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Determination of particle size distributions from acoustic wave
propagation measurements

Peter D. M. Spelt, Michael A. Norato, Ashok S. Sangani, and Lawrence L. Tavlarides
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse,
New York 13244

~Received 4 August 1998; accepted 20 January 1999!

The wave equations for the interior and exterior of the particles are ensemble averaged and
combined with an analysis by Allegra and Hawley@J. Acoust. Soc. Am.51, 1545~1972!# for the
interaction of a single particle with the incident wave to determine the phase speed and attenuation
of sound waves propagating through dilute slurries. The theory is shown to compare very well with
the measured attenuation. The inverse problem, i.e., the problem of determining the particle size
distribution given the attenuation as a function of frequency, is examined using regularization
techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids,
the success of solving the inverse problem is limited since it depends strongly on the nature of
particles and the frequency range used in inverse calculations. ©1999 American Institute of
Physics.@S1070-6631~99!01405-1#

I. INTRODUCTION

Determining the particle size distribution of a solid–
liquid mixture is of great practical interest. It has been sug-
gested in the literature that this distribution may be deter-
mined by measuring the attenuation of a sound wave
propagating through the mixture as a function of the fre-
quency of the wave. The main premise is that the attenuation
caused by a particle as a function of frequency depends on its
size and therefore the attenuation measurements can be in-
verted to determine the particle size distribution—at least
when the total volume fraction of the solids is small enough
so that the particle interactions and detailed microstructure of
the slurry play an insignificant role in determining the acous-
tic response of the slurry. Indeed, this general principle has
been exploited successfully to determine the size distribution
of bubbles in bubbly liquids.1–3 Commercial ‘‘particle siz-
ers’’ based on acoustic response are in the process of being
developed/marketed for characterizing solid–liquid mix-
tures.4 The main objective of this paper is to investigate un-
der what circumstances such a problem can be solved for
solid–liquid systems. It will be shown that the success of the
acoustic method for determining detailed particle size distri-
butions is limited, depending on the nature of the particles
and the frequency range over which input data~attenuation!
are available.

The problem of determining the acoustic response of a
slurry given its particle size distribution is referred to as the
forward problem. When the total volume fraction of the par-
ticles is small, the problem is relatively simple since then one
only needs to understand the interaction between a single
particle and the incident sound wave. This has been exam-
ined by a number of investigators in the past with notable
contributions from Allegra and Hawley5 and Epstein and
Carhart6 who considered suspensions of particles as well as
drops. The former investigators also reported experimental

results verifying the theory for relatively small particles for
which the acoustic wavelength is large compared with the
particle radius. The theory developed by these investigators
is quite general and accounts for attenuation by thermal, vis-
cous, and scattering effects as described in more detail in
Secs. II and III. The case of monodisperse nondilute suspen-
sions has been examined by Varadanet al.7 who used an
effective medium approximation to account for particle in-
teractions, but their analysis was concerned only with the
attenuation due to scattering. In Sec. II we present the theory
for the forward problem with the main aim of reviewing the
important physical effects causing the attenuation. The deri-
vation for the attenuation proceeds along different lines than
that followed by Epstein and Carhart or Allegra and Hawley
in the way the one particle analysis is used to predict the
attenuation of the suspension. These investigators calculated
the energy dissipation per one wavelength to estimate the
attenuation while we use the method of ensemble averages to
determine both the phase speed and attenuation of waves.
The method of ensemble averages will be more convenient
for developing a suitable expression for attenuation in non-
dilute suspensions, if desired, using either an appropriate
effective-medium approximation or direct numerical simula-
tions.

In Sec. III we present new experimental data for nearly
monodisperse polystyrene particles whose radii are compa-
rable to the wavelength and validate the theory described in
Sec. II over a nondimensional frequency range much broader
than examined by previous investigators. We also summarize
in that section the different physical mechanisms that cause
attenuation in suspensions. The attenuation as a function of
frequency is shown to undergo several peaks owing to the
resonances in shape oscillations in agreement with the theory
prediction. It also gives some indication of the range of fre-
quency and attenuation measurable with our acoustic device.

In Sec. IV we consider the inverse problem, i.e., the

PHYSICS OF FLUIDS VOLUME 11, NUMBER 5 MAY 1999

10651070-6631/99/11(5)/1065/16/$15.00 © 1999 American Institute of Physics

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



problem of determining the particle size distribution given
the total attenuation as a function of frequency and the physi-
cal properties of the particles and the suspending liquid. At
small particle volume fractions, this amounts to solving a
linear integral equation for the unknown size distribution.
This is an ill-posed problem: small changes/errors in the at-
tenuation data can cause large changes in the size distribu-
tion. Thus, for example, several very different particle distri-
butions could give rise to essentially the same attenuation-
frequency curve. This, of course, is a rather well-known
difficulty in most inverse problems which involve solving a
Fredholm integral equation of the first kind with a smooth
kernel. Techniques have been developed to ‘‘regularize’’ the
problem. We use the well-known Tikhonov regularization
techniques,8 which replaces the ill-posed original problem
with another well-posed problem involving an integro-
differential equation whose solution minimizes the fluctua-
tions in the particle size distribution. Minimizing of the fluc-
tuations is rationalized on the grounds that in most practical
situations the particle size distribution is smooth. This regu-
larization technique has been shown to work very well for
the inverse problem in bubbly liquids.2

We apply the above technique to suspensions of polysty-
rene and glass particles. We find that the technique works
well for the polystyrene particles but not for all glass par-
ticles. We also find that for polystyrene particles the tech-
nique works only when the attenuation is given over an ap-
propriate frequency range—a frequency range that is too
narrow or too broad may give erroneous estimates of the
distribution. An alternative inverse technique based on linear
programing also failed to produce the correct particle size
distribution for the cases for which the Tikhonov scheme
failed. This suggests that the prospects for determining the
detailed particle size distribution from acoustic measure-
ments are somewhat limited.~In situations where more might
be known about the nature of particle size distribution, e.g.,
unimodal with a Gaussian or log-normal distribution, one
might be able to determine the size distribution through ap-
propriate curve fitting as has been done, for example, by
McClements and Coupland,9 but this is not addressed here.!

The reasons why the size distributions for some particle
suspensions are not recovered by the inverse techniques
while the same techniques were found to be quite successful
for bubble suspensions can be given in terms of differing
resonance nature of these suspensions. In the case of bubbles
in most typical applications, the resonance occurs at frequen-
cies for which the wavelength is relatively large compared
with the bubble radius. This resonance is due to volume os-
cillations; the shape-dependent resonances are unimportant
and, as a consequence, there is effectively one resonance
frequency for each bubble size. Thus, the peaks in the
attenuation-frequency curve give a reasonable indication of
the bubble sizes. The situation with the particles is different
as their resonance behavior is governed by shape oscilla-
tions. For polystyrene particles, several resonance peaks cor-
responding to different shape oscillations arise even for
monodisperse particles, and, as a result, it is difficult to de-
termine whether a given resonance peak arises from a differ-
ent shape oscillation mode of the same particle or from a

particle of different size. For glass particles, on the other
hand, there are no significant resonance peaks even for
monodisperse particles, and the attenuation behavior for dif-
ferent sizes is not significantly different to allow accurate
results for the size distribution.

II. THE FORWARD PROBLEM

The wave equations for both the interior and exterior of
particles have been derived by Epstein and Carhart.6 They
were interested in the attenuation of sound waves in fog and
therefore their analysis was concerned with drops instead of
particles. The stress tensor for a viscous fluid used by them
for the interior of the drops was subsequently replaced by
Allegra and Hawley5 by that of an elastic solid to determine
the attenuation of sound waves in a solid–liquid suspension.
In this section we shall ensemble average a resulting wave
equation to obtain the effective wave number of the suspen-
sion at arbitrary volume fraction, the real and imaginary
parts of which give the wave speed and attenuation. Thus,
the attenuation is not calculated by means of an energy dis-
sipation argument,5,6 but directly from averaging the relevant
wave equation. The result contains certain coefficients that
remain to be evaluated for a given microstructure. In the
present study, since we are primarily concerned with deter-
mining the size distribution, we shall evaluate the coeffi-
cients in the limit of small volume fractions. In a separate
study, where we shall present experimental results for non-
dilute suspensions, we shall extend the theory to treat nondi-
lute suspensions.

A. Theory

Epstein and Carhart6 first linearized the conservation
equations for mass, momentum, and energy. The pressure
and internal energy were then eliminated by introducing
the linearized equations of state to yield equations in terms
of density, velocity, and temperature. Next, the time depen-
dence of all quantities were expressed by the factor
exp(2ivt)—which is henceforth suppressed—and the veloc-
ity was expressed as

v52¹F1¹3A,

with ¹•A50. With this form ofv it is possible to eliminate
the temperature and density from the governing equations to
yield a fourth-order partial differential equation forF and a
second-order equation inA. The former, in turn, can be split
into two second-order wave equations upon a substitution
F5fc1fT to finally yield three wave equations:

~¹21kc
2!fc50, ~1!

~¹21kT
2!fT50, ~2!

~¹21ks
2!A50. ~3!

The wave numbers in the above equations are given by

1

kc
2 5

c2

2v2 @12i~e1g f !1~„12i~e1g f !…2

14 f ~i1ge!!1/2#, ~4!
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1

kT
2 5

c2

2v2 @12i~e1g f !2~„12i~e1g f !…2

14 f ~i1ge!!1/2#, ~5!

ks5~11i !~vr/2m!1/2, ~6!

with

e[~4m/31k!v/~rc2!; f [sv/c2. ~7!

Here,c is the phase speed in pure liquid,r is the density,k
andm are, respectively, the compressional and dynamic vis-
cosity, g5Cp /Cv is the ratio of specific heats at constant
pressure and volume,t is the thermal conductivity, and
s5t/rCp is the thermal diffusivity.

Inside the particles similar equations hold with the dy-
namic viscosity replaced bym̃/(2iv) and the wave speed
by „(l̃12m̃/3)/r̃…1/2, wherem̃ andl̃ are the Lame´ constants,
while the compressional viscosity is left out. Henceforth a
tilde refers to the interior of particles.

At small values ofe and f ~such as in water!, the above
expressions forkc andkT simplify to

kc5v/c1
i

2
@~4m/31k!/r1~g21!s#v2/c3,

~8!
kT5~11i !~v/2s!1/2.

Equation~1! and its counterpart inside the particles de-
scribe the sound wave propagation through the suspension.
Note that the wave number has an imaginary part; sound
waves in pure fluid are attenuated by viscous and thermal
energy dissipation;10 the term inside the square brackets in
~8! is commonly referred to as the ‘‘diffusivity of sound.’’
The total attenuation coefficient in both liquid and in the
solid particle will henceforth be treated as additional physi-
cal properties. The other two wave equations describe waves
that arise from thermal conduction and finite viscosity: we
note that the modulus ofkT in Eq. ~8! is inversely propor-
tional to the thermal penetration depthAs/v and that ofks

to the viscous penetration depthAm/rv. The thermal (fT)
and shear~A! waves have generally very high attenuation
and are unimportant in acoustic applications.

We now proceed to ensemble average the wave equation
~1! to find an expression for the effective wave number of a
wave propagating through a solid–liquid suspension. Intro-
ducing an indicator functiong, defined to be unity inside the
particles and 0 outside, the ensemble-averaged value offc is

^fc&5^gf̃c1~12g!fc&.

To obtain a wave equation for^fc& we first take the gradient
of the above equation to yield

¹^fc&5^g¹f̃c1~12g!¹fc&1^~¹g!~f̃c2fc!&. ~9!

As argued by Sangani,11 upon assuming that the particles’
spatial distribution is homogeneous on a macroscale, the last
term in ~9!, being a vector, can only depend on quantities
such as¹^fc& and ¹¹2^fc&. Anticipating that^fc& will

satisfy a wave equation we express the last term on the right-
hand side of the above equation in terms of¹^fc&, i.e., we
write

^~¹g!~f̃c2fc!&5l1¹^fc&,

where l1 depends on the parameters such as the volume
fraction,kc , and k̃c . The divergence of~9! is given by

¹2^fc&5^g¹2f̃c1~12g!¹2fc&1^~¹g!

•~¹f̃c2¹fc!&1l1¹2^fc&

52kc
2^fc&2~ k̃c

22kc
2!^gf̃c&1^~¹g!

•~¹f̃c2¹fc!&1l1¹2^fc&. ~10!

Writing

^~¹g!•~¹f̃c2¹fc!&5l2k̃c
2^fc&, ^gf̃c&5l3^fc&,

we find that^fc& satisfies a wave equation

~¹21keff
2 !^fc&50 ~11!

with the effective wave number given by

keff
2 5

kc
21l3~ k̃c

22kc
2!2l2k̃c

2

12l1
. ~12!

The real part of the effective wave number is the frequency
divided by the phase speed in the mixture and the imaginary
part the attenuation.

Up to this point the analysis is rigorous and without any
assumption. Applying the boundary conditions of continuity
of temperature, flux, velocity, and traction at the surface of
the particles, and solving the resulting boundary value prob-
lem numerically, it is possible, in principle, to determine the
phase speed and attenuation at arbitrary volume fraction us-
ing the above formulation. Special simplifications can be
made when the wavelength is large compared with the par-
ticles and when the viscous and thermal depths are small
compared with the particle radius for which numerical com-
putations using the multipole expansions developed in recent
years~see, e.g., Ref. 12! can be readily used for determining
the attenuation at arbitrary volume fractions. Alternatively,
one may use a suitable effective-medium approximation to
account for the particle interactions in nondilute suspensions
using the above framework. We shall pursue this further in a
separate study13 devoted to nondilute suspensions where we
shall also present experimental data. Since our interest in the
present study is in determining size distributions, it is neces-
sary to consider only the simplest case of dilute suspensions.

In dilute suspensions the particle interactions can be ne-
glected, and the coefficientsl1 – 3 can be evaluated from the
solution for fc for a single particle given by Allegra and
Hawley.5 Accordingly, the conditionally averaged
^fc&(xux1) given a particle centered atx1 is given by

^fc&~xux1!5exp~ikc•x!1exp~ikc•x1!

3 (
n50

`

in~2n11!Anhn~kcr !Pn~m!, ~13!
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where r 5ux2x1u, m5cosu, u being the angle betweenx
2x1 andkc , hn is the spherical Bessel function of the third
kind ~corresponding to an outgoing scattered wave!, andPn

is the Legendre polynomial of degreen. The first term on the
right-hand side of the above expression is the uncondition-
ally averaged̂ fc&(x) whose amplitude is taken to be unity
with no loss of generality.

Inside the particle centered atx1 we have

^f̃c&5~xux1!5exp~ikc•x1! (
n50

`

in~2n11!

3Ãnj n~ k̃cr !Pn~m!, ~14!

where j n is the spherical Bessel function of the first kind.
Similar expressions are written for the conditionally aver-
agedfT andA. This results in expressions with a set of six
unknowns for each moden. Application of the aforemen-
tioned boundary conditions of continuity of velocity, trac-
tion, temperature, and heat flux yield six equations in these
six unknowns for eachn. There were some typographical
errors in the equations given by Epstein and Carhart6 and
Allegra and Hawley;5 the correct equations are given in the
Appendix. Although it is possible to solve for the unknowns
analytically in certain limiting cases, it is best to solve them
numerically since we are interested in covering a wide fre-
quency range for inverse calculations.

We now return to the calculations of the coefficients
l1 – 3. Upon using the identity

¹g52nd~x2xi !,

with xi being a point on solid–liquid interface andn the unit
normal vector at the point,l1 is given by

l1¹^fc&~x!52E
ux2x1u5a

n@^f̃c&~xux1!2^fc&~xux1!#

3P~x1!dA1 . ~15!

Here,P(x1) is the probability density for finding a particle in
the vicinity of x1 . Similarly, we have forl2 andl3

l2k̃c
2^fc&~x!52E

ux2x1u5a
n•¹@^f̃c&~xux1!

2^fc&~xux1!#P~x1!dA1 , ~16!

and

l3^fc&~x!5E g~x!^f̃c&~xux1!P~x1!dV1 . ~17!

The above integrals must be evaluated while keeping in mind
that the integration variable isx1 . Thus, for example, in~15!
and ~16! we must consider all particles whose surfaces pass
through the pointx. To carry out these integrals we use the
identity

eikc•x15eikc•xe2irkcm

5eikc•x (
m50

`

im~21!m~2m11! j m~kcr !Pm~m! ~18!

and the orthogonality of the Legendre polynomials over
spherical surfaces. The resulting expressions are

l15
3f

z (
n50

`

@~n11! j n11~z!2n jn21~z!#

3@Ãnj n~ z̃!2 j n~z!2Anhn~z!#, ~19!

l252
3f

z̃
(
n50

`

~2n11! j n~z!

3F Ãnj n8~ z̃!2
z

z̃
j n8~z!2An

z

z̃
hn8~z!G , ~20!

l35
3f

2zz̃
Ã0S sin~ z̃2z!

z̃2z
2

sin~ z̃1z!

z̃1z
D 1

3f

z22 z̃2 (
n51

`

~2n11!

3Ãn@ z̃j n21~ z̃! j n~z!2z jn~ z̃! j n21~ z̃!#, ~21!

where in the expression forl1 the j n21-term in then50
contribution is to be left out. Here,f is the volume fraction
of the solids,z[kca and z̃[ k̃ca are the nondimensional
wavenumbers, and primes denote derivatives. Expressions
~19!–~21!, together with the expression for the effective
wave number~12!, complete the description of a solid–liquid
mixture at low volume fractions.

In the above we have derived expressions for the attenu-
ation and wave speed by calculating the effective wave num-
ber directly. An alternative derivation of the attenuation co-
efficient is to calculate the energy dissipation per wavelength
in the mixture and divide the result by the energy per wave-
length. The result for the attenuation per unit length is then5,6

a52
3f

2z2a (
n50

`

~2n11!ReAn . ~22!

It can be shown that the two methods give essentially the
same result for the attenuation in the limitf→0 with
z22 ReAn in the above replaced by Re(An /z)/Re(z) in the
ensemble-averaging method presented here.

The above analysis may be extended to account for the
effect of finite volume fraction through a suitable effective-
medium approximation. Sangani11 showed that the first cor-
rection of O(f3/2) to the dilute O(f) approximation for
bubbly liquids can be simply derived through an effective-
medium approximation. This correction is most significant
near the resonance frequency of bubbles, and to correctly
capture the behavior near resonance it is important to replace
the pure liquid wave number~kc in the above analysis! by
the effective wave number. Thus, in the present context,
z[kca in ~19!–~21! for l1 – 3, is replaced byzeff[keff a,
while the wave number in pure liquid in the expression for
keff , ~12!, has to be retained. The latter expression is then
iterated to obtain a converged solution forkeff . The
effective-medium approximations have been found to be
quite useful in the related study of light scattering by suspen-
sions~see, e.g., Ref. 14!. For very high volume fractions the
other physical properties of the so-called effective medium
must also be modified. In a separate study,13 where we shall

1068 Phys. Fluids, Vol. 11, No. 5, May 1999 Spelt et al.

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



report experimental data for dense slurries, we shall examine
several different versions of effective-medium approxima-
tions in more detail.

Finally, the above analysis can be extended in a straight-
forward manner to account for the particle size distribution
when the total volume fraction of the particles is small. Let
us write the attenuation by particles of radius betweena and
a1da as an attenuation densityâ( f ,a) @wheref is the fre-
quency of the wave,f 5v/(2p)# times the volume fraction
of those particlesf(a)da; we shall refer tof(a) as the
volume fraction distribution. At low volume fractions these
contributions can be ‘‘summed’’ over all particle sizes to
give for the total attenuationa tot(f ):

a tot~ f !5E
a50

`

â~ f ,a!f~a!da. ~23!

It is customary to express the particle size distribution in
terms of its number density distributionP(a). The volume
fraction distribution is related to P(a) by f(a)
5(4pa3/3)P(a).

The effective-medium approach described earlier can
also be readily extended to account for the particle size dis-
tribution. The coefficientsl1 – 3 are first determined as func-
tions ofa for an assumed value of the effective wave number
and these are integrated after multiplying byf(a)da to yield
estimates for the average values ofl1 – 3 for the suspension.
These are substituted in~12! to determinekeff . If this esti-
mate of keff is different from the the assumed value, then
l1 – 3 are estimated for the new value ofkeff , and the process
is repeated until the assumed and estimated values of the
effective wave numbers agree with each other.

III. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

Figures 1 and 2 show the predictions for the attenuation
and wave speed as a function of frequencyf for 79mm radius
polystyrene particles at a volume fraction of 0.05. The fre-
quency f in Hz is related tov by v52p f . The physical
properties used in the computations are given in Table I.15

We note that the wave speed only changes if the frequency
becomes very large and that these changes coincide with
strong changes in the attenuation as well. Hence we expect
that the measurement of the phase speed will not provide
significantly new information over that obtained from the
attenuation measurements alone as far as the problem of de-
termining the size distribution is concerned. On the other
hand, since the phase speed at low frequencies is nearly in-
dependent of the frequency orkca, it might be possible to
use the low frequency speed data to determine the total vol-
ume fraction of the particles regardless of its size distribu-
tion. We shall focus in the present study on the results for
attenuation as they are the most sensitive to the particle size
distribution.

The attenuation of sound waves in a suspension is dif-
ferent from that in pure liquid because of four effects. First,
the attenuation of sound in pure solid is different from that in
pure liquid, and hence simply the presence of the particles
changes the attenuation from that of pure liquid. Second,

changes in temperature are different in a solid than in a liq-
uid, and this causes a heat flux through the surface of the
particles. This heat flux is out of phase with the sound wave
passage and this leads to attenuation referred to as the ther-
mal attenuation. Third is the viscous energy dissipation
caused due to the motion of the boundary of the suspended
particles. Finally, the fourth effect is the attenuation due to
scattering.

Allegra and Hawley5 showed that when the particle size
is much smaller than the wavelength and much greater than
the thermal and viscous penetration depths (s/v)1/2 and

FIG. 1. Example of the dependence of attenuation on frequencyf for a
mixture of monodispersed polystyrene particles in water. Dashed lines are
asymptotic slopes of the attenuation for small and large frequencies.

FIG. 2. Example of the dependence of wave speed on frequencyf for a
mixture of monodispersed polystyrene particles in water.
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(n/v)1/2, the resulting viscous and thermal attenuations in-
crease asf 1/2. On the other hand, when the penetration
depths are much greater than the particles, both attenuation
contributions increase asf 2. This transition occurs at very
low frequencies—about 2 Hz for 100m radius particles in
water—and will not be considered here. Attenuation due to
scattering becomes important when the nondimensional
wave numberz5kca becomes comparable to unity. For
small but finitez the scattering losses increase asf 4. Thus,
one expects that the change in the attenuation behavior from
f 1/2 at low frequencies tof 4 at high frequencies will provide
an important indication of the particle size. These asymptotic
ranges are indicated in Fig. 1. We see that the transition to
the f 4 behavior does not fully occur for the particles consid-
ered here. As the frequency is increased particles undergo
several resonances as described in more detail below, and
this is responsible for the several peaks seen in Fig. 1.

Figure 3 shows the contributions to the total attenuation
from eachPn mode. Then50 mode corresponds to radial
~volume! oscillations of the particles,n51 to the transla-
tional oscillations,n52 to the ellipsoidalP2-shape deforma-

tion oscillations, and so on. The density of polystyrene par-
ticles is essentially the same as that of water, hence the
particles’ translational oscillations are very small. As a con-
sequence, the viscous attenuation is small and the small fre-
quency behavior is governed by the thermal attenuation of
then50 mode. At higher frequencies then50 mode begins
to increase first asf 4 due to scattering losses but the contri-
bution from then52 mode soon becomes important as it
undergoes a resonance at about 3 MHz frequency. The
n53 andn51 modes undergo resonances next, and so on.
We see that then50 mode undergoes a broad maximum
around 9 MHz. Although not shown here, it too undergoes a
resonance with a sharp downward peak at about 21 MHz.
Thus, we see that the attenuation varies with frequency in a
rather complicated manner at high frequencies owing to vari-
ous resonances. We should note here that the behavior of this
kind for polystyrene particles has also been reported by other
investigators in the past. For example, Anson and Chivers16

and Ma, Varadan, and Varadan,14 who restricted their analy-
sis to scattering losses only, found essentially the same be-
havior, and in earlier investigations17,18 mainly focusing on
the determination of waves reflected by immersed objects,
high-amplitude reflected waves were found at certain reso-
nance frequencies.

Figure 4 shows attenuation as a function of nondimen-
sional wave numberkca for particles of radii 50 and 79
microns. We see that the curves for these two radii are es-
sentially the same, indicating that, at least for polystyrene
particles, the thermal or viscous effects have negligible in-
fluence on the resonance frequency. The first resonance cor-
responding ton52 appears atkca.1.4.

Allegra and Hawley5 tested~22! extensively against their
experiments and found very good agreement. However, their
particles were always smaller than 1mm radius, so that the
wavelength was always much greater than the particle size.
No resonance behavior was observed in their experiments.
Although the above-mentioned paper by Ma, Varadan, and
Varadan14 presents experimental data on light scattering in
the small-wavelength regime, no data on attenuation of
sound waves by particles were presented. To test how well
the theory works for larger particle sizes, we carried out an
experiment that will be described in detail~along with more
experiments on concentrated slurries! elsewhere.13 In this ex-
periment the attenuation of sound waves was measured in a
frequency range of 1–10 MHz in a solid–liquid mixture of

TABLE I. The values of the physical properties that are used in this paper. The properties of water and
polystyrene were taken from Ref. 6; the properties of glass from various sources, most notably Ref. 15.

Polystyrene Glass Water

density~g/cm3! 1.055 2.3 1.0
thermal conductivity (J/K•cm•sec) 1.1531023 9.631023 5.8731023

specific heat (J/g•K) 1.19 0.836 4.19
thermal expansion coefficient~1/K! 2.0431024 3.231026 2.0431024

attenuation coefficient per freq2 ~sec2/cm! 10215 10215 2.5310216

sound speed~cm/sec! 2.33105 5.23105 1.483105

shear viscosity (g/cm•sec2) ¯ ¯ 1.0131022

shear rigidity (g/cm•sec2) 1.2731010 2.831011
¯

FIG. 3. Contributions from the first five modesn in ~19!–~21! to the total
attenuation@the imaginary part ofkeff , which is given by~12!#. Polystyrene
particles in water.
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polystyrene particles with 7963m mean radius and 1.8m
standard deviation at 0.05 volume fraction. Monochromatic
tonebursts, at incremental frequencies, were transmitted by a
transducer on one side of a small vessel in which the mixture
was being stirred; a second transducer received the signal
and sent it to a LeCroy 9310A digital oscilloscope. The am-
plitude of the signal for pure water was measured, as was
that for the solid–liquid mixture. The excess attenuation was
determined by

a52
1

d
logS Vmix

VH2O
D ,

whered is the distance between the transducers andVmix and
VH2O are the voltage amplitudes of the received signals in the
mixture and pure water, respectively. The distance between
the transducers was 2 in. at low frequencies and 1 in. at
higher frequencies; this was necessary because the attenua-
tion at higher frequencies was too large to produce signifi-
cant signal-to-noise ratio in the larger vessel.

Figure 5 shows the comparison between theory and ex-
periment. At the two gaps in the frequency domain~where
the theory predicts very high peaks! the attenuation became
again so large that the signal-to-noise ratio vanished even in
the smallest vessel. Good agreement is found between ex-
periments and the theory except near resonance frequencies
where small differences are seen. There are two possible
reasons for these small differences. The first is concerned
with the finite volume-fraction effect. To investigate this we
have also plotted in Fig. 5 a result from an effective-medium
approach described in the previous section. The resulting at-
tenuation changes, but in the wrong direction. The second
reason is that the particles were not exactly monodispersed.
Using the method described in the previous section, a log-

normal particle size distribution was introduced with a mean
radius of 77 and 2.5mm standard deviation, which lies
within the manufacturers’ specifications. The result for the
attenuation, the dashed curve in Fig. 5, shows close agree-
ment with the data. Thus, we conclude that the agreement
between the theory and experiment is excellent, and that the
small observed differences are due to small polydispersity of
the suspension.

The attenuation behavior displayed by polystyrene par-
ticles is not generic, as can be seen from Fig. 6 which shows
the attenuation behavior for glass particles. Since the density
of the glass particles is significantly different from that of
water, the glass particles execute significant translational os-
cillations. As a consequence, the low-frequency behavior is
completely governed by the viscous effects and then51
mode. Note that the small frequency attenuation is about two
orders of magnitude greater for glass particles than for the
polystyrene particles. Also we see a considerably different
behavior at higher frequencies. The attenuation does not
seem to peak at several frequencies. Rather, for eachn we
see broad ‘‘hills’’ separated by narrow ‘‘valleys.’’ The total
attenuation does not appear to go through several resonances.
The difference in the behavior for the glass and polystyrene
particles at these high frequencies seems to arise mainly
from the different elastic properties of the two materials.

IV. THE INVERSE PROBLEM

We now consider the inverse problem: given the total
attenuationa tot as a function off we wish to determinef(a)
using ~23!. The straightforward method of solving the inte-

FIG. 4. Attenuation divided by wave number as a function of the wave
number times the particle radius in the scattering regime for monodispersed
polystyrene particles~—, a579mm; ---, a550mm!. The volume fractions
of the particles in both cases are the same and equal to 0.05.

FIG. 5. Comparison with experimental data for the attenuation as a function
of frequency. Polystyrene particles of radiusa579mm and 0.05 volume
fraction. s, experiments; ———, theory for monodispersed particles;
-.-.-., theory for monodispersed particles with effective medium correction
for finite volume fraction effects; ---, theoretical result with a particle size
distribution with a mean particle radius of 77mm and standard deviation of
2.5 mm ~this is within the range specified by the manufacturer!.
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gral equations, i.e., discretizing the integral domain into a
number of elements and converting the integral equation into
a system of linear equations in unknownsf(ak) at a selected
number of pointsak in the domain, cannot be used since the
resulting equations will be ill conditioned. Figure 7 illus-
trates the ill-posed nature of the problem. Figure 7~a! shows
two very different particle distributions whose attenuation
versus frequency curves are seen in Fig. 7~b! to be essen-
tially the same. These curves were obtained by starting with
a smooth, log-normal particle size distribution@the dashed
curve in Fig. 7~a!# and generating the attenuation versus fre-
quency data using the forward theory@the circles in Fig.
7~b!#. A 1% random noise was then added to the data and
~25! with e50, which is equivalent to the integral equation
~23!, was subsequently solved to yield the particle size dis-
tribution indicated by the solid line in Fig. 7~a!. The pluses in
Fig. 7~b! correspond to the attenuation determined from the
forward theory using the new particle distribution. Note that
the attenuation is evaluated with a smaller frequency incre-
ment than the one used for the original distribution. We see
that the attenuation from the two distributions agree with
each other to within 1% for the frequencies marked by
circles. The highly oscillatory particle distribution does show
an oscillatory behavior in between the frequency increments,
particularly at 10 MHz, but these oscillations occur only for
a very narrow frequency range and would have been missed
altogether had the attenuation been determined only at the
input frequencies.

A. Method

Since the true particle distribution is expected to be
smooth, we must only allow solutions that are reasonably
smooth. There are several ways of accomplishing this. In the

present study, we shall use primarily a regularization tech-
nique due to Tikhonov8 which was successfully used for
bubbly liquids by Duraiswami.2 An alternative method is
presented at the end of this section. Accordingly, we multi-
ply ~23! with â( f ,a)d f and integrate over the frequency
range to obtain a simpler integral equation in which the
right-hand side is only a function ofa:

E
f min

f maxE
amin

amax
â~ f ,a!â~ f ,a8!f~a8!da8d f

5b~a![E
f min

f max
a tot~ f !â~ f ,a!d f , ~24!

where (amin ,amax) and (f min ,fmax) are the radius and fre-
quency ranges. The above integral equation is now regular-

FIG. 6. Attenuation by monodispersed glass particles~of 79 mm radius! in
water as a function of frequency and the contributions from the first three
modesn in ~19!–~21! to the total attenuation@the imaginary part ofkeff ,
which is given by~12!#.

FIG. 7. Influence of fluctuations superimposed on the volume fraction dis-
tributions ~a! on attenuation data~b!. In ~b! the circles correspond to the
result when using the dashed distribution of~a! and the pluses when using
the solid line in~a!.
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ized as explained below by adding a small terme(f
2 l 2f9) ~where primes denote derivatives! to its left-hand
side. Thus, we obtain

e@f~a!2 l 2f9~a!#1E
amin

amax
K~a,a8!f~a8!da85b~a!, ~25!

where l is a suitably chosen lengthscale andK(a,a8) is a
kernel defined by

K~a,a8!5E
f min

f max
â~ f ,a!â~ f ,a8!d f . ~26!

Equation~25! is an integro-differential equation and needs
two boundary conditions. Usual practice is to take the de-
rivative of f(a) to be zero at the two end points:

f8~amin!5f8~amax!50. ~27!

Note thatamin and amax are not knowna priori in general.
One expectsf to be zero also at the two end points. Thus,
the range (amin2amax) must be determined by trial and error
so that bothf and its derivatives are approximately zero at
the extreme values ofa.

Now it can be shown that the solution of~25! subject to
the boundary conditions given by~27! minimizes

E1eE
amin

amax
@$f~a!%21 l 2$f8~a!%2#da, ~28!

whereE is the measure of error between the actual attenua-
tion and the computed attenuation:

E5E
f min

f maxU E
amin

amax
â~ f ,a!f~a!da2a tot~ f !U2

d f . ~29!

Since bothE and the second term in~28!, i.e., the integral,
are non-negative, minimization of~28! ensures that the solu-
tion of ~25! will be free from large oscillations inf. In other
words, highly oscillatory distributions such as the one shown
in Fig. 7~a! are rendered inadmissible when~25! is solved
with finite, positivee in place of the original integral equa-
tion ~24!. Thus, we have regularized the problem of deter-
mining f.

If we choose a largee, then we decrease the oscillations
in f but increase the error inf(a) since then the equation
solved is significantly different from the original integral
equation. Smalle, on the other hand, yields unrealisticf(a)
having large oscillations when the dataa tot(f ) are not exact.
An optimum choice ofe then depends on the magnitude of
uncertainty/error in the attenuation-frequency data. In the
calculations we shall present here the exacta tot(f ) is first
determined using the forward theory for a givenf(a) and a
small random noise of about 1% magnitude is added to it
before the inverse calculations are made~the effect of noise
magnitude is discussed below!. Thus, we have an estimate of
the error in the data, but in general this estimate may not be
known reasonably accurately. To determine the optimume,
we solve~25! for several differente’s and plotE versuse to
find a minimum inE. This, however, may lead to distribu-
tions in which f(a) may have unphysical negative values
for somea. The constraintf(a)>0 for all a is satisfieda
posteriori by settingf(a)50 for all a’s for which the solu-

tion of ~25! gave negative values off. The computed value
of E for a givene is then based onf(a)>0.

The integro-differential equation~25! was solved as fol-
lows. After discretizing the domain (amin2amax) into N21
equal segments and the frequency domain intoM21 loga-
rithmically equal segments we first evaluate the kernel
K(ai ,aj ) for i , j 51,2,...,N @cf. ~26!# using a trapezoidal rule
for the integration over the frequency range. As pointed out
by Duraiswami,2 it is essential to calculate the integral over
particle radius very accurately. We assume thatf(a) varied
in a piecewise linear manner in each segment and use a 12-
point Gauss–Legendre quadrature to evaluate the integral in
~25!. A second-order central difference formula was used to
evaluatef9(a) at all points except the end pointsamin and
amax. The boundary conditionsf8(amin)50 and f8(amax)
50 were approximated using, respectively, second-order for-
ward and backward difference formulas. Application of~25!
at all the discretization points together with the boundary
conditions can be expressed with the above scheme as a sys-
tem of linear equations:

(
j 51

N

Ai j f j5bi , i 51,2,...,N, ~30!

wheref j5f(aj ) andbi5b(ai). The above set of equations
was normalized by dividing all the equations with the great-
est element of the kernelK(ai ,aj ), Km for all i,j , times the
segment lengthDa5(amax2amin)/(N21). This set of equa-
tions was subsequently solved using a standard IMSL sub-
routine for linear equations.

Once f j are determined for a selected value ofe, we
satisfy the constraintf j>0 by setting, as mentioned earlier,
f j50 for all negativef j . The errorE as given by~29! was
subsequently evaluated using a trapezoidal rule for integra-
tion over the frequency range. The optimum value ofe was
determined by stepping logarithmically through several val-
ues ofe and plottingE versuse.

A typical result ~N530, M5112, f min50.1 MHz, f max

517 MHz, amin515mm andamax535mm! for the errorE in
the resulting attenuation as a function ofe is shown in Fig. 8.
Note thate here is the actuale divided byKmDa. We see a
clearly defined optimum value ofe. Computations were also
made with largerM to confirm that the resulting volume
fraction distribution was not affected by the further refine-
ment in the integration over the frequency range. A remark
should also be made of the choice for the lengthl in ~25!. We
may regard bothe and l as parameters to be chosen so as to
minimize the errorE. Taking l 5(amax2amin)/n we computed
E by varying bothe and n with n varied from 1 toN. The
three-dimensional plot ofE versusn and e showed thatE
was much more sensitive to the choice ofe than it was ton.
In general, the results withn close toN were slightly better
than with those nearn51. Based on this observation we
chosen530. For larger values ofN(N.40) we found that
choosingn5N led to more oscillatory behavior forf j . This
is to be expected since choosing largern, and, hence, smaller
l, permits larger values off8(a).
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B. Results and discussion

We now present results for the volume fraction distribu-
tion obtained using the above technique. As mentioned ear-
lier, we used the forward theory to generate attenuation data
for an assumed volume fraction distribution. Small random
noise can be added to the data thus generated to mimic pos-
sible errors arising in the attenuation measurement. This is
satisfactory since we are primarily interested in assessing the
procedure for solving the inverse problem. If the procedure
gives erroneous results even for this case, it will certainly
break down in practice using the experimentally generated
data.

The frequency range over which the attenuation mea-
surements are carried out in our laboratory is 0.1–15 MHz.
We shall choose here the same range to investigate the suc-
cess and limitations of the above technique to solve the in-
verse problem although we shall also consider cases with a
larger frequency range to inquire if better estimates off(a)
could be achieved if the attenuation data at higher frequen-
cies were to be made available. This is important since the
acoustic instruments operating up to 150 MHz are available.

We consider first particle sizes that are of the same order
of magnitude as the wavelength somewhere in this frequency
range, which is the case for particles of about 10–100m
radius~for larger particles observed behavior of the attenua-
tion is shifted to lower frequencies!. A particle size distribu-
tion that is often used is a log-normal distribution, which
results in volume fraction distributions such as the smooth
one shown in Fig. 7~a!. We attempt therefore to recover that
distribution from the corresponding attenuation data. As in
the forward problem, we shall investigate polystyrene par-
ticles and glass particles in water, as the first are almost
neutrally buoyant and deformable while the latter are very

rigid and much heavier than water; the physical properties
used in the present calculations are listed in Table I.

We begin with the results for polystyrene particles with
a narrow size distribution in the range of 20–30mm. The
particle size range for the inverse calculations is first taken to
be much greater—5–100mm; the frequency range was
0.1–17 MHz. Figure 9 shows that the volume fraction distri-
bution as evaluated from the inverse technique is in very
good agreement with the input distribution. The result for the
size distribution can be improved further by making the par-
ticle size range smaller~a close-up of the improved result is
shown in Fig. 11!.

In Fig. 10 we consider a more complicated, bimodal size
distribution in the range of 20–45mm with peaks at about 25
and 38mm. The attenuation as a function of frequency for
this distribution is shown in Fig. 10a. The maximum fre-
quency used for inverse calculations is indicated by a square;
it is seen that the frequency range includes the first two reso-
nance peaks of the attenuation curve. From Fig. 10~b! we see
once again that the inverse procedure recovers this distribu-
tion very well.

One of the difficulties in solving an ill-posed problem is
that small errors in the input~attenuation! data can cause
large changes in the solution. Of course, errors are always
present in the experimentally obtained attenuation data. The
calculations presented so far were made with no added noise.
To mimic the practical situation, we added random noise of
5% standard deviation to the input data; this is about the
same as the order of magnitude of the errors present in the
experimental results shown in Fig. 5. The resulting volume
fraction distribution, shown in Fig. 11, does confirm that
small fluctuations in the input data only cause small devia-
tions in the output. When the calculations were repeated with

FIG. 8. Typical dependence of the error in the attenuation for the solved
volume fraction distribution as a function of the regularization parametere.
The ~small! parametere should be chosen such that this error is minimized.
The minimum was always found to be well-defined.

FIG. 9. Solving the inverse problem for polystyrene particles. The solid line
is the volume fraction distribution used to generate attenuation data@shown
in Fig. 12~a!, with f max as indicated by a square#; the dashed line is the
solution of the inverse problem when taking the particle radius range to be
1–100mm and using 50 ‘‘bins’’ of particle sizes.
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a noise of 10% standard deviation, the computed particle size
distribution was found to be considerably different from the
input distribution, although the main features of the size dis-
tribution were preserved by the inverse computations.

The results discussed so far suggest that the inverse
problem can be solved with reasonable success. We now
illustrate some limitations. The inverse method gave errone-
ous particle size distributions for smaller particles when the
same frequency range as the above was used. Of course, in
order that the size of the particles be determined there must
be at least one transition—from the thermal attenuation
dominated regime to the scattering dominated regime which

occurs roughly speaking atkca5O(1). If the particles are
very small, then this transition may not occur over a fixed
frequency range. However, as we shall presently see, the
results are very sensitive to the frequency range chosen for
computations even when this transition is included in the
range.

Figure 12 shows the effect of varyingf max on the com-
puted distribution. As seen in the figure the resonance in the
shape oscillations of the~polystyrene! particles leads to a
change in the slope of the curve just before the first reso-
nance. This transition occurs just beyond the point marked
by a circle in Fig. 12~a!. We see a marked improvement in
the results in Fig. 12~b! when f max is chosen corresponding
to a point marked plus in Fig. 12~a! over those obtained with
a point corresponding to the circle which does not include
the second change in slope. The point marked plus corre-
sponds to a frequency greater than the frequency at which the
second change in slope occurs for larger particles but smaller
than that for smaller particles. This seems to give rise to an
inverse solution which is reasonably accurate for larger par-
ticles but not for smaller particles. Also shown in Fig. 12~b!
are the results whenf max is chosen to coincide with the end
of first peak, the point marked square in Fig. 12~a!. This is
seen to yield very accurate results for the size distribution.

One might suppose that covering a broad enough fre-
quency range will alleviate the difficulties seen above. This,
unfortunately, is not the case. Figure 13 shows the results for
three differentf max. The dashed curve corresponds to cutting
off the frequency range at the end of first peak as in Fig. 12,
the dashed–dotted line to the end of three peaks, and the
dotted line to 109 Hz, a frequency about 50 times greater
than the first resonance frequency. We see that the results of

FIG. 10. Attenuation~a! and the solution of the inverse problem~b! for a
bimodal distribution of polystyrene particles, using 30 particle size bins. In
~b!, the solid line is the exact result, markers represent the inverse problem
solution when using forf max the value indicated by a square in~a!. Results
when cutting of the frequency range at the point marked by a triangle are
discussed along with Fig. 14.

FIG. 11. Solution of the inverse problem when random noise of 5% stan-
dard deviation is introduced in the attenuation~input! data. Solid line is the
exact result; the broken line is the result when no noise is introduced~al-
ready shown in Fig. 8!; and the dash–dotted curve is the result after intro-
duction of the noise. Polystyrene particles in water.
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inverse calculations actually deteriorate if a much larger
range of frequency is employed, notwithstanding the fact that
measurements over such a broad frequency range could itself
be a very challenging task. One may rationalize this result as
follows. As seen in Fig. 1 a monodisperse suspension will
exhibit several resonance frequencies corresponding to vari-
ous shape oscillationPn (n52,3,...) modes. Thus, a second
peak in the attenuation-frequency curve for polystyrene par-
ticles may correspond either to say, aP3 mode of a larger

particle, or may correspond to aP2 mode of a smaller par-
ticle. In our calculations we used only up to the first six
modes (n<5), but in practice the acoustic response may be
further complicated by the higher-order modes for frequen-
cies of order 109 Hz considered here.

Since including a wide frequency range with several
resonance peaks seems to adversely affect the inverse calcu-
lation, one may consider cutting off the attenuation data be-
yond first peak. This, however, may not work if the distribu-
tion is truly bimodal as was the case considered earlier in
Fig. 10. If we omit the second resonance peak from the at-
tenuation data by considering a maximum frequency that is
less than the point marked square in Fig. 10~a!, say, that
marked by the circle, we get a poor inversion as shown in
Fig. 14. The inverse technique computes accurately the vol-
ume fraction distribution of larger particles whose resonance
was included in the data but fails to predict that for smaller
particles.

Figure 15 shows results for a broad, unimodal distribu-
tion. The resonance peaks of different particles overlap in
this case resulting in the absence of peaks in the attenuation-
frequency curve@Fig. 15~a!#. Figure 15~b! shows the results
of inversion for three different cut-off frequencies. The larg-
est frequency, marked by a square in Fig. 15~a!, is larger than
the second transition frequency of small as well as large
particles, and this seems to produce excellent inverse results.

In most of the inverse calculations shown so far which
yielded poor results, we note that the failure is particularly
severe for smaller particles. One may rationalize this by ob-
serving that the total errorE will be dominated by the errors
at large frequencies since the attenuation there is very large.

FIG. 12. Influence of the size of the frequency range over which attenuation
is specified on the solution of the inverse problem. Polystyrene particles.~a!
Input-attenuation data and four different upper bounds on the frequency.~b!
Results from the inverse problem from these different ranges, using the
same marker type. The solid line is the exact result;h, result when cutting
off the frequency range just at the end of the first peak in the attenuation;1,
result when cutting of the frequency range after the second change in slope
of the attenuation; ands, result when cutting off before the second change
in slope. Cutting off the frequency range at the point marked ‘‘L’’ is dis-
cussed along with Fig. 13.

FIG. 13. Too big a frequency range over which the attenuation is available
for polystyrene particles also deteriorates the result: the solid line is the
exact result; the dashed line is the inverse problem result when using attenu-
ation data of Fig. 12~a! below the point marked by ‘‘h,’’ the dashed-dotted
line represents the result when this end point is shifted to the point marked
by ‘‘ L’’ and the dotted line is the result when this end point is shifted to
1000 MHz.
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Whenkcamin,1 in the frequency domain that is considered,
the small particles’ volume fraction is seen from Figs. 12~b!
and 14 to be underestimated, while the large particles’ vol-
ume fraction is overestimated. To decrease the relative im-
portance of the attenuation at high frequencies, we solved a
slightly different inverse problem in which both the attenua-
tion and â were divided byf 2. However, only small im-
provements were found by modifying the attenuation data
this way. The inverse-problem result shown in Fig. 14 was in
fact obtained in this way.

Some insight into why the choice off max drastically af-
fects the results may be gained from Fig. 16, which shows
the three-dimensional plots for the kernelK(ai ,aj ) for the
same values off max as considered in Fig. 12. We see that
when f max510.4 MHz, corresponding to the circle in Fig.
12~a!, the kernel has a maximum forai5aj5amax. The ker-
nel for smaller particles is very small and, as a consequence,
the inverse technique could determine the larger particle size
volume fraction correctly but failed for smaller particles. In
contrast to this the kernel forf max517.1 MHz, corresponding
to the end of first peak, shows significant variations for a
wide range of values ofai andaj , and this apparently leads
to a much better inverse solution. Finally, the kernel for
f max530.4 MHz, corresponding to the end of the third reso-
nance peak, shows a less pronounced structure.

It is also instructive to examine the kernel and the results
of inverse calculations for the problem of determining
bubble-size distribution in bubbly liquids examined by
Duraiswami.2 The inverse procedure works very well for
bubbly liquids as can be seen from Fig. 17~a! which shows
the input and computed bubble size distributions to be in
excellent agreement. The kernel for this case has smooth
variations over a wide range of bubble radii as seen in Figure
17~b!. The attenuation as a function of frequency is shown in

Fig. 17~c!. The main reason for the success of the inverse
technique for bubbly liquids seems to be that there is one
resonance frequency for bubbles of each size. As long as the
frequency range is broad enough to cover the resonance fre-
quency of all the bubbles, it is possible to determine the size
distribution.

The results presented so far were for polystyrene par-
ticles. We have also carried out inverse calculations for glass
particles. As indicated earlier~cf. Fig. 6! there is no clear,
sharp resonance frequency peak for glass particles. As a con-
sequence, the inverse calculations for the glass particles did
not show, in general, good agreement with the input size
distribution.

The results presented so far show that the success of
Tikhonov regularization to solve the inverse problem is lim-
ited. Although we have given plausible reasons for why the

FIG. 14. As in Fig. 10~b!, but after cutting off the frequency range over
which the attenuation was given between the first and second~attenuation!
peak, indicated by a triangle in Fig. 10~a!.

FIG. 15. As Fig. 12, but with a broader size distribution.
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method works well for bubbles but not for all particles, it is
possible that other techniques for solving the inverse prob-
lem may be more successful. For that reason we have at-
tempted an alternative method2,3,19based on linear program-
ing that we shall briefly describe here.

The constraintf(a)>0 for all a was satisfied onlya
posteriori in the Tikhonov scheme. To ensure that the error
is minimized while satisfying this constraint, we reformulate

the original inverse problem as an optimization problem. The
simplest scheme is to minimize the error

E
f min

f maxU E
amin

amax
â~ f ,a!f~a!da2a tot~ f !Ud f . ~31!

instead of the integral of the square of the quantity enclosed
by two vertical bars at each frequency. Constraints on the
solution are useda priori in optimization via linear program-
ming; here we use thatf(a)>0. Imposing an upper bound
on the total volume fraction~maximum packing! can also be
incorporated but is not essential. After discretizing the fre-
quency range byM andf(a) in N discrete values we write

(
j 51

N

Bi j f~aj !2a tot~ f i !5ui2v i , ui ,v i>0, i 51,2, . . . ,M .

~32!

Here,Bi j is the discretized form of the integral operator in
~31! andui andv i are, as yet, unknown, non-negative vari-
ables. Now, it can be shown19 that minimizing the absolute
value of ~32! is equivalent to minimizing

(
i 51

M

~ui1v i ! ~33!

with ~32! as a constraint together with the constrainsui , v i

>0 (i 51,...,M ) andf(ai)>0 (i 51,...,N). Essential here is
the notion that at the optimumuiv i50 for each i, which
makes the solutions of the two minimization problems~31!
and ~33! identical.

The above scheme was applied to a number of cases that
were also examined using the Tikhonov method. It was
found that, in general, the linear programing scheme pro-
duced inferior results. A typical example is shown in Fig. 18
where the Tikhonov method is seen to yield far better results
for the size distributions. This technique also did not yield
good inverse results for the case of glass particles.

V. CONCLUSION

A theory for the attenuation and wave speed of solid–
liquid suspensions at low particle volume fractions is de-
scribed. The theory is shown to be in excellent agreement
with the experimental data measured in our laboratory.
Tikhonov regularization and linear programing techniques
are employed to solve the inverse problem of determining
the particle size distribution from the attenuation-frequency
data. Although these techniques are successful in solving the
inverse problem in several cases, we have also shown that
the results are very sensitive to the choice of frequency
range, the physical properties of the particles, and the nature
of particle size distribution~unimodal, bimodal, etc.!. Since
the same techniques worked very well for bubbly liquids, we
attribute the failure in solving the inverse problem satisfac-
torily to the complex resonance behavior of slurries. We con-
clude therefore that the prospects of using acoustic probes
for on-line monitoring of particle size distribution of slurries
are somewhat limited unless some additional information on
the particle size distribution~e.g., unimodal! is available.

FIG. 16. The kernelK(ai ,aj ) for polystyrene particles when using forf max

the value indicated in Fig. 12~a! by a s ~a!, 1 ~b!, andh ~c!.
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APPENDIX: EQUATIONS FOR A n

In this appendix we give the set of linear equations for
unknowns that include the coefficientsAn required to calcu-
late the attenuation from~12! and ~19!–~21! or ~22!. These
equations are derived from the boundary conditions on the
surface of a test particle. In addition to the coefficientsAn ,
Ãn of the solution of~1! outside and inside the particle, re-
spectively, similar coefficients arise due to the solution of~2!
and~3!, denoted byBn andCn . Note that~3! is an equation
for the vectorA rather than a scalar velocity potential, but
only the azimuthal component ofA is nonzero, hence only a
scalar coefficientCn . In the following, we use the notation
zc5kca, zT5kTa, andzs5ksa:

zcj n8~zc!1Anzchn8~zc!1BnzThn8~zT!2Cnn~n11!hn~zs!

5Ãnz̃cj n8~ z̃c!1B̃nz̃Tj n8~ z̃T!2C̃nn~n11! j n~ z̃s!, ~A1!

j n~zc!1Anhn~zc!1Bnhn~zT!2Cn„hn~zs!1zshn8~zs!…

5Ãnj n~ z̃c!1B̃nj n~ z̃T!2C̃n„j n~ z̃s!1 z̃sj n8~ z̃s!…, ~A2!

bc@ j n~zc!1Anhn~zc!#1BnbThn~zT!

5Ãnb̃cj n~ z̃c!1B̃nb̃Tj n~ z̃T!, ~A3!

t„zcbc@ j n8~zc!1Anhn8~zc!#1BnbTzThn8~zT!…

5 t̃~Ãnb̃cz̃cj n8~ z̃c!1B̃nb̃Tz̃Tj n8~ z̃T!!, ~A4!

~2ivm!~@~zs
222zc

2! j n~zc!22zc
2 j n9~zc!#1An@~zs

2

22zc
2!hn~zc!22zc

2hn9~zc!#1Bn@~zs
222zT

2!hn~zT!

22zT
2hn9~zT!#1Cn2n~n11!@zshn8~zs!2hn~zs!# !

5Ãn@~v2r̃a222m̃ z̃c
2! j n~ z̃c!22m̃ z̃c

2 j n9~ z̃c!#

1B̃n@~v2r̃a222m̃ z̃T
2! j n~ z̃T!22m̃ z̃T

2 j n9~ z̃T!#

1C̃n2m̃n~n11!@ z̃sj n8~ z̃s!2 j n~ z̃s!#, ~A5!

FIG. 17. Results for air bubbles in water.~a! Inverse problem result with a
total volume fraction equal to 0.004, together with the the kernelK(ai ,aj )
~b! and the attenuation as a function of frequency~c!.

1079Phys. Fluids, Vol. 11, No. 5, May 1999 Spelt et al.

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



~2ivm!~zcj n8~zc!2 j n~zc!1An@zchn8~zc!2hn~zc!#

1Bn@zThn8~zT!2hn~zT!#2~Cn/2!@zs
2hn9~zs!

1~n21n22!hn~zs!# !

5m̃~Ãn@ z̃cj n8~ z̃c!2 j n~ z̃c!#1B̃n@ z̃Tj n8~ z̃T!2 j n~ z̃T!#

2~C̃n/2!@ z̃s
2 j n9~ z̃s!1~n21n22! j n~ z̃s!# !. ~A6!

Here,bc andbT are given by

bc5
~12g!v2

bc2 , bT52
g

c1
2b

Fv22S c1
2

g
2

4ivm

3r D kT
2G , ~A7!

with b the thermal expension coefficient andc1 the liquid-
equivalent of the speed of sound for spherical compressional

waves in an elastic isotropic solidc̃15A(l̃12m̃/3)/r̃. The
Lamé constantl̃ is not really needed when the speed of
sound~c! of longitudinal compressional waves is specified,
as we can also writec1

25c2
„124m̃/(3rc2)…. The above

equations have also been given by Epstein and Carhart5 and
Allegra and Hawley.6 However, in both there are typographi-
cal errors: in Ref. 5, the lastj n8( z̃s) in ~A2! is erroneously

replaced by hn8( z̃s); in Ref. 6 the signs of both
(n21n22)-terms are wrong, while the lasthn(zs) on the
left-hand side of~A6! has the argumentz̃ instead and the first
zs afterCn is replaced byz̃s . Not correcting the typographi-
cal errors in Ref. 6 would have altered the results signifi-
cantly.

1K. W. Commander and R. J. McDonald, ‘‘Finite-element solution of the
inverse problem in bubble swarm acoustics,’’ J. Acoust. Soc. Am.89, 592
~1991!.

2R. Duraiswami, ‘‘Bubble density measurement using an inverse acoustic
scattering technique,’’ in ASME Cavitation and Multiphase Forum, Wash-
ington DC, edited by O. Furuya~ASME, New York, 1993!, Vol. 153, p.
67.

3R. Duraiswami, S. Prabhukumar, and G. L. Chahine, ‘‘Bubble counting
using an inverse acoustic scattering method,’’ J. Acoust. Soc. Am.104,
2699 ~1998!.

4T. Oja and F. Alba, ‘‘Acoustic attenuation spectroscopy for particle sizing
of high concentration dispersions,’’ presentation at the NIST International
Workshop on Ultrasonic and Dielectric Characterization Techniques for
Suspended Particulates Gaithersburg, MD~1997!.

5J. R. Allegra and S. A. Hawley, ‘‘Attenuation of sound in suspensions and
emulsions: Theory and experiments,’’ J. Acoust. Soc. Am.51, 1545
~1972!.

6P. S. Epstein and R. R. Carhart, ‘‘The absorption of sound in suspensions
and emulsions. I. Water fog in air,’’ J. Acoust. Soc. Am.25, 553 ~1953!.

7V. K. Varadan, V. N. Bringi, V. V. Varadan, and Y. Ma, ‘‘Coherent
attenuation of acoustic waves by pair-correlated random distribution of
scatterers with uniform and Gaussian size distributions,’’ J. Acoust. Soc.
Am. 73, 1941~1983!.

8R. Kress,Linear Integral Equations~Springer, Berlin, 1989!.
9D. J. McClements and J. N. Coupland, ‘‘Theory of droplet size distribution
measurements in emulsions using ultrasonic spectroscopy,’’ Colloids
Surf., A 117, 161 ~1996!.

10M. J. Lighthill, ‘‘Viscosity effects in sound waves of finite amplitude,’’ in
Surveys in Mechanics, edited by G. K. Batchelor and R. M. Davies~Cam-
bridge U.P., Cambridge, England, 1956!.

11A. S. Sangani, ‘‘A pairwise interaction theory for determining the linear
acoustic properties of dilute bubbly liquids,’’ J. Fluid Mech.232, 221
~1991!.

12A. S. Sangani, D. Z. Zhang, and A. Prosperetti, ‘‘The added mass, Basset,
and viscous drag coefficients in nondilute bubbly liquids undergoing
small-amplitude oscillatory motion,’’ Phys. Fluids A3, 2955~1991!.

13P. D. M. Spelt, M. A. Norato, A. S. Sangani, M. S. Greenwood, and L. L.
Tavlarides, ‘‘Attenuation of sound in concentrated suspensions: Theory
and experiments,’’ submitted to J. Fluid Mech.

14Y. Ma, V. K. Varadan, and V. V. Varadan, ‘‘Comments on ‘Ultrasonic
propagation in suspensions,’ ’’ J. Acoust. Soc. Am.87, 2779~1990!.

15R. E. Bolz, CRC Handbook of Tables for Applied Engineering Science
~CRC, Boca Raton, FL, USA, 1973!.

16L. W. Anson and R. C. Chivers, ‘‘Ultrasonic propagation in
suspensions—A comparison of a multiple scattering and an effective me-
dium approach,’’ J. Acoust. Soc. Am.85, 535 ~1989!.

17J. J. Faran, ‘‘Sound scattering by solid cylinders and spheres,’’ J. Acoust.
Soc. Am.23, 405 ~1951!.

18R. C. Chivers and L. W. Anson, ‘‘Calculations of the backscattering and
radiation force functions of spherical targets for use in ultrasonic beam
assessment,’’ Ultrasonics20, 25 ~1982!.

19L. M. Delves and J. L. Mohamed,Computational Methods for Integral
Equations~Cambridge U.P., Cambridge, England, 1985!.
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