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Sequences, Series, and Function Approximation

Lawrence Stout
Department of Mathematics and Computer Science

Illinois Wesleyan University

September 8, 2006

1 What’s a sequence and why should you care?

Definition 1 A sequence of real numbers is a function from the natural numbers to
the reals a : N → R.

We typically use subscripts rather than functional notation using parentheses to
indicate this so that the sequence a : N → R is usually written as

a0, a1, . . . , an . . .

Sequences are important in approximation: the usual representation of real num-
bers using decimals is in fact the process of giving a sequence of rational numbers
approximation the real number in question successively better as more decimal places
are given. These decimal approximation sequences are actually rather special: suc-
cessive decimal approximations never get smaller (so the sequence is monotone non-

decreasing) and two approximations which agree to the kth decimal place differ by at
most 10−k (so the sequence is a Cauchy sequence: to make two values in the sequence
close to each other all you need to do is take them far enough out in the sequence).

Most of the important functions from the reals to the reals which we use are
actually only able to be calculated approximately. Series representations (based on
sequences of real numbers) provide the means to get arbitrarily good approximations.

Sequences were also used by Cauchy to construct the real numbers from the ra-
tionals. Real numbers can be constructed as equivalence classes of Cauchy sequences
of rationals under an equivalence relation with a ∼ b provided that for any ε there is
an M such that if n > M then |an − bn| < ε.
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1.1 Limits of Sequences

Calculus deals with limits, derivatives, and integrals. For sequences the only limits
of interest are those as n →∞. Derivatives don’t really exist, though one can study
finite differences (a whole theory for calculus of finite differences parallels the usual
calculus—the major textbook in the subject is by George Boole of Boolean Algebra
fame). The analog of improper integrals is given by series.

Recall the definition of the limit of a function of a real variable:

Definition 2 If f : R → R then lim
x→∞

f(x) = L means that for any ε > 0, there is an

M such that if x > M then |f(x)− L| < ε.

If we restrict the x’s to be natural numbers we get the definition of a limit for a
sequence:

Definition 3 For a sequence a : N → R the limit lim
n→∞

an = L means that for any

ε > 0 there is an M such that if n > M then |an − L| < ε. If a sequence has a limit
we say it is convergent. If not, we say it is divergent.

The similarity of these two definitions together with the fact that you already
have techniques for finding limits of functions of a real variable as x → ∞ (used for
finding horizontal asymptotes) makes the following lemma both useful and easy to
prove:

Lemma 1 If an = f(n) for every n and limx→∞ f(x) = L then limn→∞ an = L.

Proof:

Given ε we get an M from limx→∞ f(x) = L so that if x > M then
|f(x) − L| < ε. Use that same M for limn→∞ an = L. If n > M then we
know |f(n)− L| < ε, but this is the same as |an − L| < ε.

Notice that this lemma only goes one way: having the function have L as limit is
much stronger than having the sequence have L as limit since the function of a real
variable has many more values which must be made close to L. It is quite possible
for the sequence an to converge but for a function f with f(n) = an to have no limit.
For example if an = sin(nπ) then f(x) = sin(xπ) has no limit, but the sequence does
since sin(nπ) = 0 for every natural number n, so the sequence converges to 0.
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Example: Using limits of real valued functions

For many limits of sequences this theorem applies quite directly. The
work looks like what we are doing is just changing the variable from n
(which is taken to be in N) to x (which is taken to be in R). This is
a reminder that the kind of limit has in fact changed and we are using
previous knowledge in a new situation:

1. If an = n+1
n2+2n+3

then an = f(n) where f(x) = x+1
x2+2x+3

. We know how
to find

lim
x→∞

x + 1

x2 + 2x + 3
= lim

x→∞

1
x

+ 1
x2

1 + 2
x

+ 3
x2

= 0

so an → 0 as well.

2. We can find

lim
n→∞

n2 + 1

3n2 − 2
= lim

x→∞

x2 + 1

3x2 − 2
=

1

3
.

3. If bn = n sin 1/n then we use f(x) = x sin(1/x). We can find the
limit by

lim
x→∞

x sin(1/x) = lim
x→∞

sin(1/x)

1/x
= lim

t→0+

sin(t)

t
= 1.

Thus bn → 1 as well.

♦

Exercises: Find the limit, if it exists, of the following sequences:

1. an =
(−1)n

n

2. an =
n

n2 − 1

3. an =
n√

n2 − 1

4. an = e−n

5. an = arctan(n)
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Several important limits make use of l’Hôpital’s rule. We need to change to a
functions of a real variable here since the derivative is not defined for sequences.

Example: If an =
(

n+1
n

)n
then an → e

lim
n→∞

(
n + 1

n

)n

= lim
x→∞

(
x + 1

x

)x

= lim
x→∞

(
1 +

1

x

)x

= lim
x→∞

e(x ln(1+ 1
x))

= e(limx→∞ x ln(1+ 1
x))

= e

 
limx→∞

ln(1+ 1
x)

1
x

!

= e

0BB@limx→∞

1

(1+ 1
x)

(−1
x2 )

−1
x2

1CCA
by L’Hôpital

= e

 
lim x→∞ 1

(1+ 1
x)

!

= e1 = e

♦

Example: n
√

n → 1

Again we compute using l’Hôpital’s rule:

lim
n→∞

n
√

n = lim
x→∞

x1/x

= lim
x→∞

e((1/x) ln(x))

= e(limx→∞
ln(x)

x )

= e

„
limx→∞

1
x
1

«
by L’Hôpital

= e0 = 1

♦
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Exercises: Find the limit of the following sequences:

1.

(
1− n

n

)n

2.
n
√

n2

3.

(
1 +

1

n

)2n

4.

(
1 +

1

n2

)n

5.

(
1 +

1

n

)n2

1.2 Algebra of limits of sequences

Just as for limits of functions of a real variable we can combine limits using multipli-
cation, addition, division, and the squeeze theorem. The proofs here closely mirror
the ones for limits of functions of a real variable.

Theorem 2 If an → A and bn → B then

1. an + bn → A + B

2. anbn → AB

3. an/bn → A/B provided B 6= 0

Proof:

Parts 1 and 2 are left as exercises. For quotients we first bound the
size of |bn| away from 0. Since bn → B 6= 0 we can find an M1 such that if
n > M1 then bn is between B/2 and 3B/2, thus guaranteeing that |bn| >
|B|/2. Next we find M2 so that if n > M2 then |an−A| < |B|ε

4
and M3 so

that if n > M3 then |bn − B| < B2ε
4|A| . These are chosen so that the parts

in the following calculation will end up with ε. If n > max(M1, M2, M3)
then
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∣∣∣∣an

bn

− A

B

∣∣∣∣ =

∣∣∣∣anB − Abn

bnB

∣∣∣∣
=

∣∣∣∣anB − AB + AB − Abn

bnB

∣∣∣∣
≤

∣∣∣∣anB − AB

bnB

∣∣∣∣ +

∣∣∣∣AB − Abn

bnB

∣∣∣∣
≤

∣∣∣∣2(anB − AB)

B2

∣∣∣∣ +

∣∣∣∣2(AB − Abn)

B2

∣∣∣∣
=

2

|B|
|an − A|+ 2|A|

|B2|
|B − bn|

<
2

|B|
|B|ε
4

+
2|A|
|B2|

|B2|ε
4|A|

=
ε

2
+

ε

2
= ε

Theorem 3 If an ≤ bn ≤ cn and both An → L and cn → L then bn → L.

Here again the proof, which is easy, is left as an exercise.

Exercises: Prove the remaining parts of the theorems in this section:

1. If an → A and bn → B then an + bn → A + B (Hint: split the allowable error
between An and bn.)

2. If an → A and bn → B then anbn → AB (Hint: you will need bound on one of
an or bn, then break |anbn −AB| = |anbn − anB + anB −AB| ≤ |an||bn −B|+
|an − A||B|).

3. If an ≤ bn ≤ cn and both An → L and cn → L then bn → L.

1.3 Consequences of convergence

This section gives some consequences of a sequence having a limit. These results are
useful sometimes to show that a sequence does not converge.

First we will need a definition.
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Definition 4 The sequence a : N → R is bounded if and only if there is an upper
bound b and a lower bound l such that for all n ∈ N we have l ≤ an ≤ b.

Proposition 4 Every convergent sequence is bounded.

Proof:

Suppose that an → L is a convergent sequence. Then there is a N
such that if n > N we have |an − L| < 1 thus there are at most N terms
not in the interval [L− 1, L + 1]. The sequence is then bounded above by
the largest element of {ak|k ≤ N}∪{L− 1, L+1} and bounded below by
its smallest element.

Because of this proposition we know that if a sequence is not bounded then it does
not converge. We can also show that a sequence does not converge by demonstrating
two subsequences which tend to different values.

Definition 5 A sequence b is a subsequence of a if there is a strictly increasing
function g : N → N with bk = ag(k).

A subsequence is thus a sequence with some of the terms left out.

Proposition 5 Every subsequence of a convergent sequence converges to the same
limit.

Proof:

Suppose an → L and b is a subsequence of a, say using g : N → N.
Given ε there is an N such that if n > N then |an − L| < ε. Let M be
the smallest natural number such that g(M) ≥ N then if m > M we have
|bm − L| = |ag(m) − L| < ε. Thus bk → L as well.

Exercises:

1. Give an example of a sequence which is bounded but does not converge.

2. Give an example of a sequence which has two subsequences which converge to
different limits.
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3. The sequence

an =
(−1)n

n

converges to 0. Give upper and lower bounds for an.

4. The sequences

bn =
−1

2n + 1
and cn =

1

2n

are subsequences of an in the previous problem. Give the functions g : N → N
called for in the definition of subsequence.

1.4 Monotone Bounded Sequences

Monotone sequences are often easier to deal with than are sequences which sometimes
increase and sometimes decrease.

Definition 6 The sequence a : N → R is monotone if one of the following holds:

1. (monotone increasing) If n < m then an < am.

2. (monotone non-decreasing) If n < m then an ≤ am.

3. (monotone non-increasing) If n < m then an ≥ am.

4. (monotone decreasing) If n < m then an > am.

We noted earlier that decimal approximation to a real number gives a monotone
non-decreasing sequence.

Proposition 6 Every sequence has a monotone subsequence.

Proof:

(From Donald J. Newman and T.D. Parsons On Monotone Se-
quences, Am. Math. Monthly 95, #1 p.44-45, 1988)

Suppose our sequence is an. Look at the set S = {k ∈ N| for all j >
k, ak < aj} . If S is infinite then there is a function g : N → S such
g(n) < g(n + 1) and the subsequence ag(n) is monotone increasing.

If S is finite then there is a smallest natural number i0 so that for
all n ≥ i n 6∈ S. We let g(0) = i0. This is not in S, so there is some
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i1 > f(0) such that ai1 ≤ ag(0). Let g(1) be the smallest such. We proceed
inductively letting g(n + 1) be the smallest k so that ak ≤ ag(n). This
produces a subsequence ag(n) which is monotone non-increasing.

One important theorem uses the least upper bound property to show that a limit
exists even if you don’t know what that limit is.

Theorem 7 Every bounded monotone sequence converges.

I’ll give the proof for monotone increasing bounded sequences. The others are
similar.
Proof:

Let S be the set of all values of the sequence

S = {a0, . . . , an . . .}

We know that S is nonempty because it contains a0. We know it
is bounded because b is an upper bound. Now the least upper bound
property (which distinguishes the real numbers from the rationals) says
that any non-empty set of real numbers with an upper bound has a least
upper bound. Let L be the least upper bound of S. We will show that L
is the limit of the sequence.

Since L is an upper bound we know that for every n, an ≤ L.
Since L − ε < L we know that L − ε is not an upper bound since L

was the least, so there must be some M with aM > L− ε. That is the M
we are looking for. If n > M then L− ε < aM < an ≤ L so |an − L| < ε.

Exercises:

1. Prove that every bounded sequence has a convergent subsequence.

2. A proof of the Extreme Value Theorem (as given in our Analysis 1 class) uses the
bisection algorithm: To find where the maximum of f : [a, b] → R is achieved
we set up two sequences. We start with a0 = a and b0 = b. We then look at

cn+1 =
an + bn

2
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. If every point x in [an, cn+1] has some point t in [cn+1, bn] with f(x) ≤ f(t)
then let an+1 = cn+1 and bn+1 = bn. Otherwise let an+1 = an and bn+1 = cn+1.
Show that both sequences an and bn are monotone and bounded and thus must
converge. Then show that they must converge to the same point.

All of the tests for convergence of positive term series depend on this theorem, so
it becomes increasingly important as the subject progresses.

1.5 Cauchy Sequences

In his construction of real numbers as (equivalence classes of special kinds of) se-
quences of rationals, Cauchy wanted a way to identify convergent sequences without
having to specify the limit in advance. Noting that a sequence converges if and only
if its values get arbitrarily close to the limiting value, and thus arbitrarily close to
each other, he identified the sequences now named for him:

Definition 7 A sequence a : N → R is a Cauchy sequence if for every ε there is an
M such that if n > m > M then |an − am| < ε.

We can see quickly that any convergent sequence is Cauchy: given ε choose M so
that if n > M then |an − L| < ε

2
. If both n and m are larger than M then

|an − am| ≤ |an − L|+ |L− am| <
ε

2
+

ε

2
= ε

The other direction, however, is far from obvious.

Theorem 8 Every Cauchy sequence converges.

Proof:

Let a be a Cauchy sequence. Then {an|n ∈ N} is bounded (mimic
the proof that convergent sequences are bounded, but use aM+1 instead
of L). There is also a subsequence ag(n) of a which is monotone, and thus
must converge, say to L. Now given ε let M be large enough that for g(n)
and all m > M we get both |ag(n) − L| < ε/2 and |am − ag(n)| < ε/2.
Combining these we see that for m > M we get |am − L| < ε.
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2 Series representation of functions

2.1 Basic Definitions

A series is the analogue of an improper integral:

Definition 8 A series
∞∑

n=0

an converges to L if and only if the sequence of partial

sums Sk =
k∑

n=0

an converges to L.

We can make use of the convergence of monotone bounded sequences to get a
condition for the convergence of series of non-negative terms:

Corollary 9 (to the theorem on convergence of bounded monotone sequences)

If each an ≥ 0 then
∞∑

n=0

an converges if there is an upper bound on the partial sums.

The key point here is that having each an ≥ 0 makes the sequence of partial sums
monotone nondecreasing.

For certain important examples we can get explicit expressions for the partial
sums.

Our object will be to use series notions to represent functions as an infinite analog
to a polynomial, a power series:

Definition 9 A power series is a function of the form

∞∑
n=0

anx
n.

We evaluate such a function by taking the limit of the resulting series of numbers.

Our hope is that power series representations of functions will not be too hard to
find, that ignoring all but the first few terms will give us good approximations, and
that calculus for power series will prove to be as easy as calculus for polynomials.
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2.2 Geometric Series

A basic geometric series is, perhaps, a familiar example: we start with a value a0

and then obtain each new term of the series by multiplying by a common ratio. In
keeping with our focus on functions, let us use x for the common ratio and examine
the convergence of

f(x) =
∞∑

n=0

a0x
n

The kth partial sum of this geometric series is

Sk(x) =
k∑

n=0

a0x
k.

We can find its value through the following calculation:

Sk(x) =
k∑

n=0

a0x
n

xSk(x) =
k+1∑
n=1

a0x
n

(1− x)Sk(x) = a0 − a0x
k+1

Sk(x) =
a0 − a0x

k+1

1− x

Now this final expression will converge to the limit

f(x) =
a0

1− x

when xk+1 → 0. This in turn happens if and only if |x| < 1. In summary,

a0

1− x
=

∞∑
n=0

a0x
n provided |x| < 1.

Example: Using geometric series

Several functions can be given series expansions by decorating this
result:
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1. A geometric series with a0 = 1 common ratio −x gives series repre-
sentation
∞∑

n=0

(−1)nxn =
1

1 + x
valid for |x| < 1.

2. A geometric series with a0 = x common ratio x gives series represen-
tation
∞∑

n=1

xn =
x

1− x
valid for |x| < 1.

3. A geometric series with a0 = 2 common ratio −3x gives series repre-
sentation
∞∑

n=0

2 (−3)nxn =
2

1 + 3x
valid for |x| < 1

3
.

4. A geometric series with a0 = 1
2

common ratio x
2

gives series repre-
sentation
∞∑

n=0

1

2n+1
xn =

1

2− x
valid for |x| < 2.

5. A geometric series with a0 = 1 common ratio x2 gives series repre-
sentation
∞∑

n=0

x2n =
1

1− x2
valid for |x| < 1.

♦

Exercises: As an exercise to see if you have the technique try to find a series
representation of the following functions, giving the values for x for which the series
converges.
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1.
1

1 + x2
2.

x

1− x3

3.
1

1 + x2
4.

x

1− x3

5.
3

4 + 2x2
6.

x2

1 + 4x

7.
3x

5− x5
8.

x + 1

1 + x2

9.
3

3 + 2x2

2.3 Taylor’s Theorem

There are three major meanings for the derivative f ′(a):

1. instantaneous rate of change of f at a

2. the slope of the tangent line to y = f(x) at (a, f(a))

3. means to get the best linear approximation to a function f near a. This best
has a particular meaning: the function

t(x) = f(a) + f ′(a)(x− a)

gives an approximation to f(x) such that

lim
x→a

f(x)− (f(a) + f ′(a)(x− a))

x− a
= 0

Thus the error in using the tangent line as an approximation is (asymptotically)
much smaller than the distance away from a where you are trying to use it.

This view of the derivative as giving the best approximation becomes the view
which generalizes to higher dimensions. It also suggests a generalization which gives
a reason for finding derivatives of higher order: perhaps using a second derivative we
can get a best quadratic approximation, using a third derivative we can get a best

14



cubic approximation, . . . , using derivatives up to the nth we can get a best nth degree
polynomial approximating f .

The best linear approximation is gotten by matching both t(a) with f(a) and t′(a)
with f ′(a).

Life will get somewhat simpler if we restrict to the specific case where we are
looking for approximations near a = 0.

Consider a polynomial

p(x) = a0 + a1x + a2x
2 + a3x

3 + ... + anx
n

then

p′(x) = a1 + 2a2x + 3a3x
2 + ...nanx

n−1

p′′(x) = 2a2 + 2 · 3a3x + 3 · 4a4x
2 + ...(n− 1)nanx

n−2

p′′′(x) = 6a3 + 2 · 3 · 4a4x + 3 · 4 · 5a5x
2 + ...(n− 2)(n− 1)nanx

n−3

etc.

This tells us that p′(0) = 1!a1, p′′(0) = 2!a2, p′′′(0) = 3!a3, and in general p(n)(0) =
n!an (that’s the nth derivative of p evaluated at 0).

This suggests that if we want the first n derivatives of p(x) at 0 to match the first
n derivatives of f(x) at 0, we should let

ak =
f (k)(0)

k!

for k = 1 to n and let a0 = f(0). This gives the nth degree Taylor Polynomial for f .

Definition 10 The nth degree Taylor Polynomial (expanded around 0) for f is

pn(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + ... +

f (n)(0)

n!
xn.

Taylor’s theorem then tells us that if f has enough derivatives (typically we ask
for n+1 continuous derivatives near 0) then the error involved in using pn(x) instead
of f(x) is asymptotically small even compared to xn. (Note that we are working near
x = 0, so xn is much smaller than x).

An integral form will give Taylor’s Theorem with an exact value for the error:

Theorem 10 If f is n + 1 times continuously differentiable, then

f(x)− pn(x) =

∫ x

0

(x− t)n f (n+1)(t)

n!
dt.

15



Proof:

We use induction and integration by parts: If n = 0 this says

f(x)− f(0) =

∫ x

0

f ′(t)dt

which is just the Fundamental Theorem of Integral Calculus.
If we assume that

f(x)− pk(x) =

∫ x

0

(x− t)k f (k+1)(t)

k!
dt

then use integration by parts with u = f (k+1)(t) and dv = (x−t)k

k!
dt we will

get du = f (k+2)(t)dt and v = − (x−t)k+1

(k+1)!
. Thus

f(x)− pk(x) = −(x− t)k+1

(k + 1)!
f (k+1)(t)

∣∣∣∣x
0

−
∫ x

0

−(x− t)k+1

(k + 1)!
f (k+2)(t)dt

simplifying gives

f(x)− pk(x) =
xk+1

(k + 1)!
f (k+1)(0) +

∫ x

0

(x− t)k+1

(k + 1)!
f (k+2)(t)dt

so

f(x)− pk+1(x) =

∫ x

0

(x− t)k+1

(k + 1)!
f (k+2)(t)dt

as needed for the induction.

Lagrange gave a proof for an approximate form of the error which is easy to
remember since it looks rather a lot like the next term:

Corollary 11 If f is n+1 times continuously differentiable on an interval containing
both x and 0, then

f(x)− pn(x) =
f (n+1)(c)

(n + 1)!
xn+1

for some c between x and 0.

Proof:
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Since f (n+1)(t) is continuous on (0, x) it assumes both its maximum
and minimum, so there are values between ) and x with

f (n+1)(m) ≤ f (n+1)(t) ≤ f (n+1)(M).

Thus

f (n+1)(m)

∫ x

0

(x− t)n

n!
dt ≤

∫ x

0

(x−t)n f (n+1)(t)

n!
dt ≤ f (n+1)(M)

∫ x

0

(x− t)n

n!
dt

so that for some c between m and M (and thus between 0 and x) we get∫ x

0

(x− t)n f (n+1)(t)

n!
dt = f (n+1)(c)

∫ x

0

(x− t)n

n!
dt =

f (n+1)(c)

(n + 1)!
xn+1

by the Intermediate Value Theorem.

For cases where a general form for the derivatives of f can be found, Taylor’s
Theorem gives a means of getting a series representation.

Example: Series for the exponential

A series representation for f(x) = ex is easy to obtain since

f (n)(x) = ex

for all n, so all of the derivatives at 0 are 1. This gives

ex =
∞∑

n=0

1

n!
xn

Now for any x and any n Taylor’s theorem tells us that

ex − pn(x) =
ec

(n + 1)!
xn+1

for some c between x and 0. If we fix x and let n → ∞ this error term
always goes to 0. Thus the Taylor series for ex converges to ex for every
x. ♦
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Exercises: While this is the easiest example, several other functions also have
Taylor series which can be found by calculating derivatives and then showing that
the error term goes to 0. Try the following examples:

1. f(x) = sin(x) 2. f(x) = cos(x)

3. f(x) =
1

1− x
4. f(x) = ln(1− x)

5. f(x) = cosh(x)

3 Finding When Power Series Converge

We have seen how to get power series representations of functions using geometric
series and using Taylor’s theorem, both of which give ways to tell which x’s give
convergent series. Let us turn next to the problem of finding what values of x make
a series converge where we are given the coefficients, but we are not told what the
function being approximated is.

To start with let us note that if
∑

an and
∑

bn converge, then so do
∑

(an + bn)
and

∑
(an−bn) since their partial sums can be rearranged to be the sum and difference

of partial sums of an and bn.

3.1 Comparison and the Ratio Test

Our most basic tests for convergence are based on the comparison test:

Theorem 12 (Comparison Test) If 0 ≤ an ≤ bn for all n and
∑

bn converges,
then so does

∑
an.

Proof:

Since the terms an are non-negative, the sequence of partial sums

Sk =
k∑

n=0

ak

is monotone nondecreasing. To show that
∑

an converges we need only
give an upper bound for all of the partial sums. Now since an ≤ bn for all
n,

k∑
n=0

an ≤
k∑

n=0

bk ≤
∞∑

n=0

bn

18



Using the convergence of bounded monotone sequences, this tells us that∑
an converges, though it does not tell us what it converges to.

Corollary 13 If
∑
|an| converges then so does

∑
an.

Proof:

Observe that
0 ≤ an + |an| ≤ 2|an|.

First note that if
∑
|an| converges to S then

∑
2|an| will converge to 2S,

since each partial sum is doubled. The comparison theorem then tells us
that if

∑
2|an| converges then so will

∑
(an + |an|). Subtracting

∑
|an|

then tells us that
∑

an converges.

Definition 11 A series
∑

an is called absolutely convergent if
∑
|an| converges.

Since adding a finite sum to the beginning of a convergent series does not change
the convergence, though it might change the first M terms, all that matters for
determining convergence of a series is what happens in the tail, terms from aM on
for any given M . We’ll use this to provide the following comparison with geometric
series:

Theorem 14 (Ratio Test) Suppose that an > 0 for all n and

lim
n→∞

an+1

an

= L.

Then if L < 1 then
∑

an converges. If L > 1 then the series diverges; if L = 1 we
don’t know what happens.

Proof:

We will prove the case L < 1 by giving a comparison with a suitable
geometric series. Since L < 1 we can find an r with L < r < 1 and for
some M if n ≥ M then

an+1

an

< r.

We will show that the sequence
∞∑

n=M

an converges by comparison with the

geometric series
∞∑

n=0

aMrn. Certainly aM ≤ aMr0. For n ≥ M we have
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an+1 < ran so using an induction hypothesis we get an+1 < rn+1−MaM .
This completes the comparison, so

∑
an converges.

The proof for divergence if L > 1 gives a comparison the other way
with a divergent geometric series. For L = 0 there are examples of both
convergent and divergent series (p-series, which make their appearance
later in these notes).

Example:
∑ (n!)2

(2n)!
converges.

We look at

lim
n→∞

(
((n+1)!)2

(2n+2)!

)
(

(n!)2

(2n)!

) = lim
n→∞

(n + 1)!(n + 1)!(2n)!

n!n!(2n + 2)!

= lim
n→∞

(n + 1)2

(2n + 2)(2n + 1)

=
1

4

Since L = 1
4

< 1 this tells us that this series converges. ♦

Exercises: Try out the ratio test on the following series:

1.
∑ 4n

n!
2.

∑ n

2n

3.
∑ n300

1.001n
4.

∑ n2

n!

5.
∑ n4

4n
6.

∑ 4n

n3

7.
∑ n!

nn
Hint :

(
n + 1

n

)n

→ e

20



3.2 Radius of Convergence

We can apply the ratio test to get some information about where a power series
converges absolutely. Trying the ratio test on

∞∑
n=0

|anx
n|

leads us to look at

lim
n→∞

|an+1|
|an|

|x|

and ask for which x the limit is strictly less than 1. To this end we take lim
n→∞

|an+1

an

| = L

and ask that L|x| < 1, or equivalently, − 1
L

< x < 1
L
.

Definition 12 The number 1
L

is called the radius of convergence of the power series.

Inside its radius of convergence a power series is absolutely convergent and has a
little wiggle room before you get outside the radius of convergence.

It is possible for L = 0 in which case we will get convergence for all x. If the limit
gives +∞ then any x we use other than 0 will give a divergent series.

Example: All of the possibilities occur

1.
∑∞

n=0
xn

n!
converges for all x. We actually knew this already from

Taylor’s theorem, since this is the series for ex, but it is instructive
to see how the ratio test gives it:

lim
n→∞

(
1

(n+1)!

)
(

1
n!

) = lim
n→∞

1

n + 1
= 0

The ratio test then gives us convergence for all x.

2. Turning the previous example upside down gives
∞∑

n=0

n!xn. Here the

ratio of test gives an infinite limit, so only x = 0 works.

3.
∞∑

n=0

nxn

2n
gives a radius of convergence 1/L where

L = lim
n→∞

(n + 1)22n

n22n+1
=

1

2
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Thus the radius of convergence is 2.
♦

Exercises: Find the radius of convergence for the following power series:

1.
∑ 2nxn

n
2.

∑ nxn

n + 1

3.
∑ 4nxn

n!
4.

∑ nnxn

n!

3.3 Term by Term Integration and Differentiation

Inside the radius of convergence there are several operations we can do with power
series.

Algebraic operations on power series will give power series with (possibly different)
radii of convergence. There are fairly standard means for multiplying series (using
convolution), adding series (term by term), composing series, and dividing series. We
will not be using them in this course. We will, though, be using integration and
differentiation of power series. Both of the following theorems are rather deep as
they involve changing the order of two different limiting processes (like in Fubini’s
Theorem). The proofs are left to upper level courses in real analysis.

Theorem 15 (Term by term differentiation) If f(x) =∑∞
n=0 anx

n for |x| < r then

f ′(x) =
∞∑

n=1

nanx
n−1

for |x| < r.

Because of this theorem we note that if a function has a power series representation
then that power series is a Taylor series. Recovering the derivatives at 0 from a power
series proceeds just as the calculation for recovering the derivatives of a polynomial
at 0 from the coefficients did
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Theorem 16 (Term by term integration) If f(x) =
∑∞

n=0

anx
n for |x| < r then ∫ x

0

f(t) dt =
∞∑

n=0

an

n + 1
xn+1

for |x| < r.

The theorems tell us that the easy techniques for polynomial calculus carry over
to power series provided we stay inside the radius of convergence. We can apply these
directly to find series for a number of functions:

3.4 Series for 1
(1−x)n

If we start with one of our standard geometric series and differentiate we will get the
following series, all valid inside |x| < 1:

1

1− x
=

∞∑
n=0

xn

1

(1− x)2
=

d

dx

1

1− x
=

∞∑
n=1

nxn−1

2

(1− x)3
=

d2

dx2

1

1− x
=

∞∑
n=2

n(n− 1)xn−2

so
1

(1− x)3
=

∞∑
n=2

n(n− 1)

2 · 1
xn−2

6

(1− x)4
=

d3

dx3

1

1− x
=

∞∑
n=3

n(n− 1)(n− 2)xn−3

so
1

(1− x)4
=

∞∑
n=3

n(n− 1)(n− 2)

3 · 2 · 1
xn−3

1

(1− x)k
=

∞∑
n=k

(
n

k − 1

)
xn−k
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3.4.1 Series for arctan(x) and ln(x + 1)

Integration term by term of some standard geometric series also gives useful results,
valid for |x| < 1:

To get a series for arctan(x) we start with a geometric series

1

1 + x2
=

∞∑
n=0

(−1)nx2n

and then integrate

arctan(x) =

∫ x

0

1

1 + t2
dt =

∞∑
n=0

(−1)n

2n + 1
x2n+1

To get a series for ln(1 + x) we start with

1

1 + x
=

∞∑
n=0

(−1)nxn

and then integrate

ln(1 + x) =

∫ x

0

1

1 + t
dt =

∞∑
n=0

(−1)n

n + 1
xn+1

Exercises: Try using integration or differentiation term by term to obtain series
representations for the following functions, specifying where your results are valid:

1. g(x) =
x

(1 + x2)2
using

x

1 + x2
2. tanh−1(x) =

∫ x

0

1

(1− t2)
dt using

1

1− t2

3.4.2 Series from Differential Equations

Term by term differentiation can also be useful for finding a series for the solution to a
differential equation. We use the differential equation to provide a recurrence telling
us how to get later coefficients from earlier ones. Initial conditions tell us how to get
started. Since this technique generates the series without having the hypothesis that
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we are operating inside the radius of convergence, we need to check what that radius
is when we get finished to be sure what we’ve done makes sense.

Example: Find a series for the function which is a solution to the differ-
ential equation

y′ = xy with y(0) = 1

We start by assuming that y has an expansion as a power series and then
set about to find out what the coefficients are:

y =
∞∑

n=0

anx
n so a0 = y(0) = 1

Now y′ = xy so the series

∞∑
n=1

nanx
n−1 =

∞∑
n=0

anx
n+1

If we re-index the sums so that both use the power of x as index we get

∞∑
m=0

(m + 1)am+1x
m =

∞∑
m=1

am−1x
m

From which we may conclude that a1 = 0 since there is no constant term
in the right hand sum, and for m ≥ 1 we have

am+1 =
am−1

m + 1

Using this we see that all odd coefficients are 0 and

a2n =
1

2 · 4 · 6 · · · 2n
=

1

2nn!

Applying the ratio test to this power series we see that it converges if

lim
n→∞

1

2n
|x2| = 0 < 1

so the series always converges.
♦
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Example: A series for sin(x)

The sine function is the solution to the second order differential equa-
tion

y′′ = −y with y(0) = 0 and y′(0) = 1

If we guess that there is a series

y(x) =
∞∑

n=0

anx
n

then the initial conditions tell us that

a0 = y(0) = 0 and a1 = y′(0) = 1.

The differential equation tells us that

d2

dx2

∞∑
n=0

anx
n =

∞∑
n=0

anx
n

∞∑
n=2

n(n− 1)anx
n−2 = −

∞∑
n=0

anx
n

re-indexing gives
∞∑

n=0

(n + 2)(n + 1)an+2x
n = −

∞∑
n=0

anx
n

so

an+2 = − an

(n + 2)(n + 1)

Using this we get the series

sin(x) = 0 + x− 0x2 − 1

3!
x3 + 0 +

1

5!
x5 · · ·+ (−1)n

(2n + 1)!
x2n+1 · · ·

Again checking the radius of convergence we see that this converges
everywhere. ♦

Exercises: Here again, you should try this technique for generating some important
series:
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1. The function y = (1 + x)p satisfies the differential equation

(1 + x)y′ = py with the initial condition y(0) = 1

for all p for which we can make sense of the power. Use this to generate a
series expansion for (1 + x)p. This is the Binomial Series originally found by
Newton.)

2. The hyperbolic sine y = sinh(x) satisfies the second order differential equation

y′′ = y with initial conditions y(0) = 0 and y′(0) = 1

Use this to find a series for sinh(x). Compare your answer to the series for
sin(x).

3. The hyperbolic cosine y = cosh(x) satisfies the second order differential equation

y′′ = y with initial conditions y(0) = 1 and y′(0) = 0

Use this to find a series for cosh(x). Compare your answer to the series for
cos(x).

4 What about endpoints?

We obtained the radius of convergence using a comparison with a geometric series.
Such a test will not tell us what happens at the endpoints, so we need tests which
tell us when some non-geometric series converge.

4.1 Integral test and p-series

One good way to get an upper bound for the partial sums of a series is with an
integral:

Theorem 17 (Integral Test) If an = f(n) for every n ∈ N and if f is a positive,
decreasing function, then

∑
an converges if and only if

∫∞
0

f(x) dx converges.

Proof:
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By constructing step functions based on the series we can see that

k∑
n=1

an <

∫ k

0

f(x) dx <

k−1∑
n=0

ak

Now if
∫∞

0
f(x) dx converges then we get

k∑
n=0

an < a0 +

∫ ∞

0

f(x) dx

giving a bound on the partial sums. Thus
∑

an converges.

If, on the other hand,
∫∞

0
f(x) dx diverges then the numbers

∫ k

0
f(x) dx

get arbitrarily large, and thus so do the partial sums. This tells us that
the series also diverges.

Corollary 18 (p-series) The series

∞∑
n=1

1

np

converges if and only if p > 1.

Proof:

The integral ∫ ∞

1

1

xp
dx = lim

U→∞

U−p+1

−p + 1
− 1

1− p
.

For p > 1 this converges to 1
p−1

. For p < 1 it diverges. If p = 1 then the

integral gives a natural logarithm ln(U) which diverges as U →∞.

Example: Use of the p-series test

1.
∑

1
n2 converges

2.
∑

1√
n

diverges
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3.
∑

1
n

diverges. This is called the harmonic series.

♦

Usually we use the limit comparison theorem with p-series when checking end-
points of intervals of convergence:

Theorem 19 (Limit Comparison Theorem) If 0 < an and 0 < bn and

lim
n→∞

an

bn

= L

then if 0 < L < ∞ then either both of
∑

an and
∑

bn converge or both diverge. If
L = 0 and

∑
bn converges, then so does

∑
an.

Proof:

Suppose that L < ∞ and
∑

bn converges. Then for large enough n we
know that

an

bn
< L + 1

thus an < (L + 1)bn. Now if
∑

bn converges then so does
∑

(L + 1)bn so
the comparison theorem will tell us that

∑
an converges.

If L > 0 we can invert to see that

lim
n→∞

bm

an

→ 1

L
< ∞

so if
∑

an converges, so does
∑

bn.

Example: Use of comparisons

1.
∑ n− 1

n3 + n2 − n
converges by limit comparison with

∑ 1

n2
. Here

lim
n→∞

(
n−1

n3+n2−n

)(
1
n2

) = lim
n→∞

n3 − n2

n3 + n2 − n
= 1

2.
∑ n− 1

n2 − n
diverges by limit comparison with

∑ 1

n
. Here

lim
n→∞

(
n−1
n2−n

)(
1
n

) = lim
n→∞

n2 − n

n2 − n
= 1
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♦

Exercises: Here are some for you to try:

1.
∑ n√

n3 − n
2.

∑ n2

n3 − n

3.
∑ √

n

n3 − n
4.

∑ √
n√

n3 − n

4.
∑ 3n

n3 − n2

4.2 Alternating series and good approximations

While the several tests we have given so far for convergence give us useful information,
they do not, in general, tell us what our error is if we truncate the series. The
alternating series test is particularly nice because it does give us an error estimate:

Theorem 20 (Alternating Series Test) Suppose an is a monotone decreasing se-
quence which converges to 0, then

S =
∞∑

n=0

(−1)nan

converges and has |Sk − S| < ak+1.

Proof:

The partial sums of an alternating series whose terms monotonically
go to 0 form a Cauchy sequence. To see this we note that the even partial
sums form a decreasing sequence since

S2n − S2n+2 = a2n+1 − a2n+2 > 0

and the odd partial sums form an increasing sequence since

S2n+1 − S2n+3 = −a2n+2 + a2n+3 < 0.
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Furthermore, each even partial sum is larger than the odd partial sums
right before it and right after it. Thus the partial sum Sm with m > n lies
between Sn and Sn−1. If both m and k are larger than n then |Sm−Sk| ≤
an. Since an → 0 this tells us Sn is a Cauchy sequence and thus converges,
say to S. Since all of the Sm are in the closed interval bounded by Sn and
Sn−1 we must have S in that interval as well. Since the limit is between
the k + 1st and kth partial sums, either endpoint will give an error less
than ak+1.

Example: Alternating series

1.
∞∑

n=0

(−1)n

n
converges since it is an alternating series and 1

n
→ 0

is monotone decreasing. To get the sum to within .001 will take 999
terms! This is called the alternating harmonic series.

2.
∑

(−1)nn diverges, even though it is an alternating series because

n does not go to 0.

3.
∑ (−1)n

√
n

converges by the alternating series test.

4. To use the series for sin(x) to get sin(1) to within ±.0001 we need
only take enough terms in the series

1− 1

3!
+

1

5!
+ · · · (−1)n 1

(2n + 1)!
· · ·

so that the first term omitted is less than .0001. If we take 2 terms
we get to within 1

7!
≈ 1.98 × 10−3 which is not quite good enough.

Three terms will give an error less than 1
9!
≈ 2.76×10−6. So sin(1) ≈

1− 1
120

+ 1
7!
≈ .991865.

♦

Exercises: Find the interval of convergence for the following power series. First
find the radius of convergence using the ratio test, then use limit comparison with a
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p-series or the alternating series test to see what happens at the endpoints.

1.
∞∑

n=0

nxn

n + 2
2.

∞∑
n=0

√
nxn

2n

3.
∞∑

n=0

xn

n + 2
4.

∞∑
n=0

nxn

n3 + 2

5.
∞∑

n=0

(−1)nxn

10n
6.

∞∑
n=0

n!xn

nn

4.3 Conditional Convergence and Its Pathologies

Definition 13 A series is said to be conditionally convergent if
∑

an converges but∑
|an| does not converge.

The alternating harmonic series
∑ (−1)n

n
is an example of this kind of behavior.

Conditionally convergent series will have a a subsequence of positive terms and a
subsequence of negative terms which both give series which diverge. The individual
terms an → 0 since otherwise the series would be divergent. These can be used to
produce a rearrangement of the series which converges to any value we wish. To
make the limit L what you do is take positive terms until the first time that the sum
exceeds L, then take negative terms until you first get a sum which is less than L.
Each time you step across L you will be taking smaller steps so the resulting series
will converge to L.

A similar argument will show that you can rearrange a conditionally convergent
series to diverge as well.

Since the rearrangement of series is an infinite analog of the commutative law,
we must consider this behavior pathological. Fortunately, inside the radius of con-
vergence of a power series we get absolute convergence, which does not share this
behavior.

Exercises:

1. Under what conditions on p is
∑

(−1)n/(np) conditionally convergent?

32



2. Convergence of conditionally convergent series can be extraordinarily slow: com-
pare the number of terms needed to approximate

∞∑
n=1

(−1)n

n2
and

∞∑
n=1

(−1)n

√
n

to within ±5× 10−5 (i.e. to get four correct decimal places).

3. Prove that the terms of a conditionally convergent series can be rearranged to
give a series whose partial sums go to ∞.

4. Prove that the terms of a conditionally convergent series can be rearranged to
give a series whose partial sums oscillate wildly.
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