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Analyzing Latency-aware Self-adaptation
using Stochastic Games and Simulations
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Self-adaptive systems must decide which adaptations to apply and when. In reactive approaches, adap-
tations are chosen and executed after some issue in the system has been detected (e.g., unforeseen attacks
or failures). In proactive approaches, predictions are used to prepare the system for some future event (e.g.,
traffic spikes during holidays). In both cases, the choice of adaptation is based on the estimated impact
it will have on the system. Current decision-making approaches assume that the impact will be instanta-
neous, whereas it is common that adaptations take time to produce their impact. Ignoring this latency is
problematic because adaptations may not achieve their effect in time for a predicted event. Furthermore,
lower-impact but quicker adaptations may be ignored altogether, even if over time the accrued impact is
actually higher. In this paper we introduce a novel approach to choosing adaptations that considers these
latencies. To show how this improves adaptation decisions, we use a two-pronged approach: (i) model check-
ing of stochastic multiplayer games (SMGs) enables us to understand best- and worst-case scenarios of
optimal latency-aware and non-latency-aware adaptation without the need to develop specific adaptation
algorithms. However, since SMGs do not provide an algorithm to make choices at runtime, we propose a
(ii) latency-aware adaptation algorithm to make decisions at runtime. Simulations are used to explore more
detailed adaptation behavior, and to check if the performance of the algorithm falls within the bounds pre-
dicted by SMGs. Our results show that latency awareness improves adaptation outcomes, and also allows a
larger set of adaptations to be exploited.

Categories and Subject Descriptors: D.2.0 [Software Engineering]: General; D.2.4 [Software/Program
Verification]: Formal methods

General Terms: Verification, Algorithms
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tency
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1. INTRODUCTION
In order to maintain system goals during execution, self-adaptation is increasingly em-
ployed to monitor run-time conditions, analyze whether goals are being met or could
be met better, choose (or plan) how to adapt the system, and then finally execute the
chosen adaptation. Self-adaptive systems therefore can often be considered as adding
closed-loop control, where the self-adaptive elements are the control, and the system
being adapted is the plant. The activities of monitoring, analyzing, planning, and exe-
cuting were first proposed in [Kephart and Chess 2003] as the MAPE loop; a pattern
commonly used to construct self-adaptive systems.

Current self-adaptive proposals following the MAPE pattern consider increasingly
sophisticated approaches to choosing which adaptation to perform and when. The de-
cision of which adaptation to perform focuses on trying to determine the adaptation
that is expected to have the highest impact on the qualities of the resulting system,
such as performance, operating cost, and reliability [Garlan et al. 2004; Zhang and
Lung 2010]; or safety and liveness [Braberman et al. 2013; Goldman et al. 2003]. As
to choosing when to perform an adaptation, a self-adaptive system can be reactive,
meaning that it chooses adaptations to correct problems that it sees with a system; or
proactive, meaning that it uses predictions to try to prevent or head off problems that
might occur in the near future.

In all these cases, the time an adaptation takes to achieve its effect is ignored in the
decision-making process—in fact, it is often assumed that the effect will be instanta-
neous.1

However, in many domains (such as cloud computing and wireless sensor networks,
or where human operators need to be involved) different adaptation tactics take differ-
ent amounts of time until these effects are observed. For example, consider two tactics
to deal with an increase in the load of a system: reducing the fidelity of the results
(e.g., less resolution, fewer elements, etc.), and adding a computer to share the load.
Adapting the system to produce results with less fidelity may be achieved quickly if
it can be done by changing a simple setting in a component, whereas powering up an
additional computer to share the load may take some time. We refer to the interval
between the time instants in which a tactic’s execution is triggered and its effects are
observed in the state of the system as tactic latency.

While considering tactic latency in choosing which adaptation to perform should
lead to an improvement, two questions need to be answered: (a) how much improve-
ment can be achieved by optimally leveraging this additional information; and (b) what
algorithms can be used to make the choice in light of latency information.

In this paper, we answer these questions with respect to using tactic latency infor-
mation for proactive self-adaptation. The contributions of this paper are:

(1) A novel technique that enables us to understand the potential improvement of em-
ploying a particular type of adaptation without the needing to develop a specific
algorithm or implementing the infrastructure required to analyze adaptation be-
havior. In particular, we propose a technique that is based on model checking of
stochastic multiplayer games (SMGs), which allows us to analyze best- and worst-

1Some approaches explicitly consider time when executing the chosen adaptations (e.g., [Cheng and Garlan
2012]), but these are not used in choosing the adaptations.
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case scenarios with little specification effort, compared to employing other alter-
natives (e.g., prototyping, simulation). In this paper, we exploit this technique to
quantify the maximum improvement that an optimal latency-aware strategy is
able to obtain with respect to a baseline optimal strategy that assumes no tactic
latencies. Although we can obtain boundary cases using this technique, this compo-
nent of our approach does not provide an algorithm to make latency-aware choices
at run-time.

(2) An algorithm extending a prior one that computes the optimal sequence of adap-
tation decisions for anticipatory dynamic configuration [Poladian et al. 2007] by
considering the effects of latency in adaptation. This algorithm can be used to ef-
fectively exploit tactic latency information at run-time. In order to check whether
the improvement obtained by our algorithm is consistent with the boundaries pre-
dicted by SMGs, we employ simulations to explore adaptation behavior in more
detail and analyze average cases of adaptation performance.

In [Cámara et al. 2014] we reported on an initial exploration of these topics that
dealt with only one tactic. In this paper, we extend these results by: (i) considering
multiple tactics with different latencies, enabling us to compare not only the perfor-
mance of latency-aware vs non-latency-aware adaptation, but also the impact of con-
sidering latency information on tactic choices (e.g., by showing that some tactics might
never get chosen, despite being able to improve the outcome of adaptation with respect
to others); (ii) generalizing our adaptation algorithm to support multiple tactics, deter-
mining adaptation feasibility via formal analysis of tactics using Alloy [Jackson 2012];
and (iii) exploring how latency-awareness can improve adaptation in systems involv-
ing humans in the execution of adaptation, illustrating our approach in the context of
an industrial middleware.

Our formal verification results show that factoring in tactic latency in decision mak-
ing improves the outcome of adaptation both in worst- and best-case scenarios. More-
over, results indicate that while non-latency-aware algorithms can prevent the selec-
tion of available tactics that could help improve the outcome of adaptation, latency-
aware algorithms are able to better exploit adaptation tactic repertoires. This is con-
sistent with the results obtained for our latency-aware proactive adaptation algorithm,
showing that it is able to better exploit the availability of tactics with different laten-
cies and obtain higher utility than Poladian et al.’s algorithm, which is optimal under
the assumption of no tactic latency.

We anticipate that our approach will improve adaptation effectiveness in at least
the following kinds of systems, where latency is an important factor:

— Cloud computing. One of the advantages of cloud computing is providing elastic
computing capacity that can adjust dynamically to the load on the system. One
limitation of current approaches is that they assume that the control actions used
to make these adjustments are immediate, when in reality they are not [Gambi
et al. 2013]. Our approach could help improve the effectiveness of adaptation for
cloud computing. For example, by considering the latency of enlisting additional
capacity, it could proactively start the adaptation, or decide that a short workload
burst is better handled by another tactic, or perhaps that both tactics are needed
concurrently. Furthermore, it could even dynamically decide which provider to use
at different times based on their provisioning time. In fact, the decision would not
necessarily always favor faster provisioning, if for example, the system can afford,
thanks to the proactive adaptation, to wait longer for the provisioning of the new
capacity by a cheaper provider.

— Wireless sensor networks. In general these systems present a tradeoff between the
frequency of sensor reading reports and their battery life. Proactive adaptation
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can help improving the battery life without compromising the mission supported
by the sensor network by adapting the reporting frequency ahead of environment
changes [Paez Anaya et al. 2014]. Furthermore, some adaptations may require up-
dating the firmware of the nodes, an operation that can take over a minute for up-
dating a single node [Maatta et al. 2010].

— Cyber-physical systems. Some adaptations that could be used in cyber-physical sys-
tems (CPS) have latency that is due to physics. For example, since different for-
mations in multi-robot teams have different qualities, an adaptation may require
switching between them. Doing this has latency because of the time required for
the robots to physically move in relation to their teammates. As another example, a
GPS may be turned off to save power, however, turning it back on is an adaptation
that is not instantaneous because the time to first fix may be about a minute [Liu
et al. 2012].

— Systems with human actuators. Even though the goal of self-adaptation is to mini-
mize the dependency of humans, self-adaptive systems typically rely on humans to
actuate on the physical world. For example, scaling out in industrial control systems
may require the connection of a device by a human operator [Cámara et al. 2013].
Adaptation tactics that involve human actuators have considerable latency, which
must be taken into account when deciding how to adapt.

The remainder of this paper is structured as follows: Section 2 introduces some back-
ground, related work, and summarizes Znn.com, the example used to illustrate our
approach. Section 3 describes our technique for analyzing adaptation based on model
checking of stochastic games. Next, Section 4 presents our algorithm for latency-aware
proactive adaptation. Next, Section 5 shows how our analysis technique can be used to
show the benefits of incorporating latency-aware adaptation in the context of systems
that employ human actuators in adaptation mechanisms. Finally, Section 6 concludes
the paper and indicates future research directions.

2. BACKGROUND AND RELATED WORK
This section first presents related work in proactive self-adaptation. Next, we overview
the adaptation model that we assume in this paper. Finally, we describe Znn.com, an
example that we use to illustrate our approach.

2.1. Related Work
Poladian et al. demonstrated that when there is an adaptation cost or penalty, proac-
tive adaptation outperforms reactive adaptation [Poladian et al. 2007]. Intuitively, if
there is no cost associated with adaptation, a reactive approach could adapt at the
time a condition requiring adaptation is detected without any negative consequence. In
their work, Poladian et al. presented two algorithms for proactive adaptation that con-
sidered the penalty of adaptation when deciding how to adapt. One of the algorithms
assumed perfect predictions of the environment, while the other handled uncertainty.
The latter was used to improve self-adaptation in Rainbow [Cheng et al. 2009b], where
Cheng et al. considered tactic latency only to skip the adaptation if the condition that
triggered it was predicted to go away by itself before the adaptation tactic completed.
However, the approach did not consider all the effects that arise due to tactic latency
(see Section 4).

Proactive adaptation has received considerable attention in the area of service-based
systems [Calinescu et al. 2011; Hielscher et al. 2008; Metzger et al. 2013; Wang and
Pazat 2012] because of their reliance on third-party services whose quality of service
(QoS) can change over time. In that setting, when a service failure or a QoS degra-
dation is detected, a penalty has already been incurred, for example, due to service-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Analyzing Latency-aware Self-adaptation using Stochastic Games and Simulations A:5

c0

c1

c2

lbproxy

s0

s1

s2

s3

Fig. 1: Znn.com system architecture

level agreement (SLA) violations. Thus, proactive adaptation is needed to avoid such
problems. Hielscher et al. proposed a framework for proactive self-adaptation that
uses online testing to detect problems before they happen in real transactions, and
to trigger adaptation when tests fail [Hielscher et al. 2008]. Wang and Pazat use on-
line prediction of QoS degradations to trigger preventive adaptations before SLAs are
violated [Wang and Pazat 2012]. These approaches ignore the adaptation latency.

Musliner considers adaptation time by imposing a limit on the time to synthesize a
controller for real-time autonomous systems [Musliner 2001]. However, in that work
there are not distinct planning and execution phases, and thus there is no considera-
tion of the latency of the different actions the system could take to adapt. In the area
of dynamic capacity management for data centers, the work of Gandhi et al. considers
the setup time of servers, and is able to deal with unpredictable changes in load by be-
ing conservative about removing servers when the load goes down [Gandhi et al. 2012].
Their work is specifically tailored to adding and removing servers to a dynamic pool, a
setting that resembles the running example we use in this paper. However, their work
does not support deciding between different tactics to address the load problem.

2.2. Example
Before outlining our approach, we introduce a simple example that will be used
throughout the rest of the paper to illustrate and explain our approach.

Znn.com is a case study portraying a representative scenario for the application of
self-adaptation in software systems which has been extensively used to assess different
research advances in self-adaptive systems [Cheng et al. 2009a]. Znn.com embodies a
typical infrastructure for a news website, and has a three-tier architecture consisting
of a set of servers that provide contents from backend databases to clients via front-
end presentation logic (Figure 1). The system uses a load balancer to balance requests
across a pool of replicated servers, the size of which can be adjusted according to ser-
vice demand. A set of clients makes stateless requests, and the servers deliver the
requested contents.

The main objective for Znn.com is to provide content to customers within a reason-
able response time, while considering the operating cost of the server pool. Znn.com
may experience spikes in requests that it cannot serve adequately in its current config-
uration. To allow it to better serve its clients in such circumstances, it provides various
hooks, or effectors, that can be used to adapt it. For example, the number of servers
used can be increased, or the fidelity of the content can be decreased to only serve
textual content instead of including images or videos. To help decide between these
different adaptations, a self-adaptive system must balance three quality objectives: (i)
performance, which depends on request response time; (ii) cost, which is associated
with the number of active servers; and (iii) fidelity, which maps to the fidelity level of
the contents being served.
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Table I: Utility functions and preferences for Znn.com
UR UF UC

0 : 1.00 500 : 0.90 2000 : 0.25 1 : 0.25 0 : 1.00 3 : 0.30
100 : 1.00 1000 : 0.75 4000 : 0.00 2 : 1.00 1 : 1.00 4 : 0.10
200 : 0.99 1500 : 0.50 2 : 0.90

2.3. Adaptation Model
Although there are many approaches that rely on a closed-loop control approach to self-
adaptation, including those that exploit architectural models for reasoning about the
target system under management [Garlan et al. 2004; Kramer and Magee 2007; Or-
eizy et al. 1999], in this paper we use some of the high-level concepts in Rainbow [Gar-
lan et al. 2004] as a reference framework to illustrate our approach. Rainbow is an
architecture-based platform for self-adaptation, which has among its distinct features
an explicit architecture model of the target system, a collection of adaptation tactics,
and utility preferences to guide adaptation choice.

We assume a model of adaptation that represents adaptation knowledge using the
following high-level concepts:2

— Tactic: is a primitive action that corresponds to a single step of adaptation, and
has an associated: (i) cost/benefit impact on the different quality dimensions; and
(ii) latency, which corresponds to the time it takes since a tactic is started until its
effect is observed.3 For instance, in Znn.com we can specify pairs of tactics with
opposing effects for enlisting/discharging servers, or increasing/reducing the fidelity
of the contents being served. We assume a sequential execution model for tactics
consistent with the semantics of Stitch, hence no tactic execution can be triggered
during the latency period of another tactic.

— Utility Profile: To enable the selection of tactics at run-time, we assume that adapta-
tion is driven by utility functions and preferences, which are sensitive to the context
of use and able to consider trade-offs among multiple potentially conflicting objec-
tives. The different qualities of concern are characterized as utility functions that
map them to architectural properties. We assume that utility functions are defined
by an explicit set of value pairs, with intermediate points linearly interpolated.
Table I summarizes the utility functions for Znn.com. Function UR maps low re-
sponse times (up to 100ms) with maximum utility, whereas values above 2000ms
are highly penalized (utility below 0.25), and response times above 4000ms provide
no utility. Function UF maps a low (1) level of content fidelity (e.g., textual version
of contents) to a utility 0.25, whereas a high level (2) of content fidelity (e.g., includ-
ing images/video) is mapped to maximum utility. Function UC maps increasing cost
(derived from the number of active servers) to lower utility values. Utility prefer-
ences capture business preferences over the quality dimensions, assigning a specific
weight (wUR

, wUF
, wUC

) to each one of them. In the context of Znn.com, preference
is typically given to performance over cost and fidelity. In fact, the weighted sum is
overridden when UR = 0 making the overall utility zero.

By evaluating how different tactic execution sequences might affect the different
qualities of concern using a utility profile, a proactive adaptation algorithm can build
a strategy with the objective of maximizing accrued utility during system execution.

2We use a simplified version of the concepts in Stitch (the language used to express adaptation tactics in
Rainbow) [Cheng and Garlan 2012] to illustrate the main ideas in this paper.
3Stitch incorporates a different notion of timing delay to monitor the outcome of tactic executions in reactive
adaptation strategies, which is not discussed in this paper.
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3. ANALYZING ADAPTATION
This section describes our approach to analyzing self-adaptation via model checking
of SMGs, which enables us to understand a priori the behavioral envelope of different
types of adaptation using formal models that require little effort to specify compared
to employing other alternatives (e.g., simulation, prototyping), without the need to
develop adaptation algorithms or costly self-adaptive infrastructure.

In the remainder of this section, we first provide an overview of model checking
SMGs and describe how the technique is used in our approach. Next, we present a
SMG model of Znn.com that enables the comparison of latency-aware against non-
latency-aware adaptation. Finally, we describe how these models can be analyzed and
show some results for different instances of the model.

3.1. Model Checking Stochastic Multiplayer Games
Automatic verification techniques for probabilistic systems have been successfully ap-
plied in a variety of application domains that range from power management [Nor-
man et al. 2002] or wireless communication protocols [Kremer and Raskin 2001; Hoek
and Wooldridge 2003], to biological systems [Kwiatkowska et al. 2008]. In particu-
lar, techniques such as probabilistic model checking provide a means to model and
analyze systems that exhibit stochastic behavior, effectively enabling reasoning quan-
titatively about probability and reward-based properties (e.g., about the system’s use
of resources, time, etc.).

Competitive behavior may also appear in systems when some component cannot
be controlled, and could behave according to different or even conflicting goals with
respect to other components in the system. In such situations, a natural fit is to adopt a
game-theoretic perspective by modeling a system as a game between different players.

3.1.1. SMGs, strategies, and rPATL properties. Our approach to analyzing adaptation
builds upon a recent technique for modeling and analyzing stochastic multi-player
games (SMGs) extended with rewards [Chen et al. 2013a]. In this approach, systems
are modeled as turn-based SMGs, meaning that in each state of the model, only one
player can choose between several actions, the outcome of which can be probabilistic.

Players in the game can follow strategies for choosing actions in the game, cooper-
ating with each other in coalition to achieve a common goal, or competing to achieve
their own (potentially conflicting) goals.

Reasoning about strategies is a fundamental aspect of model checking SMGs, which
enables checking for the existence of a strategy that is able to optimize an objective
expressed as a property in a logic called rPATL.4 Properties written in rPATL can
state that a coalition of players has a strategy which can ensure that the probability
of an event’s occurrence or an expected reward measure meet some threshold.

rPATL is a CTL-style branching-time temporal logic that incorporates the coalition
operator 〈〈C〉〉 of ATL [Alur et al. 2002] (a logic extensively used in multi-player games
and multi-agent systems to reason about the ability of a set of players to collectively
achieve a particular goal), combining it with the probabilistic operator P./q and path
formulae from PCTL [Bianco and de Alfaro 1995]. Moreover, rPATL includes a gen-
eralization of the reward operator Rr

./x from [Forejt et al. 2011] to reason about goals
related to rewards. An example of typical usage combining coalition and reward oper-
ators is 〈〈{1, 2}〉〉Rr

≥5[F
?φ] 5, meaning that “players 1 and 2 have a strategy to ensure

4See Appendix A.2 in [Chen et al. 2013a] for details.
5The variants of F?φ used for reward measurement in which the parameter ? ∈ {0,∞, c} indicate that,
when φ is not reached, the reward is zero, infinite or equal to the cumulated reward along the whole path,
respectively.
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that the reward r accumulated along paths leading to states satisfying state formula
φ is at least 5, regardless of the strategies of other players.” Moreover, an extended
version of the rPATL reward operator 〈〈C〉〉Rr

max=?[F? φ] enables the quantification of
the maximum accumulated reward r along paths that lead to states satisfying φ that
can be guaranteed by players in coalition C, independently of the strategies followed
by the rest of players.

3.1.2. Analyzing adaptation via model checking of SMGs. The underlying idea behind the
approach is modeling both the self-adaptive system and its environment as two players
of a SMG, in which the system attempts to maximize an accrued reward (in this paper,
accrued utility during system execution). Although in general, the environment does
not have any predefined goal, it is useful to consider it either as an adversary of the
system, or as a cooperative player to enable worst- and best-case scenario analysis,
respectively, of different classes of adaptation algorithms (e.g., latency-aware vs. non-
latency-aware).

By expressing properties that enable us to quantify the maximum and minimum
rewards that a system player can achieve, independently of the strategy followed by
the environment, we can analyze the performance of a particular type of adaptation,
giving an approximation of the reward that an optimal decision maker would be able to
guarantee both in worst- and best-case scenarios (by synthesizing strategies that opti-
mize different rewards). These properties follow the general pattern 〈〈P〉〉RU

max=?[Fcω],
where P is a set of players that can include the system and/or the environment, U is a
reward that encodes the instantaneous utility of the system, and ω is a state formula
that encodes a stop condition for the system’s execution. Section 3.3 details how such
properties are used in our approach.

3.2. SMG Model
Our formal model is implemented in PRISM-games [Chen et al. 2013b], an extension
of the probabilistic model-checker PRISM [Kwiatkowska et al. 2011] for modeling and
analyzing SMGs. Our game is played in turns by two players that are in control of the
behavior of the environment and the system, respectively. The SMG model consists of
the following parts:

3.2.1. Player definition. Listing 1 illustrates the definition of the players in the stochas-
tic game: player env is in control of all the (asynchronous) actions that the environment
can take (as defined in the environment and clk modules), whereas player sys controls
all transitions that belong to the target system module.6 Global variable turn in line 4
is used to make players alternate, ensuring that for every state of the model, only one
player can take action. Turn-based gameplay suffices to naturally model the interplay
between the environment and the system, which only senses environment information
and reacts to it if necessary at discrete time points.

3.2.2. Environment. The environment (Listing 2) is in control of the evolution of time
and other variables of the execution context that are out of the system’s control (e.g.,

6Actions enlist trigger, enlist, discharge, if, and df are explicitly labeled to improve readability (see Listing 3),
but are still asynchronous in our model.

1 player env environment, clk endplayer
2 player sys target system, [enlist], [enlist trigger], [discharge], [if], [df] endplayer
3 const ENV TURN=1, SYS TURN=2, CLK TURN=3;
4 global turn:[ENV TURN..CLK TURN] init ENV TURN;

Listing 1: Player definition for Znn.com’s SMG
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1 module clk
2 t : [0..MAX TIME] init 0; rt : [0..MAX RT] init INIT RT; rt upd : bool init false;
3 [] (t<MAX TIME) & (turn=CLK TURN) & (!rt upd) −> (rt upd’=true) & (rt’=totalTime);
4 [] (t<MAX TIME) & (turn=CLK TURN) & (rt upd) −> (rt upd’=false) & (t’=t+TAU) & (turn’=ENV TURN);
5 endmodule
6 module environment
7 arrivals total : [0..MAX ARRIVALS] init MAX ARRIVALS; arrivals current : [0..MAX INST ARRIVALS] init 0;
8 [] (t<MAX TIME) & (turn=ENV TURN) & (t=0) −> (arrivals current’=arrivals total−X>=0?X:0) &

(arrivals total’=arrivals total−X>=0?arrivals total−X:0) & (turn’=CLK TURN);
9 ...

10 [] (t<MAX TIME) & (turn=ENV TURN) & (t>0) −> (arrivals current’=arrivals total−X>=0?X:0) &
(arrivals total’=arrivals total−X>=0?arrivals total−X:0) & (turn’=SYS TURN);

11 endmodule

Listing 2: Environment-controlled modules

service requests arriving at the system). There are two modules controlled by the envi-
ronment player: (i) clk, which tracks and controls execution time (lines 1-6); and (ii) en-
vironment (lines 7-11), in charge of controlling request arrivals to the system. Note that
the choices in the environment module are specified non-deterministically to obtain a
representative specification of the environment (through strategy synthesis) that is
not limited to specific behaviors, since this would limit the generality of our analysis.
The behavior of the environment is parameterized by the following constants:

— MAX TIME defines the time frame for the system’s execution ([0,MAX TIME]).
— TAU sets time granularity, defining the frequency with which the environment up-

dates the value of non-controllable variables, and the system responds to these
changes. The total number of turns for both players is MAX TIME/TAU. Note that
two consecutive turns of the same player are separated by a period of duration TAU.

— MAX ARRIVALS constrains the maximum total number of requests that can arrive
at the system for processing during its execution. Unconstrained arrivals result in
a behavior of the environment that continuously floods the system with requests.
However, to facilitate the representation of a more realistic behavior of the environ-
ment, the total number of requests that can be placed during system execution can
be limited by setting the value of this constant.

— MAX INST ARRIVALS is the maximum number of arrivals that the environment can
place for the system to process during its turn (i.e., during one TAU time period).

Moreover, two different sets of variables define the state of the environment:

— In the clk module: (i) t keeps track of execution time; (ii) rt is the system’s response
time (note that we choose to represent this variable as part of the environment,
since the system does not have control over its value); and (iii) rt upd is an auxiliary
variable used to keep track of whether rt has been updated during the current turn.

— In the environment module: (i) arrivals total keeps track of the accumulated number
of arrivals during execution; and (ii) arrivals current is the number of request arrivals
during the current time period.

Each turn of the environment consists of two steps:

(1) The clk module updates the values of the response time and time variables (lines 3-
4): (i) Response time is updated according to the request arrivals during the current
time period and the number of active servers (computed using of an M/M/c queuing
model [Chiulli 1999], encoded by formula totalTime – line 3); (ii) Execution time
variable t is increased one step (TAU) (line 4). After variable updates, clk yields
control to environment module by updating the turn variable.
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1 module target system
2 s : [0..MAX SERVERS] init INIT SERVERS; f : [1..MAX FIDELITY] init MAX FIDELITY; counter:[−1..ENLIST LATENCY]

init −1;
3 [] (s<=MAX SERVERS) & (turn=SYS TURN) & (counter!=0) −> (turn’=CLK TURN) &

(counter’=counter>0?counter−1:counter);
4 [enlist trigger] (s<MAX SERVERS) & (turn=SYS TURN) & (counter=−1) & (ENLIST LATENCY>0) −>

(counter’=ENLIST LATENCY!=0?ENLIST LATENCY−1:counter) & (s’=ENLIST LATENCY=0?s+1:s) &
(turn’=CLK TURN);

5 [enlist trigger] (s<MAX SERVERS) & (turn=SYS TURN) & (counter=−1) & (ENLIST LATENCY=0) −> (s’=s+1) &
(turn’=CLK TURN);

6 [enlist] (s<MAX SERVERS) & (turn=SYS TURN) & (counter=0) −> (s’=s+1) & (turn’=CLK TURN) & (counter’=−1);
7 [discharge] (turn=SYS TURN) & (s>MIN SERVERS) & (counter=−1) −> (s’=s−1) & (turn’=CLK TURN);
8 [df] dualFidelity & (turn=SYS TURN) & (f>MIN FIDELITY) & (counter=−1)−> (turn’=CLK TURN) & (f’=f−1);
9 [if] dualFidelity &(turn=SYS TURN) & (f<MAX FIDELITY) & (counter=−1)−> (turn’=CLK TURN) & (f’=f+1);

10 endmodule

Listing 3: System module

(2) The environment module sets the amount of request arrivals for the current time
period. This is achieved through a set of commands that follow the pattern shown
in Listing 2, line 8: the guard in the command checks that (i) it is the turn of the
environment; and (ii) the end of the time frame for execution has not been reached.
If the guard is satisfied, the command sets the value of request arrivals for the
current time period (represented by X in the command), and adds the number of
request arrivals for the current time period to the accumulator arrivals total. The
turn of the environment player finishes when this command is executed, since it
modifies the value of variable turn, yielding the control of the game to the system
player. Note that there may be as many of these commands as different possible
values can be assigned to the number of request arrivals for the current time period
(including zero for no arrivals). Probabilities in these commands are left unspec-
ified, since it will be up to the strategy followed by the player (to be synthesized
based on an rPATL specification) to provide the discrete probability distribution
for this set of commands.

3.2.3. System. Module target system (Listing 3) models the behavior of the target sys-
tem (including the execution of tactics upon it), and is parameterized by the constants:

— MIN SERVERS and MAX SERVERS, which specify the minimum and maximum
number of active servers that a valid system configuration can have.

— INIT SERVERS is the number of active servers in the system’s initial configuration.
— MIN FIDELITY and MAX FIDELITY, which specify the minimum and maximum fi-

delity levels for served content.
— INIT FIDELITY is the fidelity level of served content in the initial configuration.
— ENLIST LATENCY is the latency of the tactic for enlisting a server, measured in

number of time periods (i.e., the real latency for the tactic in time units is TAU *
ENLIST LATENCY). In our model, tactic latencies are always limited to multiples of
the time period duration.

— MAX RT and INIT RT, which specify the system’s maximum and initial response
times, respectively.

Moreover, the module includes variables which are relevant to represent the current
state of the system:

(i) s corresponds to the number of active servers; (ii) f is the fidelity level of the con-
tents being served; and (iii) counter is used to control the delay between the triggering
of a tactic and the instant in which it becomes effective. In this case, the variable is
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1 formula uR = (rt>=0 & rt<=100? 1:0)+(rt>100&rt<=200?1+(−0.01)∗((rt−100)/(100)):0) ... +(rt>4000 ? 0:0);
2 rewards ”rIU” (turn=SYS TURN) : TAU∗(W UR∗uR + W UF∗uF +W UC∗uC); endrewards
3 rewards ”rEIU” (turn=SYS TURN) : TAU∗(W UR∗uER + W UF∗uF +W UC∗uC); endrewards

Listing 4: Utility functions and reward structures

used to control the delay between the activation of a server, and the time instant in
which it ends booting up.

During its turn, the system can decide not to execute any tactics, returning the turn
to the environment player by executing the command defined in line 10, Listing 3.
Alternatively, the system can execute one of these tactics:

— Activation of a server, which is carried out in two steps:
(1) Triggering of activation through the execution of the command labeled as en-

list trigger (line 4). This command only executes if the current number of active
servers is less than the maximum allowed, and the counter that controls tactic
latency is inactive (meaning that there is not currently a server already booting
in the system). This command activates the counter by setting it to the value of
the latency for the tactic, and yields turn to the environment player.

(2) Effective activation through the enlist command (line 6), which executes when
the counter that controls tactic latency reaches zero, incrementing the number
of servers in the system, and deactivating the counter.

Note that the special case in which the latency of the enlist server tactic is zero, the
execution of the tactic is carried out in a single step (line 5).

— Deactivation of a server, which is achieved through the discharge command (line 7),
which decrements the number of active servers. The command fires only if the cur-
rent number of active servers is greater than the minimum allowed and the counter
for server activation is not active.

— Lowering the fidelity of all active servers, setting them to textual mode through the
execution of the command df (line 8). This tactic decreases the value of the fidelity
variable f, and thus increases the service rate, which in turn causes a reduction in
the system’s response time.

— Raising the fidelity of all active servers, setting them to multimedia mode through
the execution of command if (line 9), which has the opposite effect of decrease f.

Note that the latency of all tactics, except for the one to enlist servers, is zero.

3.2.4. Utility profile. Utility functions and preferences are encoded using formulas and
reward structures that enable the quantification of instantaneous utility. Specifically,
formulas compute utility on the different dimensions of concern, and reward structures
weigh them against each other by using the utility preferences.

Listing 4 illustrates in line 1 the encoding of utility functions using a formula for lin-
ear interpolation based on the points defined for utility function UR in the first column
of Table I. The formula in the example computes the utility for performance, based
on the value of the variable for system response time rt. Moreover, line 2 shows how a
reward structure can be defined to compute a single utility value for any state by using
utility preferences (defined as constant weights W UR, W UC, and W UF). Specifically,
each state in which it is the turn of the system player is assigned with a reward corre-
sponding to the entire elapsed time period of duration TAU, during which we assume
that instantaneous utility does not change.

In latency-aware adaptation, the instantaneous real utility extracted from the sys-
tem coincides with the utility expected by the algorithm’s computations during the
tactic latency period. However, in non-latency-aware adaptation, the instantaneous
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utility expected by the algorithm during the latency period for activating a server does
not match the real utility extracted for the system, since the new server has not yet im-
pacted the performance (i.e., the server is booting up, but not processing requests yet).
To enable analysis of real vs. expected utility in non-latency-aware adaptation, we add
to the model a new reward structure that encodes expected instantaneous utility rEIU
(Listing 4, line 3). In this case, the utility for performance during the latency period
(encoded in formula uER) is computed analogously to uR, but based on the response
time that the system would have with s+1 servers during the latency period.

3.3. Analysis
In order to compare latency-aware vs. non-latency-aware adaptation, we make use of
rPATL specifications that enable us to analyze: (i) the maximum utility that adap-
tation can guarantee, independently of the behavior of the environment (worst-case
scenario); and (ii) the maximum utility that adaptation is able to obtain under ideal
environmental conditions (best-case scenario).

3.3.1. Latency-aware Adaptation. In this case, the real adaptation extracted from the
system coincides with the utility that adaptation uses for decision making.

— Worst-case scenario analysis. We define the real guaranteed accrued utility (Urga) as
the maximum real instantaneous utility reward accumulated throughout execution
that the system player is able to guarantee, independently of the behavior of the en-
vironment player: Urga , 〈〈sys〉〉RrIU

max=?[Fc t = MAX TIME]. This enables us to obtain
the utility that an optimal algorithm would be able to extract from the system, given
the most adverse possible conditions of the environment.

— Best-case scenario analysis. To obtain the real maximum accrued utility achiev-
able (Urma), we specify a coalition of the system and environment play-
ers, which behave cooperatively to maximize the utility reward: Urma ,
〈〈sys, env〉〉RrIU

max=?[Fc t = MAX TIME].

3.3.2. Non-latency-aware Adaptation. In non-latency-aware adaptation, the real utility
does not coincide with the expected utility that an arbitrary algorithm would employ
for decision-making, so we proceed with the analysis in two stages:

(1) Compute the strategy that the adaptation algorithm would follow based on the in-
formation it employs about expected utility. That strategy is computed based on an
rPATL specification that obtains the expected guaranteed accrued utility (Uega) for
the system player: Uega , 〈〈sys〉〉RrEIU

max=?[Fc t = MAX TIME]. For the specification of
this property we employ the expected utility reward rEIU (Listing 4, line 3) instead
of the real utility reward rIU. Note that for latency-aware adaptation Uega = Urga.

(2) Verify the specific property of interest (e.g., Urga, Urma) under the generated strat-
egy. We do this by using PRISM-games to build a product of the existing game
model and the strategy synthesized in the previous step, obtaining a new game
under which further properties can be verified. In our case, once we have com-
puted a strategy for the system player to maximize expected utility, we quantify
the reward for real utility in the new game in which the system strategy is fixed.

3.4. Results
In this section, we first compare worst- and best-case scenario analysis of a version of
Znn.com that includes only the pair of tactics to enlist/discharge servers that are af-
fected by latency in order to compare latency-aware and non-latency aware adaptation.
Second, we provide some results to quantify the impact in utility that adding tactics
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Table II: SMG model checking results for Znn.com
Latency Latency-Aware Non-Latency-Aware ∆Urga ∆Urma

(s) Urga/Uega Urma Uega Urga ∆Uer(%) Urma (%) (%)
TAU 458.38 996.60 463.86 373.70 -19.43 960.40 18.47 3.63

2*TAU 452.82 996.60 463.79 278.57 -39.9 960.40 38.48 3.63
3* TAU 447.26 996.60 463.72 221.49 -52.23 960.40 50.47 3.63
4* TAU 441.70 996.60 463.64 182.64 -60.60 960.40 58.64 3.63

to increase/reduce content fidelity introduce in the system. The improvement of intro-
ducing the new tactics is shown for latency-aware and non-latency-aware adaptation.

3.4.1. Comparing Latency-aware vs. Non-Latency-aware Adaptation. Table II compares the
results for the utility extracted from the system by a latency-aware vs. a non-latency-
aware version of the system player, for a model of Znn.com that represents an execu-
tion of the system during 1000s. The models consider a pool of up to 4 servers, out of
which 2 are initially active, and includes a repertoire of tactics limited to enlisting/dis-
charging servers. The period duration TAU is set to 10s, and for each version of the
model, we compute the results for four variants with different latencies for the activa-
tion of servers of up to 4*TAU s. The maximum number of arrivals that the environment
can place per time period is 20, whereas the time it takes the system to service every
request is 1s. The fidelity level in this set of experiments is fixed, therefore we factor it
out of the utility calculation (wUR

= 0.6, wUF
= 0, wUC

= 0.4).
We define the delta between the expected and the real guaranteed utility as: ∆Uer =

(1 − Uega

Urga
) × 100. Moreover, we define the delta in real guaranteed utility between

latency-aware an non-latency aware adaptation as: ∆Urga = (1 − Un
rga

U l
rga

) × 100, where
Unrga and U lrga designate the real guaranteed accrued utility for non-latency-aware
and latency-aware adaptation, respectively. The delta in real maximum accrued utility
(∆Urma) is computed analogously to ∆Urga.

Table II shows that latency-aware adaptation outperforms in all cases its non-
latency-aware counterpart. In the worst-case scenario, latency-aware adaptation is
able to guarantee an increment in utility extracted from the system, independently
of the behavior of the environment (∆Urga) that ranges between approximately 18
and 58%, increasing progressively with higher tactic latencies. In the best-case sce-
nario (cooperative environment), the maximum utility improvement that latency-
aware adaptation can achieve with respect to non-latency-aware adaptation is rather
moderate (staying in the range 3-4%), and does not experience any variation with la-
tency. This is an expected result, since independently of the quality of the decisions
made by the system player, the environment is always going to favor utility maxi-
mization both in the latency-aware and non-latency aware cases. Regarding the delta
between expected and real utility that adaptation can guarantee (∆Uer) in non-latency-
aware adaptation, we can observe that there is a remarkable decrement that ranges
between 19 and 60%, also progressively increasing with higher tactic latency.

3.4.2. Quantifying the Impact of Tactics on Utility. In this section, we compare the results
for the utility extracted from the system for the worst-case scenario, using four model
variants of Znn.com. Two of the variants correspond to the latency-aware adaptation
case when it includes: (i) only the pair of tactics to enlist/discharge servers (LA); and
(ii) an extended set of tactics that include the tactics to enlist/discharge servers, plus
the pair of tactics to increase/reduce content fidelity (LA+). The other two variants
include the same sets of tactics for the non-latency-aware adaptation case (indicated
by NLA and NLA+, respectively).
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All models represent an execution of the system during 1000s, and consider a pool
of up to 4 servers, out of which 2 are initially active. The period duration TAU is set
to 10s, and for each version of the model, we compute the results of a latency range
for the activation of servers between 0 and 7*TAU s. The maximum number of arrivals
that the environment can place per time period is 20, whereas the time it takes the
system to service every request is 1s for high fidelity, and 0.7s for low fidelity. The
utility preferences used for the experiments give preference to performance over cost
and fidelity (wUR

= 0.5, wUF
= 0.3, wUC

= 0.2).

— Latency-aware Adaptation. Figure 2 (left) compares the two variants of latency-
aware adaptation. In the LA variant, it can be observed that the progressive in-
crement in latency of the enlist server tactic results in a proportional reduction of
the real guaranteed utility Urga. However, for increasing latency values in the LA+
variant, Urga only decreases moderately in comparison with the LA variant, due to
the fact that the optimal strategy synthesis algorithm starts favoring the selection
of the tactic to reduce fidelity over the one for enlisting a new server. This is a clear
example of how latency awareness can improve tactic selection by considering tac-
tics that have moderate impact on utility (in this case reducing fidelity) compared
to others, but due to their low latency can extract more utility over time than others
with higher utility impact and latency (e.g., enlisting a new server).

Fig. 2: Fidelity tactics impact on utility: LA (left) and NLA adaptation (right)

— Non-latency-aware Adaptation. Figure 2 (right) compares the two variants of non-
latency-aware adaptation. In contrast with the latency-aware adaptation case, there
is a clear discrepancy between real guaranteed utility Urga, and the expected guar-
anteed utility Uega both for the NLA and NLA+ variants. Interestingly, it can be
observed how the addition of the pair of fidelity tactics does not represent any dif-
ference in Uega nor Urga between the NLA and NLA+ variants. This is explained
because the new fidelity tactics never get selected by strategy synthesis. In par-
ticular, since the synthesis process is not aware of the latency of the tactic to enlist
servers and only considers its positive net impact on utility (which always outweighs
the impact on utility of reducing fidelity), the fidelity tactics never get selected de-
spite being capable of extracting more system utility over time than the tactic to en-
list servers. Note that the Urga for both NLA and NLA+ describes a non-monotonic
curve. This is due to the fact that under some particular conditions of the environ-
ment, latency-agnostic decision-making may coincidentally yield close-to-optimal or
even optimal strategies with respect to guaranteeing a given level of utility in the
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worst case, despite ignoring latency information. This can be observed in the figure,
in which the values of Urga match Uega for latencies 4 * TAU and 6 * TAU).

4. LATENCY-AWARE ADAPTATION
In the previous section, we showed the improvement that latency-awareness could
bring if we had an optimal adaptation algorithm. The SMG analysis approach pre-
sented allows us to quantify that improvement without actually encoding any adapta-
tion algorithm in the system model. In this section, we present a latency-aware adap-
tation algorithm, and the results of its evaluation in simulation. Using simulation
allowed us to run many repetitions of the experiments with randomly generated be-
haviors of the environment, and to replicate exactly the same conditions for both the
new algorithm and the baseline NLA algorithm.

Latency-aware adaptation takes into account the tactics’ latency when deciding how
to adapt. In our approach, the goal is to consider the latency of the tactics so that
the sum of utility provided by the system over time is maximized. The effect of tactic
latency on utility is that for tactics that have some latency, the system does not start to
accrue the utility gain associated with the tactic until some time after the enactment
of the tactic. Moreover, negative impacts of the tactic may have no latency, and start
without delay. For example, when adding a server to the system, the server takes some
time to boot and be online, whereas it starts consuming power—and thereby increases
cost—immediately. In this example, it means that the tactic to add a server causes a
drop in utility before it results in a gain.

Another consequence of tactic latency is that some near-future system configura-
tions can be infeasible. For example, let us suppose that the system has to deal with
an increase in load estimated to happen in ∆t seconds, and it could handle that with
an additional server. If enlisting an additional server takes λ > ∆t seconds, then the
desired configuration that has one additional server ∆t seconds into the future is in-
feasible. Current approaches that do not take latency into account would consider that
solution regardless of whether it is feasible or not. When proactively looking ahead,
taking adaptation latency into account allows the adaptation mechanism to rule out
infeasible configurations from the adaptation space.

A complication arises when tactic latency is longer than the interval between adap-
tation decisions. When that is the case, it is possible that during an adaptation deci-
sion, a tactic that has been previously started has not yet reached the point where its
effect will have been realized. If the decisions are made based only on the currently
observed state of the system, ignoring the expected effect of adaptations in progress,
the system will overcompensate, starting unnecessary adaptations. What is needed is
a model of the system that not only represents the current state of the system, but also
keeps track of the expected state of the system in the near future based on the tactics
that have been started but have not yet completed.

4.1. Algorithm
The algorithm we present is an extension of an algorithm developed by Poladian et al.
to compute the optimal sequence of adaptation decisions for anticipatory dynamic con-
figuration [Poladian et al. 2007]. Using dynamic programming and relying on a perfect
prediction of the environment for the duration of a system run, their algorithm can
find the adaptation decision that at each time step maximizes the future aggregate
utility, while accounting for the penalty of switching configurations. They showed that
the algorithm had pseudo-polynomial time complexity, and was therefore suitable for
online adaptation. Although the input size to our algorithm is larger due to the ad-
ditional states needed to keep track of adaptations in progress, it still has the same
complexity.
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The key improvement our algorithm brings is how the latency of tactics is taken
into account. On the one hand, there is an adaptation cost that latency induces. For
example, if adding a server takes λ seconds from the time a server is powered up until
it can start processing requests, and ∆Uc is the additional cost the new server incurs,
then the adaptation cost is λ∆Uc. This cost could be partially handled by the original
algorithm, as a reconfiguration penalty. However, that is not sufficient to handle the
other issues previously mentioned that latency brings, namely, the infeasibility of con-
figurations and the need to track adaptation progress. Our algorithm for latency-aware
proactive adaptation explicitly handles the issues that arise due to tactic latency.

The algorithm requires iterating over all the possible configurations of the system,
where a configuration describes variable aspects of the system relevant to the adap-
tation decision. In the Znn example, a configuration indicates how many servers are
in the pool of servers, and what is the fidelity level of the content being served. To
keep track of adaptation progress, a configuration also encodes information about the
progress of adaptations that have non-zero latency. In our example, that means that a
configuration indicates whether a new server is being added, and how much progress
that tactic has made. It is important to note that the information about progress is only
needed at the granularity of the evaluation period τ . In general, C is the set of possible
configurations, and Ci is the ith configuration, for i ∈ {1 . . . |C|}. For our running ex-
ample, C = (S ×A× F ) \ {(s, a, f) : S ×A× F |s = 4 ∧ a ∈ A \ {0}}, where S = {1 . . . 4}
is the number of active servers in the system; A =

{
0 . . . dλτ e

}
is the number of evalua-

tion periods until the addition of a server completes, with 0 indicating that the tactic is
not being executed; and F = {1, 2} is the fidelity level. Since the tactic to add a server
cannot be used when the system already has the maximum number of servers, all the
configurations with 4 servers and the tactic running are not included in C.

The algorithm also needs to determine whether a particular configuration can
be reached at a particular time, and tactic latency plays a key role in that de-
termination. More specifically, the algorithm needs to determine if configuration c′

can be reached from configuration c in one evaluation period—the boolean function
isReachableFromConfig(c, c′) encapsulates that. In addition, it needs to know if config-
uration c′ can be reached at the current time—the function isReachableNow(c′) deter-
mines that. In addition to latency, blocking effects between tactics are also considered
by these functions. For example, in our running example, only one tactic can be used in
an evaluation period. Details about these two functions are provided in section 4.1.1.

In reactive adaptation, the decision algorithm is typically invoked upon events that
require an adaptation to be performed. However, for proactive adaptation, the decision
must be done periodically, looking ahead for future states that may require the sys-
tem to adapt. Our algorithm is therefore run periodically, with a constant interval τ
between runs. We limit the look-ahead of the algorithm to a near-term horizon of H
evaluation periods, which in turn limits how far into the future the environment state
needs to be estimated.7 The estimation of the future environment state is accessed by
the algorithm via the function env(x), which returns the expected environment state x
time units into the future.

Employing a dynamic programming approach, the algorithm (Algorithm 1) uses two
matrices, u and n, to store partial solutions. The element ui,t holds the utility projected
to be achieved from the evaluation period t (with t = 0 being the current period, t = 1
the next one, and so on) until the horizon if the system has configuration Ci at evalu-
ation period t. An infeasible partial solution is marked by a value of −∞ assigned to

7Environment state estimation is beyond the scope of our work, but techniques such as Poladian et al.’s
calculus for combining multiple source of predictions [Poladian et al. 2007] can be used.
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ui,t. The element ni,t holds the configuration that the system must adopt in period t+1
to attain the projected utility ui,t if the configuration in period t is Ci.

The main loop (lines 1-23) works backwards from the horizon, computing the partial
solutions using the partial solutions previously found. For each configuration (lines 2-
22), it computes its projected utility or deems the configuration infeasible. For eval-
uation periods t > 0, all configurations are assumed feasible, and the only concern
is whether one potential configuration is reachable from another potential configu-
ration. However, for the current evaluation period (t = 0), only those configurations
that can be reached are deemed feasible. The projected utility a configuration can
achieve is the sum of the utility the configuration obtains in that particular evalua-
tion period (line 6), and the maximum utility it can achieve in the periods after that.
Computing the former relies on the function U(c, e), which is the instantaneous utility
provided by configuration c in environment e. To compute the latter, the algorithm it-
erates (lines 11-19) over all the feasible configurations that can follow (as determined
by isReachableFromConfig(Ci, Cj)) to find the configuration that the system should
have in evaluation period t + 1 to maximize the projected utility of having configura-
tion Ci in evaluation period t (lines 14-17). Once all the possible solutions have been
computed, the algorithm selects the configuration the system should have at the cur-
rent time to maximize the projected utility (line 24). By comparing the current system
configuration with the selected configuration along the different dimensions (S,A, and
F in our example), it is easy to determine what adaptation tactics have to be started
at the current time, if any.

ALGORITHM 1: Latency-aware proactive adaptation
1: for t = H − 1 downto 0 do
2: for i = 1 to |C| do
3: ui,t ← −∞ {assume infeasible configuration}
4: ni,t ← 0 {assume no next state}
5: if t > 0 ∨ isReachableNow(Ci) then
6: ulocal ← τU(Ci, env(tτ))
7: if t = H then
8: ui,t ← ulocal
9: else
10: {find the next best configuration after i}
11: for j = 1 to |C| do
12: if uj,t+1 > −∞∧ isReachableFromConfig(Ci, Cj) then
13: uprojected ← ulocal + uj,t+1

14: if uprojected > ui,t then
15: ui,t ← uprojected
16: ni,t ← j
17: end if
18: end if
19: end for
20: end if
21: end if
22: end for
23: end for
24: best← argmaxi ui,0 {best starting configuration}
25: return Cbest

4.1.1. Adaptation Feasibility. An important part of the proactive latency-aware adapta-
tion algorithm is determining whether it is possible reach a particular system configu-
ration through adaptation at a particular time in the near future. Obviously, tactic la-
tency plays a fundamental role in this determination, not only because a tactic needed
to reach a configuration may take some time to execute, but also because it can block
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other tactics while executing. In our running example, only one tactic can be executed
at a time, and, additionally, only one tactic can be started in each evaluation period.
Note, however, that this is not a limitation of the algorithm, but rather due to the
example following the model of sequential tactic execution.

The algorithm uses two functions to determine the feasibility of possible adapta-
tions. The function isReachableNow(c′) returns true if it is possible to reach configu-
ration c′ immediately from the current configuration of the system. For example, if no
tactic is executing in Znn, it would be possible to reach immediately a configuration
in which the fidelity level has been changed, or one in which the tactic to add a new
server has been started, but not both. On the other hand, if the tactic to add a server
was executing (i.e., it was started in a previous evaluation period and has not com-
pleted yet), it would be impossible to reach any configuration other than the current
one.

The function isReachableFromConfig(c, c′) returns true if configuration c′ can be
reached from configuration c in one evaluation period. More specifically, it assumes
that (i) c will be the configuration at the beginning of the period, including the possible
effect of tactics that could have been started at that time; (ii) one evaluation period will
elapse, allowing progress on a tactic with latency, if needed; and (iii) optionally a tactic
can be started at the end of the period. For example, assuming that c is a configuration
in which the tactic to add a server has one period left to complete, and c′ is a config-
uration with one more active server and a different fidelity would be feasible because
the tactic adding a server would complete in the elapsed period, and the fidelity can be
changed immediately.

These two functions can be implemented in different ways as long as they satisfy
their specification. Furthermore, since they are independent of the state of the envi-
ronment, they can be computed offline, generating a lookup table to be used at runtime.
Taking advantage of this, we used Alloy [Jackson 2012] to formally specify system con-
figurations, and adaptation tactics, and to compute the reachability functions offline.
Alloy is a language based on first-order logic that allows modeling structures—known
as signatures—and relationships between them in the form of constraints. One advan-
tage of using Alloy is that it is a declarative language, and, in contrast to imperative
languages, only the effect of operations—tactics in our case—on the model must be
specified, but not how the operations work. The Alloy analyzer can then be used to find
structures that satisfy the model. The specification of the tactics for the Znn example,
and further details about the generation of the reachability functions using Alloy are
provided in the Appendix.

4.2. Simulation
We implemented a simulation of a self-adaptive Znn with two goals. One was to eval-
uate the improvement that our algorithm for latency-aware (LA) proactive adaptation
achieves compared to a non-latency-aware (NLA) approach. The second one, was to
compare the theoretical results obtained with the SMG for generic NLA and LA algo-
rithms with the results obtained with a concrete algorithm.

The simulation was implemented using OMNeT++, an extensible discrete event sim-
ulation environment [Varga and Hornig 2008]. It simulates the arrival of requests from
clients, randomly generating requests. The requests arrive at the load balancer of Znn,
and are forwarded to one of the idle servers. If no server is idle, then the requests are
queued in FIFO order until one server becomes available. Each server processes one
request at a time, with a service time distributed with an exponential distribution
whose rate of depends on the fidelity of the content being served. In the case of high
fidelity, the rate is 1, and for low fidelity the rate is 1

0.7 .
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The inter-arrival times between client requests are generated randomly with a rate
in the interval [0, 2] that changes periodically. To create trends and the possibility of
sustained load, the request generator maintains a trend for the request arrival rate
that can be upward, downward, or sustained. Every τ units of time, the trend is
changed with a probability of 0.5. Also with the same interval, and when the trend
is either upward or downward, a new arrival rate is selected randomly from a uniform
distribution between the current rate and the lower or higher end of the [0, 2], for down-
ward or upward trend respectively. That rate is then used to generate exponentially
distributed inter-arrivals. To be able to simulate the execution of the system with the
same random pattern of client requests using each of the two algorithms, the request
inter-arrival times and the service times are drawn from two separate random number
generators.

The self-adaptive layer of the simulated system works as follows. The system is mon-
itored by keeping track of request inter-arrival times when a client request arrives, and
of the response times every time a request processing completes. Once every evalua-
tion interval τ , these observations are used to compute their average and standard
deviation for the period since the last evaluation. Using the average response time,
the fidelity level, and the number of servers in the system, the utility accrued since
the last evaluation is computed using the utility function shown in Table I.

Next, the adaptation algorithm is used to determine if the system should self-adapt
and how. We implemented both the latency-aware algorithm (Algorithm 1) and a non-
latency-aware algorithm. The latter is basically the same as the former, except that it
does not account for latency other than by considering the adaptation penalty induced
by the cost of having a server powered until it becomes active.

When the algorithm is run in each evaluation period, it needs to know what is the
current configuration of the system, including whether the tactic to add a server is run-
ning, and how much progress it has made. This is achieved by maintaining a model of
the system configuration that keeps track of the number of servers in the system, and
how many of them are active. In addition, the model keeps a list of expected changes
in the future. For example, when a new server is added to the system, an expected
change reflecting that the server becomes active is recorded with an expected time of
λ into the future. In that way, it is possible to determine how much time is needed
until the tactic completes. When a server actually becomes active in the simulation,
the model of the current system configuration is updated to reflect that change and
the corresponding entry is removed from the list of expected system changes.

The predictive model of the environment, env(x) was implemented as an oracle that
can predict perfectly the average and variance of the request inter-arrival times for
the same horizon used by the algorithm. Although the request arrivals are randomly
generated in the simulation, a perfect prediction can still be achieved by generating
the inter-arrival times before they are consumed by the simulation.

Implementing the U(c, e) function requires first estimating the average response
time for requests when the system has configuration c, and the environment is e. In
this case, the relevant properties of the environment are the average and variance of
the inter-arrival times. To estimate the average response time needed for the utility
calculation, we used queueing theory with an M/M/c queueing model. Once the aver-
age response time is estimated in this way, the utility is estimated using the utility
functions and preferences shown in Table I. After the adaptation algorithm has deter-
mined how the system has to be changed, the execution of the adaptation tactics is
carried out by adding or removing servers, and changing the fidelity as needed.
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Table III: Simulation results for Znn.com
Latency Latency-Aware Non-Latency-Aware ∆U(%)

(s) min. avg. max. min. avg. max. Â12 min. 10% quant. avg. max.
TAU 594.40 686.70 823.30 592.10 681.10 806.50 0.53 -1.99 -0.66 0.80 4.39

2*TAU 573.50 671.90 821.00 553.70 648.90 800.00 0.63 -2.28 0.80 3.41 9.80
3* TAU 557.40 660.60 814.20 533.00 625.70 777.50 0.69 -3.16 1.41 5.21 13.53
4* TAU 541.80 649.80 805.30 508.80 610.10 751.20 0.70 -3.50 0.89 6.02 16.05

4.3. Results
We used the simulation to perform comparisons analogous to those done with the SMG
analysis in 3.4, namely, comparing latency-aware with non-latency-aware adaptation,
and assessing the impact of an additional pair of tactics for adapting the fidelity level
of the system. The simulation was ran with the same parameters used for the SMG
analysis. The horizon used for the algorithms was computed so that if the system was
running with one server, it had a horizon large enough to be able to compute the effect
of adding the three remaining servers. For that reason, the horizon was calculated as
3λτ + 1, the number of periods needed to enlist three servers plus one more period to
consider the impact on utility of the change.

4.3.1. Comparing Latency-aware vs. Non-Latency-aware Adaptation. For each combination of
parameters, the simulation was run 100 times to obtain the statistics shown in Ta-
ble III. On average, the latency-aware algorithm outperformed the non-latency-aware
one. The improvement of the LA algorithm increased with the latency of the tactic.
The standardized effect size measure statistic Â12 [Arcuri and Briand 2012] shows
that LA outperforms NLA 53% to 70% of the times, depending on the parameters. For
several combinations of parameters, the minimum percentual utility difference ∆U(%)
was negative, meaning that NLA did better. This is due to a limitation of the queueing
model used by the algorithms to estimate the response time of different configurations,
because it computes the steady-state response time, and, therefore, ignores the effect
of arrival spikes that may leave a backlog of arrivals to be processed in later peri-
ods. The LA algorithm avoids adaptation when there are transient increases in load
if the cost of enlisting a server will be higher than the negative impact of not adding
it. Because of the limitation of the queueing model,8 it sometimes underestimates that
negative effect. Since the NLA algorithm does not account for the latency of the tactic,
it is more prone to add servers, and that gives it an advantage in these cases. These
situations were not very common in our experiment runs, as indicated by the 10%
quantile, which, except for the cases with the lowest tactic latency, was positive.

It is worth noting that the results shown in Tables II and III are not directly compa-
rable, because the SMG analysis and the simulation quantify different statistics. The
SMG analysis determines the utility the system can accrue in the worst and best case
for each approach. For example, the worst-case environment can be different for LA
and for NLA, and the difference reported is between those two environments under
each of the approaches. The simulation, on the other hand, is unlikely to reach those
extremes, because the behavior of the environment is randomly generated, and con-
strained by trends. Furthermore, each of the differences ∆U(%), whose statistics are
reported in Table III, is the difference in percentage between the utility the two algo-
rithms obtained for the same environment behavior. For these reasons, it is expected
that the differences reported in Table III will be more modest than those in Table II.

8Note that this is a limitation of the U(c, e) function used by the algorithm, and not a problem with the
algorithm itself.
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Fig. 3: Fidelity tactics impact on utility (simulation)

4.3.2. Assessing the Impact of Tactics on Utility. We also used the simulation to assess the
impact that adding tactics to control the fidelity level has on system utility. The results
are shown in Figure 3. Each data point is the average of 100 runs of the simulation,
each of which had a simulated duration of 1000 seconds. The LA and NLA variants
show latency-aware and non-latency-aware adaptation respectively, and in both cases,
only the tactics for enlisting and discharging servers are available. The LA+ and NLA+
variants additionally have the pair of tactics to increase and decrease content fidelity.

In general, the results match qualitatively those obtained with the SMG analysis.
The LA(+) variants are superior than the NLA(+) variants. Adding the fidelity tac-
tics barely makes a difference when non-latency-aware adaptation is used. However,
latency-aware adaptation is able to better exploit the added tactics by taking into ac-
count how they differ in latency. For example, if the proactive adaptation is dealing
with a short-lived increase in load, latency-awareness uses the faster fidelity tactic,
instead of incurring the cost of adding another server.

5. ANALYZING LATENCY-AWARE ADAPTATION IN SYSTEMS WITH HUMAN ACTUATORS
Some classes of systems (e.g., safety-critical) and application domains can benefit by
employing humans as system-level effectors to execute adaptations (e.g., in cases in
which full automation is not possible, or as a fallback mechanism). However, the be-
havior of human participants is typically influenced by factors external to the system
(e.g., training level, stress, fatigue) that determine their likelihood of successfully car-
rying out a particular task, or how long it will take. In this section, we describe how
our SMG-based appproach can be used to compare latency-aware and latency-agnostic
adaptation in the context of human-system-environment interactions, in which the
latency of adaptation executed by humans has a major influence in the outcome
of adaptations. We illustrate the approach in DCAS (Data Acquisition and Control
Service) [Cámara et al. 2013], a middleware from Critical Software that provides a
reusable infrastructure to manage the monitoring of highly populated networks of de-
vices equipped with sensors.

Application 

Server

Database 

Server

Processor

Node

Processor

Node

Device

Device

Device

Device

Fig. 4: Architecture of a DCAS-based system
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The basic building blocks in a DCAS-based system (Figure 4) are:

— Devices are equipped with sensors to obtain data from the application domain (e.g.,
from wind towers, or solar panels). Each sensor has an associated data stream from
which data can be read. Each type of device has its particular characteristics (e.g.,
data polling rate, or expected value ranges) specified in a device profile.

— Processor nodes pull data from the devices at a rate configured in the device profile,
and dispatch this data to the database server.

— Database server stores the data collected from devices by processor nodes.

The main objective of DCAS is to collect data from the connected devices at a rate
as close as possible to the one configured in their device profiles, while making an
efficient use of the computational resources in the processor nodes. Specifically, the
primary concern in DCAS is providing service while maintaining acceptable levels of
performance, measured in terms of processed data requests per second (rps) inserted
in the database, while the secondary concern is minimizing the cost of operating the
system, which is directly proportional to the number of active processor nodes.

In situations in which new devices are connected to the network at run-time and all
available resources in the set of active processor nodes are already being used, DCAS
includes a scale out mechanism aimed at maintaining an acceptable performance level
by dynamically activating new processor nodes, according to the demand determined
by the new workload and operating conditions. DCAS scale out is a manual process car-
ried out by a human operator, who is notified by the system whenever a new processor
node must be deployed. This is a slow and demanding process in which a new pro-
cessor node must be manually deployed, and devices re-attached across the different
already active processor nodes to optimize the performance of the system, according to
the particular situation.

Note that in this scenario, the influence of latency on the outcome of adaptation dif-
fers from the case of Znn.com, since shorter times to execute adaptations or increasing
levels of stress in the operator (e.g., caused by several subsequent requests to carry out
tasks within a short timespan) may negatively affect the impact of adaptation tactics
on the qualities of the system (e.g., due to sub-optimal reattachment of devices across
different processor nodes).

To compare latency-aware and non-latency-aware adaptation in scenarios like the
one described above, we modeled a DCAS scale out scenario as a SMG in which the
focus is on the interactions between the adaptation requests issued by the system, and
their execution as carried out by a single human operator. Hence, in our DCAS SMG,
the environment player is neutral, and only keeps track of the execution time.

The system player controls two processes: (i) adaptation manager models the DCAS
adaptation manager, including a single tactic (addPN) that requests the deployment
of a processor node to the human operator and can be triggered non-deterministically
at each time step of the game; and (ii) target system models the behavior of the target
system, including the human operator. The system process includes state variables to
represent the performance and cost of the system, as well as a tactic latency counter
to keep track of the progress of the tactic, and a queue representing requests to deploy
processor nodes. Figure 5 shows the logic for the turn of the system player in the SMG:9

— If the DCAS adaptation manager triggers the adaptation tactic (1):
— If the tactic latency counter is disabled (i.e., the human operator is available), the

counter is enabled (initialized with value TAU) if the tactic’s latency is not zero

9Although the target system process is encoded following the pattern shown in Listing 3, we present here a
graphical representation of the logic encoded for the sake of clarity.
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Fig. 5: System player turn logic in DCAS SMG

(2). If the tactic has no latency, the effects of the tactic’s execution are updated in
the state variables that encode system qualities for performance and cost (3).

— If the tactic’s latency counter is enabled (i.e., the operator is already busy de-
ploying a processor node), the request for tactic execution is enqueued, and the
latency counter is updated by increasing it in TAU (4).

— If the adaptation tactic is not triggered, the latency counter is updated. If the latency
counter value has already matched the tactic’s latency, the state variables encoding
system qualities are updated to reflect the completion of the tactic’s execution, and
the latency counter is disabled (5). Next, if the queue with requests for tactic ex-
ecutions is not empty, a request is dequeued, and the latency counter is enabled
again (6). This part of the logic, along with step (4) models the sequential execution
of tactics that the human operator carries out when she receives requests from the
adaptation manager while busy.

In our game, we also encode a penalty in the increment of performance upon comple-
tion of the tactic which is directly proportional to the amount of requests made by the
adaptation manager during the latency period of the tactic. This models an increment
in the stress level of the operator, who is more likely to perform a sub-optimal re-
attachment of devices when deploying the processor node under more pressing work-
load conditions.10

Our experiments compare the results for the utility extracted from the system in the
worst-case scenario by a latency-aware vs. a non-latency-aware version of the system
player, for a model of DCAS scale out that represents an execution of the system dur-
ing 500 minutes. The models consider up to a maximum of 5 processor nodes, out of
which one is initially active. The period duration TAU is set to 10 minutes, and for each

10Although there are different possibilities when modeling the influence of requests on the operator while
busy (e.g., modifying the latency of the tactic according to a probabilistic distribution), we chose to employ a
simple penalty in impact for the sake of simplicity.
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Latency LA NLA ∆Urga

(minutes) Urga/Uega Uega Urga (%)
TAU 359.7 385.8 359.7 0

2 * TAU 339.6 382.8 335.1 1.32
3 * TAU 319.4 379.8 313.6 1.81
4 * TAU 299.7 376.9 292.0 2.56
5 * TAU 281.6 374.0 270.4 3.97
6 * TAU 264.0 365.4 248.8 5.75
7 * TAU 253.0 355.0 232.8 7.98
8 * TAU 243.7 349.0 206.2 15.38
9 * TAU 234.4 346.0 197.3 15.82

10 * TAU 225.0 344.0 193.0 14.22

Fig. 6: Model checking results for DCAS scale out SMG

version of the model, we compute the results for ten variants with different latencies
for the activation of servers of up to 10 * TAU minutes.We employ the following utility
functions and preferences: UP(rps) =

rps

rpsmax
maps high levels of processed requests

per second inserted in the database (rps) to high utility by dividing it by the maxi-
mum level of achievable rps in the system rpsmax, which is computed according to the
number of devices in the system and the data polling rates configured in their device
profiles. In contrast, UC(pn) = 1− pn

pnmax
maps higher costs (derived from the number

of active processor nodes, pn) to lower utility values. Cost utility becomes 0 when pn
reaches the maximum number of available nodes pnmax. The utility preferences used
for our experiments are wUP

= 0.8 and wUC
= 0.2.

The results shown in Figure 6 indicate that latency-aware outperforms non-latency-
aware adaptation in all cases. In particular, latency-aware adaptation is able to guar-
antee an increment in utility extracted from the system (∆Urga) that ranges between
approximately 0 and 15%, increasing progressively with higher tactic latency. This re-
sults from the fact that non-latency-aware adaptation is unable to factor in the penalty
associated with requesting tactic executions before the completion of an ongoing tactic
execution, and follows the strategy of requesting the activation of all processor nodes
at the beginning of the system’s execution.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a novel approach to choosing adaptations that consid-
ers latency information, using Znn.com for illustration purposes. The approach makes
a complementary use of model checking of stochastic multiplayer games (SMGs) and
a novel latency-aware proactive adaptation algorithm. While model checking of SMGs
enables us to understand potential improvements by analyzing boundary cases of of
adaptation even before developing specific algorithms or infrastructure, it does not
provide a suitable mechanism to make adaptation choices at runtime. To fill this gap,
we proposed a proactive adaptation latency-aware algorithm, which we simulated to
obtain a more detailed understanding of adaptation behavior and check whether the
results fall within boundary cases predicted by SMGs.
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Regarding model checking of SMGs, we have shown how this technique is used
to compare latency-aware and non-latency aware adaptation. Our results show that
latency-aware adaptation performs better than non-latency-aware adaptation both in
the worst- and best-case scenarios, with progressively increasing improvements with
higher tactic latencies in the worst case. Moreover, results indicate that not consid-
ering latency information in decision-making can potentially inhibit the selection of
adaptations that could help improve the performance of adaptation.

Concerning the latency-aware proactive adaptation algorithm, we compared it
against the proactive algorithm presented in [Poladian et al. 2007], which does not
consider latency, showing that latency-aware adaptation achieves higher utility. In ad-
dition, we have presented an approach to compute adaptation feasibility, a key compo-
nent of latency-aware adaptation, using formal specification and analysis of adaptation
tactics using Alloy.

A current limitation of the model checking part of the approach is that its scalability
is limited by PRISM-games, which currently uses explicit-state data structures and is
to the best of our knowledge the only tool supporting model-checking of SMGs. How-
ever, the foreseeable development of symbolic (BDD-based) versions of SMG analysis
tools will improve scalability. Another limitation concerns the current lack of an im-
plementation (e.g., based on Rainbow) to measure the actual improvement obtained by
our latency-aware algorithm.

With respect to future work, our two-pronged approach combines the strengths of
algorithm-agnostic formal verification with those of simulating specific adaptation al-
gorithms, and can be generalized to different contexts. In particular, we are working on
applying this approach to self-protecting systems, studying how different adaptation
alternatives can minimize the damage that an attacker can inflict upon a defending
system [Schmerl et al. 2014]. We also aim at refining the approach to do run-time syn-
thesis of proactive adaptation strategies based on SMGs. Concerning latency-aware
adaptation, we aim at exploring how tactic latency information can be further ex-
ploited to attain better results both in proactive and reactive adaptation (e.g., par-
allelizing tactic executions). We will also generalize the algorithm to consider the un-
certainty of the predictions of the environment.

APPENDIX
The algorithm for proactive latency-aware adaptation presented in this paper relies
on the functions isReachableNow(c′) and isReachableFromConfig(c, c′) to determine
the feasibility of possible adaptations. As described in Section 4.1.1, we used formal
specification of adaptation tactics in Alloy, and the Alloy analyzer to compute these
functions off-line. The result is encoded as simple lookup tables for runtime use.

The basic definitions of the specification used to compute the reachability functions
is shown in Listing 5. These definitions introduce the sets S, A, and C, representing
the number of servers, the progress of the tactic to add a server, and the possible
configurations the system can have. The elements of S and A are not numbers, but
just abstract elements of an ordered set. It is possible to refer to the first and last
element of the set that represents the possible levels of active servers as servers/first
and servers/last, respectively. The relationships prev and next allow referring to the
previous and next element in the ordered set. The signature C defines the set of all
possible configurations. Without additional constraints, Alloy could generate elements
of C with the same number of servers, progress of the tactic, and fidelity level. The
constraint in line 11 is used to force all elements of the set to be unique configurations.

The specification of the tactics is shown in Listing 6. The tactic to add a server
is decomposed into two predicates due to its latency. The first predicate (lines 1-5)
specifies the start of the tactic. This predicate has two arguments c and c′, representing
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1 open util/ordering[S] as servers
2 open util/ordering[A] as progress
3 open util/boolean
4 sig S {} // the different number of active servers
5 sig A {} // the different levels of progress of the add server tactic
6 sig C { // each element of C represents a configuration
7 s : S, // the number of active servers
8 a : A, // the progress of the add server tactic
9 f : Bool // fidelity level

10 }
11 fact uniqueInstances { all disj c, c2 : C | !(c2.s = c.s and c2.a = c.a and c2.f = c.f) }

Listing 5: Alloy model of configuration reachability: basic definitions

the pre- and post-state, respectively. For the tactic to be able to start, it is required
that no tactic is running, and that the configuration in the pre-state is not the last
level of servers (i.e., the configuration has less than the maximum number of servers).
In the post-state, the only change to the configuration is that the level of progress
of the tactic is the first one. The tactic in the post-state has been started and will in
subsequent steps go through all the levels of progress until it reaches the last one when
it completes. The other predicate (lines 6-11) specifies how the configuration changes
when the tactic makes progress in one evaluation period. The tactic can only make
progress if it has not completed in the pre-state. In the post-state, the configuration
will have the same fidelity level, and the next level of progress. If the latter is the last
level of progress, then the tactic has completed and the post-state configuration has
one more active server. Otherwise, the number of servers stays the same. The tactics
for removing a server (lines 13-17) and for changing the fidelity (lines 18-22) do not
have latency, and, therefore, do not need to be split into start and progress as the other
tactic. If no tactic is running, the system can just stay in the same configuration. In
the model, the predicate in lines 23-26 is used to allow that behavior.

Listing 6 also defines the configuration reachability predicates. For isReachableNow
(lines 27-29), configuration c′ can be reached from c trivially if they are the same
configuration, or if c′ is the configuration resulting from starting a tactic when the
system is in configuration c, and no passage of time is allowed. In the case of
isReachableFromConfig (lines 30-32), configuration c′ can be reached from c after one
evaluation period if the configuration that results from letting one period to elapse,
configuration temp, is such that configuration c′ can be reached from temp without any
more passage of time. The predicate timeStep (line 33) is used for the first part of this
condition, and isReachableNow is reused for the second part.

The Alloy code in Listing 7 is used to generate the reachability functions. Each predi-
cates is used to generate the elements of the relationship Result.reachable for each of
the reachability functions. The commands in lines 8-9 run the Alloy analyzer to gener-
ate the relationships that satisfy the corresponding predicates. The command specifies
how many elements the solution should have in each set. For our example, when the
latency of the tactic to add a server is 3τ , the solution must have 4 servers, 3τ + 1 = 4
levels of progress for the tactic, and two fidelity levels, for a total of 32 configurations.11

Additionally, the run should produce one result. The output of the Alloy analyzer can
be exported, and transformed to a format suitable for its use at runtime.
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1 pred addServerTacticStart[c, c’ : C] {
2 !tacticRunning[c] and c.s != servers/last
3 c’.a = progress/first
4 c’.s = c.s and c’.f = c.f
5 }
6 pred addServerTacticProgress[c, c’ : C] {
7 c.a != progress/last
8 c’.a = progress/next[c.a]
9 c’.a = progress/last implies c’.s = servers/next[c.s] else c’.s = c.s

10 c’.f = c.f
11 }
12 pred tacticRunning[c : C] { c.a != progress/last }
13 pred removeServerTactic[c, c’ : C] {
14 !tacticRunning[c] and c.s != servers/first
15 c’.s = servers/prev[c.s]
16 c’.a = c.a and c’.f = c.f
17 }
18 pred changeFidelityTactic[c, c’ : C] {
19 !tacticRunning[c]
20 c’.f = Not[c.f]
21 c’.s = c.s and c’.a = c.a
22 }
23 pred noOp[c, c’ : C] {
24 !tacticRunning[c]
25 c’.s = c.s and c’.a = c.a and c’.f = c.f
26 }
27 pred isReachableNow[c, c’ : C] { // is c’ reachable now if current config is c?
28 c = c’ or removeServerTactic[c, c’] or addServerTacticStart[c, c’] or changeFidelityTactic[c, c’]
29 }
30 pred isReachableFromConfig[c, c’ : C] { // is c’ reachable from config c in one evaluation period?
31 one temp : C | timeStep[c, temp] and isReachableNow[temp, c’]
32 }
33 pred timeStep[c, c’ : C] { noOp[c, c’] or addServerTacticProgress[c, c’] }

Listing 6: Alloy model of configuration reachability: tactics and functions

1 sig Result { reachable : C−>C }
2 pred isReachableFromConfigGeneration {
3 one r : Result | all c1,c2 : C | c1−>c2 in r.reachable <=> isReachableFromConfig[c1,c2]
4 }
5 pred isReachableNowGeneration {
6 one r : Result | all c1,c2 : C | c1−>c2 in r.reachable <=> isReachableNow[c1,c2]
7 }
8 run isReachableFromConfigGeneration for exactly 4 S, exactly 4 A, exactly 32 C, exactly 1 Result
9 run isReachableNowGeneration for exactly 4 S, exactly 4 A, exactly 32 C, exactly 1 Result

Listing 7: Generation of configuration reachability tables in Alloy
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