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Introduction

@ How do different sources of information combine in mental
processing?
e Are both sources used concurrently, or do we use one at a time?
e How many sources are enough to respond?
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Introduction

Salience

@ To test architecture and stopping rule, without conflating them with
workload capacity, factorially speed up and slow down the processing
of each source of information.

Low—Low High—Low

Low—High
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Introduction

Survivor Interaction Contrast

o Indicates architecture and stopping rule.

Houpt, et al. (SMP 2012) Bayesian SIC 6/ 30



Introduction

Survivor Interaction Contrast

o Indicates architecture and stopping rule.

@ The SIC is interaction between the salience manipulations.
o Instead of just using the mean time, we use the survivor function:

S(t)=PHT -t} =1—F(g).
SIC(t) = [Scr (t) — Swu (£)] — [Suw (t) — Suu (t)]

Here, the subscripts indicate the salience of each source of information.
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Survivor Interaction
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Introduction

Null Hypothesis Test

Kolmogorov-Smirnov Test SIC Statistic
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Introduction
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Introduction

Shortcomings

o Tests positive and negative deflections not SIC form.
o Requires two separate tests.

@ Only can gain evidence against a lack of positive or negative
deflection.

@ Only get a yes/no answer, not relative evidence.
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Parametric Test
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Parametric Test Model

f(t): Density (PDF) F(t): Cumulative Distribution (CDF)

Paralle-OR  fi5(t) = A(E)[1 — Fo(t)] + H(8)[1 — Fi(t)]
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Parametric Test Model

f(t): Density (PDF) F(t): Cumulative Distribution (CDF)

Parallel-OR  fio(t) = A(t)[1 — F(t)] + H(H)[1 — Fi(t)]
Paralle-AND  fi5(t) = A(t)Fa(t) + H(E)Fi(t)

Serial-OR fia(t) = pfi(t) + (1 — p)f(t)
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Parametric Test Model

f(t): Density (PDF) F(t): Cumulative Distribution (CDF)

Paralle-OR  fi5(t) = A(E)[1 — Fo(t)] + H(8)[1 — Fi(t)]
Paralle-AND  fi5(t) = A(t)Fa(t) + H(E)Fi(t)
Serial-OR fia(t) = pfi(t) + (1 — p)f(t)

Serial-AND fio(t) = A(t) = f(t)
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Parametric Test Model

Tip~1G (a ,a2> n ~ Exponential(100)
vy
@ 2
T ~16 | — v~ T(4,0.1)
Z1
Y |_(4, 01) VH:V]+77
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Parametric Test Model
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Parametric Test  Simulation

Simulation Parameters

T = inf{t ZX,'(I') = Of}

a =30 vy = 0.3
o’ = vp =0.1
p=05
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Parametric Test  Simulation

Simulation Results

Serial Serial Parallel Parallel
OR  AND OR AND  Coactive
Serial-OR 1.00 0 0 0 0
Serial-AND 0 0.99 0 0.01 0
Parallel-OR 0 0 0.98 0 0.02
Parallel-AND 0 0 0 1.00 0
Coactive 0 0 0 0 1.00
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Monparametric Test

Qutline

© Nonparametric Test

o Model
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Monparametric Test Model

@ Approach: Model the response time distributions
o (as opposed to the RT generating process).

@ Assume each RT distribution is an independent sample from a
Dirichlet process prior.

@ Compare the Bayes factor of each SIC form in the posterior relative to
encompassing prior.
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Monparametric Test Model

@ Approach: Model the response time distributions
o (as opposed to the RT generating process).

@ Assume each RT distribution is an independent sample from a
Dirichlet process prior.

@ Compare the Bayes factor of each SIC form in the posterior relative to
encompassing prior.

ay ~ DP(B)
RT;(,-) ~ .
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Monparametric Test Simulation

Simulation

o Tested on same models as parametric-Bayesian test (but with 1000
rounds rather than 100).

e Used region of probabilistic equivalence £.1 for SIC and +.3 for MIC.
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Monparametric Test Simulation

Simulation

o Tested on same models as parametric-Bayesian test (but with 1000
rounds rather than 100).

e Used region of probabilistic equivalence £.1 for SIC and +.3 for MIC.

Serial Serial Parallel Parallel

OR  AND OR AND  Coactive
Serial OR 1.00 0 0 0 0
Serial AND 0 0.79 0 0.21 0
Parallel OR 0 0 0.93 0 0.07
Parallel AND 0 0 0 1.00 0
Coactive 0 0 0 0 1.00
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Monparametric Test Simulation

Example SICs
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Comparisons Among SIC Tests
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Comparisons Among SIC Tests

Simulation

Serial  Serial  Parallel  Parallel
OR AND OR AND Coactive
Serial OR KS 0.96 0 0 0.04 0
DP 1.00 0 0 0 0
BUGS 1.00 0 0 0 0
Serial AND KS 0 0.80 0 0.15 0.05
DP 0 0.79 0 0.21 0
BUGS 0] 0.99 0 0.01 0
Parallel OR KS 0 0 1.00 0 0
DP 0 0 0.93 0 0.07
BUGS 0 0 0.98 0 0.02
Parallel AND | KS 0 0 0 1.00 0
DP 0 0 0 1.00 0
BUGS 0 0 0 1.00 0
Coactive KS 0 0 0.02 0 0.98
DP 0 0 0 0 1.00
BUGS 0 0 0 0 1.00
Houpt, et al. (SMP 2012) Eayesian SIC
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Comparisons Among SIC Tests

Simulation

Serial  Serial  Parallel  Parallel
OR AND OR AND Coactive

Serial OR KS 0.93 0 0.05 0.02 0

DP | 079 0.18 0.02 0.01 0
Serial AND KS 0 0.41 0 0.56 0.03

DP 0 07T 0 023 0]
Parallel OR KS 0 0 1.00 0 0

DP 0 0 0.79 0 0.21
Parallel AND | KS 0 0 0 1.00 0

DP 0 0.04 0 0.96 0
Coactive KS 0 0 0.50 0 0.50

DP 0 0 0 0 1.00
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Comparisons Among SIC Tests Simulation
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Comparisons Among SIC Tests Application

KS Test
OR Task AND Task
Participant \/W.DA+ \/NDA* \/NDAJr \/NDA*
1 4.86%¥* (011 0 4 ph¥*r*
2 1.11 0.04 0.04 2.73%Fk%
3 4.87¥*% (014 0 3.61%+%
4 2.12%%% 077 0.07 3.30%%*
5 2.50%k% (22 021 4 D4F**
) 3.52%%% 004 0.16 2. 79%**
7 1.44%* 0.11 0.04 2.04%*%*
8 3.64%%*% (024 0.11 2.10%**
9 3.86%*%* 0.07 0.07 4 0g¥*r*
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Comparisons Among SIC Tests

Parametric Bayes

Houpt, et al

Application

OR Task
Serial Parallel
OR  AND OR AND Coactive

1] 7991 7985 7869 8012 7964
2 | 8489 8489 8394 8486 3488
3| 7831 7792 7623 7920 7746
4 | 9480 9504 9530 9464 9505
5| 9347 0351 9274 G352 9335
6 | 8870 8875 8885 8830 8867
719210 9216 9192 6201 9214
8| 8624 8636 8531 8638 8620
9 | 8830 8850 8828 8837 8837

(SMP 20192)
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Comparisons Among SIC Tests

Parametric Bayes

Houpt, et al

Application

AND Task
Serial Parallel
OR  AND OR AND Coactive

1| 7861 7863 7872 7817 7890
2| 7832 7833 7791 7871 7836
3| 7246 7249 7242 7297 7265
4 | 8883 8880 8922 8789 8890
519390 09370 9350 9360 9380
6| 7434 7426 7441 7374 7426
7| 7853 7857 7815 7858 7861
8| 8272 8269 8229 8250 8273
9| 8011 7998 7968 8009 3010

(SMP 20192)
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Comparisons Among SIC Tests

Nonparametric Bayes

Application

OR Task
Serial Parallel

OR AND OR AND Coactive Np
1 1 0.17 7.26 0 0.05 0
21160 257 724 003 0.15 0.02
3 1 020 6.98 0 0.31 0
4 1 012 3.19 0 0 0
5 1 025 7.02 0 0.70 0
6 1 025 7.45 0 0 0
71 72 029 725 0 0.01 0
8 1 025 7.19 0 0.13 0
9 1 025 7.22 0 0.01 0

Houpt, et al. (SMP 2012)
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Comparisons Among SIC Tests Application

Nonparametric Bayes

Houpt, et al

AND Task
Serial Parallel

OR AND OR AND Coactive Np
17 1 050 0 741 0 0
21 1 025 0 7.b1 0 0
311 017 0 7.69 0 0
41 1 050 0 7.26 0 0
511 1.00 0 7.36 0 0
6| 1 017 0 7.37 0 0.24
71 1 050 0 7.22 0 0.04
g1 1 02 0 7.37 0 0.48
9| 1 050 0 7.31 0 0

(SMP 20192)
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Conclusion

Overview

@ Developed parametric and nonparametic Bayesian tests for
architecture and stopping rule.

@ Tested each of these approaches on both simulated data and
experimental data.

o Both did quite well on simulated data.
e Parametric conclusions diverged from NHST and nonparametric tests

on human data.

Houpt, et al. (SMP 2012) Bayesian SIC 30 /30



Conclusion

Overview

@ Developed parametric and nonparametic Bayesian tests for
architecture and stopping rule.
@ Tested each of these approaches on both simulated data and
experimental data.
o Both did quite well on simulated data.
e Parametric conclusions diverged from NHST and nonparametric tests
on human data.
o What's next?

e Parametric: Inclusion of base time and more stringent testing.
o Nonparametric: Continuous (smooth) distributions in the prior.
e Hierarchical models.
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Conclusion

Overview

@ Developed parametric and nonparametic Bayesian tests for
architecture and stopping rule.
@ Tested each of these approaches on both simulated data and
experimental data.
o Both did quite well on simulated data.
e Parametric conclusions diverged from NHST and nonparametric tests
on human data.
o What's next?

e Parametric: Inclusion of base time and more stringent testing.
o Nonparametric: Continuous (smooth) distributions in the prior.
e Hierarchical models.

Thank you.
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