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Inclusion of lubrication forces in dynamic simulations 
Ashok S. Sangani and Guobiao Mo 
Department of Chemical Engineering and Materials Science, Syracuse University, Syracuse, 
New York 13244 

(Received 1 October 1993; accepted 29 December 1993) 

A new method is described for incorporating close-field, lubrication forces between pairs of 
particles into the multiparticle Stokes flow calculations. The method is applied to the 
suspensions of both spherical as well as cyliridrical particles, and results computed by the 
method are shown to be in excellent agreement with the exact kflown results available in the 
literature. 

I. INTRODUCTION 

In a companion paper, l referred to henceforth as I, we 
presented details of a method for computing Stokes flow 
interactions among many particles. As mentioned in that 
paper, one of the drawbacks of the method is its inade­
quacy in treating problems in which the lubrication forces 
between the pair of particles in near contact playa domi­
nant role. This difficulty was overcome by Brady and 
Bossis2 who constructed an approximation to the many­
particle resistivity tensor by first obtaining a far-field ap­
proximation to the many-particle mobility tensor with a 
finite Ns and then adding near-field interactions to the in­
verted mobility matrix. Here, Ns - 1 refers to the highest 
force moment retained in the far-field approximation (cf. 
I). Their method was also employed by Ladd, 3 who 
showed that this approximation can be systematically im­
proved by increasing Ns • The computationally intensive 
step in this method for large N, the number of interacting 
particles, is the inversion of the mobility matrix of size 
N t= (3N;-1)N, which requires roughly O(Nt) computa­
tions. 

We present here an alternate scheme for incorporating 
the lubrication forces. It may be recalled that the method 
of muItipole expansion replaces the actual force density 
distribution on the surface of a particle by a distribution of 
force and higher-order multi poles at the center of the par­
ticle. As two particles with finite relative motion approach 
each other, the force density in the region cif narrow gap 
between the two particles rises, and one would need a large 
number of multipoles at the center of the particles to ac­
count for this singular nature of forces in the gap. Indeed, 
in some instances the method of multipole expansion may 
not converge at all with increasing N s • To remedy this 
situation, it seems more reasonable to retain the singular 
nature of forces near the gap of the particles and expand 
only the remainder of the force density in multipoles at the 
center of the particles. The present study investigates in 
detail this alternate strategy and illustrates its accuracy for 
relatively small N s • 

The method can also be applied to other geometries of 
the particles or to governing equations other than the 
Stokes equations. As an example, we consider an interest­
ing case of interactions among infinitely long cylinders in 
which the lubrication effects arise not only from the rela­
tive motion between the particles but also from a large 

pressure drop that occurs as a finite amount of fluid flows 
through a narrow gap between the particles. This problem 
is also important in the modeling of the diffusion of pro­
teins in bilipid cell membranes.4-7 

II. THE METHOD FOR SPHERICAL PARTICLES 

As in I, let us consider the problem of Stokes flow 
interactions among N randomly placed spherical particles 
within a unit cell of a periodic array. For simplicity, we 
consider only the case of equisized rigid spheres. The ve­
locity of the fluid is given by the integral equation8

,9 

. 1 N 

Ui(X) = Ui (x) - tL"."., 2: ( Jj(y)vij(x-y)dAy, 
.11'/ a=! J sa 

(1) 

where TJ is the viscosity of the fluid, Ui (x) the macro­
scopic velocity, fj the force per unit area exerted by the 
fluid at a point y on the surface sa of the particle a, and 
Vij the spatially periodic Green's function for the Stokes 
equations of motion [cf. (2) in I]. In the method of mul­
tip ole expansion, Vij(X-y) is expanded in a Taylor series 
near vij(x-xa), and the resulting expression is integrated 
termwise to recast (1) to (4) in 1. To account for the 
singular nature of lubrication forces between a pair of par­
ticles in near contact, we write fi= Ji+ f}ub, and express 
only the contribution due to Ji in a multipole expansion. 
Thus, we write 

N 

Ui(X)=U{(x)+ 2: ~#'jvij(X-Xa)+u}ub(x), (2) 
a=! 

where 

and 

(3) 

a 1 [ ( A ~jVij(x_xa) == - 41TTJ Vij(x-xa) J Sa f/y)dAy 

-akVij(X-Xa) { Jj(Yk-xVdAy 
JSa 

+ ... ] . (4) 
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FIG. 1. Nomenclature for the analysis of the flow in the gap between two 
spheres. 

The lubrication force density rub in (3) must be deter­
mined as a function of the relative motion of the two par­
ticles through appropriate asymptotic analysis as will be 
done later in this article. In determining the strength of 
multipoles used in defining the differential operator viii, 
we shall need to evaluate the contribution from u~ub to 
various terms in the Lamb's general solution around each 
of the particles in the suspension. This, however, is com­
putationally expensive owing to the integration required by 
(3). Since f~Ub will be chosen to be nonzero only in a small 
region near the gap between the particles, we can approx­
imate (3) by the first two terms in the Taylor series ex­
pansion 

x IS" (x~Y -y),J~Ub(y)dAy+"', (5) 

where x~Y is midway through the gap between particles a 
and y in close proximity (cf. Fig. 1). If eo is the angle over 
which the lubrication force density is taken to be nonzero, 
then the error in truncating the above expression is 
O(e~) in the limit € ..... o. 

The lubrication force on particle a will be chosen to be 
equal in magnitude but opposite in direction to that on 
particle y so that the contribution from the first term on 
the right-hand side of the above equation will vanish, and 
the lubrication velocity will consequently be approximated 
as 

(6) 

where the summation is over all the pairs whose separation 
distance is less than a specified value and 

(7) 
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The lubrication velocity given by (6) is expected to be 
accurate provided that x is at a large distance from the gap 
between the particles and provided that the area over 
which lubrication force density is nonzero is small. Now in 
solving for the strengths of multi poles used in the expan­
sion of the differential operator 1i [cf. (5) in I], we need 
to evaluate derivatives of Ui' and hence u~ub, at the center 
xk of a particle k. Here, k may be anyone of the N particles 
in the cell including particles a and y. Since I xk - x~YI is 
large compared to the gap width, over which the lubrica­
tion force density is nonzero, the approximation to lubri­
cation velocity as given by (6) is adequate for determining 
the multipoles associated with each particle in the suspen­
sion. It can be proved that this applies even to particles a 
and y. The proof rests on the observation that, while the 
integrand in (3) is singular at x=y, u~ub itself is continuous 
at the surface of particle a. Thus, for the purpose of satis­
fying the boundary conditions on that particle, we first 
move the singularities at sa radially outward from the sur­
face by a small distance O. This renders the lubrication 
velocity and all its derivatives continuous for 
Ix-xal <1+0, the radius of the particle being unity. 
Therefore, it is possible to expand the lubrication velocity 
field in regular terms of the Lamb's solution [cf.(6) in I] 
and to satisfy the no-slip boundary conditions at sa as if 
the lubrication singularities were all outside particle a. The 
limit 0 ..... 0 can subsequently be taken to show that this 
would yield results identical to that obtained by directly 
using (6). In other words, even though approximation (5) 
is not valid close to x~Y, and hence for evaluating velocity 
at the surface of the particles in the immediate vicinity of 
the gap, the coefficients that appear in the Lamb's solution 
are evaluated correctly when eo is small. 

When two particles with a gap width of € move with a 
relative normal velocity of O( 1), the lubrication forces in 
the direction of the separation vector are O( €- 1). Since 
these forces are separated by an O(€) distance, we see from 
(7) that Ail is OC 1). In other words, in the outer region­
far from the gap-the lubrication effect appears as a force 
dipole of an OC 1) strength. This also guarantees that the 
strengths of the multipoles for each particle are also O( 1), 
and hence small compared to the leading order lubrication 
forces as € ..... O. 

We now proceed to give detailed expressions for A jk' 

A. Calculation of Ajl 

In this subsection, we shall drop the superscripts ay 
from various quantities related to the pair ay for clarity. 
Let us denote the relative motion between the surface of 
the two particles by 

au=aUmm+autt= (UY-flYXm) - (Uu+naXm), 
(8) 

where U and n are, respectively, the translational and ro­
tational velocities, m the unit vector along xY _xa , and t 
the unit vector along the relative tangential velocity in the 
plane normal to m. The radius of each particle is taken to 
be unity. Let us choose the cylindrical coordinate system 
with its axis aligned along m and with Xc as its origin (cf. 
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FIG. 2. A diagrammatic representation of the lubrication velocity field for spheres. Two normal forces of overall magnitude of OC C 1) and radial forces 
of OC (,.-112) combine to produce the velocity field equivalent to that caused by an OC 1) force dipole aligned along the line joining the center of particles. 

Fig. 1). Denoting the scaled axial and radial coordinates 
by z and u, with z=z' / € and U= u' / €1I2 (z' and u' being 
the unscaled variables), we note that the surface of the 
particles a and r are approximated by 

z=z"=-.tX=[h+i (h-1)2+D(~)], h=l+ ~, 
(9) 

where € is one-half the minimum gap width. Lubrication 
forces have been evaluated by several investigators in the 
past (e.g. Refs. 9-12); taking results from Nunan and 
Keller,9 we have 

fY=1J[LlUm( -g,m-€1I2ug2eu)c2-LlU t8"3t€-I], (10) 

(11) 

where eu is a unit radial vector in the tangent plane, and 

(12) 

3 [3 33 ] g2=3h~-2+€ -4 h-'+ 40 h-2 +D(~), (13) 

1 
g3=2z"+O(€). (14) 

In writing the above expressions for g,-g3, we have re­
placed rijninjL and rijnlJL in Nunan and Keller's expres­
sions (BlO)-(BI4) by LlUm and LlUt , respectively. Also, 
since their h is nondimensionalized with a half-separation 
length L = 1 + €, h in their expressions was replaced by 
h(1 +€) to obtain the expressions given above. 

As mentioned earlier, we shall take rub to be that given 
by (10)-(11) for o<e<eo and zero otherwise, e being the 
polar angle measured from m and eo a suitably chosen 
small number (€1I2 « eo « 1). The lubrication force on the 
particles is obtained by integrating (10) or (11) over this 
range of e. Using sin ede=€dz", we obtain 

F"= -F"=21T1J€-1 J,ZO [-LlU~,m-€LlUt8"3t]dz" 

where 

= -21T1J[f3mLlUmm+f3AUtt], (15) 

(16) 

(17) 
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3 _, _, 27 -I 
f3m=g(1-zo)€ + 40 log zo+3(1-zo)' (18) 

The lubrication force given by (15) agrees with the well 
known results9- 12 to O(1og €) in the limit of €--+o keeping 
€Zo fixed. 

Note that the term containing g2 vanished upon inte­
gration over the azimuthal angle cp in the tangent plane. 
and thus did not contribute to the lubrication force on the 
particles. Its contribution to A, however, is nonzero. Sub­
stituting (10)-( 11) into (7) we obtain 

(19) 

Integration of eueu with cp gives 1T(8-mm), 8 being the 
Kronecker delta tensor, ,So that the above expression yields 

A jk-18j0ii=AmLlU mCmjmk-t8jk) +AAU !jmk, 
(20) 

with 

3 ,[99 87 
Am=-g(1-zo )-€ 80 (zo-1)+40logzo 

9 _I 3 -2 ] 
-80(1-zo )+16(1-zo ) , (21) 

(22) 

Note that since Vi}S solenoidal, subtracting 1/38 j0ii 
from A jk does not alter U}ub. 

Summarizing. the above calculations, we see that for 
normal relative motion (LlUm~O), the normal force den­
sity is O(€-2) and the area over which it acts is O(€). This 
results in an O(€-') normal force on the two particles. 
These forces are separated by an OC€) distance and the 
lubrication velocity field therefore corresponds to that due 
to an O( 1) force dipole aligned along the separation vec­
tor. Compared to this, the radial force density is smaller, of 
O(€-3/2), but separated by a relatively larger, O(€1I2), 
distance, so that the radial motion induces a force dipole of 
D( €- I) in the radial direction. An integration of the flow 
due to these force dipoles in the tangent plane subsequently 
results in an overall D( 1) force dipole in the direction of m. 
This is schematically represented in Fig. 2. 
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Note that in the limit E-+O, keeping 00 fixed, 
Am-+ -3/8-99/40 sin2 (Ool2) and At -+ -2 sin2 (Ool2). 
The lubrication field thus explicitly depends on the cutoff 
00 even though the leading order lubrication force is inde­
pendent of 00 , 

To include the lubrication effects in the numerical 
scheme presented in I, we modify (19) in I to 

N 

Ui(X) =ui (x) + L {Yjvij(X-Xa) 
a=l 

(23) 

with 

U}ub(X) = L y?,IUbvijCX_X~r), (24) 
ar 

where Y'jY'IUb= (AjI-l/3c5j0~r)ak' 
The contributions to the regular parts of Pn' Xn' and 

<Pn that appear in the Lamb's solution [cf. (6) in I] can be 
evaluated by expressing the above lubrication differential 
operator as 

y~r,lub= y~r,P + y~r,T, (25) 
J J ] 

with y~r,P and [1~r,T defined in the same manner as 
] J 

Y'Yand Yj,T [cf. (24)-(26), (30)-(32) in I] except that 
superscript a in those expressions is now replaced by the 
lubrication pair ay. This requires 

PIJ=-3Ar[, PIr=Afr+A~r. Ptr=Afr+A~r, 

PI! = (A~r -A~D/2, Ftl = (A~r +A~D/2, (26) 

2Tar Aay Aar 2Tar Aar Aar 2T~ar Aar Aar 
10 = 23 - 32' 11 = 13 - 31' 11 = 21 - 12' 

all other p"Tr" etc., being zero. 
Finally, it is relatively straightforward to evaluate the 

lubrication force density contribution to the stresslet and 
torque on each particle. Thus, for example, 

A<:,!lub= r (x -x<:,)/,:,bdA 
IJ - J sa [ 1 J 

= fsa [mi(1+E)+(X-X~r)i]f~UbdA. (27) 

The first term in the right-hand side is related to the lubri­
cation force and the second to A ij , thus yielding 

(28) 

B. Choice of 00 

In order to apply the method described in the previous 
section to dynamic simulations of suspensions, we need to 
specify the value of 00 , the polar angle over which the 
lubrication force density is taken to be nonzerO. In addi­
tion, we must also specify Em' the maximum value of E for 
a pair of particles to qualify as the lubrication pair. 

It can be shown that the next term in the Taylor series 
expansion (5) corresponding to the force quadrupole van­
ishes, and hence the error in truncating the lubrication field 
to a force dipole (6) corresponds to that due to a force 
octupole of magnitude DC O~). Error introduced in the cal-

1656 Phys. Fluids, Vol. 6, No.5, May 1994 

culations of mobility of a test particle at a distance R from 
the gap depends not only on 00 but also on Ns • Specifically, 
the contribution to the equation for a 2n

-
1-multipole coef­

ficient (e.g. Pnm in I) from this neglected octupole at the 
center of the gap will be O(N;O'fjR2 ) compared to that due 
to an O( I) force dipole at the gap center. Thus, our ap­
proximation will fail for a fixed E and 00 at sufficiently large 
N s • Fortunately, as Ns increases, the regular multipole ex­
pansion method usually converges for an increasing num­
ber of particle pairs, and the lubrication force density is 
needed only for particle pairs with E<Em with Em-+O. 
Thus, a systematic improvement of the overall mobility 
tensor with increasing Ns will be obtained provided that we 
decrease Em with increasing N s • In the limit oflarge N s ' of 
course, no lubrication field is necessary, and the current 
method reduces to the regular multipole expansion 
method. 

Our interest in dynamic simulations, however, is in 
obtaining reasonably accurate estimates with a small N s ' 

e.g., N s=2 or 3. Thus, we shall choose 00 and Em somewhat 
empirically by comparing the results obtained by the 
present method with small Ns against a few test cases for 
which either the accurate estimates of mobility, etc., are 
known from previous investigations or can be determined 
with a fair degree of confidence using the method of mul­
tipole expansion described in I. 

The first test case we consider is that of determining 
the effective viscosity of a periodic suspension of rigid 
spheres defined via9 

(29) 

where dij is the deviatoric stress tensor, 
ekt= catUk+akUt)/2 the rate of strain tensor, the angular 
brackets denote volume averaging over the unit cell, and 

(30) 

Tf being the viscosity of the fluid. The nondimensional vis­
cosity coefficients fLt and fL! are related to a and f3 in Refs. 
9 and 13 by fLT= I +f3 and fL!= I +a. The principal lattice 
directions are taken to coincide with the coordinate axes, 
and c5ijkl= 1 when the indices i,j,k,l are all equal and zero 
otherwise. Note that such arrays are anisotropic, with 
fL! -fLt representing the effect of anisotropy. The coeffi­
cients fLt and /L! as a function of volume concentration C of 
particles were determined previously by Nunan and 
Keller9 and Sangani and LU.13 In particular, as c ap­
proaches its maximum allowable value Cmax for the three 
periodic arrays corresponding to the close packing, the co­
efficients fLt and fL! have the limiting behavior for 
E=d(1+E)=I-(c/cmax )1I3 ..... 0 as given by 

with constants Ai- C[ depending on the geometry of the 
array. Constants Aj and B j were determined by Nunan and 
Keller from the lubrication analysis, and Ct from matching 
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FIG. 3. The viscosity coefficient f.Lt for the face-centered cubic array as a 
function of E for various Ns using the regular multipole expansion 
method. 

the numerical results for small E with that given by (31). 
(Some of the values of C, reported in Ref. 9 had sign errors 
as pointed out in Ref. 13.) 

For a face-centered cubic array, f-LT > f-Lf, and therefore 
we present in Fig. 3 the results for the former as a function 
of E obtained by using the regular multipole expansion 
method for various Ns • Results obtained with Ns= 12 may 
be considered to be exact for the range of E shown in the 
figure. These results are in excellent agreement with those 
in Refs. 9 and 13 and with asymptotic expressions given by 
(31). The purpose of this figure is to determine Em as a 
function of Ns • Specifically, we choose Em as that E for 
which the difference between the exact and the calculated 
value of f-LT for given Ns is about 5%. Similar calculations 
were made for the other two periodic arrays, and it was 
found that the values of Em for the three arrays are approx­
imately the same. 

The error due to the Taylor series approximation (5) 
can be compensated against that due to the use of finite 
Ns for some eo for each of the three arrays so that it is 
possible to get exactly the same limiting behavior as (31) 
for each N s • In determining these estimates, which are 
given in Table I, we used the greater of f-LT and 14 for each 
array. The estimates of eo for odd Ns are the same as those 
for even Ns due to the symmetry properties of the periodic 
arrays. Calculations were next repeated for several differ­
ent € values in the range 0.03-€m' and the estimates of 

TABLE I. eo as a function of Ns for the three cubic arrays and a pair of 
particles. 

Ns se Bee Fee Pair 

2,3 0.24 0.26 0.29 0.34,0.26 
4,5 0.21 0.18 0.19 0.21,0.18 
6,7 0.14 0.12 0.15 0.15,0.13 

Phys. Fluids, Vol. 6, No.5, May 1994 

TABLE II. A comparison of the results for the effective viscosity 17*117 of 
random arrays obtained by the present method with those obtained by 
Ladd. 

0.25 0.45 

Ns\c Present Ladd Present Ladd 

2 2.167 2.169 5.41 5.41 
3 2.187 2.160 5.43 5.29 
4 2.203 2.168 5.46 5.48 
5 2.210 2.168 5.51 5.41 
6 5.54 

both f-LT and f-L! obtained with the eo values given in Table 
I agreed within 10% with the corresponding values re­
ported in Refs. 9 and 13. We note that for N s=2 and 3, 
eo varied from about 0.24 for simple cubic array to 0.29 for 
the face-centered cubic array. For larger N.., eo is smaller, 
and its variation for the three different arrays is smaller. 

Next, we considered the case of two particles placed 
along the x I-axis separated by a distance of 2 (1 + €) in a 
periodic array with a unit cell of a width of 10 units. The 
purpose in this test calculation was to estimate eo for a 
situation that is considerably different from the concen­
trated periodic suspension. The mean flow was taken to be 
the uniaxial extension with its primary extension along the 
XI-axis. The estimates of the velocity of the particles and 
their stresslet for E=0.03 were obtained from the multipole 
expansion method with a large Ns and compared with 
those obtained by the lubrication method to determine eo 
for this situation. Results are also shown in Table I, where 
we see that eo=0.34 for N s=2, a somewhat higher value 
than one obtained for the periodic arrays. Once again, we 
see that eo decreases with Ns ' and that the difference 
among different estimates of eo decreases with increasing 
N s. Note that the estimates for odd and even Ns are dif­
ferent for this configuration of particles. 

We now compare the results for the effective viscosity 
and sedimentation velocity for random suspensions of 
spheres obtained using the present method with those ob­
tained by Ladd.3 Since the periodic array calculations gave 
the same values of eo for odd and even Ns values, we found 
that the effective properties calculated with the eo deter­
mined from those calculations showed relatively larger 
fluctuations with Ns • The results presented in Tables II 
and III therefore correspond to those obtained with the 
eo given by the last column in Table 1. Both the viscosity 
and the sedimentation velocity were obtained by averaging 
over 100 random configurations with N = 16. The results 
are seen to be in very good agreement with those obtained 
by Ladd3 w.ho used the method of Brady and Bossis.2 It 
should be noted that while accurate results for the effective 
viscosity are obtained by both methods with N..= 2, a 
higher Ns is needed for the sedimentation calculations. 

III. THE METHOD FOR CYLINDRICAL PARTICLES 

The method of multipole expansion can also be used to 
compute the Stokes flow interactions among infinitely long 
cylinders. The case of flow through a random array of fixed 
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TABLE III. A comparison of the results for the sedimentation velocity 
U/Uo of the random arrays of spheres obtained by the present method 
with those obtained by Ladd. 

0.25 0.45 

N,\.c Present Ladd Present Ladd 

2 0.200 0.194 0.1010 0.0982 
3 0.170 0.166 0.0491 0.0480 
4 0.166 0.163 0.0444 0.0439 
5 0.165 0.162 0.0426 0.0418 

cylinders has been treated earlier by Sangani and Yao. 14 

Recently, there is great interest in dynamic simulations of 
motion of such particles because of its relevance to the 
diffusion of protein molecules in a bilipid layer of cell 
membranes.4-7 The interesting feature of this problem is 
that, in addition to the lubrication effects due to relative 
normal and tangential motion of particles that are impor­
tant in the interactions of spherical particles, we must also 
account for lubrication forces arising from a finite amount 
of fluid flowing through a narrow gap between the cylin­
ders. Since the magnitUde of flow through the gap between 
the particles is related to the difference in the streamfunc­
tion values on the surface of the particles, we shall refer to 
this as the streamfunction lubrication. In what follows, we 
outline a method to account for this effect; the lubrication 
effects for relative motion between particles can be treated 

. in the same manner as for the spherical particles, and this 
and the application of the method to diffusion in bilipid cell 
membranes will be addressed in a future work. 

When the streamfunction on the surface of two cylin­
ders separated by a minimum gap width of 2€ differs by 
1l1{l, the tangential component of the velocity in the gap is 
O(Il1{l€-I), and the pressure gradient in the gap is 
O(f.LIl1{l€-3). With the gap dimension of O(€1I2) in the 
tangent direction, this requires that a pressure drop of 
O(€-S/2) occur in the fluid flowing through the gap. A 
detailed analysis then shows this pressure drop to be given 
by 

IIp _ 91l1{l -S/2[ 11 .-2 ] 
41T7l =A=32:.]2 € 1+20 €+O(e-) . (32) 

The analysis for cylindrical particles differs significantly 
from that for spherical particles because of this pressure 
drop. The leading order force on the particles results in this 
case from the uneven pressure distribution at the surface of 
the particles, and this force must therefore be distributed 
on the entire surface of the particles and not localized to 
the small region around the gap as was the case for spheres. 

Let the ith neighbor of particle a be denoted by aj, 
m/ the unit vector along the line joining the two particles, 
and 0/ the polar angle made by this vector with the 
x I-axis (cf. Fig. 4). Then, to a first approximation in the 
outer region, i.e., away from the region of each narrow gap, 
the pressure appears to have a jump discontinuity of 
O(€-5!2) along the surface of the particles. We therefore 
choose the lubrication force density on particle a to be 
/}ub= _plubnj with p'ub satisfying 
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\ a i / 

~ . ··xc 

P"----j--_ Xl 

FIG. 4. Nomenclature for the streamfunction lubrication analysis for 
cylinders. 

(33) 

where () is Dirac's delta function, A/ given by (32), with € 

and 1l1{l in that equation replaced by the corresponding 
values for the pair a-at, and gee) a regular function to be 
chosen such that p'ub as defined by (33) is a single-valued 
function of e. On integrating (33) over a unit circle, we see 
that gee) must satisfy 

i
211" 

g(e)de= - L A/. 
o / 

(34) 

The Xl-component of the lubrication velocity obtained 
by substituting f~Ub = - n jlJ'ub in (3) is given by 

with Yl =nl =cos e, Y2=n2=sin e, and Vij=O/j SI-a;j S2' 
where SI and S2 are now the doubly periodic functions. 
Now noting that ae=cos ea

Y2 
-sin ea

Y1 
and ah = -aX2 ' we 

have 

a2s2 
Vlj(x-y)n/y) = cos e --;:;:Ya (x-y) 

~2 

a2s 
-sin 0 __ 2_ (x-y) 

aYlaY2 

(36) 

Using the above result and defining the streamfunction via 
Ul =a1{l/aX2, and U2= -a1{l/ax" it is easy to show that 
(35) can be recast to 
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where in obtaining the last equality we integrated by parts 
and made use of (33). Here, Xi is the point on the surface 
of particle a closest to particle aj, i.e. xj=xa+mj (cf. Fig. 
4). Now gee) can be expanded in a Fourier series 

<Xl 

gee) =go+ L [gn cos ne+gn sin nO], (38) 
n=1 

and the integral on the extreme right side of (37) can be 
integrated termwise after substituting for gee). All the re­
sulting terms can be absorbed into the regular multipole 
expansion at the center of particle a except for the term 
containing go. On using (34) to evaluate go, and omitting 
the terms from the other Fourier components, we obtain 

1/Jub,a(X) = L AASz(x-xj) -Sz(x-xa)]. (39) 
i 

The singular part of S z (r) is ? ( I-log r) /2, and the polar 
components of velocity due to this singularity are ur==O 
and u(J= -JSz/Jr=r1og r-r/2. In other words, this sin­
gularity induces a purely swirling flow. The corresponding 
pressure gradient components are Jp/Jr==O and 
Jp/Je= -2Tf. Thus, the pressure jump discontinuities in 
the outer region give rise to swirling flow singularities. 

There is one further modification necessary to obtain 
the correct lubrication field. To see this, we note that 
1/Jub,al will have an antisingularity (i.e., of opposite sign) of 
O( c::-S12 ) located at the point xa + (1 + 2c::) mj. For small c:: 
the two singularities cancel to leading order to produce an 
O(c::-· 312 ) term given by 

2C::Aj[mj.v+~~mlmlmi(· )3VVV+O(c::4 ) ]Sz(X-Xc ), 

(40) 

where Xc is a point midway between particle a and its ith 
neighbor at and (.)3 stands for a triple scalar product. 
Now in the narrow gap between these two particles the 
force density differs from that assumed in writing (33) by 
an O(c::-S/2 ) quantity, and hence the lubrication field due 
to this excess force density may become comparable to that 
given by (40). Thus, we need to carry out further the 
analysis of forces acting in the narrow gap between the two 
particles. . 

Let us choose the local coordinate axes with the z-axis 
along mj and the x-axis along the tangent direction, de­
noted by the unit vector t. In the following calculations, 
which refer to the pair a-aj, we temporarily suppress the 
SUbscript i in mj for brevity. The origin of the local coor­
dinate axes is x c=xa +(1+c::)m. The excess force density 
on particle a for x> 0 is evaluated from 
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f"X • t == f"xx 

= - (p_pOO )nx+2TfJ~y1f;nx+Tf(J;-J~x)1f;nz' 

(41) 

A similar expression can be written for ,rzx. Here poo is the 
pressure in the fluid just outside the gap (x> 0), beyond 
which the pressure gradient in the fluid becomes O( I). The 
reason for subtracting this quantity from the actual force 
density is that our previous calculation, which resulted in 
(39), has already accounted for the pressure distribution 
outside the gap via (33). The expression for I x for x < 0 is 
obtained by substituting p-oo in lieu of pro in (41). Note 
that p-oo _poo = t::.p = 41T7]Aj [cf. (32)]. The lubrication 
field due to this excess force density is 

1f;eX(x)=_(41T7])-1 J [f"xX(y)m-,rzX(y)t] 

• VS2(x-y)dA y , (42) 

where the integration is to be carried over the portions of 
both particles, a and aj over which this excess force density 
remains large in magnitude and y is the dummy variable of 
integration. It is easy to show that 

(43) 

and 

(44) 

Now the integral in (42) can be evaluated approximately 
using the Taylor series expansion of S2(X-y) around 
S2(X-Xc) and integrating each term separately as in the 
case of spherical particles. To leading orders, 
Iz=O(c::- 5IZ ) and Ix=O(c::- 2

). However, because of the 
asymmetric properties of Iz' the leading order contribu­
tion to 1/Jub,ex arises from lx, and this O(c::- 3/2 ) term upon 
detailed calculations was found to balance exactly the lead­
ing term in (40). This makes it necessary to evaluate the 
next correction of OCc::-I) to Ix. At this next order, there 
is also a contribution from Iz so that on making use of the 
Taylor series expansion we obtain 

1/Jub,ex= __ I_ f dcp[2J';.x,am ·J· 
21T""fJ '1'>0 x J J 

+c::x(xf"xx,a +2c::lIzh,rzx,a)mi/iJijk 

+€2h2 f"xx,amjm jmiJ1jk]SZ(X-xc), (45) 

where cp=ej-o is the polar angle measured from m and x 
and h the scaled variables with x=x' /c::112 and 
h = 1 +xz /2. Also, we have made use of the symmetry 
properties listed in (43 )-( 44) to reduce the integration on 
the surface of both particles to that for cp > 0 on particle a. 
Note that the contribution from In of O(c::- lIl ), is of the 
same order of magnitude as that from x 2/x, and that the 
lubrication fields due to both of them combine to give a 
force quadrupole at the center of the gap. Once again de­
tailed calculations showed that the leading O(C lll ) terms 
arising from each of these two terms cancel out leaving 
finally the lubrication streamfunction consisting of O( 1 ) 
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force and quadrupoles at the center of the gap. Finally, the 
last term, viz. h2

/ x , in the above expression is actually 
small, of 0(EII2 ), and could have been omitted from the 
lubrication field description. However, since this term also 
gives rise to a force quadrupole and can therefore be in­
cluded along with the terms from /z and f'cX2 with very 
little additional work, we have retained it in the calcula­
tions. Now the standard lubrication analysis yields 

(46) 

(47) 

(48) 

where 

(49) 

Here, tf;g is the streamfunction value on particle a, and 
11 tf; = tf;ai- .,pa. Substituting the above expressions into 
(45), using dqJ=EII2( 1 +E(h-l) )dx, and carrying out in­
tegration from x=o to x=xo=qJoIEII2 we obtain 

t/Jub,ex(x) = 11tf;[{31mjaj + (fYl2mllk+{33mimjmk)atjk] 

(50) 

where 

(51) 

3EII2 

{33= - 32 (2+fYl 3 , (52) 

with 

(55) 

wherein Io=I(xo) and ho= 1 +x6/2. Note that fYl1->0 as 
xo->O and, in the limit E->O keeping qJo=ElI2xo fixed, 
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6 
fYll->~5 ' 1TqJO 

3 
fYl2->-5- , 

1TqJO 
(56) 

Thus, contributions from each of these terms are O( 1) for 
fixed qJo as E--+O. Now the terms of 0(E- 312 ) and 
OCc 112) from /31 in (51) exactly cancel the corresponding 
terms in (40), and the first term on the right-hand side of 
(52) cancels the second term in (40) leaving contibutions 
of 0(1) arising from the cutoff at finite eo in fYl i (i= 1,3). 

In summary, the complete expression for streamfunc­
tion is given by 

N [ Ns 

tf;(x) =tf;"'(x) + a~1 BgS1(x-x
a

) + n~1 {(A~al 

+1~a2)al-1S2(x_xa) + (B~al+ B~a2) 

where tf;'" is the streamfunction corresponding to the im­
posed flow, A~ ,B~, etc., the coefficients of various 
multipoles,14 and Ns the maximum order of multipole re­
tained in solving interactions among particles. The lubri­
cation field consists of two parts: 

N 

t/Jub(x)= L L -A,s2(X-Xa) + LI1tf;aY[fYllm jaj 
a=1 i ay 

+ (fYl2mllk+fYl 3mimjmk)a;jdS2(x-x::
y
) , 

(58) 

where, in the first part, the summation is over all the neigh­
bors i of particle a, and, in the second part, the summation 
is over all pairs ar with a separation distance less than a 
specified value, m is a unit vector along xy _xa, Xc is mid­
way between the two particles, and l1tf;aY=tf;Y_tf;a. Since 
Ai=0(E- 5/2 )I1tf;i' the first part of the lubrication field tries 
to force each cylinder to take up the streamfunction values 
in such a manner that the summation of Ai over all the 
neighbors of a particle is small and can be balanced with 
the rest of the O( I) terms in the streamfunction expres­
sion. To put it in another way, the first part is responsible 
for a global allocation of the given flow into the flow 
through each individual gap. The second part of the lubri­
cation field corresponds to the O( 1) force and force qua­
drupoles at the center of each narrow gap between the 
particles. The calculations leading to the expression for 
t/Jub are diagrammatically summarized in Fig. 5. 

The force on particle a is evaluated from 

I1= 41T?J[11+ ~ {( A_~l )m2}J , 

F~=-41T?][Al+ ~ {(A-~l)ml}J, (59) 

where the SUbscript i refers to the quantities related to the 
pair a-ai' and A and {31 are given by (32) and (51), 
respectively. 
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FIG. 5. A diagrammatic representation of the streamfunction lubrication field for cylinders. The outer region O( E-
512

) pressure jump distribution is 
represented by four swirling flow (S2) singularities in (a), two of which near the gap combine to produce an 0(E- 3

/ 2 ) force singularity pointing in the 
direction opposite to the flow and a force quadrupole of O(EI12 ) as shown in (c). The excess force density distribution in the gap shown in (b) combines 
to an 0(E- 3/2 ) force and 0(E- 1I2 ) force quadrupole singularities as shown in (d). The leading order force in (d) is canceled by the force in (c) and 
the two quadrupoles in (d) cancel to leading O(C I12 ) producing thereby a velocity field consisting of two 0(E-512

) swirling flow singularities at the 
center of the particles and 0(1) force and force quadrupole singularities at the center of the gap between the two particles as shown in (e). 

A. Choice of 'Po and Em 

We used the results for the viscous drag on a fixed 
periOdic array of cylinders to determine 'Po and Em' First, 
the drag on a cylinder was determined for various Ns and 
E=h/2-1, h being the lattice spacing. For each N s ' Em 

100 

10 

N.=2 

1 ~-··I 

0.0 0.1 0.4 

FIG. 6. The nondimensional drag for square array of cylinders for vari­
ous N. obtained by the regular multipole expansion method. 

Phys. Fluids, Vol. 6, No.5, May 1994 

was determined using the criterion that the drag for 
E> Em was accurate to within 5% without the lubrication 
field. Figure 6 shows the results for the nondimensional 
drag F /41M]U for a square array of cylinders obtained us­
ing the regular multipole expansion method with different 
values of N s • The exact curve corresponds to N s= 15. 
These results are in excellent agreement with those re­
ported by Sangani and Acrivos15 who used a boundary 
collocation method. By comparing the results with differ­
ent Ns ' we determined Em to equal 0.4 for N s= 1,2,0.20 for 
Ns=3, 4, 0.15 for N s=5, 6, and 0.075 for Ns=7, 8. 

TABLE IV. The nondimensional viscous drag F/41T7]U as a function of 
Ns for a single configuration of 16 cylinders. 

Ns\ .. c 0.6 0.4 

w/o lub. with lub. w/o lub. with lub. 
37.2 175.2 7.7 10.5 

2 74.6 185.1 10.7 12.1 
3 86.0 169.0 11.8 12.0 
4 129.2 174.1 12.1 12.2 
5 145.7 174.2 12.2 12.2 
6 156.1 166.0 
8 167.3 
10 169.3 
12 170.3 
14 170.7 
15 170.8 
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TABLE V. The nondimensional drag F/4'Tr'rJU for random arrays of 
cylinders with N=64. 

c 0.1 0.2 0.3 0.4 0.5 0.6 

1.5 3.7 8.9 22.1 60.4 219 

Next, calculations were made for various E values 
smaller than Em for different CPo to determine the optimum 
values of CPo for each Ns • Results were relatively insensitive 
to the choice of CPo, and we estimated CPo to equal 0.1 for 
Ns= 1, 2, 0.25 for Ns=3-6, and 0.18 for Ns=7, 8. With 
these values of CPo, the calculated values of the non­
dimensional drag agreed to within about 5% for all area 
concentrations of cylinders for each Ns • 

With Em and CPo chosen as above, we next carried out 
calculations for random arrays with N = 16 at various c. 
Only one configuration was chosen for each c, and the 
mean flow velocity components along Xl and Xraxes were 
chosen to be unity. Results for the mean drag with c, the 
area fraction of cylinders, equal to 0.6 are given in Table 
IV. We see that the method is remarkably accurate. The 
importance of using the lubrication field decreases for 
smaller c. For example, the convergence of the drag values 
for c=0.3 both with and without the lubrication fields are 
comparable, and thus there is no special advantage in in­
cluding the lubrication field for c,0.3. 

In Sangani and Yao,14 we presented very limited re­
sults for the nondimensional drag on cylinders because of 
the computational limitations then. For example, the cal­
culations there were limited to N = 16 for c<O.5 and to 
N=9 for c=0.7. Also, the estimates of the force were ob­
tained by averaging over less than 10 configurations. At 
high c the degree of anisotropy with small N is very severe 
and large N is required to obtain good estimates. With the 
lubrication method outlined here the computational time 
with N =64 is about 2-3 s on an IBM machine at the 
Cornell Theory Center. Thus, we have recalculated the 
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results by averaging over 20 configurations for each c, and 
the results are presented in Table V. 
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