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Impedance probe to measure local gas volume fraction and bubble velocity
in a bubbly liquid
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We have developed a dual impedance-based probe that can simultaneously measure the bubble
velocity and the gas volume fraction in length scales comparable to the bubble diameter. The
accurate determination of the profiles is very important for comparisons with existing theories that
describe the rheological behavior of bubbly liquids. The gas volume fraction is determined by the
residence time of bubble within the measuring volume of the probe. We have found that the details
of the bubble-probe interactions must be taken into account to obtain an accurate measure of the gas
volume fraction at a point. We are able to predict the apparent nonlinear behavior of the gas volume
fraction measurement at large concentrations. The bubble velocity is obtained from the cross
correlation of the signals of two closely spaced identical probes. Performance tests and results are
shown for bubble velocity and bubble concentration profiles in a gravity driven shear flow of a
bubbly liquid. © 2003 American Institute of Physics.@DOI: 10.1063/1.1569391#

I. INTRODUCTION

Recently, there have been significant advances in the
theory of inertial suspensions, in particular those that de-
scribe the rheology of bubble suspensions. For the case of a
bubble suspension in which the Reynolds number is large
and the Weber number is small, a complete set of governing
equations can be composed from first principles.1,2 The ex-
tent of the validity of these theories could only be assessed if
comparisons with detailed experimental measurements are
performed. Hence, there is a need for accurate measurements
of velocity and concentration profiles.

Impedance techniques are widely used in the multiphase
flows community to obtain measurements of volume
fractions.3 In most cases such techniques are limited to ob-
tain a spatial average of the volume fraction since the vol-
ume through which the measurement is performed is much
larger than the individual bubble size. Techniques that can
obtain a point-wise measurement of the gas volume fraction
are less common.4–6 The technique presented here is a modi-
fication of that designed by Waniewski,4 who used an imped-
ance probe to measure the gas volume fraction profiles
caused by the air entrained by a plunging bow wave. To
obtain a local measurement of the gas volume fraction, the
measuring volume associated with the probe has to be small
enough to detect individual bubbles. This characteristic of
the measuring system is essential to measure the spatial
variations of the bubble concentration. To obtain accurate

measurements it is particularly important, as it will be ex-
plained later, to account for the bubble–probe interaction for
the case when the bubbles are deflected rather than pierced
by the measuring probe. The system implemented by Liu and
Bankoff5 was also used to obtain point-wise measurements
of the gas volume fraction in a bubbly column. In their case,
the size of the probes was much smaller than the typical
bubble size. Liu and Bankoff argued that the bubbles were
pierced during their interaction with the probe but provided
no further information to justify this claim. Also, no details
were given about the electronics used or the frequency re-
sponse of their system. Cartellier6 was able to obtain simul-
taneous measurements of the local void and bubble velocity
using a single optical probe. In this case, the bubbles were
also pierced by the probe but careful experiments were per-
formed to describe the interaction between the bubbles and
the probe during this process.

There exist several other techniques to measure volume
fraction in a multiphase flow which include light
attenuation,7 transmission of gamma rays,8 neutron
radiography,9 etc. All of these techniques are limited to ob-
tain line or volume average measurements.

In addition to the measurement of the gas volume frac-
tion, the presented system is capable of measuring the bubble
velocity by cross correlating the signals of two identical
probes placed at a small distance. Measurements of the
bubble velocity and bubble velocity variance can be obtained
with a high degree of accuracy. Detailed sets of experimental
results and their comparisons with theoretical predictions can
be found in Refs. 10 and 11.a!Electronic mail: zenit@servidor.unam.mx
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II. DESIGN

The system detects local changes of electrical impedance
in a bubbly liquid. It uses the difference in electrical imped-
ance between the gas and liquid phases to determine the
residence time of bubbles in a small measuring volume ad-
jacent to the probe tip. The probe arrangement is shown
schematically in Fig. 1 and the electronics that are used for
the measurements are shown schematically in Fig. 2. An
electrode is embedded in a thin hypodermic needle, which
acts as the ground. The electrode carries a rapidly oscillating
voltage ~500 kHz!. When bubbles pass near the tip of this
probe, the local impedance and the current through the elec-
trode are affected. The amplitude of the current signal is then
converted to a dc voltage signal by a precision rectifier,
which is filtered twice and amplified. The probes and elec-
tronic circuits used here are based on the system used in Ref.
4. The neddles used to fabricate the probes were 15 cm long
with 0.63 and 0.33 mm of outer and inner diameters, respec-
tively. The cable length from the probes to the data acquisi-
tion system was of 1.8 m. The resulting capacitance per unit
of length of the probe cable array ranged from 1 to 4 nF/m.

A typical signal change detecting an individual bubble as
it passes near the tip of the probe is shown in Fig. 3. The
range of electric field around the tip of the probe is approxi-
mately 0.3 mm for the chosen value threshold level~inferred
from the collision area measurements shown in Fig. 9!.

A. Tests

The performance of the probe was tested in a tall vertical
channel, shown in Fig. 4. The cell was fabricated with Plexi-
glass and had a thickness of 2 cm and a width of 20 cm. The
cell was tall enough, 200 cm, for the velocity and voidage
profiles to fully develop. Nitrogen gas was introduced at the
base of the water filled channel through an array of capillar-
ies that generated bubbles of approximately 1 mm in diam-

eter, which satisfy the dual limit of small Weber number and
large Reynolds number. A small amount of an electrolyte
~0.05 mol L21 MgSO4) was added to the water to inhibit
bubble–bubble coalescence. The addition of this small
amount of salt does not change the viscosity or density of the
liquid or the surface tension of the gas–liquid interface sig-
nificantly. Figure 5 shows photographs of the bubbles pro-
duced for two typical mean gas concentrations.

To produce a nearly monodispersed bubble population

FIG. 1. Sketch of the dual impedance
probe.

FIG. 2. Electronics schematic diagram.
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special attention had to be given to the design of the capillary
array. The bank of capillaries had approximately 900 glass
tubes. Each capillary was 65 mm long with an inner diameter
of 100 mm. To achieve the maximum number of capillaries
per unit of area, the tubes were positioned in a plate in a
hexagonal array~28 capillaries per square cm!. The gas flow
through each capillary was small enough to ensure that the
formation of a bubble at its tip was in a quasisteady fashion.
The capillary bank was mounted at the bottom of the chan-
nel, between the cell and the Nitrogen chamber. More details

on the construction of the array and the experimental setup
can be found in Ref. 10.

The vertical channel provides a convenient setting in
which the volume fraction measurement technique can be
validated since the average bubble concentration, or gas vol-
ume fraction, can be inferred directly from the column hold
up,

a5~Ho /DH11!21, ~2.1!

whereHo is the initial liquid level, andDH is the liquid level

FIG. 3. Typical voltage signal result-
ing from a bubble passing near the tip
of the probe. The solid line denotes the
signal obtained from the leading
probe, the dashed line shows the sig-
nal from the trailing probe. The dotted
line denotes the voltage threshold
level. The voltage threshold and the
time delay between signals are also
shown.

FIG. 4. Experimental setup.
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increase after the bubbles are introduced to the cell. More-
over, the increase of the gas volume fraction that results from
the bubble motion through a hydrostatic pressure gradient is
small ~less than 4% for present conditions!. Therefore, the
measurement of the gas volume fraction obtained from the
column hold up can be considered nearly uniform across the
length of the channel. The interactions of the bubble with the
containing walls can also produce gradients of the gas vol-
ume fraction near the walls. However, it has been demon-
strated that these gradients do not extend much further than a
few bubble diameters from the wall.10

Additionally, individual bubble tests had to be conducted
to quantify the details of the bubble–probe interaction. These
details are very important to properly measure the gas vol-
ume fraction for the conditions considered in this article. The
tests were obtained in a 10310310 cm3 lucite container in
which the probe could be mounted to one of its sides. The
container was filled with the same electrolyte solution as the
flow cell. Different capillaries could be introduced and posi-
tioned through the base of the container such that bubbles of
different sizes and at different positions could interact with
the dual impedance probe. A high-speed video camera was

used to record the interaction of the bubbles with the probe.
Using digital image processing techniques, the size, shape,
and velocity of the bubble was determined.

III. GAS VOLUME FRACTION MEASUREMENTS

The basic measurement principle relies on the fact that it
is possible to discriminate between the two phases by their
difference in electric impedance. In order to quantify the
phase fraction of each component, we need an electronic
device capable of measuring the electric impedance in a
nearly instantaneous manner.

If the period of the voltage oscillation, produced by the
electronic device, is much shorter than the residence time of
the bubble in the measuring volume, then the measurement
can be considered to be instantaneous. The measuring vol-
ume is defined as the volume around the probe for which a
bubble, whose centroid is within that volume, produces a
signal V.Vtrh , where Vtrh is a predetermined threshold
level. Therefore, the duration of the pulse can be interpreted
as the residence time of the bubble in the measuring volume.
The residence time, and therefore, the apparent gas volume
fraction, will depend on a predetermined discriminating
threshold level. The local gas volume fraction is determined
by the time average of the binary functionb(t) defined as,

b~ t !5H 1 if V1~ t !.Vtrh

0 if V1~ t !<Vtrh
, ~3.1!

whereV1(t) is the voltage signal from the probe andVtrh is
the threshold level. Therefore, the time-averaged gas volume
fraction,bm , is calculated from

bm5
1

ts
E

0

ts
b~ t !dt, ~3.2!

FIG. 5. Photographs of the flow for two typical gas volume fractions. The
bubble size is nearly monodispersed for both cases. The spacing in the grid,
shown in the lower-left corner, is 1 mm.~a! a50.02, ~b! a50.05.

FIG. 6. Calibration of the impedance
volume fraction probe. Comparison of
the measured gas void fraction with
the column hold up for a threshold
level,Vtrh50.2 V (h). The dotted line
shows the correlation between the
hold up and the fraction of time for
which the signal is above the threshold
value. The solid and dashed lines show
the corrected hold up values consider-
ing the effect of the bubble–probe in-
teraction @Eq. ~3.3!#. The solid line
considers constant bubble diameter
and aspect ratio (db51.53 mm, x
51.19); the dashed line shows the
prediction considering the size and as-
pect ratio variations as a function of
the hold up, from Ref. 10.
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where ts is the total sampling time. The right-hand side of
Eq. ~3.2! can be alternatively interpreted as the product of
the bubble number density and the measuring volume of the
probe. Provided that the accessible measuring volume is
equal to the bubble volume, the two methods of interpreting
the signal measurement are the same. We have chosen a sig-
nal threshold level for which the measuring volume and
bubble volume are approximately equal in the small gas vol-
ume fraction range (a,0.01).

The performance of the system is assessed by a calibra-
tion test. The probe is immersed in an environment in which
the gas volume fraction is known. The measurement ob-
tained from it, processing the signal using Eq.~3.2!, is then
compared with the known value of the gas volume fraction.
In this manner the most appropriate threshold level is deter-
mined. The calibration test is shown in Fig. 6. The graph
shows the measured gas volume fraction as a function of the
mean column gas volume fraction. The column mean gas
volume fraction, or hold up, is calculated using Eq.~2.1!.
The probe is positioned in the middle of the channel where

the gas fraction is uniform; small variations occur only very
close to the walls.10 The value ofbm was calculated for a
range of threshold values and it was found to increase for
decreasing threshold levels, resulting from the increase of the
measuring volume with the threshold level. A threshold volt-
age of 0.2 V was chosen such that the measuredbm approxi-
mates the holdup at small bubble volume fractions. The
value of the threshold voltage is kept constant for all the
subsequent tests to minimize the effect of this arbitrary
choice. From Fig. 6, it can be noted that the measured gas
volume fractionbm shows an apparent nonlinear behavior as
the value of the hold up increases. If the measurements were
exact, the value ofbm and the hold up would be approxi-
mately the same and the measurements would follow the
dotted line shown in Fig. 6. For the case shown, the mea-
sured volume fraction is slightly larger than the hold up for
dilute cases, but as the concentration increases the value of
bm becomes smaller than the column hold up.

To further assess the performance of the probe the prob-
ability density functions of the time width and height of the
bubble detections are calculated. These probability density
functions are shown in Fig. 7 for different values of the mean
gas volume fractions. The distribution of heights is similar
for different gas volume fractions, which demonstrates that
the system works in a similar fashion for different bubble
concentration levels. On the other hand, the distribution of
pulse widths changes as the concentration increases. Since
the mean bubble velocity decreases with bubble concentra-
tions, the collisions can be expected to have interactions of
longer duration with the probe. The distribution of pulse
width extends from nearly zero to 10 ms. The width of the
duration distribution results from the fact that both the
bubble size and bubble velocity have variations along a mean
value. This width is also an indication that the bubbles are
being retarded as a results of their interaction with the probe.

Although the bank of capillaries was designed to pro-
duce bubbles of a uniform size, a slight increase in size is
observed as the bubble concentration increases.10 Also, re-
sulting from the increased hydrodynamic interactions, the
bubbles become less oblate as the bubble concentration in-
creases. Resulting from this increase of the bubble size, we
can expect the accessible measuring volume for bubble de-
tection to increase. It will be seen that this change in bubble
diameter accounts for some of the nonlinear dependence of
bm on the holdup seen in Fig. 6. Impedance-based probes
can be constructed to have a linear dependence of the mea-
sured gas volume fraction but, in general, the performance of
such probes is based on spatial averages over many bubbles.
In our case we are restricted to single bubble interactions to
obtain point measurements.

A. Correction due to bubble–probe interaction

Clearly, the performance of the measuring system is not
linear. We analyze the details of the bubble–probe interac-
tion to find an explanation for the nonlinear response of the
probe. The main difference of this measuring system with
others previously used is the localized detection of individual
bubbles. The system is designed to measure gas volume frac-
tion at points. To achieve this goal the size of the measuring

FIG. 7. Probability density function of the bubble detection pulse height
and width for different gas volume fractions. The occurrence is normalized
such that the integral under the curve is of value one.~a! Pulse width.~b!
Pulse height.

2821Rev. Sci. Instrum., Vol. 74, No. 5, May 2003 Impedance probe for gas volume fraction

Downloaded 05 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



volume had to be made small, of the same order as the
bubble size. For this case, not all the bubbles are able to
cross the measuring volume freely. Instead, a fraction of the
bubbles that interact with the probe collide with it and are
deflected. Hence, the measurement obtained from the probe,
using Eq.~3.3!, has to be corrected to obtain a more accurate
value of the gas volume fraction.

Since some bubbles are deflected during the interaction
with the probe and do not cross the bubble detection volume
freely, we must account for a volume that is not accessible to
all bubbles. We can define the accessible measuring volume
as the difference between the collision detection volume and
the excluded volume. We can reinterpretbm as the time frac-
tion at which bubbles are within the accessible measuring
volume. The measured gas volume fraction can be written as

bm5
6a

pdb
3 ~Vcoll2Vexc!, ~3.3!

wherebm is the fraction of time for which the probe signal is
above the threshold,a is the true gas volume fraction in the
flow, and Vcoll and Vexc are the collision detection and ex-

cluded volumes, respectively. A sketch of the excluded and
detection volumes around the probe tip is shown in Fig. 8.

If we can find appropriate expressions forVcoll andVexc,
then a correction of the measuredbm can be obtained and,
hence, the true gas volume fractiona can be calculated.

1. Collision detection volume

The collision detection volume is measured from a series
of individual bubble experiments to determine the collision
detection area. This area was quantified by analyzing the
signal when single bubbles, released at different positions,
interacted with the probe. Bubble collisions were identified
when the resulting signal rose above the predetermined
threshold. The collision area is the area at the tip of the probe
within which bubble centers are detected. Tests were per-
formed for different bubble sizes and for a range of bubble–
probe distances. Figure 9 shows the measured collision area
for three different bubble equivalent diameters. Clearly, the
collision area increases with the bubble diameter. The rela-
tionship of the collision area with the bubble equivalent di-
ameterdeq can be fitted to the expression

FIG. 8. Sketch of the geometry of the
probe excluded volume and bubble
collision detection volume.

2822 Rev. Sci. Instrum., Vol. 74, No. 5, May 2003 Zenit, Koch, and Sangani

Downloaded 05 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/about/rights_and_permissions



Acoll51.997deq
2 21.588deq11.747, ~3.4!

wheredeq5(dlong
2 dshort)

1/3, dlong and dshort are the long and
short axes of the bubble, respectively. The equivalent bubble
diameter and the collision detection area are given in mm
and mm2, respectively. This expression was obtained for a
threshold level of 0.2 V. The collision detection volume is
then inferred from the measured collision area by assuming
the detection volume is an oblate spheroid, shown schemati-
cally in Fig. 8. The collision area is expected to be different
for side-ways collisions because oblate bubbles have a
shorter dimension in the vertical direction. Using the bubble

aspect ratio,x5dlong/dshort, and the bubble equivalent diam-
eter,deq, the collision volume can be written as

Vcoll5
4

3
pS Dcoll

2 D 2S Dcoll

2x D ,

whereDcoll5A4Acoll /p is the diameter of the collision de-
tection area. Therefore,

Vcoll5
4

3

Acoll
3/2

Apx
, ~3.5!

FIG. 9. Measured collision area as a
function of the bubble equivalent di-
ameter deq and bubble’s long axis
dlong . Lines show the fit to the mea-
surements.

FIG. 10. Gas fraction profiles for
three typical hold ups. (s), a50.02;
(h), a50.05; and (¹), a50.10, for
a channel inclination ofu55°. The
lines show best linear fits of the data
excluding the near-wall regions.
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which is the volume of an oblate spheroid with the same
aspect ratio as that of the bubbles.

2. Probe excluded volume

The centers of the bubbles that are sensed and counted to
calculate the gas volume fraction must cross through the
measuring volume of the probe. Due to the intrusive nature
of the probe only part of the collision volume is accessible to
bubble centers. Bubbles passing, for example, at the base of
the probe will collide with the probe and be deflected; there-
fore, their residence time in the measuring volume will be
reduced resulting in a reduction of the measured gas fraction.
The excluded volume around the probe can be calculated

assuming that it extends from the edge of the collision area
to the tip of the probe and circumscribes a cross-sectional
area proportional to the bubble diameter~as depicted in Fig.
8!. The excluded volume can be expressed as

Vexc5Vprism1Vcone5L1Abase1
L2

3
Abase

5AbaseS L11
L2

3 D ,

whereVprism andVconeare an ellipsoidal prism~that accounts
for the base of the probe! and a cone~that accounts for the

FIG. 11. Cross-correlation function as
a function of the delay time. The line
is that calculated from the signals
shown in Fig. 3.

FIG. 12. Superficial gas velocity as a
function of mean gas volume fraction.
The size of the symbols denotes ap-
proximately the magnitude of the ex-
perimental error.
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tip of the probe!. L1 is the length of the prism, which extends
from the edge of the collision volume to the base of the
probe tip:

L15AAcoll /p2Dt ,

and L2 is the height of the cone, which includes the tip
length,Dt , and a bubble radius:

L25Dt1
deqx

1/3

2
.

The area of the base is an ellipse with the same aspect ratio
as the bubbles:

Abase5
p

4
~Dp1deqx

22/3!~Dp1deqx
1/3!,

whereDp is the diameter of the probe. These distances are
depicted schematically on Fig. 8. We can now calculate the
probe excluded volume as

Vexc5Fp4 ~Dp1deqx
22/3!~Dp1deqx

1/3!GF ~AAcoll /p

2Dt!1
1

3 S Dt1
deqx

1/3

2 D G . ~3.6!

For the probe used in these experimentsDp50.63 mm and
Dt50.8 mm. Clearly, the size of the excluded volume and
the collision detection volume increase as the bubble diam-
eter increases.

3. Corrected measurement

Since the equivalent bubble diameter and the bubble as-
pect ratio can be experimentally determined,10 a correction
for the excluded volume can be obtained to quantify the
effect of the bubble–probe interaction on the measured value
of the volume fraction. Figure 6 shows the prediction of Eq.

~3.3! using the expressions for theVexc and theVcoll shown
above, considering constant~solid line! and changing
~dashed line! bubble size and aspect ratio. Clearly, the cor-
rection captures the apparent nonlinear behavior of the sen-
sor. Therefore, by applying this correction to the measure-
ments obtained from the raw signal, a more accurate
measurement of the gas volume fraction is obtained.

B. Example: Gas volume fraction profiles

The probe can be used to determine the spatial variations
of the gas volume fraction in any flow. We show some typi-
cal results obtained for a gravity-driven shear flow of a bub-
bly liquid.11 The calculations and the signal analysis are per-
formed on the digitized voltages from the probe. The
sampling rate used was 10 kHz. For each measurement a
minimum of 100 s of signal was captured. The measured gas
volume fraction as a function of probe position between the
two walls is shown in Fig. 10, for different values of the
mean gas volume fraction. Clearly, small changes of the gas
volume fraction can be measured accurately using the probe.
When the measuring point is near a wall the error involved in
the measurement of the gas volume fraction increases due to
the probe–wall interaction.

IV. BUBBLE VELOCITY MEASUREMENTS

A second identical probe can be positioned at a known
distance above the leading probe. If a bubble passes near
both probes, the signals produced in each of them will be
similar but shifted in time, as shown in Fig. 3. The signals
are cross-correlated and the delay time,tmax, can be accu-
rately calculated as the value of signal shift timet that maxi-
mizes the cross-correlation function,FV1V2

, defined as

FIG. 13. Normalized bubble velocity
probability density function for four
typical gas volume fractions. The
width of the bins is 0.02 m/s.
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FV1V2
~t!5

1

ts
E

0

ts
V1~ t !V2~ t2t!dt, ~4.1!

wherets is the sampling time andV1 andV2 are the voltages
obtained from the leading and trailing probes, respectively.
Figure 11 shows the cross-correlation functionFV1V2

(t), ob-
tained from the two signals shown in Fig. 3, as a function of
the time shiftt. The plot shows a clear maximum value.

The bubble velocity is calculated by

ub5
D

tmax
~4.2!

whereD is the separation distance between probes. The sepa-
ration between the probes is in accordance with the theoret-
ical considerations of Ref. 12. The velocity calculated in this
manner was compared with the velocity obtained using video
image processing. The results differ only by 1% for a 1.3 mm
bubble moving at 27 cm/s. Note that for this technique to be
appropriate the bubble velocity must be nearly unidirec-
tional, which is true for the flows considered here. The
bubble velocity calculated from the cross-correlation func-
tion uses the entire time series~typically, 100 s! from the
impedance probe. The resulting measurement contains infor-
mation from many different bubble events.

To corroborate the accuracy of measured velocities a
comparison can be performed between the superficial gas
velocity uo5Q/Ao and the product of the holdup and the
measured bubble velocity, (uba). Q is the volumetric gas
flow rate andAo is the cross-sectional area of the channel.
Figure 12 shows a good comparison between the two quan-
tities. At low concentration the superficial gas velocity mea-
surements are slightly higher than the values measured di-
rectly with the impedance probe, but for more concentrated
mixtures the measured bubble velocity is always larger than
that calculated from the flow rate. It must be noted that the

error in the measurement of the superficial gas velocity is on
the order of 10%, which may explain the disagreement ob-
served at larger concentrations.

Information concerning the probability distribution of
bubble velocities can be obtained through further processing
of the signals. The velocity of individual bubble can be ob-
tained if similar pulse appear on the signals of both probes
but shifted in time. If the time delay of this shift is calcu-
lated, a collection of individual bubble velocities can be ob-
tained. Other important statistical measures, like the velocity
variance, can be calculated. Since some of the bubbles that
are sensed by the leading probe are deflected and, therefore,
are not sensed by the trailing probe, a certain discriminating
algorithm must be formulated to account for this effect. A
program was written to search and identify voltage pulses
corresponding to bubble detections by the leading probe, i.e.,
events for which the signal rises above the voltage threshold
of 0.2 V. To determine if a similar pulse, shifted in time, was
produced in the trailing probe, alocal cross-correlation func-
tion is performed. A discriminating criterion is adopted to
eliminate erroneous signals. If the calculated velocity is im-
probable, it is assumed that the signals in the two probes
were caused by two different bubbles and, therefore, the
trace is discarded. The algorithm discards velocities that are
more than 50% larger than the terminal velocity and smaller
than a tenth of the terminal velocity. In addition, events that
yield small values of the maximum in the cross-correlation
function, FV1V2

,0.0015V2, are discarded. The sample

length used for the determination of the local cross-
correlation function is 20 ms. Figure 13 shows typical prob-
ability distribution functions for the bubble velocity at differ-
ent gas volume fractions. The distribution of bubble
velocities can be determined with the presented system.

FIG. 14. Bubble velocity profiles for
three typical hold ups. (s), a50.02;
(h), a50.05; and (¹), a50.10, for
a channel inclination ofu55°. The
lines show the linear best fits.
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A. Example: Bubble velocity profiles

As in the example shown for the gas volume fraction
measurements, we show the bubble velocity profiles ob-
tained in a gravity-driven shear flow.11 The signals are ac-
quired using the same parameters as those used for the gas
volume fraction measurements. Bubble velocity profiles are
shown in Fig. 14 for three different values of the mean gas
volume fraction. Clearly, the velocity profiles can be deter-
mined with a good degree of accuracy. The velocity, in the
cases shown, changes only by 12% along the width of the
channel but the change is captured accurately with the dual
probe.

V. DISCUSSION

The main difficulty in performing localized measure-
ments in a bubbly flow arises from the bubble–probe inter-
action mechanism. Generally, small bubbles are not pierced
by the probe during their interaction. Since bubbles are de-
flected as a result of the collision with the probe, the mea-
sured signal does not represent the true value of the gas
volume fraction at that point. Accounting for the excluded
volume produced by the probe itself, we are able to correct
the raw measurement to obtain a higher degree of accuracy.

With the proposed system the velocity and distribution of
velocities of the bubbles are also obtained. The development
and implementation of the presented system is relatively
simple and low cost.
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