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                                    Risk, Odds, and their Ratios 
 

The difference between risk ratios and odds ratio are commonly misunderstood by researchers. 

The difference is important when interpreting a logistic regression model when the coefficients 

have been exponentiated. Such exponentiated logistic coefficients are called odds ratio.  The 

exponentiated coefficients for Poisson and negative binomial models are called relative rate 

ratios. Rate ratios are  numerically the same thing to risk ratios, but the term is used when the 

response or dependent variable is a count.  

 

To understand the difference between a risk ratio  and an odds ratio, let's consider a 2x2 table 

looking like 

                                       DELIVERY (in thousands) 

                                 delivered (0)   abortion (1)   TOTAL 

MH                                                                                                           0       1 

0:  no MH problems          30                 25               55                     0    A      B 

1:  MH problems               55                 30               85                     1    C      D 

----------------------------------------------------------------------- 

   TOTAL                           85                 55             140                       A+C  B+D 

 

This is based on a study I had to review some time back, but the count of women subjects in the 

study is purely made up. I don't recall the actual counts.  The study sample data consists of 

women throughout the United States who have gotten pregnant. The concern of the study is to 

predict whether a woman will experience mental health problems subsequent to the birthing 

experience.  

 

The outcome (or response, or dependent variable - what you are interested in) is, therefore,   

mental health (MH) problems. I put it on the vertical axis. The explanatory predictor, or 

independent variable, is delivery (0) or abortion (1).  We do not consider natural miscarriage.  

 

The table partitions the count of women into those having MH problems subsequent to their 

birthing experience. Separate cells exist for the two types of delivery and two levels of MH.    A 

schema has been placed to the right of the table, which can be used to show the calculations 

involved. I will refer to delivery as any non-abortion delivery.   

 

The risk of  MH problems if having an abortion is D/(B+D) 

The risk of  MH problems if having a  delivery is C/(A+C) 

 

The risk ratio of having MH problems following an abortion is [D/(B+D)]/[C/(A+C)] compared 

to a delivery. For the real numbers then, we have 

 

    The risk of a woman having mental health problems if she has an abortion is 30/55 = .545.  

    The risk of a woman having mental health problems if she delivers is 55/85 = .647 

    The risk ratio of subsequent MH problems following an abortion is   
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                                      (30/55)/(55/85) =  

                                     .545/.647            = .842 = 84% 

 

The odds and odds ratio is the same as risk and risk ratio except that the denominator is 0, no 

MH problems instead of the total for each group.   

 

    The odds of 1 (MH problems if having an abortion) is D/B 

    The odds of 0 (MH problems if having a   delivery) is C/A 

 

The odds ratio of having MH problems following an abortion is (D/B)/(C/A) = (A*D)/(B*C) 

compared to a delivery. 

 

The odds ratio, which is typically stated as the odds of a woman having MH problems following 

an abortion (compared to delivering the baby), is  

                                          

                                            (30/25)/(55/30) =  .6545 = 65% 

 

If you have more than two groups of explanatory variable, as in the study, we can set it up as the 

table below. Note that I have split delivered above into two groups - normal delivery and 

unintended delivery.  The key to remember is that one group or level is called the reference, and 

the statistical conclusions are based on it. Note that Stata uses the lowest value as the reference 

level by default. SAS and SPSS use the highest value as the reference by default.You can change 

the reference of course. For the above 2x2 table, level 0 was the reference (it usually is), and it is 

the denominator in the primary ratio. For our 3-level predictor, let's suppose that we choose 

having a normal delivery as the reference.  

 

                                                 DELIVERY (in thousands) 

                                    normal (1)   unintended  (2)   abortion (3)   TOTAL 

 

0 no MH problems           10                   20                     25               55       

1 MH problems                15                   40                     30               85 

-------------------------------------------------------------------------------- 

   TOTAL                          25                  60                     55             140 

 

There are two sets of risk, as well as odds, ratios. One compares 3 with 1, and the second 

compares 2 with 1 on the horizontal axis.  So,  

 

The risk of developing MH problems is (30/55)/(15/25) = .9090 = .91 (91%) for a woman having 

an abortion compared to  having a normal delivery.   

 

The odds of developing MH problems is (30/25)/(15/10) = .800 = .8 (80%) for a woman having 

an abortion compared to having a normal delivery.   

 

The risk of developing MH problems is (40/60)/(15/25) = 1.11 =  (111%) for a woman having an 

unintended pregnancy compared to having a normal delivery  That is, women are 11% more 
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likely to have subsequent MH problems if they have an unintended pregnancy rather than a 

normal delivery..    

 

The odds of developing MH problems is (40/20)/(15/10) = 1.333 =  (133.3%) for a woman 

having an unintended pregnancy compared to having a normal delivery.  That is, women have a 

33 and a third percent greater odds of having subsequent MH problems if they have an 

unintended pregnancy compared to having a normal delivery.    

 

For the second example above -- odds of abortion vs normal -- we can also interpret the 

relationship as: the odds of developing MH problems is 1/.8=1.25 or 25% greater for woman 

having a normal delivery compared to one having an abortion. The calculations to show this are: 

(15/10)/(30/25) = 1/25 

 

Also -- you  can switch references as well and make any group the reference. Just be careful to 

relate the correct groups.  It is also important to remember that odds is not risk. With a risk ratio 

we can talk about probabilities and likelihoods - but not with odds ratios.  Some epidemiologists 

and researchers make this mistake; in fact many do.  In the paragraph directly above I cannot say 

that women having a normal delivery are 25% more likely, or 25% more probable, to have MH 

than those having an abortion, only that they have 25% greater odds.  

 

Remember, I just made up the counts, or incidence rates. So they may not make good sense. Let's 

create a GLM model to estimate the odds and risk ratios of the above 2x3 data. 

 

Using Stata's data editor,  I created the following table.  I can display it by using the list, or just l, 

command.  Note that every cell is accounted for.  

 
. list 

 

     +------------------------------+ 

     | health   delivery      count | 

     |------------------------------| 

  1. |      0          1      10000 | 

  2. |      0          2      20000 | 

  3. |      0          3      25000 | 

  4. |      1          1      15000 | 

  5. |      1          2      40000 | 

     |------------------------------| 

  6. |      1          3      30000 | 

     +------------------------------+ 
 

. save delivery 

I will first model the data to determine the odds ratios for experiencing a mental health problem 

following delivery-type. Recall that there are three levels of delivery, with the first level declared 

as the reference. We will therefore obtain odds ratios for experiencing MH problems for 1) 

women having an abortion compared to those having a normal delivery, and 2) for women 

delivering an unplanned conception. Placing an "i."as a prefix to the categorical predictor, 
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delivery, tells the software to factor the variable. The first level is designated as the reference by 

default. Count, the number of women in each cell in thousands, is entered into the model as a 

frequency weight. The nolog option suppresses a display of the iteration log, and nohead  

suppresses a display of the header statistics; e,g, deviance, Pearson, dispersion, log-likelihood, 

and so forth. A logistic regression is used to model the data.  
 

. glm health i.delivery [fw=count], fam(bin) nolog nohead eform 

 

------------------------------------------------------------------------------ 

             |                 OIM 

      health | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    delivery | 

          2  |   1.333333   .0207275    18.51   0.000     1.293321    1.374584 

          3  |         .8   .0123935   -14.40   0.000     .7760742    .8246634 

             | 

       _cons |        1.5   .0193649    31.41   0.000     1.462522    1.538439 

------------------------------------------------------------------------------ 

 

The odds ratios displayed in the above table are identical to those we calculated by hand a bit 

earlier. But here we get standard errors and 95% confidence intervals for each non-reference 

level of delivery.  An odds ratio is displayed for the intercept as well, which is in fact incorrect. 

The exponentiation of the intercept is not a ratio.  The intercept itself is understood as the value 

of the linear predictor when each predictor value in the model is zero.  

 

The risk ratio is obtained using a Poisson regression with robust, or sandwich, standard errors. 

A robust, or Huber-White sandwich, variance estimator adjusts the standard errors for any 

correlation in the data that may be in excess of Poisson distributional assumptions. It does not 

change the coefficients, which when exponentiated are termed incidence rate ratios. To reiterate, 

the term rate is used here in place of risk when we are modeling count data. 
 

. glm health i.delivery [fw=count], fam(poi) nolog nohead eform vce(robust) 

 

------------------------------------------------------------------------------ 

             |               Robust 

      health |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    delivery | 

          2  |   1.111111   .0065734    17.81   0.000     1.098302     1.12407 

          3  |   .9090909   .0058788   -14.74   0.000     .8976413    .9206865 

             | 

       _cons |         .6   .0030984   -98.92   0.000     .5939579    .6061036 

------------------------------------------------------------------------------ 

 

Again, as with the odds ratios the values for the incidence rate ratios are identical to what we 

determined above by hand.  

 

I should mention that the standard errors of the logistic model odds ratios are obtained using the 

delta method. They are not directly derived from the model variance-covariance matrix. The 

logistic model we used is displayed below, but parameterized to display coefficients, not odds 

ratios. The Stata matrix list e(V) command is used to display the variance-covariance matrix. 

Model standard errors are obtained by taking the square root of each diagonal term in the matrix.  

I shall create separate dummy variables for the three levels of delivery, using them in the model. 
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. tab delivery, gen(del) 

 

   delivery |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |          2       33.33       33.33 

          2 |          2       33.33       66.67 

          3 |          2       33.33      100.00 

------------+----------------------------------- 

      Total |          6      100.00 

 

. glm health del2 del3 [fw=count], fam(bin) nolog nohead 

 

------------------------------------------------------------------------------ 

             |                 OIM 

      health |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        del2 |   .2876821   .0155456    18.51   0.000     .2572132     .318151 

        del3 |  -.2231436   .0154919   -14.40   0.000    -.2535072   -.1927799 

       _cons |   .4054651   .0129099    31.41   0.000     .3801621    .4307681 

------------------------------------------------------------------------------ 

 

. matrix list e(V) 

 

symmetric e(V)[3,3] 

                  health:     health:     health: 

                    del2        del3       _cons 

 health:del2   .00024167 

 health:del3   .00016667      .00024 

health:_cons  -.00016667  -.00016667   .00016667 

 

 

We take the square root of the diagonal terms of the matrix. 
 

. di sqrt(.00024167) 

.01554574 

 

. di sqrt(.00024) 

.01549193 

 

. di sqrt(.00016667) 

.01291007 

 

The three values above are identical to the standard errors displayed in the model output. 

However, we cannot do this for the standard errors of odds ratios. Instead we use a formula 

based on the delta method: 

 

                                                      SEOR   = exp(β)*se 
 

each standard error of the odds ratio is given as: 

 
. di exp(_b[del2])*_se[del2] 

.02072751 

 

. di exp(_b[del3])*_se[del3] 

.01239355 

 

. di exp(_b[_cons])*_se[_cons] 

.01936492 
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We compare the terms with the model output table, finding them to be identical.  
 

. glm health del2 del3 [fw=count], fam(bin) nolog nohead eform 

 

------------------------------------------------------------------------------ 

             |                 OIM 

      health | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        del2 |   1.333333   .0207275    18.51   0.000     1.293321    1.374584 

        del3 |         .8   .0123935   -14.40   0.000     .7760742    .8246634 

       _cons |        1.5   .0193649    31.41   0.000     1.462522    1.538439 

------------------------------------------------------------------------------ 

 

The confidence intervals are easy to calculate for any specified level of significance. For the 

standard 95% confidence interval, which represents a significance level of α=.05, is given as 
 

                                     ± 1.96*SE 
 

Given the model statistics for the second level of delivery as 
 

health |    Coef.   Std. Err.     z      P>|z|    [95% Conf. Interval] 

---------------------------------------------------------------------- 

del2 |   .2876821   .0155456    18.51   0.000     .2572132     .318151 

 

We can use the above formula given the coefficient and SE to calculate the confidence interval.  

 

CONFIDENCE INTERVALS FOR COEFFICIENT: DEL2 
 

. di .2876821 - 1.96 *   .0155456 

.25721272 

 

. di .2876821 + 1.96 *   .0155456 

.31815148 

 

which matches the confidence values given in the table of parameter estimates and related 

statistics.  

 

For the confidence intervals for the odds ratios, simply exponentiate the model values above. 

 

CONFIDENCE INTERVALS FOR ODDS RATIOS: DEL2 
 

. di exp(.2876821 - 1.96 *   .0155456) 

1.2933202 

 

. di exp(.2876821 + 1.96 *   .0155456) 

1.3745845 

 

which are identical to the values displayed in the table of odds ratios and associated statistics 

above.  The confidence intervals for the remaining coefficients and odds ratios in the model are 

calculated using the same methods.  

 

The same logic obtains with respect to Poisson regression and risk or rate ratios. The standard 

errors and confidence intervals are calculated for coefficients and relative rate ratios in the same 

manner. Remember, however, that the standard errors for the risk or rate ratios were determined 

by using a robust or sandwich  estimator.   
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POISSON REGRESSION: MODEL SEs 
 

. glm health del2 del3 [fw=count], fam(poi) nolog nohead 

 

 

------------------------------------------------------------------------------ 

             |                 OIM 

      health |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        del2 |   .1053605   .0095743    11.00   0.000     .0865953    .1241257 

        del3 |  -.0953102        .01    -9.53   0.000    -.1149098   -.0757105 

       _cons |  -.5108256    .008165   -62.56   0.000    -.5268287   -.4948226 

------------------------------------------------------------------------------ 

 

 

CONFIDENCE INTERVALS: del2 
 

. di _b[del2] - 1.96*_se[del2] 

.08659494 

 

. di _b[del2] + 1.96*_se[del2] 

.12412609 

 

POISSON REGRESSION: ROBUST SEs 
 

. glm health del2 del3 [fw=count], fam(poi) nolog nohead vce(robust) 

 

------------------------------------------------------------------------------ 

             |               Robust 

      health |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        del2 |   .1053605   .0059161    17.81   0.000     .0937652    .1169559 

        del3 |  -.0953102   .0064667   -14.74   0.000    -.1079847   -.0826356 

       _cons |  -.5108256    .005164   -98.92   0.000    -.5209469   -.5007044 

------------------------------------------------------------------------------ 

 

ROBUST CONFIDENCE INTERVALS: del2 
 

. di _b[del2] - 1.96*_se[del2] 

.09376496 

 

. di _b[del2] + 1.96*_se[del2] 

.11695607 

 

POISSON REGRESSION:  RELATIVE RATE RATIOS 
 

MODEL POISSON REGRESSION 
 

. qui glm health del2 del3 [fw=count], fam(poi) nolog nohead 

 

STANDARD ERRORS; DELTA METHOD 
 
. di exp(_b[del2]) * _se[del2] 

.01063808 

 

. di exp(_b[del3]) * _se[del3] 

.00909091 

 

. di exp(_b[_cons]) * _se[_cons] 

.00489898 
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Compare the above with the standard errors displayed in the table of relative rate ratios and 

associated statistics. They are identical.  
 

. glm health del2 del3 [fw=count], fam(poi) nolog nohead eform 

 

------------------------------------------------------------------------------ 

             |                 OIM 

      health |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        del2 |   1.111111   .0106381    11.00   0.000     1.090455    1.132158 

        del3 |   .9090909   .0090909    -9.53   0.000     .8914465    .9270845 

       _cons |         .6    .004899   -62.56   0.000     .5904746    .6096791 

------------------------------------------------------------------------------ 

 

The same method is used for calculating relative rate ratios with robust standard errors. 
 

POISSON REGRESSION: ROBUST SE 
 

. qui glm health del2 del3 [fw=count], fam(poi) nolog nohead vce(robust) 

 

CALCULATE ROBUST SEs FOR RELATIVE RATE RATIOS 
 

. di exp(_b[del2]) * _se[del2] 

.00657345 

 

. di exp(_b[del3]) * _se[del3] 

.00587884 

 

. di exp(_b[_cons]) * _se[_cons] 

.0030984 

 

ROBUST POISSON REGRESSION WITH RELATIVE RATE RATIOS 
 

. glm health del2 del3 [fw=count], fam(poi) nolog nohead vce(robust) eform 

 

------------------------------------------------------------------------------ 

             |               Robust 

      health |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        del2 |   1.111111   .0065734    17.81   0.000     1.098302     1.12407 

        del3 |   .9090909   .0058788   -14.74   0.000     .8976413    .9206865 

       _cons |         .6   .0030984   -98.92   0.000     .5939579    .6061036 

------------------------------------------------------------------------------ 

 

The robust standard errors are the same.  The confidence intervals are calculated in the same 

manner as we did for odds ratios 
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