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Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213, USA

Email: jcmoreno@cs.cmu.edu

Gabriel A. Moreno
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Email: gmoreno@sei.cmu.edu

David Garlan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213, USA
Email: garlan@cs.cmu.edu

Abstract—Self-adaptive systems overcome many of the limita-
tions of human supervision in complex software-intensive systems
by endowing them with the ability to automatically adapt their
structure and behavior in the presence of runtime changes.
However, adaptation in some classes of systems (e.g., safety-
critical) can benefit by receiving information from humans (e.g.,
acting as sophisticated sensors, decision-makers), or by involving
them as system-level effectors to execute adaptations (e.g., when
automation is not possible, or as a fallback mechanism). However,
human participants are influenced by factors external to the
system (e.g., training level, fatigue) that affect the likelihood
of success when they perform a task, its duration, or even if
they are willing to perform it in the first place. Without careful
consideration of these factors, it is unclear how to decide when to
involve humans in adaptation, and in which way. In this paper,
we investigate how the explicit modeling of human participants
can provide a better insight into the trade-offs of involving
humans in adaptation. We contribute a formal framework to
reason about human involvement in self-adaptation, focusing on
the role of human participants as actors (i.e., effectors) during
the execution stage of adaptation. The approach consists of:
(i) a language to express adaptation models that capture factors
affecting human behavior and its interactions with the system,
and (ii) a formalization of these adaptation models as stochastic
multiplayer games (SMGs) that can be used to analyze human-
system-environment interactions. We illustrate our approach in
an adaptive industrial middleware used to monitor and manage
sensor networks in renewable energy production plants.

I. INTRODUCTION

Software-intensive systems are increasingly relied upon to
support a wide variety of tasks in modern society. Still,
the ability of these systems to provide service that can be
trusted in the presence of changes, either in their environment
(e.g., resource availability) or the system itself (e.g., faults) is
increasingly affected by their growing complexity, as well as
by the dynamic and unpredictable nature of the environments
in which they typically have to operate.

Early attempts to address this situation involved human
supervision, which is expensive and unreliable, due to the
fallible nature of humans and their difficulty to react in a
timely manner.

Over the last decade, self-adaptive systems [11], [21], [22]
have emerged as an alternative that overcomes many of the
limitations of human supervision by endowing systems with
mechanisms to automatically adapt their structure and behavior

at run time. Self-adaptation approaches usually rely on closed-
loop controllers (e.g., implementing the MAPE-K model [22])
that eliminate human intervention from adaptation. Although
these fully automated approaches have proven successful in
many application domains, there are situations in which they
may be suboptimal, or simply do not suffice to effect changes
at the system level (e.g., when adaptations involve physical
changes to the system that cannot be automated).

In particular, the different activities of the MAPE-K loop in
some classes of systems (e.g., safety-critical) and application
domains can benefit from human involvement by: (i) receiv-
ing information difficult to automatically monitor or analyze
from humans acting as sophisticated sensors (e.g., indicating
whether there is an ongoing anomalous situation), (ii) incor-
porating human input into the decision-making process to
provide better insight about the best way of adapting the
system, or (iii) employing humans as system-level effectors
to execute adaptations (e.g., in cases in which full automation
is not possible, or as a fallback mechanism).

However, the behavior of human participants is typically
influenced by factors external to the system itself (e.g., train-
ing level, stress, fatigue) that determine their likelihood of
succeeding at carrying out a particular task, how long it will
take, or even if they are willing to perform it in the first place.
Without consideration of these factors, how can the system
decide when to involve humans in adaptation, and in which
way?

Answering these questions demands new approaches to
systematically reason about how the behavior of human par-
ticipants, incorporated as integral system elements, affects the
outcome of adaptation. In this paper, we investigate the prob-
lem of how the explicit modeling of human factors can provide
a better insight into the trade-offs of involving humans in
adaptation. In particular, we contribute a formal framework to
reason about human involvement in self-adaptation, focusing
on the role of human participants as actors (i.e., effectors)
during the execution stage of adaptation. The backbone of
the approach consists of two parts: (i) an extended version of
a language to express adaptation models with elements that
capture some of the main factors that affect human behavior
and its interactions with the system, and (ii) a formalization
of the extended adaptation models as stochastic multiplayer



games (SMGs) that can be used to analyze human-system-
environment interactions.

To explore these issues, we propose the extension of the
Stitch language [12] employed in the Rainbow framework for
self-adaptation [19] with elements inspired from opportunity-
willingness-capability models employed in cyber-human sys-
tems [17] that capture major factors having an influence in
human participant behavior. We illustrate our approach in the
context of an adaptive industrial middleware that is used to
monitor and manage highly populated networks of devices in
renewable energy production plants.

This paper is organized as follows. In Section II, we
present DCAS, the system that we employ to illustrate
our approach. Section III introduces related work in the
areas of self-adaptive systems, business process modeling,
and cyber-human systems, outlining some of the major
requirements for the approach. Section IV details the formal
basis for mixed-initiative adaptation in the context of Stitch.
In Section V we show how the formal modeling of human-
in-the-loop adaptation in Rainbow can be leveraged through
the use of probabilistic model checking of SMGs to reason
about the combined behavior of human participants with a
self-adaptive system. Finally, Section VI presents conclusions
and directions for future work.

II. MOTIVATING SCENARIO

The Data Acquisition and Control Service (DCAS) [5] is
a middleware from Critical Software that provides a reusable
infrastructure to manage the monitoring of highly populated
networks of devices equipped with sensors. In particular,
the middleware is designed to be seamlessly integrated with
Critical’s Energy Management System (csEMS)1, which is a
platform that provides asset management support for power
producing companies based on renewable energy sources. The
overall csEMS architecture aims at high scalability, flexibility
and customization with management capabilities that enable
the operation of control centers independently of the underly-
ing application (e.g., wind, solar, etc.).
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Fig. 1. Architecture of a DCAS-based system.

1) Overview of the Architecture: The basic building blocks
in a DCAS-based system (Figure 1) are: 2

• Devices are equipped with one or more sensors to obtain
data from the application domain (e.g., from wind towers,

1http://solutions.criticalsoftware.com/products services/csems/
2We herein consider a simplified version of the DCAS architecture. Further

details about DCAS can be found in [5].

solar panels, etc.). Each sensor has an associated data
stream from which data can be read. Each type of device
has its particular characteristics (e.g., data polling rate, or
expected value ranges) specified in a device profile.

• Processor nodes pull data from the devices at a rate
configured in the device profile, and dispatch this data
to the database server. Each processor node includes a
set of processes called Data Requester Processor Pollers
(DRPPs or pollers, for short) responsible for retrieving
data from the devices. Communication between DRPPs
and devices is synchronous, so DRPPs remain blocked
until devices respond to data requests or a timeout ex-
pires. This is the main performance bottleneck of DCAS.

• Database server stores the data collected from devices
by processor nodes.

• Application server is connected to the database server
to obtain data, which can be presented to the operators
of the system or processed automatically by application
software. However, DCAS is application-agnostic, so the
application server will not be discussed in the remainder
of this paper.

The main objective of DCAS is to collect data from the
connected devices at a rate as close as possible to the one
configured in their device profiles, while making an efficient
use of the computational resources in the processor nodes.
Specifically, the primary concern in DCAS is providing service
while maintaining acceptable levels of performance, measured
in terms of processed data requests per second (rps) inserted
in the database, while the secondary concern is optimizing the
cost of operating the system, which is mapped to the number
of active processor nodes (i.e., each active processor node has
a fixed operation cost per time unit).

2) Adaptation Mechanisms: DCAS implements three adap-
tation mechanisms to maintain an acceptable level of per-
formance while making an efficient use of computational
resources:
• Rescheduling aims at avoiding performance degradation

caused by devices that fail to respond in a timely manner
when polled. It consists in decreasing the priority of the
data streams associated with the failing devices, so that
they are polled less often (thus reducing the average time
that DRPPs remain blocked waiting for device data).

• Scale up aims at improving performance by exploiting as
much as possible CPU and memory in active processor
nodes by (de)activating DRPPs as required.

• Scale out aims at maintaining an acceptable performance
level when new devices are connected to the network
at runtime and all available resources in the set of
active processor nodes are already being used. This is
achieved by dynamically activating new processor nodes,
according to the demand determined by the new system’s
workload and operating conditions. Scale out can be
performed in two different ways:
– As a manual process carried out by a human operator.

This is a slow and demanding process, in which a



new processor node must be manually deployed, and
devices re-attached across the different already active
processor nodes, according to the particular situation.
Specifically, the process followed by a human operator
to perform scale out consists of the following steps:
1) determine which (possibly new) devices need to be

attached to a processor node,
2) decide which of those devices can be attached to

a currently active processor node, and which must
be attached to a new one,

3) restart active processor nodes that have been as-
signed new devices, and

4) deploy and activate new processor node(s).
– As an automated process that can be executed by

adaptation logic residing in an closed control loop.3

Although this process is faster than the manual version
of scale out and does not require any human interven-
tion, it is less effective in terms of exploiting system
resources, since only new devices can be attached to
the new (pre-deployed) processor nodes being activated
(i.e., devices already attached to other processor nodes
cannot be re-attached, restricting the space of target
configurations that the system can adopt with respect
to the manual variant of scale out).

We illustrate our approach by focusing exclusively on the
trade-offs of employing the two variants of scale out, since
scale up and rescheduling are fully automated adaptations
carried out locally on each processor node, according to the
changing conditions of the devices that they are attached to.

III. RELATED WORK

Deciding whether humans should be involved in the execu-
tion of adaptation is no easy task, since their behavior and the
outcome of their actions can be affected by transient factors
such as changing levels of attention and load, fixed attributes
(e.g., level of expertise in carrying out a particular task), or
even their physical context (e.g., access to different locations,
timing issues). These factors constitute an additional source of
uncertainty affecting the self-adaptive system (acknowledged
by Esfahani and Malek as uncertainty due to human in the
loop [16]) that needs to be managed if we want to answer the
following questions:
Q1: How can the outcome of adaptation be predicted if human

actors are involved in its execution?
Q2: How can it be determined whether human actors should

be involved in adaptation?
While answering Q1 calls for employing models of human

characteristics sufficient for representing the probabilistic na-
ture of human behavior and its interaction with the system,
Q2 also demands exploring mechanisms suitable to compare
candidate solutions that might include human-system collabo-
rations, as well as fully automated adaptations.

3In this paper, we refer to an automated version of scale out implemented
on a Rainbow-based prototype of DCAS [4].

Some existing approaches in self-adaptation that automat-
ically generate adaptation plans at runtime are able to rank
candidate solutions by analyzing trade-offs among different
qualities [27] or consider uncertainty when tuning the oper-
ation of the system (e.g., by dynamically adjusting parame-
ters [3], [15]). However, there are no approaches to the best
of our knowledge able to rank candidate solutions by factoring
in uncertainty, rendering these approaches insufficient for
generating adaptation plans involving humans.

Other approaches in self-adaptation that rely on selection
of adaptation strategies defined by a designer at development
time [19], [26] are also able to rank candidate solutions by an-
alyzing trade-offs among different quality concerns. Moreover,
these approaches are sometimes able to deal with some aspects
of uncertainty and timing [19]. However, these proposals are
limited to ranking and selection of fully automated adaptations,
since the knowledge models they employ are unable to capture
the multiple facets of uncertainty derived from human behavior
that affect the outcome of adaptations.

While all the aforementioned approaches focus exclusively
on fully automated adaptations, Dorn and Taylor [14] intro-
duce a framework that enables a system adaptation manager to
reason about the effects of software-level changes on human
interactions and vice-versa by mapping a model of what they
describe as human architecture (described in a language called
hADL) to a model of the system’s architecture updated at
runtime. This approach focuses on the collaboration topology
and is able to rank collaboration-(un)aware adaptations to
select the best course of action, although it does not explicitly
consider uncertainty derived from human behavior as a major
factor affecting the outcome of adaptations.

Outside of the scope of self-adaptive systems, some ap-
proaches in the business process modeling domain include
some aspects of human involvement, providing constructs for
describing human activities in business processes and their
dependencies [13], [28]. These languages target primarily
service-oriented architectures and have limited or no support
for other common architectural styles.

Eskins and Sanders [17] introduce a definition of a
cyber-human system (CHS) and the opportunity-willingness-
capability (OWC) ontology for classifying CHS elements with
respect to system tasks. This approach provides a structured
and quantitative means of analyzing cyber security problems
whose outcomes are influenced by human-system interactions,
reflecting the probabilistic nature of human behavior.

If we contrast questions Q1 and Q2 with the characteristics
of the related approaches described in this section, we can list
a set of requirements that a suitable approach to our problem
should satisfy:
R1: The approach must include a value system that enables

candidate solution ranking, allowing context-sensitive
adaptation.

R2: The approach must be able to consider uncertainty as a
primary factor that conditions the effectiveness of tasks
or adaptations.



TABLE I
REQUIREMENTS SATISFIED BY RELATED APPROACHES.

Area Approach R1 R2 R3 R4 R5
Self-adaptive Systems Sykes et al. [27] X X

Calinescu et al. [3] X X
Epifani et al. [15] X X
Cheng et al. [19] X X X X
Oreizy et al. [26] X X
Dorn & Taylor [14] X X X

Business Process BPMN [28] X X
Modelling WSBPEL4People [13] X X

Cyber-Human Systems Eskins & Sanders [17] X X

R3: The approach must consider timing delays that capture
the notion of task or adaptation latency.

R4: The approach must be able to represent and enable the
analysis of human participant behavior.

R5: The approach must provide support for a variety of
architectural styles.

Although the approaches described in this section partially
satisfy these requirements (see Table I), in this paper we pro-
pose an approach that combines the strengths of the Rainbow
framework for self-adaptation [19] and the OWC ontology
described in [17]. On the one hand, Rainbow includes a
value system based on utility to rank candidate adaptations,
explicit time delays to observe the effects of adaptation actions
executed upon the target system, and is able to account for
uncertainty in the selection of adaptive actions. On the other
hand, OWC models provide the concepts required to capture
human factors that can influence adaptation, some of which
are of a probabilistic nature.

In previous work [7], we presented an analysis technique
based on model checking of SMGs to quantify the potential
benefits of employing different types of algorithms for self-
adaptation. Specifically, the paper shows how the technique
enables the comparison of alternatives that consider tactic
latency information for proactive adaptation with those that
are not latency-aware. In this paper, we apply this analysis
technique to the context of human-in-the-loop adaptation,
extending SMG models with elements that encode an extended
version of Stitch adaptation models with OWC constructs.

IV. HUMAN-IN-THE-LOOP ADAPTATION IN RAINBOW

In this section, we first introduce the main concepts behind
the Stitch language for self-adaptation, illustrating them with
some examples in DCAS. Then, we present a candidate model
for quantifying how human involvement in the execution of
adaptation can affect system objectives. This model is inspired
by the OWC ontology described in [17]. Finally, we describe
how the concepts behind Stitch and the proposed OWC model
can be combined to capture descriptions of adaptations that
involve collaborations among the system and human actors.

A. Adaptation Model

Although many proposals that rely on closed-loop control
exploit architectural models for adaptation [19], [23], [26], in

this paper we use some of the high-level concepts in Stitch [12]
as a reference framework to illustrate our approach. Stitch
is the language employed by the Rainbow framework [19]
to describe automated repairs based on an architectural de-
scription of the underlying target system. Rainbow has among
its distinct features an explicit architecture model of the
target system, a collection of adaptation tactics, and utility
preferences to guide adaptation.

We assume a model of adaptation that represents adaptation
knowledge using the following high-level concepts:4

1) Tactic: is a primitive action that corresponds to a single
step of adaptation. For instance, in DCAS we can specify pairs
of tactics with opposing effects for (de)activating processor
nodes, or scale up/down the number of DRPPs active in a
given processor node. Listing 1 shows an example tactic for
activating a processor node in DCAS. Line 7 specifies the
applicability condition, which says that the tactic may be
chosen if there is a processor node available not currently
active (predicate defined in line 1). Lines 8-17 specify the
action, which is to select a single processor node among
those currently inactive (line 9), select a set of devices of
size MAX DEVS PN (a constant that represents the maximum
number of devices that can be attached to a processor node)
among those that are currently not assigned to a processor
node (line 10). Next, the selected devices are assigned to the
processor node selected (lines 12-13), and finally the operation
to enable the processor node is called (line 15). Line 18 states
that the tactic succeeds only if all devices are attached to some
processor node. Note that if the tactic starts with set.Size(UDevs)
> M.MAX DEVS PN, the tactic will not be able to produce
its intended effect because the selection of a subset of size
M.MAX DEVS PN is done only once (line 10). This failure exit
status for the tactic is useful as feedback indicating that more
processor nodes may need to be activated.

1 define boolean PNA=exists n:ProcessorNodeT in M.components |
!n.isActive;

2 define set ActivePNs={select n:ProcessorNodeT in M.components |
!n.isActive};

3 define set UDevs={select d:DeviceT in M.components | d.location=−1};
4 define boolean unprocessedDevices=set.Size(UDevs)>0;
5 ...
6 tactic activatePN () {
7 condition {PNA}
8 action {
9 set pn = set.RandomSubset (ActivePNs,1);

10 set devs=set.RandomSubset (UDevs, M.MAX DEVS PN);
11 for (ProcessorNodeT n : pn) {
12 for (DeviceT d : devs) {
13 M.assignDeviceToPN(d, n.id);
14 }
15 M.enablePN(n, true);
16 }
17 }
18 effect {!unprocessedDevices;}
19 }

Listing 1. Tactic for activating a processor node in DCAS.

Tactics have an associated cost/benefit impact on the dif-
ferent dimensions of concern in the system. Table II shows

4We use a simplified version of Stitch [12] to illustrate the main ideas in
this paper.



the different tactics in DCAS, and their impacts on quality
dimensions:5 activatePN is an automated tactic that activates a
previously deployed processor node, reducing response time
and increasing operation cost, whereas addPN is carried out
by a human actor and has also a beneficial impact on perfor-
mance, and detrimental in cost. Although the impact on cost
is the same as in activatePN, the impact on performance will
typically be higher, since a human operator is less constrained
than the automated approach to exploit the available processor
nodes by re-attaching devices properly. However, the downside
of tactic addPN is that it typically has a much higher latency
(i.e., the time it takes since a tactic is triggered, until its effects
can be observed) than activatePN. Note that, to obtain both
the latency and impact on the different quality dimensions
of tactics in practice, the approach relies on expert knowl-
edge or field data about similar existing systems, although
nothing prevents the use of machine learning techniques to
obtain that information. Although in this paper we consider
fixed cost/benefit impacts for illustration purposes, Stitch also
supports the specification of sophisticated impact models that
are context-sensitive, and can capture probabilistic aspects in
the outcome of tactic executions [6].

TABLE II
COST/BENEFIT FOR DCAS TACTICS.

Tactic Performance (P) Cost (C)
∆ Requests Per Second (rps) ∆UP ∆ Operating Cost (usd/hr) ∆UC

activatePN +80 ↑ +1.0 ↓
addPN +150 ↑↑ +1.0 ↓

2) Strategy: encapsulates an adaptation process, where each
step is the conditional execution of a tactic. Strategies are
characterized in Stitch as a tree of condition-action-delay
decision nodes, where delays correspond to a time window
for observing tactic effects. System feedback (through the
dynamically-updated architectural model of the system) is
used to determine the next tactic at every step during strategy
execution.

1 strategy ScaleOut
2 [unprocessedDevices] {
3 t0a: (maxAssignedDevices) −> : activatePN()@[10000] {
4 t0aa: (success) −>done;
5 t0ab: (fail) −> TNULL;
6 }
7 t0b: (fail) −> TNULL;
8 }

Listing 2. Strategy for activating a processor node automatically.

Listing 2 shows the Stitch code for a simple scale out
adaptation strategy in DCAS: line 2 specifies the applicability
condition that needs to be satisfied for the strategy to be
eligible for execution (in this case, predicate unprocessedDe-
vices indicates that there are new devices in the network that
need to be attached to a processor node). In the body of

5The table also provides an intuition of how the different tactics affect the
utility for every particular dimension (the number of upward or downward
arrows is directly proportional to the magnitude of utility increments and
decrements, respectively).

the strategy, node t0a (line 3) executes tactic activatePN if the
guard maxAssignedDevices evaluates to true (i.e., if the set of
active processor nodes are already attached to the maximum
number of devices they support). To account for the delay
in observing the outcome of tactic execution in the system
(settling time), t0a specifies a time window of 10 seconds,
after which, if the tactic’s intended effect (as defined in the
tactic script – Listing 1, line 18) is observed, successful tactic
completion (keyword success, line 4) leads to the end strategy
execution in normal conditions through node t0aa (keyword
done). Otherwise, if the intended tactic effect is not observed
after the delay window expires (keyword fail, line 5), the
strategy exits with an error status via node t0ab. An additional
condition-action-delay node (t0b, line 7) also exits the strategy
with an error status if the guard of node t0a is false, and tactic
activatePN cannot be executed in the first place.

3) Utility Profile: to enable the selection of strategies
at runtime, we assume that adaptation is driven by utility
functions and preferences, which are sensitive to the context of
use and able to consider trade-offs among multiple potentially
conflicting objectives. The different qualities of concern are
characterized as utility functions that map them to architectural
properties. Table III summarizes an example of utility func-
tions for DCAS. Function UP maps high levels of processed
requests per second inserted in the database (rps) to high
utility by dividing it by the maximum level of achievable rps
in the system rpsmax, which is computed according to the
number of devices in the system and the data polling rates
configured in their device profiles.

In contrast, function UC maps higher costs (derived from
the number of active processor nodes – pn) to lower utility
values. Cost utility becomes 0 when pn reaches the maximum
number of available nodes pnmax. Utility preferences capture
business preferences over the quality dimensions, assigning a
weight to each one of them (e.g., weights wUP

= 0.8 and
wUC

= 0.2 indicate that performance is the main concern in
the system).

TABLE III
UTILITY FUNCTIONS FOR DCAS.

Performance (P) Cost (C)
UP(rps) =

rps

rpsmax
UC(pn) = 1−

pn

pnmax

B. Human Model

Attributes of human actors that might affect interactions
with the system are captured in a model inspired by an
opportunity-willingness-capability (OWC) ontology described
in the context of cyber-human systems [17]. These models
extend the description of the underlying system’s architecture,
and can incorporate multiple human actor types (e.g., human
actor roles specialized in different tasks), each of which can
have multiple instances (e.g, operators with different levels of
training in a particular task). In particular, attributes of human
actor types can be categorized into:

1) Opportunity: captures the applicability conditions of the
adaptation tactics that can be executed by human actors upon



the target system, as constraints imposed on the human actor
(e.g., by the physical context – is there an operator physically
located on site?).

Example 1: We consider a tactic to have a human actor
manually deploy a processor node (addPN) when performing
scale out in DCAS. Opportunity elements are OEaddPN =
{L,B}, where L represents the operator’s location, and B
tells us whether the operator is busy doing something else:
• L.state ∈ {operator on location (ONL), operator off

location (OFFL)}.
• B.state ∈ {operator busy (OB), operator not busy

(ONB)}.
Using OEaddPN, we can define an opportunity function for

the tactic f addPNO = (L.state==ONL)·(B.state==ONB)
that can be used to constrain its applicability only to situations
in which there is an operator on location who is not busy.

2) Willingness: captures transient factors that might affect
the disposition of the operator to carry out a particular task
(e.g., load, stamina, stress). Continuing with our example,
willingness elements in the case of the addPN tactic can be de-
fined as WEaddPN = {S}, where S.state ∈ [0, 10] represents
the operator’s stress level. A willingness function mapping
willingness elements to a probability of tactic completion can
be defined as f addPNW = prW (S.state), with prW : S → [0, 1].

3) Capability: captures the likelihood of successfully car-
rying out a particular task, which is determined by fixed
attributes of the human actor, such as training level. In our
example, we define capability elements as CEaddPN = {T},
where T represents the operator’s level of training (e.g.,
T.state ∈ [0, 1]). We define a capability function that maps
training level to a probability of successful tactic performance
as f addPNC = prC(T.state), with prC : T → [0, 1].

C. Integrating Human and Adaptation Models

Incorporation of OWC elements for adaptation execution
in Stitch affects the specification of different elements in
adaptation tactics and strategies.

1) Tactics: In tactics involving humans, constraints that
affect the applicability of a tactic can be derived either from
the human model (opportunity elements), or properties of the
architecture itself (e.g., are there any available processor nodes
to deploy?). In general, applicability conditions of these tactics
will be a combination of both. In Listing 3, we can observe
how the condition block of tactic addPN (line 5) combines
opportunity elements from the human model (operator on
location and not busy – predicate ONLNB, defined in line 1),
with a predicate defined over the properties of the architecture
(processor node available – PNA, defined in line 2).

The action block of these tactics can execute automated
operations, as in the case of tactic activatePN (Listing 1), but
also notify human actors to perform a task. The action block of
of tactic addPN (Listing 3, lines 6-8) first selects an available
processor node (line 6), and then an available operator on
location (line 7). Finally, it notifies the selected operator that
she has to activate the previously selected processor node via
a text message communicating its id.

1 define boolean ONLNB=exists o:operatorT in M.participants | o.onLocation
&& !o.busy;

2 define boolean PNA=exists n:ProcessorNodeT in M.components |
!n.isActive;

3 ...
4 tactic addPN(){
5 condition {ONLNB && PNA;}
6 action {pn=Set.RandomSubSet(ActivePNs,1);
7 ao=Set.RandomSubSet({select o:operatorT in M.participants

| o.onLocation && !o.busy},1);
8 notify(ao, ”Deploy processor node: %s”, pn.id);}
9 effect {!unprocessedDevices;}

10 }

Listing 3. Tactic for adding a processor node via human operator.

2) Strategies: Fully automated, as well as tactics involving
humans can be combined to achieve better outcomes in adapta-
tion strategies. Listing 4 shows strategy ScaleOutOp for scaling
out the system, first by notifying an operator (via tactic addPN,
line 3) to manually deploy and activate a processor node. If the
assigned time window of 50 seconds expires and the intended
effect of the tactic (!unprocessedDevices) is not observed, the
strategy executes the automated activatePN tactic as a fallback
mechanism (line 4).

1 strategy ScaleOutOp
2 [unprocessedDevices] {
3 t0 : (maxAssignedDevices) −> addPN()@[50000] { // add PN, wait 50s
4 t0a: (fail) −> : activatePN()@[10000] { // If failed, activate PN
5 t0aa: (success) −>done;
6 t0ab: (fail) −> TNULL;
7 }
8 t0b: (fail) −> TNULL;
9 }

10 }

Listing 4. Strategy combining automated/manual tactics for activating
a processor node.

V. REASONING ABOUT HUMAN-IN-THE-LOOP
ADAPTATION

When defining a collection of adaptation strategies and
their associated utility profile, we need to guarantee not only
that the system will carry out reasonable choices under all
possible circumstances, but also that the effect of those choices
combined with the behavior of human participants will have
a reasonable impact on business concerns. To provide such
guarantees, we make use of a formal model based on an
abstraction of the extended Stitch profile for human-in-the-
loop adaptation presented in Section IV that enables us to
reason about: (i) the choices made by the adaptation manager
for adaptation strategy selection, and (ii) the impact of the
execution of selected adaptation strategies on the target system.

Our modeling approach for human-in-the-loop adaptation
consists in describing a stochastic multiplayer game in which
we consider that one of the players is the adaptive system
(including both automatic mechanisms and human actors)
and the other is the environment within which the system
operates. The goal of the system player is to maximize accrued
utility during the system’s execution (encoded formally as a
reward structure), while we consider the environment to be an
antagonistic player that tries to minimize that same reward.



In the remainder of this section, we first introduce some
background on model checking SMGs, the formal technique
that we use to formally reason about human involvement
in adaptation. Next, we provide a description of our DCAS
SMG model implemented in the probabilistic model-checker
PRISM-games [9], as well as the analysis and results that we
obtained for human-in-the-loop adaptation in the context of
DCAS scale out.

A. Model Checking Stochastic Multiplayer Games

Automatic verification techniques for probabilistic systems
have been successfully applied in a variety of application
domains that range from power management or wireless
communication protocols, to biological systems. In particular,
techniques such as probabilistic model checking provide a
means to model and analyze systems that exhibit stochastic
behavior, effectively enabling reasoning quantitatively about
probability and reward-based properties (e.g., about the sys-
tem’s use of resources, or time).

Competitive behavior may also appear in (stochastic) sys-
tems when some component cannot be controlled, and could
behave according to different or even conflicting goals with
respect to other components in the system. In such situations,
a natural fit is modeling a system as a game between different
players, adopting a game-theoretic perspective. Automatic
verification techniques have been successfully used in this
context, for instance for the analysis of security [24] or
communication protocols [20].

Our approach to analyzing human involvement in adaptation
builds upon a recent technique for modeling and analyzing
SMGs [8]. In this approach, systems are modeled as turn-
based SMGs, meaning that in each state of the model, only
one player can choose between several actions, the outcome
of which can be probabilistic. Players can either cooperate to
achieve the same goal, or compete to achieve their own goals.

The approach includes a logic called rPATL for expressing
quantitative properties of stochastic multiplayer games, which
extends the probabilistic logic PATL [10]. PATL is itself an
extension of ATL [1], a logic extensively used in multiplayer
games and multiagent systems to reason about the ability
of a set of players to collectively achieve a particular goal.
Properties written in rPATL can state that a coalition of players
has a strategy6 which can ensure that either the probability of
an event’s occurrence or an expected reward measure meets
some threshold.

rPATL is a CTL-style branching-time temporal logic that
incorporates the coalition operator 〈〈C〉〉 of ATL, combining
it with the probabilistic operator P./q and path formulae from
PCTL [2]. Moreover, rPATL includes a generalization of the
reward operator Rr

./x from [18] to reason about goals related
to rewards. An extended version of the rPATL reward operator

6The term strategy employed in the context of SMGs refers to a game
strategy (referred to also as policy or adversary) as defined in [8], and should
not be confused with Stitch adaptation strategies.

〈〈C〉〉Rr
max=?[F

? φ] 7 enables the quantification of the maxi-
mum accrued reward r along paths that lead to states satisfying
state formula φ that can be guaranteed by players in coalition
C, independently of the strategies followed by the rest of
players. An example of typical usage combining the coalition
and reward maximization operators is 〈〈sys〉〉Rutility

max=?[F
c end],

meaning “value of the maximum utility reward accumulated
along paths leading to an end state that a player sys can
guarantee, regardless of the strategies of other players.”

Reasoning about strategies is a fundamental aspect of model
checking SMGs, which enables checking for the existence
of a strategy that is able to optimize an objective expressed
as a property including an extended version of the rPATL
reward operator. The checking of such properties also supports
strategy synthesis, enabling us to obtain the corresponding
optimal strategy. An SMG strategy resolves the choices in each
state, selecting actions for a player based on the current state
and a set of memory elements.8

B. Formal Model

Our game is played in turns by two players that are in
control of the behavior of the environment and a DCAS-
based system (including human actors), respectively. The SMG
model consists of the following parts:

1) Player definition: Listing 5 illustrates player definition
in the SMG. Player env is in control of all the (asynchronous)
actions that the environment can take (defined in the environ-
ment module), while system player sys controls all the actions
that belong to the human actor and the target system, whose
behavior is specified in the processes ha system (target system),
as well as scaleOutOp and scaleOut (adaptation strategies for
manual and automatic scale out, respectively). Moreover, the
system player controls the synchronization of actions between
scale out adaptation strategies and the target system, that
represent the addPN and activatePN adaptation tactics. Global
variable turn (line 4) is used to explicitly encode alternating
turns between the system and environment players.

1 player env environment endplayer
2 player sys ha system, [addPN], [activatePN], scaleOutOp, scaleOut

endplayer
3 const ENVT=0, SYST=1;
4 global turn:[ENVT..SYST] init SYST;

Listing 5. Player definition for the DCAS scale out SMG.

2) Environment: controls the evolution of variables in the
execution context that are out of the system’s control. For the
sake of simplicity, we assume in our model a simple behavior
of the environment that only keeps track of time, although
additional behavior controlling other elements (e.g, network
delay) can be encoded (please refer to [7] for further details
illustrating the modeling of adversarial environment behavior
in turn-based SMGs).

7The variants of F?φ used for reward measurement in which the parameter
? ∈ {0,∞, c} indicate that, when φ is not reached, the reward is zero, infinite
or equal to the cumulated reward along the whole path, respectively.

8See [8] for more details on SMG strategy synthesis.



1 const MAX TIME; // Exercution time frame [0,MAX TIME]
2 module environment
3 t:[0..MAX TIME] init 0;
4 [] (turn=ENVT) & (t<MAX TIME) −> (t’=t+1) & (turn’=SYST);
5 endmodule

Listing 6. Environment module.

In Listing 6, variable t (line 3) keeps track of execution time
(the time frame for the system’s execution is determined by [0,
MAX TIME]9). During its turn, the environment checks that the
end of the time frame for the execution has not been reached
yet, and if that is the case, it increments the value of t one
unit, yielding the turn to the system player (line 4)10.

3) Human Model: Listing 7 shows the encoding of the
OWC elements corresponding to an operator in the DCAS
system. Opportunity elements (line 2) indicate whether the
operator is on location and/or busy. These predicates are used
to guard the execution of tactic addPN in the model (Listing 8,
line 9). The willingness function of the operator (line 6)
is inversely proportional to the stress level of the operator,
declared in line 5. The capability function (line 9) penalizes
training levels below 0.4, whereas it rewards levels above 0.8.

1 // Opportunity elements
2 global op onLocation:bool init true, op busy: bool init false;
3 // Willingness elements and function
4 const MAX STRESS LEVEL, INIT STRESS LEVEL;
5 global op stressLevel: [0..MAX STRESS LEVEL] init

INIT STRESS LEVEL;
6 formula op f w=(MAX STRESS LEVEL−op stressLevel) /

MAX STRESS LEVEL;
7 // Capability elements and function
8 const double op trainingLevel;
9 formula op f c= op trainingLevel > 0.8 ? 1 : (op trainingLevel<0.4?

op trainingLevel/3 : op trainingLevel);
10 // Combined WC probability for tactic addPN
11 formula addPN wc prob = op f c ∗ op f w;

Listing 7. Human actor model encoding for a DCAS operator.

4) System: The combined behavior of the target system and
human actors is described in module ha system (Listing 8).
The module incorporates a collection of variables encoding
the different system qualities of concern, as well as the aspects
relevant to the applicability conditions of tactics (e.g., values
of predicates used in the condition block of a tactic). Lines 2-6
illustrate how the different variables are initialized:
• rps and pn encode the performance and number of active

processor nodes in the DCAS system, respectively.
• addpn fail is a flag that determines if the addition of a

processor node by a human actor failed.

9Constant values not defined in the model are provided as command-line
input parameters to the tool.

10We illustrate our approach to modeling the SMG using the syntax of
the PRISM language [25] for Markov Decision Processes (MDPs), which are
encoded as commands:

[action] guard −> p1 : u1+ . . . + pn : un

Where guard is a predicate over the model variables. Each update ui
describes a transition that the process can make (by executing action) if the
guard is true. An update is specified by giving the new values of the variables,
and has an assigned probability pi ∈ [0, 1]. Multiple commands with
overlapping guards (and probably, including a single update of unspecified
probability) introduce local nondeterminism.

• cnt addPN and cnt activatePN are counters used to keep
track of the latency of tactics addPN and activatePN,
respectively.

Moreover, the module includes commands that model the
effect of executing the different tactics as updates on its
variables. In particular, there are three different commands per
tactic in the module. We focus on tactic addPN to illustrate how
tactic execution is modeled:
• Tactic trigger (line 9). Triggers tactic execution when:

(i) an operator is on location and not busy, (ii) the number
of active processor nodes is lower than the maximum
available, and (iii) the latency counter for the tactic is
zero. As a consequence, the operator is flagged as busy
and the latency counter is activated (cnt addPN’=1).

• Tactic latency counter update (line 12). If the tactic
counter is active, but still has not reached the tactic’s
latency value, the counter is incremented in one unit.

• Tactic completion (line 15). When the tactic’s latency
counter expires, the command can either: (i) update
variables rps and pn according to a successful activation of
a processor node with probability addPN wc prob (deter-
mined by the willingness and capability elements defined
in Listing 7, line 11), or (ii) fail to activate the node
with probability 1-addPN wc prob, flagging the failure on
variable addPN fail. In both cases, the latency counter is
reset, and the busy status of the operator is set to false.

The encoding used for the activatePN tactic (lines 10,13,18)
follows the same structure, but without any OWC elements
encoded in the guards or updates of the commands.

Every command in the module includes a predicate in the
guard to ensure that the command is triggered only during the
system player’s turn (turn=SYST), and an additional predicate
in the post state that yields the turn to the environment player
(turn’=ENVT). Moreover, an additional command (line 20) lets
the process progress without any variable updates when none
of the latency periods for the tactics are active. Note that
in our model, we assume sequential execution of tactics (in
accordance with Stitch semantics).

5) Adaptation logic: Modules scaleOutOp and scaleOut
model the adaptation logic placed in the controller, according
to the description of their respective Stitch strategies described
in Listings 4 and 2. Each of the commands corresponds to a
tactic that can be executed in the target system via synchro-
nization on shared action names with trigger commands in the
ha system module (Listing 8, lines 9-10).

Module scaleoutOp (Listing 9) models the variant of the
scale out mechanism that makes use of a human actor. The
command on line 3 encodes the triggering of tactic addPN 11,
which sets the value of the timestamp variable addPN trigger t
that indicates at which time point the tactic was triggered.
This variable is used on the guard of the command encoding
the execution of activatePN (line 4) to determine whether the

11We abstract away predicates unprocessedDevices and maxAssigned-
Devices (Listing 4, lines 2,3), which we assume to be true in the scale out
scenarios encoded in our model.



1 module ha system
2 rps : [RPS MIN..RPS MAX] init INIT RPS;
3 pn : [PN MIN..PN MAX] init INIT PN;
4 addpn fail: bool init false;
5 cnt addPN :[0..addPN settling] init 0;
6 cnt activatePN :[0..activatePN settling] init 0;
7

8 // Tactic triggers
9 [addPN] (turn=SYST) & (op onLocation) & (!op busy) & (pn<PN MAX) &

(cnt addPN=0) −> (cnt addPN’=1) & (op busy’=true);
10 [activatePN] (turn=SYST) & (pn<PN MAX) & (cnt activatePN=0) −>

(cnt activatePN’=1) & (turn’=ENVT);
11 // Tactic latency counter update
12 [] (turn=SYST) & (cnt addPN>0) & (cnt addPN<addPN latency) −>

(cnt addPN’=cnt addPN+1) & (turn’=ENVT);
13 [] (turn=SYST) & (cnt activatePN>0) &

(cnt activatePN<activatePN latency) −>
(cnt activatePN’=cnt activatePN+1) & (turn’=ENVT);

14 // Tactic completion (after latency period expires)
15 [] (turn=SYST) & (cnt addPN=addPN latency) −>
16 addPN wc prob : (cnt addPN’=0) & (rps’=addpn f p) &

(pn’=f apn) & (op busy’=false) & (turn’=ENVT)
17 + 1−addPN wc prob : (cnt addPN’=0) & (addpn fail’=true)

& (op busy’=false) & (turn’=ENVT) ;
18 [] (turn=SYST) & (cnt activatePN=activatePN latency) −>

(rps’=activatepn f p) & (cnt activatePN’=cnt activatePN+1) &
(pn’=f apn) & (cnt activatePN’=0) & (turn’=ENVT);

19 // Do nothing
20 [] (turn=SYST) & (cnt addPN=0) & (cnt activatePN=0) −> (turn’=ENVT);
21 endmodule

Listing 8. Target system extended with human actors module.

settling time for observation of the previous tactic’s effect has
already expired. If this is the case, and the activation of the
new processor node by the human operator is not successful
(addpn fail), the command executes, triggering the activatePN
tactic, consistently with the Stitch code in listing 4, line 4.

1 module scaleOutOp
2 addPN trigger t:[0..MAX TIME] init 0;
3 [addPN] (turn=SYST) −> (addPN trigger t’=t);
4 [activatePN] (turn=SYST) & (t=addPN trigger t+addPN settling) &

(addpn fail) −> true;
5 endmodule
6

7 module scaleOut
8 [activatePN] (turn=SYST) −> true;
9 endmodule

Listing 9. scaleOutOp and scaleOut adaptation strategy modules.

Module scaleOut (Listing 9, line 7) models the automatic
scale out mechanism with a single command that triggers the
tactic’s execution on the target system.

6) Utility profile: Utility functions and preferences are
encoded using formulas and reward structures that enable
the quantification of instantaneous utility (Listing 10). In
particular, formulas quantify utility for every dimension of
concern (lines 1-2) according to utility functions described
in Table III, and a reward structure rGU (line 4) weighs them
against each other by using the utility preferences specified as
weights for performance and cost (line 3).

1 formula uP=(rps/RPS MAX); // Performance
2 formula uC=1−(pn/PN MAX); // Cost
3 const double wP = 0.8, wC = 0.2; // Utility preferences
4 rewards ”rGU” turn=SYST : wP ∗ uP + wC ∗ uC; // Instantaneous utility
5 endrewards

Listing 10. Utility profile for DCAS SMG.

C. Analysis

SMG models of human-in-the-loop adaptation can be ex-
ploited to determine: (i) the expected outcome of human
involvement in adaptation, and (ii) the conditions under which
such involvement improves over fully automated adaptation.
To answer these questions, we make use of rPATL specifica-
tions that include reward-specific operators aimed at checking
quantitative properties over SMG models. Specifically, our
technique enables us to statically analyze a particular region
of the state space, which first has to be discretized to check
rPATL properties. Obtaining the results of the analysis for
each state in the discrete set requires an independent run of
the model checker in which model parameters are instantiated
with variable values corresponding to that state.

1) Strategy Utility: The expected utility value of an adap-
tation strategy (potentially including non-automated tactics) is
quantified by checking the reachability reward property:

umau , 〈〈sys〉〉RrGU
max=?[Fc t=MAX TIME]

The property obtains the maximum accrued utility value
(i.e., corresponding to reward rGU – Listing 10) that the system
player can achieve until the end of execution (t=MAX TIME).

Figure 2(a) depicts strategy utility analysis results for the
different adaptation strategies in a scale out DCAS scenario. In
the figure, a discretized region of the state space is projected
over the dimensions that correspond to training and stress
levels of a human actor (with values in the range [0,1] and
[0,10], respectively). Each point on the mesh represents the
maximum accrued utility that the system can achieve on
a DCAS SMG model instanced for a time frame [0,200].
Tactic cost/benefit values and the utility profile employed
are those described in Section IV-A, whereas the latency
values employed for tactics activatePN and addPN are 5 and
30 seconds, respectively. Time delays to observe the effect
of tactic executions in strategies ScaleOut and ScaleOutOp are
those indicated in the Stitch code shown in Listings 2 and 4,
respectively.

If we focus on the curve described by values in the lowest
stress level, the figure shows how the use of strategy scaleOutOp
attains values that go above 140 for maximum training,
whereas values below 0.4 are highly penalized and barely yield
utility. Moreover, progressively higher stress levels reduce the
probability of successful tactic completion, flattening the curve
to a point in which training does not make any difference
and the strategy yields no utility. On the contrary, the utility
obtained by the automated scaleOut strategy (represented by the
plane in the figure) is always constant at a value of 112.75,
since it is not affected by willingness or capability factors.

2) Strategy Selection: Given a repertoire of adaptation
strategies S, we can analyze their expected outcome in a given
situation by computing their expected accrued utility according
to the procedure described above. Based on this information,
the different strategies can be ranked to select the one that
maximizes the expected outcome in terms of utility. Hence
the selected strategy s↑ can be determined according to:
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Fig. 2. Experimental results: (a) ScaleOut vs ScaleOutOp strategy utility (left), (b) strategy selection (center), and (c) combined utility (right).

s↑ , argmax
s∈S

umau(s)

where umau(s) is the value of property umau evaluated in
a model instantiated with the adaptation logic of strategy s.

Figure 2(b) shows the results of the analysis of strategy
selection in DCAS scale out. The states in which human
involvement via strategy scaleOutOp is chosen (' 45% of
states) are represented in black, whereas states in which the
fully automated strategy scaleOut is selected (' 55%) are
colored in white. The figure shows that human involvement is
only advisable in areas in which the operator has a stress level
of 8 and below. Progressively higher stress levels make human
involvement preferable only when also progressively higher
training levels exist, which is consistent with maximizing the
probability of successful adaptation tactic completion. In any
case, for training levels below 0.4, human actor participation
is not selected even with zero stress level (this is consistent
with the function op f c in Listing 7, which highly penalizes
poorly trained operators – op trainingLevel ≤ 0.4).

Figure 2(c) shows the combined accrued utility mesh that
results from the selection process (i.e, every point in the mesh
is computed as umau(s↑)). Note that the minimum accrued
utility never goes below the achievable utility level of the
automatic approach, over which improvements are made in the
areas in which the strategy involving human actors is selected.
The average improvement12 in the combined solution is +8.93,
corresponding to a percentual improvement of 7.94% over the
automatic scale out approach, and 7.81% over the manual one.

VI. CONCLUSION

In this paper, we have described an approach that employs
formal reasoning about human involvement in the adaptation
loop of self-adaptive systems to provide a systematic approach
to human-in-the-loop adaptation. We have focused on the
execution stage of MAPE-K systems, in which human actors
adopt the role of system-level effectors. We have shown how
to incorporate concepts from cyber-human systems (CHS)

12We employ the delta in accrued utility as an indicator of the improvement
in using a combined solution with respect to a manual/automated adaptation,
defined as ∆umau , |umau(s↑) − umau(arg min

s∈S
umau(s))|, with S =

{ScaleOut, ScaleOutOp}.

that model the probabilistic aspects of human behavior into
a language tailored to describe runtime adaptation (Stitch).
Moreover, we have shown how such specifications can be
encoded into stochastic multiplayer game models amenable
to analysis via model checking. We illustrated our approach
in the context of scale out adaptation in DCAS, an industrial
middleware for monitoring large sensor networks in renewable
energy power plants. Our results showed that our approach can
help discriminate cases in which the involvement of human
actors in execution leads to an improvement of system utility,
providing the basis to combine human-based and automated
adaptations in a context-sensitive manner.

Concerning future work, our current models assume that
actors and system are working in coalition to achieve goals.
In fact, the interaction may be more subtle than that; Eskins
and Sanders point out that humans may have their own
motivations that run counter to policy [17]. To capture this
subtlety, we plan on extending the encoding of SMGs to
model human actors as separate players. Moreover, we will
extend our approach to formally model and analyze human
involvement in other stages of MAPE-K, studying how to
best represent human-controlled tactic selection, and human-
assisted knowledge acquisition. Finally, we plan on performing
live experiments with human actors for validating our results.
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