 

be predictable. Current methods for cell and tissue culture, and for genetic 

manipulation, require the removal of plant cells from natural conditions to syn

thetic ones. The response of plant cells to new environments may depend upon 

both internal genetic factors and external environmental factors. The present 

Chapter 5 79 



study demonstrates that both of these factors affect the process of 

endopolyploidization. 

Nuclei from monoploid protoplast preparations exhibited a range of C values. 

Sree Ramulu and Dijkhuis ( 1986) also noted this occurrence in monoploid S. 

tuberosum genotypes and demonstrated variability among tissues for the degree 

of endopolyploidization. Protoplast preparations from monoploid leaf tissue 

only, or a combination of leaf and stem tissue, did not differ in their array of 

DNA values in our investigations. 

Genotypes AM13, AM13-2, and AM13-9 differ in ploidy, but except for the 

possibility of somaclonal variation induced during the culture process, are ge

netically similar. Thus, they are especially useful for separating ploidy influ

ences from genotypic effects. DNA histograms from the diploid (AM 13-2) and 

tetraploid (AM 13-9) clones did not contain C values (i.e. 8C or 16C, respec

tively) indicative of endopolyploidization, as did the monopl~id genotype from 

which they were derived (AM13). Thus, a limit to endopolyploidization caused 

by factors other than genotype has been indicated. This limit to 

endopolyploidization was further supported by the complete absence of an 8C 

peak in tetraploid preparations from all 3 environments (in vivo, in vitro, and 

protoplast-derived nuclei) and from protoplast preparations of 9 monoploid 

genotypes. The monoploid data suggest that genotype may influence the sus

ceptibility of a cell to undergo endopolyploidization, but that other factors im

pose limits to this process. 
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Regarding cell cycle phase, 1 C nuclei from monoploid preparations correspond 

to 2C nuclei from diploid preparations (both representing GoG 1 phase); simi

larly, 2C nuclei from monoploid cells correspond to 4C nuclei of diploid cells 

(both representing G2 + M). However, the 1 C monoploid frequencies were 

consistently lower than the 2C diploid frequency, and the 2C monoploid fre

quencies were consistently higher than the 4C diploid frequency, suggesting 

more endopolyploidization in monoploid preparations. Variability among the 

monoploid genotypes for frequency of 4C nuclei indicates that the degree of 

endopolyploidization was influenced by genotype. When selecting monoploid 

genotypes for cell fusion, it may be useful, therefore, to determine the fraction 

of 4C cells in a sample, since it is the first clear indication of 

endopolyploidization and a better predictor of a genotype's susceptibility to un

dergo endopolyploidization during subsequent cell culture and plant regener

ation. The negative correlation between 1 C and 4C DNA content of the 

monoploid genotypes suggests that analysis and sorting for higher monoploid 

status may also select for genotypes having a higher monoploid stability. If 

monoploid stability in shoot tissue is indicative of ploidy stability during cell and 

tissue culture, selection of monoploid fusion partners that maintain a high level 

of monoploidy may produce a higher frequency of diploid heterokaryons and 

may reduce the frequency of polyploid regenerants from callus. 
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Prospectus 

Tuber-bearing Solanum species pose unique challenges to their improvement. 

Traditional breeding efforts are confronted with many obstacles: a narrow ge

netic base among current cultivars, polyploid segregation ratios in progeny, 

ploidy differences between S. tuberosum cultivars and diploid species containing 

new sources of germplasm, inbreeding depression, disease susceptibility due to 

clonal propagation, sterility in several economically important cultivars, and 

self-incompatibility systems at work in many of the diploid, cultivated species. 

It is no wonder that development of adequate true potato seed has not yet been 

realized. 

Breeding efforts have expanded into biotechnological areas of investigation, in

cluding molecular and cellular approaches, cell, tissue and organ culture tech

niques, and entire genomic reconstruction schemes (Figure 1). The potential for 

genomic reconstruction in potato germplasm improvement was the focus of the 

preceding work. 
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The initial set of experiments was centered on a genotype selected for its capac

ity to produce unreduced pollen by the genetic equivalent of first division 

restitution and its ability to regenerate monoploid genotypes via anther culture. 

Thus, it has the dual ability to produce gametes containing a somatic chromo

some complement and whole plants with a gametic chromosome complement. 

The impact of environment (photoperiod) on these two processes was demon

strated. 

In Chapter 3, the effect of photoperiod was again utilized to expose the inherent 

variability among anther-derived, monoploid genotypes. Reduction to the 

monoploid level is a critical first step in genomic reconstruction. Monoploids are 

unique in that they allow for direct phenotypic selection and genetic manipu

lation prior to diploidization. 

Diploidization via chromosome doubling produces a new set of material for 

study. In Chapter 4, diploid and tetraploid calliclones were examined for the 

occurence of fertile homozygotes, useful, for example, in backcrosses to S. 

tuberosum cultivars for the incorporation of traits selected for or induced at the 

monoploid level. Somaclonal variation may also occur at this point in 

germplasm development. Its presence in fertile clones would allow for the intro

duction of new traits into current cultivars by conventional crossing. 

In the final chapter, the utility of monoploid genotypes in somatic hybridization 

schemes was examined. Protoplast fusion between unrelated genotypes would 
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restore heterozygosity and may restore fertility, again making sexual · 

hybridization possible. Creation of two sets of cell fusion-derived diploids cre

ates the potential for bilateral somatic polyploidization. 

It is evident that ploidy reduction and ploidy recombination techniques, com

bined with sexual hybridizaiton and somatic fusion methods, allow for a multi

tude of pathways for germplasm development. The potential for this type of 

technology in crop improvement is far-reaching. 
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