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Teacher Quality at the High-School Level: The Importance of 
Accounting for Tracks  

 
C. KIRABO JACKSON1 

MAY 17, 2013 
Northwestern University, IPR, and NBER  

 
Unlike in elementary school, high-school teacher effects may be confounded with both selection to 
tracks and track-level treatments. I document confounding track effects, and show that traditional 
tests for the existence of teacher effects are biased. After accounting for biases, high-school 
algebra and English teachers have much smaller test-score effects than found in previous studies. 
Moreover, unlike in elementary school, value-added estimates are weak predictors of teachers’ 
future performance. Results indicate that either (a) teachers are less influential in high school than 
in elementary school, or (b) test-score effects are a poor measure of teacher quality at the high-
school level. (JEL I21, J00). 

  

 There is a current push to use test-score based measures of teacher quality in policy 

decisions. Several districts including Washington D.C., New York, and Los Angeles publicly 

release estimates of a teacher's average effect on her students’ test scores (value added) and many 

districts have begun using them in hiring, firing, and retention decisions. The increasing reliance 

on test-score based measures of teacher quality is predicated primarily on the notion that one can 

identify teachers who will improve test scores in the future based on how well they increased test 

scores in the past — i.e. that estimated teacher value added is persistent over time. This paper 

demonstrates that due to previously unaccounted-for biases, existing studies on teacher quality, 

particularly those at the high-school level, may overstate the magnitude of persistent teacher 

effects on test scores, and may drastically overstate their usefulness for policy.  

The emphasis on test-score measures of teacher quality is based largely on studies of 

elementary-school teachers showing that a one standard deviation increase in teacher quality leads 

to between 0.1 and 0.2 of a standard deviation (σ) increase in math and reading scores (e.g. Rivkin 

et. al. 2005; Rockoff, 2004; Kane & Staiger, 2008). Using similar methodologies as those used for 

elementary-school teachers, the few studies on high-school teachers find similar and somewhat 

larger effects. Using value-added models, Aaronson, Barrow, and Sander (2007), Koedel (2008), 

Goldhaber et. al. (2011) and Slater, Davies, and Burgess (2011) find that a standard deviation 

                                                 
1 Early versions of this paper were previously circulated as "Do High-School Teachers Really Matter?" I would like 
to thank David Figlio, Jon Guryan, and seminar participants at Georgetown University, the University of Kentucky, 
the Cleveland Fed, Uppsala University, and Leibnitz University for helpful comments. All errors are my own. 
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improvement in high school teacher quality raises student scores by between 0.10σ and 0.4σ.2 

In many nations elementary-school students are exposed to a single teacher in a given year 

and follow the same course of study, while secondary-school students are exposed to several 

teachers, take different courses, and placed into different tracks. This difference may render 

methodologies appropriate for measuring elementary-school teacher quality inappropriate for 

other grades for two reasons. First, there may be unobserved differences between students taking 

the same course with similar incoming test scores but who are in in different tracks (group of 

courses). For example, taking a greater number of honors courses (among all the courses taken) 

may be associated with greater motivation even among students with the same past performance 

and who take the same math or English course. With such selection to tracks, if different teachers 

of the same course teach students from different tracks, there may be bias due to selection to tracks 

that will not be accounted for with controls for past performance or the covariates used in standard 

value-added models. Second, distinct from selection bias, there is a possible omitted variables bias. 

Specifically, in most high-school settings, even with random assignment of students to teachers, if 

different teachers teach in different tracks (group of courses), and students in different tracks are 

exposed to different treatments, there will be bias due to "track treatment effects." These "track 

treatment effects" may arise due to other teachers (e.g. students taking Algebra I with Mr. Smith 

take physics with Mr. Black who affects algebra scores directly), the content of other courses (e.g. 

students taking Algebra I with Mr. Smith also take physics which affects algebra scores directly), 

or track-specific treatments (e.g. college-bound students take Algebra I with Mr. Smith and are 

also part of a program that teaches study skills that affect algebra scores directly). Existing studies 

have not addressed the omitted variables bias associated with track-specific treatments or the 

specific forms of selection that may occur at the high-school level.3 As such, it remains unclear to 

what extent high-school teachers affect test scores, and whether test-score measures of teacher 

quality are a useful policy tool at the high-school level.  

 I aim to (a) demonstrate that the statistical methods used to identify teacher test-score 

effects in elementary school may be inappropriate for identifying teacher test-score effects at the 

middle- or high-school level, (b) use data on high-school algebra and English teachers in North 

                                                 
2 Clotfelter, Ladd, and Vigdor (2010) find that teacher characteristics are associated with test score differences. 
3 Two recent working papers, Harris and Anderson (2013), and Protik, et al. (2013) find that failing to account for 
course tracks leads to sizable biases in the individual value-added estimates for middle- and high-school teachers.  
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Carolina to present evidence on the existence of track-specific effects, (c) employ a strategy to 

estimate the effects of algebra and English teachers on test scores in 9th grade that exploits detailed 

course-taking information to remove both selection bias across tracks and omitted variables bias 

due to track-specific treatments, and (d) document the extent to which historically-estimated value 

added predicts teacher effectiveness at improving test scores in a high-school setting, and compare 

these results to those found for elementary-school teachers. 

 To address the biases associated with tracks, I estimate a standard value-added model with 

the addition of indicator variables for each academic track (the unique combination of school, set 

courses taken, level of courses taken). In such models, comparisons are made among students who 

are both at the same school and in the same academic track. Comparing the outcomes of students 

with different teachers at the same school taking the same algebra or English course and in the 

same track removes both the influence of any school-by-track level treatments that could confound 

comparisons of teachers, and bias due to sorting or selection to schools, tracks, and courses. 

Variation comes from comparing the outcomes of students in the same track and school but are 

exposed to different teachers either due to (a) changes in the teachers for a particular course and 

track over time, or (b) schools having multiple teachers for the same course and track in the same 

year. The remaining concern is that comparisons among students within the same track may still 

be susceptible to selection bias. I argue that most plausible stories of student selection involve 

selection to tracks rather than to teachers within tracks, and I present several empirical tests that 

suggest little bias due to student selection. 

 This paper also makes two methodological contributions to the broader teacher-quality 

literature. The first contribution is to show that in most datasets where individual teachers are not 

observed in several classrooms (i.e. more than 20), the commonly used F-test will yield very small 

p-values even when there are no real teacher effects. Motivated by Kane and Staiger (2008), I 

present an unbiased test for the existence of teacher effects that does not require a large number of 

classroom observations for each teacher, but only requires observing a large number of teachers in 

multiple classrooms (a condition satisfied in most datasets). The second methodological 

contribution is to present an approach to estimating the variance of the variance of teacher quality 

effects. Under certain conditions, the covariance across classroom effects for the same teacher is 

a consistent estimate of the variance of true teacher quality. Because a covariance is a sample 

statistic, one can obtain confidence intervals for the variance of true teacher quality. While existing 
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studies present estimates of the variance of teacher quality effects, they do not present confidence 

intervals for these estimates so that this approach may be a useful contribution. 

 I document that traditional value-added models yield a strong positive association between 

teacher experience and student outcomes (similar to existing studies). However, in models that 

compare teachers within the same track, there is a substantively weaker association between test 

scores and teacher experience in both subjects. Consistent with this, after accounting for track 

effects, the plausible range of estimated standard deviations of algebra and English teacher effects 

are smaller than estimates from other studies. Specifically, the 95% confidence intervals for the 

standard deviation of teacher effects is (0.0514σ ; 0.081σ) and (0 ; 0.0312σ) for algebra and 

English, respectively. Looking to usefulness for policy, I find that the ability to predict future 

performance based on historical performance at improving test scores is much smaller than at the 

elementary level. Jackson and Bruegmann (2009) find that a good elementary-school teacher (85 

percentile) based on previous performance raises current scores by 0.17σ and 0.08σ more than an 

average teacher in math and English, respectively. In stark contrast, a good 9th grade teacher (85 

percentile) based on previous performance raises current scores by only about 0.027σ and 0.018σ 

standard deviations more than an average teacher in algebra and English, respectively. The results 

suggest that (a) the properties of high- and elementary-school teacher value added are 

meaningfully different, (b) teachers may be less influential in high school than in elementary 

school, and (c) using test scores to identify effective teachers may have limited practical benefits 

at the high-school level. Note that that this study focuses on policy-relevant persistent teacher 

effects that can be reasonably attributed to teachers (rather than transitory variability that may 

reflect random shocks). Also, this study speaks only to teacher effects on student skills captured 

by standardized tests.4 

 The remainder of the paper is as follows: Section II describes the data, Section III details 

the econometric framework, Section IV lays out the identification strategy, Section V presents the 

main results, robustness checks, and specification checks, and Section VI concludes. 

 

II Data 

 This paper uses data on all public middle- and high-school students in North Carolina from 

2005 to 2010 from the North Carolina Education Research Data Center. The student data include 

                                                 
4 See Jackson (2012) for an analysis of teacher effects on non-test score outcomes. 
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demographic data, middle-school achievement data, end of course data (high-school), and codes 

allowing one to link students' end of course test-score data to individual teachers.5 Because English 

I and Algebra I are the two tests that have been the most consistently administered over time, I 

limit the analysis to students who took either the Algebra I course or the English I course. Over 90 

percent of all ninth graders take at least one of these courses so that the resulting sample is 

representative of ninth graders as a whole. To avoid endogeneity bias that would result from 

teachers having an effect on repeating ninth grade, the master data uses the first observation for 

when a student is in ninth grade. Summary statistics are presented in Table 1.  

 These data cover 348,547 ninth grade students in 619 secondary schools in classes with 

4296 English I teachers, and 3527 Algebra I teachers. While roughly half of the students are male, 

about 58 percent are white, 29 percent are black, 7.5 percent are Hispanic, 2 percent are Asian, 

and the remaining one percent is Native American, mixed race, or other. About 7.5 percent of 

students have the highest level of education of the student's two parents below high-school, 40 

percent with a high school degree, 15 percent with a junior college or trade school degree, 20 

percent with a four year college degree or greater, and 6.4 percent with an advanced degree (the 

remaining 10 percent are missing parent education data). Test score variables have been 

standardized to be mean zero with unit variance for each cohort and test. All tests have single 

peaked bell-shaped distributions, and there is no evidence of any ceiling or floor effects.6   

Measuring Tracks: 

 It is well documented that most high schools (even those with no explicit tracking policy) 

practice de-facto tracking by placing students of differing levels of perceived ability (e.g. college 

bound, remedial, honors) into distinct groups of courses (Sadker and Zittleman 2006, Lucas and 

Berends 2002). In North Carolina, while there are hundreds of courses that students can take 

(including special topics, physical education, and extracurricular activities) there are 10 core 

                                                 
5 The data link students to the teacher who administered the test. In most cases this is the student’s own teacher but 
this is not always the case. I link classrooms in the testing files to classrooms in personnel files (with valid teacher 
identifiers). Classes that match across files on school, subject, year, class size, demographic composition, and 
teacher identifier, are considered perfect matches. See Appendix B for details on the matching procedure. The 
matched sample corresponds to 57 percent of all Algebra student observations and 69 percent of all English student 
observations. The demographic characteristics of students in matched classroom are very similar to those in 
unmatched classrooms. However, unmatched classrooms appear to have somewhat higher incoming student test 
scores than the full sample. All results are similar when using cases when the matching is exact. 
6 Incoming 8th grade test scores in the final 9th grade sample are approximately 8 percent of a standard deviation 
higher than that of the average in 8th grade. This is because the sample of 9th grade students is less likely to have 
repeated a grade and to have dropped out of the schooling system. 
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academic courses (listed in Table 2) that make up over half of all courses taken. Because Algebra 

I and English I are taught at multiple levels (advanced, regular, and basic), students in the "high-

ability" track take these courses at the advanced level, while those in the "lower ability" tracks will 

take these courses at the basic level. Because the advanced class might emphasize different 

material from the regular class, even with random assignment of students to classes, basic 

comparisons of outcomes across teachers will confound level-of-instruction effects with teacher 

quality. I can avoid this bias because the rich data contain information on the level of instruction. 

 I take as my measure of a school-track, the unique combination of the 10 largest academic 

courses, the 3 levels of Algebra I, the 3 levels of English I, and the 629 high-schools. As such, all 

students who take the same set of the 10 largest courses in 9th grade, the same level of English I, 

the same level of Algebra I, and attend the same school, are in the same school-track.7 Students 

who take the same 10 most commonly taken courses at different schools are in different school-

tracks. Students at the same school who take either a different number of the 10 courses, or at least 

one different course (among the 10 courses) are in different school-tracks. In addition, students at 

the same school who take the same courses (among the 10 courses) but took either Algebra I, or 

English I, at different levels are in different school-tracks. Because many students take courses in 

groups (Frank, et al. 2008), only 3.7 percent of students are in singleton tracks, most are in school-

tracks with more than 50 students, and the average school-track contains 117 students. There are 

14,793 school-tracks with more than one student across the 629 high-schools. I present the 

standard deviations of the variables within-schools, and within-tracks-within-schools in Table 1.  

 Comparing the standard deviations within schools to those within school-tracks provides 

evidence of sorting into tracks. If there were no sorting to tracks within schools, these two 

estimated standard deviations would be similar. For all student characteristics there is greater 

variation within schools than there is within school-tracks. For example, the standard deviation of 

8th grade math scores within schools is 0.878 while it is only 0.600 within school-tracks (a 33% 

reduction in the variance). Consistent with these tracks capturing important differences between 

                                                 
7 Note that this measure of tracks is stable over time and is likely not endogenous to teacher quality. This would be 
the case if students often switched tracks during the year in response to teacher quality. The data show that such 
switching half way through the year is relatively rare. First about two-thirds of students are at schools that teach 
Algebra I and English I over one semester meeting twice as often rather than over two semesters. At the schools that 
do teach Algebra and English over the course of a year, 2.8 and 4.6 percent of students switch the level of Algebra I 
and English I taken between the fall and the spring, respectively. Accordingly, track switching appears to be a 
relative rare occurrence and should not bias the results in any appreciable way. 
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college-bound, remedial, and average students, the standard deviation of the number of honors 

courses taken is 1.163 within schools while it is only 0.575 within school-tracks (a 50% reduction 

in the variance). In sum, the figures indicate that students are placed into tracks within schools in 

a manner that decreases dispersion in student characteristics within tracks and groups students by 

ability.  

 

III Econometric Framework:  

 To motivate the empirical strategy, I lay out a value-added model that includes track-level 

treatments and transitory within-teacher classroom disturbances. I model the test-score outcomes 

Yijcgy of student i in class c with teacher j in school-track g in year y with [1] below. 

[1]  Yijcgy = Aiy-1δ+ Xiyβ + Iij∙θj +π (P|g) + μjc + εijcgy. 

Here,  Aiy-1 is incoming achievement level of student i, Xiy is a matrix of student-level covariates, 

Iij is an indicator variable equal to 1 if student i has teacher j and equal to 0 otherwise,  θj is a teacher 

fixed effect, (P|g) is a treatment specific to students in school-track g, μjc is a random within-

teacher classroom-level error such that E[μjc |J]=0, and εijcgy is a random mean zero error term. 

When track-level treatments are unobserved and one does not account for classroom errors, the 

OLS estimate of teacher effect  
ˆ

j is given by [2].  

[2]      
   

1 1

1ˆ[ | , , ]   ( | )
G G

ijcgy jc ijcgy
j j jg jg ijcgy

g i g g c j i j i gg j j g

e e
J X A w w P g e
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      .  

In [2], wjg is the proportion of students who are in class with teacher j that are also in track g, Ng is 

the number of students in track g, Nj is the number of students with teacher j, and Tj is the number 

of classrooms observed for teacher j. I discuss the components of this equation below.    

Potential Bias in Estimated Teacher Effects: 

 Equation [2] highlights that there are four distinct potential sources of bias in estimated 

teacher effects. The first source is  

1

G
ijcgy

jg
g i g g

e
A w

N 

  
       
  , which is a weighted average of the 

student mean error term in each track (where the weight on track g for teacher j is the proportion 

of students with teacher j that are in track g). This term is due to students selecting to tracks (and 

therefore teachers) based on unobserved characteristics that also affect test scores. For example, if 

highly motivated students select into the honors track, and Mr. Jones teaches students in the honors 
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track, then students in Mr. Jones' class will on average be more motivated than students in other 

teachers' classes. This bias due to student selection has been discussed in Rothstein (2009), and 

Koedel and Betts (2012). The second potential source of bias is the term

 
 

1 ijcgy
ijcgy

i j i gj g

e
B e
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  which is the average track de-meaned student-level error for teacher 

j, and represents sampling variability. If each teacher is observed with more than 30 students (as 

is often the case), this term will be small and will result in minimal bias. A third potential source 

of bias is the term jc

c j j

C
T





 
   
 
 , which is the mean of the transitory classroom-level disturbances 

for a given teacher (assuming equally-sized classrooms). This source of bias, discussed in Kane 

and Staiger (2008), is due to transitory shocks that may be correlated with individual teachers in 

finite samples. For example, a teacher who teaches a class that had a flu outbreak will have lower 

performance than expected and, based on only one class, will appear to be less effective than her 

true ability. While this term should be near zero if teachers are observed in many classrooms, this 

bias term will be non-trivial and non-zero in short panels (small number of classes per teacher). In 

elementary school, most teachers teach one class per year so that one would need panels with close 

to thirty years of data per teacher for this term to be negligible. In high school, most teachers teach 

between one and three classes per year so that one would need at least 10 years of data for each 

teacher for this term to be negligible. Most existing datasets do not provide such long panels. 

The potential source of bias that has not been addressed by the existing literature is the 

term
1

( | )
G

jg
g

D w P g


 
  
 
 . This is a weighted average of the unobserved treatments (e.g. extra 

tutoring/mentoring or time management classes) in each track (where the weight on track g for 

teacher j is the proportion of students with teacher j that are in track g). This bias is due to certain 

teachers being systematically associated with track-level treatments that directly influence test 

scores. For example, if Mr. Jones teaches algebra to students in the honors track, and other honors 

classes teach students study skills that directly affect their algebra outcomes, one might 

erroneously attribute the benefits from the additional study-skills training in the honors track to 

Mr. Jones. This is a form of omitted variables bias that will exist even if students are randomly 

assigned to teachers so long as individual teachers are correlated with certain track-specific 

treatments. Section V shows that this is the case in North Carolina high schools.  
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  The main objective of this study is to estimate the variability of persistent teacher quality. 

As explained above, the variance of the estimated teacher effectŝ from [2] may overstate the 

variance of true persistent teacher quality because (a) this confounds teacher effects with track-

level selection and treatments, and (b) teacher effects are estimated with error due to sampling 

variation and transitory classroom-level disturbances. I propose strategies to address this in Section 

IV. 

 

IV Empirical Strategy 

IV.1 Estimating the Variance of Persistent Teacher Quality  

Removing bias due to track level treatments and selection 

 One can remove the influence of track-level treatments and selection to tracks by making 

comparison within groups of students in the same track at the same school. In a regression context, 

this is achieved by including Igi, an indicator variable equal to 1 if student i is in school-track g and 

0 otherwise. This leads to [3] below. 

[3]   Yijcgy = Aiy-1δ+ Xiyβ + Ijy∙θj + Igi θg + μjc + εijcgy. 

By conditioning on school-tracks, one can obtain consistent estimates of the teacher effects θj as 

long as there is no selection to teachers within a school-track.8  

 Because the main models include school-track effects, teacher effects are identified by 

comparing outcomes of students at the same school in the same track but who have different 

teachers. There are two sources of identifying variation:(1) comparisons of teachers at the same 

school teaching students in the same track at different points in time; and (2) comparisons of 

teachers at the same school teaching students in the same track at the same time. To illustrate these 

sources of variation, consider the simple case illustrated in Table 3. There are two tracks A and B 

in a single school. There are two math teachers at the school at all times.  

The first source of variation is due to changes in the identities of Algebra I and English I 

teachers over time due to staffing changes within schools over time. For example, between 2000 

and 2005 teacher 2 is replaced by teacher 3. Because, teachers 2 and 3 both teach in track B (in 

different years) one can estimate the effect of teacher 2 relative to teacher 3 by comparing the 

outcomes of students in track B with teacher 2 in 2000 with those of students in track B with 

                                                 
8 Note: In expectation, the coefficient on the school-track indicator variable is π(P|g)+E[εijcgy |g]. This reflects a 
combination of both the unobserved treatment specific and selection to school-track g. 
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teacher 3 in 2005. To account for any mean differences in outcomes between 2000 and 2005 that 

might confound comparisons within tracks over time (such as school-wide changes that may 

coincide with the hiring of new teachers), one can use the change in outcomes between 2000 and 

2005 for teacher 1 (who is in the school in both years) as a basis for comparison. As long as teacher 

1 does not become more effective by diverting resources away from other teachers toward her own 

students, this difference will reflect school-wide changes in outcomes that will have the same effect 

on all teachers. In a regression setting this is accomplished with the inclusion of school-by-year 

fixed effects. This source of variation is valid as long as students do not select across cohorts (e.g. 

stay back a grade or skip a grade) or schools in response to changes in Algebra I and English I 

teachers. I test for this explicitly in Section V and find no evidence of selection to cohorts.  

The second source of variation comes from having multiple teachers teaching the same 

course in the same school-track at the same time. In the example above, because both teachers 1 

and 2 teach students in track B in 2000, one can estimate the effect of teacher 1 relative to teacher 

2 by comparing the outcomes of teachers 1 and 2 among those students in track B in 2000. This 

source of variation is robust to student selection to tracks and is valid if students do not select to 

teachers within tracks. I test for this in Section V and find no evidence of selection to teachers 

within tracks. 

To provide a sense of how much variation there is within tracks during the same year versus 

how much variation there is within tracks across years, I computed the number of teachers in each 

non singleton school-track-year-cell for both Algebra I and English I (Appendix Table A1). About 

63 and 51 percent of all school-track-year cells include only one teacher in English and algebra, 

respectively. This implies that for more than half the data, the variation will be based on comparing 

single teachers across time within the same school track. However, 38 and 49 percent of school-

track-year cells have more than one teacher for English and Algebra respectively, so that more 

than one-third of the variation is within tracks-year cells. In section V, I show that the results are 

robust to using each distinct source of variation separately. 

 

Removing bias due to within-teacher classroom-level shocks and sampling variability 

 While the variance of the estimated teacher effectŝ  from [3] will no longer be biased due 

to track-level treatments, it will still overstate the variance of true teacher quality because of 

sampling variation and transitory shocks. I present two separate approaches to address this issue. 
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Results using both approaches are very similar. 

 If any teacher-level variation in test scores not explained by classroom shocks or sampling 

variability is due to teacher quality, and classroom shocks or sampling variability are unrelated to 

true teacher quality, one can compute the variance of the raw teacher effects and subtract the 

estimated variance of the transitory classroom-level shocks (Kane and Staiger 2008).9 I estimate 

the combined variance of the classroom shocks and sampling variation with the variance of mean 

classroom-level residuals within teachers (i.e. the within-teacher variability in average test scores 

over time). I then divide this by the number of observed classrooms for each teacher to obtain an 

estimate of the variability in the raw teacher effects that can be attributed to transitory variability. 

Because this approach attributes any variability not explicitly accounted for by classroom effects 

or sampling variability to teachers, it may overstate the true variance of persistent teacher quality. 

This motivates the second approach outlined below. 

 In the second approach to estimating the variance of teacher quality I follow Kane and 

Staiger (2008). I estimate [3] without teacher indicator variables, and take the covariance across 

mean classroom-level residuals for the same teacher as my estimate of the variance of the 

persistent component of teacher quality (i.e. that observed across classrooms). This is achieved in 

two steps: 

Step 1:  Estimate equation [4] below.  

[4]    Yigcjy = Aiy-1δ+ Xiβ +X*jcπ + Igi θg+ θsy + ε*ijcgy 

The key conditioning variable is Igi, an indicator variable denoting the school-track g of student i. 

Aiy-1 is the third order polynomial of incoming math and English achievement of student i. To 

address concerns about dynamic tracking, I include math and reading test scores from both 7th and 

8th grade (two lags of achievement). Xi is a matrix of student covariates (parental education, 

ethnicity, and gender). Xjc* is the mean characteristics of other students in class c with teacher j. 

To account for school-level time effects (such as the hiring of a new school principal) that would 

affect all students in the school, I also include school-by-year fixed effects θsy. The error term 

includes the teacher effect and the classroom effect so that ε*ijcgy =θj + μjc+ εijcgy. 

Step 2:  Link every classroom-level mean residual *
jce , pair it with a random different 

                                                 
9 Formally, if all the terms in [2] are uncorrelated, then after removing variation due to tracks (i.e terms A and D) we 
have that 2 2 2ˆ( )  B CVar        so that 2 2 2ˆ( ) B CVar      . 
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classroom-level mean residual for the same teacher *
'jce  and compute the covariance of these mean 

residuals (i.e. compute * *
'( , )jc jccov e e ), where each classroom is weighted by the number of students 

in the classroom. To ensure that the estimate is not driven by any particular random pairing of 

classrooms within teachers, I replicate this procedure 200 times and take the mean of the estimated 

covariances as the parameter estimate. If the classroom errors μjc are uncorrelated with each other 

and are uncorrelated with teacher quality θj, the covariance of mean residuals within teachers but 

across classrooms is a consistent measure of the true variance of persistent teacher quality. That 

is, * * 2
'( , ) cov( , ) var( )

jjc jc j j jcov e e       .10 

Because these procedures remove a track-specific mean in the first stage, they may remove 

some signal about teacher quality. This problem is most severe when there are a small number of 

teachers in a track (in the extreme, there is no remaining signal for the sole teacher in a track). 

Appendix B shows that removal of a track specific mean may lead one to understate the variance 

of teacher quality by a factor of (1-1/R) where R is the number of teachers in a track. As such, if 

all tracks have only 2 teachers the raw estimated variance after removing track effects will be 

roughly 0.5 of the actual variance. Similarly, if all tracks have 10 teachers the estimated variance 

after removing track effects will be roughly 0.9 of the actual variance. Table A2 shows the 

proportion of the students that have a given number of teachers in the track and the associated 

degree of freedom adjustment (i.e. 1/(1-1/R)). Taking the average over all the data, the implied 

degree of freedom adjustment is 1.239 for algebra and 1.244 for English. Accordingly, to avoid 

erroneously attributing a mechanical reduction in variance to track effects, in models that remove 

school-track effects I inflate the estimated variance by 1.239 for algebra and 1.244 for English.   

 

IV.2 Statistical Inference for Teacher Effects  

Testing for the existence of Teacher Effects 

 While estimating the variance of teacher effects in a particular sample is important, being 

able to determine whether such estimates are statistically significant (or occurred by random 

chance) is equally important. This section illustrates that commonly used tests for the existence of 

teacher effects suffer from a severe finite sample bias in most existing datasets that do not contain 

                                                 
10 Note:

' ' ' ' ' 'cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) 0j jc j jgyc j jc jc jc jc jgyc jgyc j jgyc jc jgyc jgyce e e e e e                  
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teachers in several classrooms. I then present an alternate test that provides unbiased statistical 

inference in datasets with a large number (>30) of teachers observed in more than one classroom— 

a condition satisfied in most existing datasets.   

Most studies on teacher quality estimate value-added models akin to equation [1] and report 

the p-value associated with the F-statistic for the test of the null hypothesis that mean outcomes 

are the same across all teachers. Formally, researchers test 0 1 2 3: ... JH        . The F-

statistic is the ratio between the across- and within-teacher variance in test scores.11 If the variance 

across teachers is large relative to the within-teacher variability in outcomes, this statistic will be 

large and it would imply that there is something occurring at the teacher level that explains 

variability in outcomes (i.e. that teacher effects are not all equal).  

 To illustrate how the existence of transitory classroom shocks affects the F-test, let us 

abstract away from selection bias, track treatments, and sampling variability. In this case [2] 

simplifies to   1
ˆ  ( )jT

j j j jc jT    . Now the test of equality of teacher-level mean outcomes 

is really a test of equality of the teacher effects plus the means of the transitory classroom shocks 

for each teacher. This test is asymptotically equivalent to testing the equality of teacher effects 

only when each teacher is observed in several classrooms so that   0   jy jT j   . 

However, if teachers are observed in a handful of classrooms, one cannot ignore the influence of 

transitory classroom shocks. In the extreme (but not uncommon) case where each teacher is 

observed in only one classroom, it is impossible to distinguish between a good (bad) teacher and 

teacher who happened to have a good (bad) classroom shock. As such, with unaccounted-for 

classroom shocks, the F-test will tend to over-reject the null hypothesis even when it is true. 

 To get a sense of the behavior of the commonly used F-test I implemented the following 

procedure. Using the actual data I (1) drew a random error for each actual classroom from a mean 

zero normal distribution, (2) drew a random student-level error for each actual student from a 

standard normal distribution, (3) created a simulated outcome for each student that is the sum of 

these two errors, and (4) tested for the existence of teacher effects using the F-test (note there are 

no teacher effects in the simulated outcome). I repeated this procedure 500 times each for 

                                                 
11 The F-statistic is 11 [across-teacher variance]ˆ ˆ ˆ ˆˆ= ( ) ( ) ( )

1 [within-teacher variance]JF V
J

     


, where ̂ is a J×1 vector of estimated fixed 

effects, ̂  is the mean of the ˆ
j s, and 

ĴV is the J×J variance-covariance matrix for the teacher effects. 
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classroom shocks of different variability. Figure 1 shows the distribution of the p-values associated 

with the F-tests for varying variability of the classroom-level shocks. Because there are no teacher 

effects, if the test is unbiased, the p-values should follow a uniform distribution centered on 0.5.    

 With no classroom errors (sd=0.00) the distribution of p-values is roughly uniform— 

indicating that the test is unbiased in the absence of classroom-level shocks. However, with quite 

modest classroom errors (sd=0.05) the likelihood of a p-value smaller than 0.1 is about 70 percent. 

Given that non-persistent components of teacher quality are estimated to be about as large as 

teacher effects themselves (Kane and Staiger 2008), the variance of the teacher-year effects are 

likely closer to 0.15σ. At this level, with no teacher effects, the F-test erroneously rejects the null 

more than 99 percent of the time ─ rendering the ubiquitously used F-test virtually uninformative. 

The small number of clusters per teacher is a finite sample problem that is not solved by clustering 

the standard errors, degree of freedom adjustments, or aggregating the data (Bertrand, Duflo, and 

Mullainathan 2004; MacKinnon and White 1985).12 As such, existing studies that rely on the F-

test likely overstate the degree to which we can be sure that teacher effects exist.  

An unbiased test for the existence of teacher effects: 

 To address the problems above, I propose a new test based on the idea that if teacher effects 

exist, the residuals for a teacher in one classroom should be correlated with her residuals from 

another classroom. One can test this by running a regression of a teacher's mean residuals in 

classroom jc on her mean residuals in classroom jc’ and then implementing a simple t-test on the 

coefficient on classroom jc’ residuals (for the same teacher). I do this using a single draw of a 

random pairing of each classroom with another classroom for the same teacher. As long as 

classroom disturbances are uncorrelated, this test will be an unbiased test for the existence of 

persistent teacher quality effects. This test does not suffer from the finite sample problem of testing 

for equality of all the individual teacher effects because it only requires that one parameter be 

identified (i.e. the correlation between residuals for classroom jc and jc’) for all teachers on average 

rather than one parameter for each teacher. Because the t-test is a finite sample test, this new test 

will yield valid statistical inference on samples with any number of teachers as long as at least two 

teachers are observed in more than one classroom. This is satisfied in most existing datasets. 

To illustrate the unbiasedness of this proposed test, I show the covariance test's 

                                                 
12 Because the F-test requires that the each estimated coefficient be normally distributed, and asymptotic normality 
cannot be invoked with a small number of independent observations, the F-test will not be reliable in short panels. 
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performance on the same simulated data where the F-test was problematic. Figure 2 shows the 

distribution of the p-values associated with the covariance tests across the 500 replications for 

classroom disturbances of different variability. If the test is unbiased, the p-values should follow 

a uniform distribution centered around 0.5. As one can see, irrespective of the size of the classroom 

errors, the p-values follow a uniform distribution, so that this test is robust to idiosyncratic 

classroom disturbances and will be an unbiased test for the existence of teacher quality effects. I 

will use this test. 

Deriving confidence bounds for the variance of teacher quality effects 

  Because existing studies do not present confidence intervals for estimates of the variance 

of teacher effects, one cannot meaningfully compare estimates across studies or know what range 

of effect sizes is consistent with the data. Given the increasing use of estimates from studies to 

inform policy, it is important to be able to report the degree of uncertainty around these estimates. 

Addressing this need in the literature, I propose a way to estimate confidence bounds around 

estimated variances of teacher effects. Because the variance of the teacher effects can be estimated 

by a sample covariance, one can compute confidence intervals for the variance of the persistent 

teacher effects as long as one knows the properties of the sampling distribution. I use the empirical 

distribution of 500 randomly drawn and computed “placebo” covariances (i.e. sample covariance 

across randomly drawn classrooms for different teachers) to form an estimate of the standard 

deviation of the sampling variability of the covariance across classrooms for the same teacher. I 

use this “bootstrapped” standard deviation of the covariance to form normal-distribution-based 

confidence intervals of the covariance (i.e. the true variance of teacher effects).  

 

V Results  

V.1 Evidence of sorting of teachers into tracks 

 The existing literature on teacher quality has emphasized the biases associated with student 

sorting to teacher or tracks. However, the literature has not addressed the potential biases 

associated with teachers sorting into tracks. As illustrated in Section III, even with no student 

sorting into tracks (and no differences in student ability across teachers), if teachers sort into tracks 

there could be substantial bias if certain tracks provide unobserved treatments that influence 

classroom outcomes directly. Because this type of sorting has not been previously documented, it 

is instructive to present evidence of teacher sorting into tracks before presenting the main results. 
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To test for teacher sorting to tracks, I computed the proportion of students in each teacher's 

classes in each year who took at least one honors course (among the students' other courses). About 

48 percent of all 9th grade students who took Algebra I or English I took at least one honors courses 

as one of their other courses. In both subjects roughly 20 percent of teacher-year observations have 

fewer than 25 percent of students who have taken at least one honors course while roughly 20 

percent have more than 75 percent of students are in honors classes. To assess how this varies 

systematically across teachers, I regress the proportion in at least one honors class among other 

courses for a given teacher in year t on the same proportion for the same teacher in year t-1. If 

there were no systematic relationship between teachers and tracks, the coefficient on the lagged 

outcome would be zero. The results (Table 4) show a strong association between the proportion in 

at least one honors class among other courses for a teacher in year t and year t-1. That is, within 

the same course (but not the same track), some teachers consistently teach students who take 

more/fewer honors classes than the average student than other teachers. This relationship holds 

across both subjects, and holds both across and within schools.  

This relationship is problematic insofar as there is selection to honors classes, or honors 

classes provide skills that affect Algebra I or English I scores directly. In either scenario, taking 

any other honors class will predict the outcomes in a traditional value-added model. To test for 

this, I estimate models that predict Algebra I and English I scores as a function of school effects, 

year effects, 8th and 7th grade scores in both English and math, and an indicator denoting whether 

a student took any honors course other than the course in question. In such models, the coefficient 

on taking any other honors course is 0.12 in Algebra and 0.14 in English (both significant at the 1 

percent level). While this honors student effect may be due to selection or track-specific treatments, 

the effects clearly indicate the importance of explicitly controlling for tracks.   

 

V.2 Evidence of Bias based on Teacher Experience Effects 

 It is instructive to foreshadow the main results by illustrating how conditioning on school-

tracks affects the relationship between teacher experience and test scores. To do this, I regress 

English I and Algebra I scores on 8th and 7th grade math and reading scores and indicator variables 

for each year of teacher experience. I estimate models with school fixed effects, and then with 

track-by-school fixed effects. I plot the coefficients on the years of experience indicator variables 

in Figure 3. Models with school fixed effects indicate that students have higher Algebra I scores 
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when they have teachers with more years of experience (top). Within schools, students with a 

teacher with 10 years of experience score 0.1σ higher than those with a rookie teacher. The p-value 

associated with the null hypothesis that all the experience indicators are equal is 0.0001. However, 

models with track-by-school effects are about 30 percent smaller such that students with a teacher 

with 10 years of experience score only 0.07σ higher than a rookie teacher. The difference is even 

more pronounced for English teachers. Models with school fixed effects indicate that students have 

higher English I scores when they have teachers with more years of experience (bottom). Within 

schools, students with a teacher with 10 years of experience score 0.03σ higher than those with a 

rookie teacher. The p-value associated with the null hypothesis that all the experience indicators 

are equal is 0.0001. However, models with track-by-school effects are 66 percent smaller such that 

students with a teacher with 10 years of experience score only 0.01σ higher than a rookie teacher. 

The p-value associated with the null hypothesis that all the experience indicators are equal is 

0.13— suggesting a weak association between teacher experience and English test scores within 

tracks. Approximately 60 percent of the variation in teacher experience occurs within tracks for 

both subjects. Accordingly, a lack of variability in experience within tracks cannot explain the 

attenuated effects for English— indicating that accounting for tracks is important. 

 

V.3 Main Results 

 I now analyze the effects of accounting for tracks on the estimated variability of teacher 

effects. In Table 5, I present the estimated variability of effects under five models. Model 1: with 

both school and year fixed effects and lagged individual level achievement; Model 2: with school 

and year fixed effects and all individual-student-level covariates; Model 3: with school and year 

fixed effects and all individual-level  and classroom-peer-level covariates; Model 4: with school-

by-track and year fixed effects and all individual-level and classroom-peer-level covariates; Model 

5: with school-by-track fixed effects, school-by-year fixed effects, and all individual-level and 

classroom-peer-level covariates. Note that estimated standard deviations and covariances for 

models that include school-track fixed effects in the first stage have been inflated by the degree of 

freedom adjustment to account for the number of teachers in the school-track. 

 I start out discussing the variance subtraction results for algebra teachers. The estimated 

variability of raw algebra teacher effects is similar across models that do not include school-track 

effects. For these three models the standard deviation of the raw teacher fixed effects is about 
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0.18σ (in student achievement units). These raw estimates are similar in magnitude to those in 

Aaronson Barrow and Sander (2007). In these models, the standard deviation of the mean residuals 

within teachers across classrooms is about 0.205σ ─ indicating that there is more variation in 

teacher performance across classrooms for the same teacher than there is across teachers. Because 

each teacher estimate is based on an average 3.6 classrooms, this implies that approximately 

0.205/√3.6=0.109σ can be attributed to transitory variation (i.e. due to classroom shocks and 

sampling variability). After accounting for transitory variability, under the assumption that all the 

remaining variation reflects true teacher quality, the implied standard deviation of teacher effects 

is approximately 0.1367σ. In models that include school-track fixed effects the standard deviation 

of the raw teacher fixed effects falls to 0.1475σ and the adjusted standard deviation is 0.1069σ. 

This change is significant because the estimated variance without track effects is 1.64 times as 

large as that with track effects included (the estimated standard deviation without track effects is 

1.27 times as large as that with track effects included). This indicates that selection to tracks or 

track specific treatments are important sources of variability across classrooms that should not be 

attributed to teachers. In the preferred model with school-track fixed effects and school-by-year 

effects (model 5) the standard deviation of the raw teacher fixed effects falls to 0.1237σ and the 

adjusted standard deviation of the teacher effects falls by to 0.0775σ.  

The covariance-based estimates for algebra teachers are similar to those obtained using 

variance subtraction method— indicating that the main results are robust to the methodology used. 

The estimates indicate that the covariance of mean residuals across classrooms for the same teacher 

is 1.5 times larger without tracks that when track effects are accounted for— underscoring the 

importance of accounting for tracks. Models with school and year fixed effects and both student 

and peer covariates (model 3) yields a covariance across Algebra classrooms for the same teacher 

of 0.0148, yielding an estimated standard deviation of persistent teacher quality of 0.1215σ. This 

is similar to estimates from the variance subtraction method and is in-line with existing estimates 

in the literature. Adding additional controls for track effects (model 4) yields an estimated standard 

deviation of persistent teacher quality of 0.0998σ. The preferred model that includes track-school 

and school-year effects yields an estimated standard deviation of true teacher quality of 0.0677σ 

─ similar to the estimates obtained using the variance subtraction approach. For all models one 

rejects the null hypothesis of zero covariance across classrooms for the same teacher at the 1 

percent level. The 95% percent confidence interval for the preferred model ranges from 0.0514σ 
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to 0.0809σ. That is, going from an average teacher to one at the 85th percentile of the quality 

distribution increases algebra test scores by between 0.0514σ and 0.0809σ. Note that this 

covariance-based confidence interval includes the variance subtraction estimate. This confidence 

interval is informative because the 95% upper-bound is lower than many of the point estimates of 

existing studies (and lower than point estimates that do not account for school-track effects).   

 Now I discuss results for English teachers. In the variance subtraction model that only 

includes lagged test scores and school fixed effects (model 6), the standard deviation of the raw 

estimated teacher effects is 0.1025σ, and the adjusted estimate is 0.0713σ. In models with 

additional student controls (model 7), the standard deviation of the raw estimated teacher effects 

falls to 0.088σ and the adjusted estimate falls by 23 percent to 0.0579σ. Adding the characteristics 

of the peers in the classroom reduces the adjusted standard deviation slightly to 0.0514σ. Adding 

track-school effects, the adjusted standard deviation of teacher effects falls to 0.0405σ. This change 

is significant because it represents a 38 percent reduction in the estimated variance when track 

effects are included. In the preferred variance subtraction model (model 10) after adjusting these 

estimates for transitory variation and the degrees of freedom, the implied standard deviation of 

teacher effects falls by 24 percent to 0.0308σ. As expected, the biased F-tests reject the null 

hypothesis of no teacher effects at the 0.001 percent level. 

 The covariance-based results for English teachers are qualitatively similar to the variance 

subtraction results and reinforce to importance of accounting for track-level variability. As with 

the variance subtraction method, adding controls decreases the estimated variability of teacher 

effects. Adding student characteristics (other than a single lag of test scores) reduces the covariance 

across classrooms by about 38 percent, adding mean characteristics of classroom peers reduces the 

covariance by about 22 percent, adding track-school effects reduces the covariance by a further 40 

percent, and adding school-year effects reduce the estimated variance by a further 62 percent. In 

the preferred covariance model (model 10) the estimated standard deviation of teacher effects is 

0.0193σ (similar to the variance subtraction estimate). Unlike the biased F-test, the covariance-

based test in the preferred models that includes track effects and school-year effects yields a p-

values of 0.219. That is, while the widely used F-test erroneously rejects the null hypothesis of no 

teacher effects at the 0.001 percent level, the unbiased covariance based test cannot reject at the 

10 percent level. This indicates that while there may be persistent English teacher effects, the data 

do not support this conclusion as strongly as previous studies might indicate. The confidence 
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interval for the standard deviation of English teacher effects is informative. Models that include 

school-track fixed effects and school-year effects yield a 95% percent confidence interval for the 

standard deviation between 0σ (no effect) to 0.0312σ (modest variability). This covariance-based 

confidence interval includes the variance subtraction estimate. The additional information 

provided by the covariance based results (i.e. unbiased p-values and confidence intervals) 

underscore the fact that excess variability that can be attributed to individual teachers is not 

necessarily indicative of persistent teacher quality differences. Given that much policy is 

predicated on the idea that a sizable amount of teacher quality is persistent over time, the fact that 

the 95% confidence interval lower bound is small for algebra (0.0514σ) and 0σ for English is 

important and policy relevant. 

 

V.4 Alternate explanations for the reduction in teacher effect variability    

Is this reduction in the variance of teacher effects due to removing single-classroom teachers? 

 Because the covariance estimates can only be estimated for teachers with multiple 

classrooms, it is possible that the covariance estimates yield a low variance because teachers with 

bad outcomes might leave the profession after teaching one class (and are not included in the 

covariance sample). To test for this, I created the variance subtraction estimates for only teachers 

with multiple classrooms to see if this was much smaller than the estimates that included all 

teachers. The estimated standard deviations are 5 percent smaller for Algebra and 7 percent smaller 

for English— suggesting that this does not drive the results. The fact that accounting for tracks 

reduced the variability of teacher effects in both the covariance and the variance subtraction 

methods indicates that the main results are not driven by any one individual estimation strategy. 

Is this reduction in the variance of teacher effects due to over-controlling?  

 While it is clear that not controlling for track effects (and attributing all track-level 

variability to individual teachers) may lead one to overstate the variability of teacher effects, it is 

also possible that removing track effects (attributing none of the track level variability to individual 

teachers) may lead one to understate the variability of teacher effects. This problem is likely most 

severe when tracks are observed with a small number of teachers. That is, unless there is severe 

sorting of teachers to tracks, it is much more likely that a high track-level mean is due to the track 

rather than teachers when it is based on several teachers (whose average effect should be close to 

the unconditional mean of teacher quality) than if it were based on only a handful of teachers.
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 Because many teachers are observed in multiple tracks, one can identify teacher and track 

effects simultaneously and let the data tell us whether the variation should be attributed to teachers 

or tracks. The logic is as follows; If teacher A has very good outcomes in track 1 while teacher B 

has poor outcomes in track 2, there is no way to know if the better outcomes for teacher A in track 

1 are due to teacher A being a better teacher than teacher B or track 1 being a higher value-added 

track than track 2. However, if teachers A and B both have better outcomes in track 1 than in track 

2, one can infer that track 1 is a high value-added track. Conversely if teacher A is better than 

teacher B in both tracks 1 and 2, one can infer that teacher A is a better teacher than teacher B. I 

follow Jackson (forthcoming) and exploit the within-teacher variation in tracks to separately 

identify track effects from teacher effects in a Restricted Maximum Likelihood (REML) model.  

First I estimate [5] below. 

[5]  Yigcjy = Aiy-1δ+ Xiβ +X*jcπ + θsy + ε*ijcgy  

This model includes student and peer covariates and the school-by-year effects. The residuals from 

this regression ijgcy g j jc ijgcye         include the track effect, the teacher effect, the classroom 

error, and the random student level error. I then decompose the residual to estimate the true 

variance of the track, teacher, and classroom effects by maximum likelihood under the covariance 

structure described in [6] below.13  

[6]  
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By exploiting within-teacher variation in tracks, within-track variation in teachers, and 

modeling the finite-sample variability, the model apportions some of the track-level variability to 

the teacher and some to the track in the way that is most consistent with both the distributional 

assumptions and the data. Intuitively, if there is relatively little within-teacher variation in 

performance across tracks then most of the observed variation across tracks will be assigned to 

teachers (and vice versa if there is relatively little within-track variation in teacher quality). Also, 

the estimator accounts for finite-sample variability and apportions less (more) variability to track 

effects when track estimates are based on a smaller (greater) number of teachers.14 When track, 

                                                 
13 This is estimated in two steps because computing power constraints preclude estimating a model with thousands 
of track effects, thousands of teacher effects, and thousands of school-year effects simultaneously.  
14 The identifying assumption is that realized track and teacher effects (in a given dataset) come from a data-
generating process in which they are uncorrelated, so that any correlation between effects is due to finite-sample 
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teacher, and classroom effects are estimated simultaneously (and allowed to compete for 

explanatory power), the estimated standard deviations are very similar to, and statistically 

indistinguishable from, both sets of estimates in Table 5. Specifically, the estimated standard 

deviation of Algebra teacher effects is 0.0680 and that for English teachers is 0.0245. Because the 

REML estimator relies on different identifying assumptions than the other models, the similarity 

across all models suggest that removing all track-level variability (which could have removed real 

variability in teacher quality) in the first stage is not a likely explanation for the modest estimated 

variability of teacher effects. 

 

V.5 How predictive is estimated value-added of teachers' future performance? 

 To gauge the extent to which value-added estimates can predict teacher performance in the 

future, I estimate teacher value added using data from 2005 through 2007 and then use these 

estimates to see the effect on student test scores of these same teachers in the years 2008 through 

2010. Specifically, I estimate equation [4] using 2005 through 2007 data, compute teacher value 

added based on residuals, standardize the estimates to be mean zero unit variance,  and then 

estimate equation [7] on data from 2008 through 2010 where ˆ
j

z


 is the estimated (pre sample) 

standardized value added of teacher j.  

[7]   *
ˆ1  sy   +     

j
ijcy iy iy jy gi g ijgyY A z X X I


             

All variables are defined as before. The results are presented in Table 6.  

 Column 2 shows that a one standard deviation increase in estimated pre-sample value 

added (going from a median teacher to a teacher at the 85th percentile) raises algebra test scores 

by 0.032σ. This effect is statistically significant at the 1 percent level. The magnitude of this effect 

is noteworthy. A very similar exercise for elementary-school teachers in North Carolina finds that 

a 1 standard deviation increase in estimated pre-sample value added raises math scores by 0.17σ 

(Jackson & Bruegmann, 2009). This indicates that value-added estimates in high-school have 

about 19 percent of the the out-of-sample predictive power as those at elementary school. To 

further ensure that the lack of predictive power is not due to "over controlling", I estimate the same 

                                                 
variability. Under this condition, after accounting for finite-sample variability, the within-teacher variability in track 
effects is a reliable measure of the variability of track effects and the within-track variability in teachers is a 
reasonable measure of variability of teacher effects. As such, while the RMEL estimator is less likely to wrongly 
attribute teacher variation to tracks than the other models, if there is extreme sorting of teachers to tracks, the REML 
estimates may also be biased. 
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model where the first-stage value added estimates do not account for track effects (not shown). 

Value added estimates that do not account for school-track fixed effects have less out-of-sample 

predictive power─ suggesting that the differences in out-of-sample predictability are not driven by 

differences in methodology. Looking to English teachers, the estimates in column 7 show that a 

one standard deviation increase in estimated pre-sample value added raises English test scores by 

0.0127σ. This effect is statistically significant at the 1 percent level. Similar to Algebra, the small 

magnitude of this effect is notable because this is about 20 percent of the size of out-of-sample 

predictive ability of estimated value-added for English teachers at the elementary-school level. 

   

V.6 Are These Out of Sample Effects Driven by Student Sorting Within Tracks? 

To assuage concerns that these out-of-sample effects are driven by student selection to 

teachers (i.e. teachers with high historical value added being assigned to students with higher 

ability), I determine if teacher value-added is correlated with observable student characteristics. 

To do this I compute predicted outcomes for students in 2008 through 2010. The predicted 

outcomes are fitted values from a linear regression of the outcomes on all observable student 

characteristics.15 I then run a regression of standardized teacher effects from 2005-2007 data on 

predicted outcomes from 2008-2010. With positive (or negative) assortative matching the 

coefficient on teacher value added would be positive (or negative). If there is little systematic 

sorting of students to teachers, the coefficient on pre-sample teacher value-added will be zero. The 

results are in the lower panel of Table 6. Historical teacher value added has no statistically or 

economically significant relationship with predicted Algebra test scores (despite having effects on 

actual test scores) in all models. For English, in models that do not include track effects, there is 

some evidence of positive assortative matching to teachers. However, in models that include 

school-track effects, historical teacher value added has no statistically or economically significant 

relationship with predicted English test scores (despite having effects on actual test scores). This 

suggests that while students may select to tracks, they do not select to individual teachers within 

tracks based on observables. 

                                                 
15 As discussed in Jackson (2010), this is a more efficient and straightforward test of the hypothesis that there may be 
meaningful selection on observables that estimating the effect of the treatment on each individual covariate. This is 
because (a) the predicted outcomes are a weighted average of all the observed covariates where each covariate is 
weighted in its importance in determined the outcome, (b) with several covariates selection individual covariates may 
working different directions making interpretation difficult and also, (c) with multiple covariates some point estimates 
may be statistically significantly different from zero by random chance. 
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 Readers may also worry about selection to teachers based on unobservables. To test for 

student selection to teachers within school-track-years on unobservables, I exploit the statistical 

fact that any selection within school-track-years will be eliminated by aggregating the treatment 

to the school-track-year level (leaving only variation across years within school-tracks). If the out-

of-sample estimates obtained using variation in estimated teacher quality within school-track years 

is similar to that obtained using variation across school-track years, it would indicate that the 

estimates are not driven by selection to teachers within tracks. This is very similar in spirit to the 

test presented in Chetty et al (2011). To test for this, I estimate equations [8] and [9] below 

separately on the data from 2008 through 2010 where ˆ
j

z


 is the standardized estimated (pre 

sample) value added of teacher j, ˆ
j

z


is the mean standardized estimated teacher value added in 

school-track g in year y, and gy  is a school-track-year fixed effect. 

[8]   *
ˆ1 1  gy sy   +     *
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[9]   *
ˆ1 2  g sy   +     *

j
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In [8] because the model includes school-by-track-by-year effects and teacher quality is defined at 

the student level, the variation all comes from comparing students in the same school-track in the 

same year but who have different teachers ─ i.e. the variation that might be subject to selection 

bias. In contrast, by defining the treatment at the school-track-year level in [9], one is no longer 

comparing students within the same school-track-year, but only comparing students in the same 

school-track across different cohorts where selection is unlikely. Conditional on track-school fixed 

effects, all the variation in this aggregate teacher quality measure in [9] occurs due to changes in 

the identities of teachers in the track over time. If there is no sorting in unobserved dimensions, ψ1 

from [8] should be equal to ψ2 from [9]. However, if all of the estimated effects are driven by 

sorting within school-track-years, there should be no effect on average associated with changes in 

mean teacher value-added in the track so that ψ2 from [9] will be equal to 0.  

 The results of this test are presented in Table 6. For Algebra, using only variation within 

school-track years (column 3) yields a point estimate of 0.0277, and using changes in aggregate 

track level mean teacher quality (using only variation across years) yields a point estimate of 

0.03596 (column 4). This pattern is robust to including school by year effects which yields a point 

estimate of 0.02786 (column 5) ─ suggesting that the estimated algebra teacher effects are real and 
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are not driven by selection to teachers within tracks. For English, the point estimates within school-

track years is 0.01253 (column 8) and those for models that are robust to selection are similar at 

0.0153 (columns 9) and 0.0182 (column 10). The results indicate that the estimated teacher effects 

are real, and are not driven by student selection to teachers across cohorts or student selection to 

teachers within school-track-years in either observable or unobserved dimensions. 

 

VI Conclusions 

 Despite mounting evidence that elementary-school teachers have large effects on student 

test scores, much less is known about the effect of high-school teachers. I argue that in a high-

school setting, (a) student selection to tracks may lead to biases in teacher value-added that cannot 

be accounted for with controls for past test scores or the covariates used in standard value-added 

models, and (b) even with random assignment to teachers, if different teachers teach in different 

tracks and students in different tracks are exposed to different treatments, there will be omitted 

variables bias due to "track treatment effects". These biases create additional challenges to 

identifying teacher effects in high-school. I also demonstrate that the common practice of using 

the F-test on teacher indicator variables to test for the existence of teacher effects is problematic 

in the presence of classroom-level disturbances and I propose an unbiased statistical test. Also, I 

propose a method for computing confidence intervals for the variability in teacher effects. 

 Using methods that account for track effects yields estimated teacher effects that are 

noticeably smaller than those obtained when track effects are not accounted for. A one standard 

deviation increase in algebra and English teacher quality is associated with 0.0677σ and 0.0193σ 

higher test scores, respectively. I demonstrate how using the F-test to test for the existence of 

English teacher effects yielded biased inference in previous studies. Using the proposed method, I 

find that the 95% confidence interval for the standard deviation of teacher effects in algebra is 

(0.0514 ; 0.081) while that for English teachers includes zero and is (0.0000 ; 0.0312). This range 

of plausible estimates is lower than point estimates found in the few existing studies of high school 

teachers, suggesting that accounting for track-level variability is important.  

Even though this paper is focused on biases due to track effects in high school, it highlights 

the broader point that in all education contexts, even with no differences in student ability across 

teachers, teacher value added will be biased if there are unobserved “treatments” that differ 

systematically across teachers. At the elementary level, this could occur if some teachers are 
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always assigned to noisy classrooms (which lowers test scores), always teach early morning 

classes (which lowers test scores), or always teach the students who participate in the spelling bee 

(which increases test scores). This paper highlights that if one aims to accurately measure teacher 

quality, it is important to account for all systematic difference across teachers (and not just student 

selection). 

I also investigate how estimated value-added predicts teachers’ future performance. The 

results suggest that the scope for using value added in personnel decisions in high school might be 

limited. A good 9th grade teacher (85 percentile) based on previous performance raises current 

scores by about 0.028σ and 0.015σ more than an average teacher in algebra and English, 

respectively. With a normal distribution, removing the bottom 5 percent of teachers increases 

average teacher quality by 0.1 standard deviations in value added. The out-of-sample estimates 

suggests that this would raise student achievement by 0.028*0.1=0.0028σ in algebra and by 

0.018*0.1=0.0018σ in English. A more aggressive policy of removing the lowest 30 percent of 

teachers would increase average teacher quality by 0.5 standard deviations and would raise student 

achievement by 0.028*0.5=0.014σ (1.4 percent of a standard deviation) in algebra and by 

0.018*0.5=0.009σ (0.9 of a percent of a standard deviation) in English. These calculations suggest 

that even with large changes to the teacher quality distribution, one cannot expect large 

improvements in student achievement associated with retaining the highest value added teachers. 

This is because the ability for value added to predict teacher performance out-of-sample is about 

five times smaller in high school than in elementary school.  

There are numerous possible explanations for the differences between the two contexts: 

students may be more malleable at younger ages; younger children may exhibit more externalizing 

behaviors so that classroom management skills lead to larger differences in primary school 

outcomes; the match between the teacher and the student may be more important for adolescents 

such that teacher effectiveness changes substantially from year to year with different groups of 

students; secondary school course content may be less sensitive to teacher quality; and the testing 

instruments used in primary and secondary school may be differentially responsive to those skills 

that teachers affect. Given all these possible explanations for differences, these findings underscore 

the importance of not generalizing teacher effects obtained in one context across all grade levels 

and subjects. It is also important to note that, despite modest test-score effects, high-school 

teachers may have meaningful effects on important outcomes that are not well-captured by test 
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scores such as self-esteem, motivation, and aspirations. Jackson (2012) suggests that this is indeed 

the case.   

In sum, this paper highlights some limitations of commonly used methodical tools in the 

literature, presents new tests that overcome these limitations, and proposes a method for computing 

confidence bounds for the variability of teacher effects. The results based on these new approaches 

indicate that one should avoid the temptation to use studies based on elementary-school teachers 

to make inferences about teachers in general, and demonstrates that the potential gains of using 

value added in personnel decisions in high school may be small. Overall, this paper speaks to the 

importance of using empirical methodologies that are appropriate to the specific context. 
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Tables and Figures 
 
Figure 1: F-tests without clustering (based on simulated data with no teacher effects)  

 
This figure plots the distribution of p-values of the hypothesis of no teacher effects when the null is true based on the F-tests under 
different standard deviation of classroom level errors. The F-tests includes a degree of freedom adjustment for clustering at the 
classroom level.  

 
Figure 2: Covariance Test (based on simulated data with no teacher effects) 

 
This figure plots the distribution of p-values of the hypothesis of no teacher effects when the null is true based on the covariance test 
under different standard deviation of classroom level errors.  
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Figure 3: The Marginal Effect of Teacher Experience under Different Models 

 
 
These figures present the estimated coefficients on indicator variables denoting each year of experience on English and 
Math test scores. The figures show the estimated point estimates for each year of experience and a lowess fit of the 
point estimates for models with school fixed effects, and track-by-school fixed effects.  
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Table 1: Summary Statistics of Student Data 

Variable Mean SD SD within school-
tracks 

 SD within 
schools 

Math z-score 7th grade -0.003 (0.944) (0.689) (0.910)
Reading z-score 7th grade -0.013 (0.961) (0.682) (0.904)
Math z-score 8th grade 0.091 (0.944) (0.600) (0.878)
Reading z-score 8th grade 0.073 (0.941) (0.678) (0.891)
Male 0.510 (0.50) (0.482) (0.498)
Black 0.288 (0.453) (0.375) (0.399)
Hispanic 0.075 (0.263) (0.245) (0.256)
White 0.579 (0.494) (0.404) (0.432)
Asian 0.020 (0.141) (0.133) (0.138)
Parental education: Some High-school 0.075 (0.263) (0.25) (0.259)
Parental education: High-school Grad 0.400 (0.49) (0.454) (0.474)
Parental education: Trade School Grad 0.018 (0.132) (0.129) (0.132)
Parental education: Community College Grad 0.133 (0.339) (0.327) (0.335)
Parental education: Four-year College Grad 0.205 (0.404) (0.376) (0.394)
Parental education: Graduate School Grad 0.064 (0.245) (0.225) (0.237)
Number of Honors classes 0.880 (1.323) (0.575) (1.163)
Algebra I z-Score (9th grade) 0.063 (0.976) (0.775) (0.889)
English I z-Score (9th grade) 0.033 (0.957) (0.670) (0.906)
Observations 348547 

Notes: These summary statistics are based on student who took the English I exam. Incoming math 
scores and reading scores are standardized to be mean zero unit variance. About 10 percent of students 
do not have parental education data so that the missing category is “missing parental education”. 
 

 

 
Table 2: Most common academic courses 

Academic course rank Course Name % of 9th graders taking % of all courses taken 
1 English I* 90 0.11 
2 World History 84 0.11 
3 Earth Science 63 0.09 
4 Algebra I* 51 0.06 
5 Geometry 20 0.03 
6 Art I 16 0.03 
7 Biology I 15 0.02 
8 Intro to Algebra 14 0.02 
9 Basic Earth Science 13 0.02 

10 Spanish I 13 0.02 
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Table 3: Illustration of the Variation at a Hypothetical School 

  Track A Track B
 Alg I (regular) Alg I (regular) 
  Eng I (regular) Eng I (regular) 
  Natural Sciences Biology  
  US History World History 
     Geometry 
 Year
Math Teacher 1 2000 X X
Math Teacher 2 2000  X 
    
Math Teacher 1 2005 X X 
Math Teacher 2* 2005 - - 
Math Teacher 3 2005   X 

 

 

 
 
 
 
Table 4: Distribution and persistence of honors students among teachers 

1 2 3 4
 Algebra I   English I 

 

Proportion of students in 
at least one Honors class 

among other courses  

Proportion of students 
in at least one Honors 

class among other 
Lag of the proportion in at least one Honors 
class among other courses 

0.454 0.225  0.585 0.449
[0.014]*** [0.016]***  [0.014]*** [0.017]***

   
Year Fixed Effects Y Y  Y Y
School Fixed Effects N Y  N Y
   
SD of mean outcome at teacher year level 0.293  0.32
SD of mean outcome at teacher level 0.304  0.32
   
Observations 12987  10855
Data are at the teacher by year level and the main outcome of interest is the proportion of students in 
a teachers class in a given year that is taking at least one other class at the honors level.  
Standard errors in brackets are clustered at the teacher level.  
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 5: Variability of Teacher Effects 

 Algebra 
 1 2 3 4* 5*

  

School 
Effects+ 

lagged test 
scores  

School 
Effects + 
student 

covariates

School 
Effects + 
student 

covariates + 
Peer 

covariates 

Track-by-
School Effects 

+ student 
covariates 

+Peer 
covariates 

Track-by-
School Effects + 

student 
covariates + 

Peer covariates 
+ school-by-
year effects 

SD of teacher level residuals 0.1803 0.1745 0.1741 0.1475 0.1237
F-test: Prob(all teacher level means equal) 0.0000 0.0000 0.0000 0.0000 0.0000
SD of classroom effects (within teachers) 0.2097 0.2042 0.2044 0.1928 0.1830
SD of mean of transitory variability  0.1105 0.1076 0.1077 0.1016 0.0964
Implied variance of persistent teacher effects 0.0203 0.0189 0.0187 0.0114 0.0060
Implied true SD of persistent teacher effects 0.1425 0.1373 0.1367 0.1069 0.0775
  
Covariance across classrooms  0.0155 0.0150 0.0148 0.0091 0.0046
SD of the sample covariance 0.0010 0.0009 0.0009 0.0009 0.0010
t-stat 16.2428 16.4413 15.6864 9.5550 4.7086
t-test: Prob(covariance=0)  0.0000 0.0000 0.0000 0.0000 0.0000
SD of Teacher effects (covariance method) 0.1243 0.1223 0.1215 0.0998 0.0677
95% CI Lower bound  0.1164 0.1146 0.1135 0.0846 0.0514
95% CI Upper bound  0.1318 0.1295 0.1290 0.1046 0.0809

 English 
 6 7 8 9* 10*
SD of teacher-level residuals 0.1025 0.0883 0.0835 0.0741 0.0646
F-test: Prob(all teacher-level means equal) 0.0000 0.0000 0.0000 0.0000 0.0000
SD of classroom effects (within teachers) 0.1680 0.1520 0.1501 0.1415 0.1295
SD of mean of transitory variability  0.0737 0.0667 0.0658 0.0621 0.0568
Implied variance of persistent teacher effects 0.0051 0.0034 0.0026 0.0016 0.0009
Implied true SD of persistent teacher effects 0.0713 0.0579 0.0514 0.0405 0.0308
  
Covariance across classrooms 0.00337 0.00208 0.00162 0.00098 0.00037
SD of the sample covariance 0.0005 0.0004 0.0003 0.0003 0.0003
t-stat 6.8449 5.7766 5.3685 3.2667 1.2284
t-test: Prob(covariance=0) 0.0000 0.0000 0.0000 0.001 0.2193
SD of Teacher effects (covariance method) 0.0581 0.0456 0.0402 0.0313 0.0193
95% CI Lower bound  0.0489 0.0369 0.0319 0.0194 0.0000
95% CI Upper bound  0.0660 0.0529 0.0471 0.0397 0.0312
Student covariates include 8th grade and 7th grade math scores (and their third order polynomials), 8th grade and 
7th grade math scores (and their third order polynomials), parental education, ethnicity, and gender. Peer 
covariates are the classroom-level means of all the student-level covariates. There are 5.4 classes per English 
teacher and 3.6 classes per algebra teacher.
* The reported covariance or SD of teacher effects includes a degree of freedom adjustment for the number of 
teachers in a track in models that condition on school track in the first stage (models 4, 5, 9, and 10). 
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Table 6: Out of Sample Predictions 
 Algebra scores English Scores
 1 2 3 4 5 6 7 8 9 10 

 

Using both variation 
within track-school-

year cells and variation 
within track school cells 

across years 

Using only 
variation 

within 
track-

school-year 
cells 

Using variation within 
track school cells 

across years 

Using both variation 
within track-school-

year cells and variation 
within track school cells 

across years 

Using only 
variation 

within 
track-

school-year 
cells 

Using variation within 
track school cells 

across years 

Standardized Teacher Effect (2005-7) 0.03227*** 0.03201*** 0.02770***  0.01111*** 0.01277*** 0.01253***  
 [0.006] [0.006] [0.006]  [0.002] [0.002] [0.002]  
Mean Standardized Teacher Effect (2005-7) 0.03596*** 0.02786** 0.01534*** 0.01827*** 
 [0.010] [0.013] [0.005] [0.006] 
   
 Predicted Algebra scores Predicted English Scores
Standardized Teacher Effect (2005-7) -0.00317 -0.00415 0.00438  0.02030** 0.00394 0.00372  
 [0.007] [0.004] [0.005]  [0.008] [0.003] [0.003]  
Mean Standardized Teacher Effect (2005-7) -0.00439 0.01147 -0.00528 -0.005 
 [0.003] [0.011] [0.006] [0.006] 
    
Observations 44,729 44,745 44,745 67,120 67,100  105,555 105,591 105,591 130,949 130,907 
Year Effects Y - - Y -  Y - - Y - 
School Effects Y - - - -  Y - - - - 
Track-School-Effects N Y - Y Y  N Y - Y Y 
School-Year-Effects N Y - N Y  N Y - N Y 
School-Track-Year Effects N N Y N N  N N Y N N 
Student and peer covariates Y Y Y Y Y  Y Y Y Y Y 

Student covariates include 8th grade and 7th grade math scores (and their third order polynomials), 8th grade and 7th grade math scores (and their third order 
polynomials), parental education, ethnicity, and gender. Peer covariates are the classroom-level means of all the student level covariates. 
Standard errors in brackets are clustered at the teacher level. * significant at 10%; ** significant at 5%; *** significant at 1% 
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Appendix 

Appendix A 

 

Table A1: Distribution of Number of Teachers in Each School-Track Year Cell 
Percent

Number of Teachers in Track-Year-School Cell English  Algebra
1 63.37 51.07
2 18.89 26.53
3 9.12 11
4 5.6 6.38
5 3.03 3.25
6 0 1.77

Note:  This is after removing singleton tracks. 
    

 
 
Table A2: Distribution of student Observations by the Distribution of Number of Teachers in 
Each School-Track Cell with The Implied required Degree of Freedom Adjustment 

Teachers per track Algebra English DOF adjustment 
1 0.032 0.039 -
2 0.074 0.073 2.000 
3 0.069 0.080 1.500 
4 0.073 0.081 1.333 
5 0.080 0.085 1.250 
6 0.088 0.076 1.200 
7 0.081 0.080 1.167 
8 0.081 0.073 1.143 
9 0.056 0.053 1.125 
10 0.065 0.053 1.111 
11 0.059 0.048 1.100 
12 0.040 0.036 1.091 
13 0.038 0.040 1.083 
14 0.029 0.030 1.077 
15 0.023 0.027 1.071 
16 0.021 0.018 1.067 
17 0.011 0.012 1.063 
18 0.009 0.015 1.059 
19 0.004 0.010 1.056 

20+ 0.069 0.072 1.042 
Average Weight  1.239 1.244
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Table A3: Distribution of the number of classes per teacher and per teacher year 

Number of 
classes  

Proportion of 
teacher observations  

Proportion of 
teacher-year 
observations 

  Algebra English Algebra English
1  28.72 24.5 43.83 36.33
2  20.44 14.84 31.42 26.81
3  14.32 10.7 14.37 18.91
4  9.92 8.79 6.97 10.08
5  6.89 6.19 2.39 5.18
6  4.31 5.61 0.83 2.13
7  4.03 4.68 0.15 0.33
8  2.58 3.7 0.05 0.17
9  2.3 3.21 0 0.03
10  1.67 2.95 0 0.03
11  1.13 2.77 0 0.02
12  0.88 2.23 0 0
13  0.45 1.72 0 0
14  0.43 1.3 0 0
15  0.34 1.16 0 0
16  0.31 0.98 0 0
17  0.4 0.84 0 0
18  0.26 0.6 0 0
19  0.11 0.6 0 0

20+   0.53 2.61 0 0
    
 
 
 
 
 
 
Table A4: Dispersion of Teacher effects (estimated without track fixed effects) across and 
within tracks 

 Math Teacher Effects  English Teacher Effects 

 SD raw 
SD within 

Tracks 
SD of track 

Means 
% of Variance 
Within Tracks  SD raw 

SD 
within 
Tracks 

SD of 
track 

Means 

% of 
Variance 
Within 
Tracks 

Algebra scores 0.3572 0.2886 0.2101 0.65  0.0022 0.0018 0.0012 0.67 

English Scores 0.0776 0.0643 0.0433 0.69  0.0405 0.0324 0.0242 0.64 

Note: The estimated teacher effects are based on a value-added model that does not include school-track effects, but does 
include school fixed effects, year fixed effects, and all student and peer covariates.  
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Appendix B 

 

Matching Teachers to Students 

The teacher ID in the testing file corresponds to the teacher who administered the exam, 
who is not always the teacher that taught the class (although in many cases it will be). To obtain 
high quality student-teacher links, I link classrooms in the End of Course (EOC) testing data with 
classrooms in the Student Activity Report (SAR) files (in which teacher links are correct). The 
NCERDC data contains The End of Course (EOC) files with test score level observations for a 
certain subject in a certain year. Each observation contains various student characteristics, 
including, ethnicity, gender, and grade level. It also contains the class period, course type, subject 
code, test date, school code, and a teacher ID code. Following Mansfield (2011) I group students 
into classrooms based in the unique combination of class period, course type, subject code, test 
date, school code, and the teacher ID code. I then compute classroom level totals for the student 
characteristics (class size, grade level totals, and race-by-gender cell totals). The Student Activity 
Report (SAR) files contain classroom level observations for each year. Each observation contains 
a teacher ID code (the actual teacher), school code, subject code, academic level, and section 
number. It also contains the class size, the number of students in each grade level in the classroom, 
and the number of students in each race-gender cell.  

To match students to the teacher who taught them, unique classrooms of students in the 
EOC data are matched to the appropriate classroom in the SAR data. To ensure the highest quality 
matches, I use the following algorithm: 
 

(1) Students in schools with only one Algebra I or English I teacher are automatically linked 
to the teacher ID from the SAR files. These are perfectly matched (5 percent). Matched 
classes are set aside. 

(2) Classes that match exactly on all classroom characteristics and the teacher ID are deemed 
matches. These are deemed perfectly matched (11 percent). Matched classes are set aside.  

(3) Compute a score for each potential match (the sum of the squared difference between each 
observed classroom characteristics for classrooms in the same school in the same year in 
the same subject, and infinity otherwise) in the SAR file and the EOC data. Find the best 
match in the SAR file for each EOC classroom. If the best match also matches in the teacher 
ID, a match is made. These are deemed imperfectly matched (17 percent). Matched classes 
are set aside.  

(4) Find the best match (based on the score) in the SAR file for each EOC classroom. If the 
SAR classroom is also the best match in the EOC classroom for the SAR class, a match is 
made. These are deemed imperfectly matched (26 percent). Matched classes are set aside.  

(5) Repeat step 4 until no more high quality matches can be made (6 percent).  
 
This procedure leads to a matching of approximately 65 percent of classrooms in the End of Course 
files. This corresponds to 57 percent of all Algebra student observations and 69 percent of all 
English student observations. The demographic characteristics of students in matched classroom 
are very similar to those in unmatched classrooms (see table below). However, unmatched 
classrooms appear to have somewhat higher incoming student test scores that the full sample. All 
results are similar when using cases when the matching is exact so that error due to the fuzzy 
matching algorithm does not generate any of the empirical findings. 
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Table B1: Characteristics of Matched and Unmatched Students 

Variable Matched All 
students

Male 0.510 0.511
Black 0.288 0.295
Hispanic 0.075 0.073
White 0.579 0.580
Asian 0.020 0.020
Parental education: Some High-school 0.075 0.076
Parental education: High-school Grad 0.399 0.380
Parental education: Trade School Grad 0.018 0.019
Parental education: Community College Grad 0.133 0.129
Parental education: Four-year College Grad 0.205 0.209
Parental education: Graduate School Grad 0.064 0.069
Math z-score 7th grade -0.003 0.007
Reading z-score 7th grade -0.013 0.013
Math z-score 8th grade 0.091 0.124
Reading z-score 8th grade 0.073 0.133
 
 

Deriving the degree of Freedom Adjustment for the Size of Tracks 

  The track specific fixed effect estimated in the first stage is the mean residual test scores 
among student in the track. Assuming no track-specific treatment we have [a] below, where wig, 
wcjg, and wjg, weight student errors, classroom errors, and teacher effects respectively, by the 
number of observations associated with them in track g. 

[a]  
1 1 1

ĝ ig ijcgy cjg cj jg j
i cj j

w w w   
  

       

Removing this track-specific mean from the raw classroom level residual yields  

[b]  
*

1 1 1
jc j jg j cj cjg cj ijcgy ig ijcgy

j cj i

e w w w     
  

     
          

    
   . 

Because the student level and classroom level errors are random, taking the covariance of these 
classroom effects for the same teacher yields 

[c]  * *
'

1 1 1

( , ) ,jc jc j jg j j jg j j jg j
j j j

Cov e e Cov w w Var w     
  

      
                 

   . 

If teachers are randomly distributed across tracks, this simplifies to  2( ) 1j jgVar   . With 

equal weighting for teachers in a track this simplifies further to  ( ) 1 (1 / )j gVar R  , where Rg is 

the number of teachers in track g. This implies that while removal of a track specific mean does 
remove bias due to track-specific treatment, it may lead one to understate the covariance across 

classrooms by a factor of  1 (1/ ) 1R  , where Rg is the number of teachers per track.  

 



5 
 

 
 
Is the lack of an effect for English teachers due to measurement error? 
  
 Because the linking between teachers and students is not perfect in these data, there is the 
worry that the lack of an English teacher effect is due to certain teachers being linked to the wrong 
students. Such "measurement error" would lead one to understate the extent to which teacher 
effects are persistent over time. This is unlikely to drive the results because I do find persistent 
effects in algebra, which is subject to the same error. However, I test for this possibility by 
restricting the analysis to only those teachers who are perfectly matched1. For the subsample of 
English teachers for whom there is no "measurement error", the estimated covariance of mean 
residuals across years for the same teacher is small and negative ─ so that measurement error does 
not explain the lack of persistent English teacher effects. 

 
 

Estimating Efficient Teacher Fixed Effects 

I follow the procedure outlined in Kane and Staiger (2008)2 to compute efficient teacher 
fixed effects. This approach accounts for the fact that (1) teachers with larger classes will tend to 
have more precise estimates and (2) there are classroom level disturbances so that teachers with 
multiple classrooms will have more precise estimates. As before, I compute mean residuals from 

[4] for each classroom *
 j

ˆ
c j cj ce       where ˆc is the mean individual student level error in 

classroom jc . Since the classroom error is randomly distributed, I use the covariance between the 
mean residuals of classrooms for the same teacher * * 2

' ˆcov( , )
jcj c je e  as an estimate of the variance 

of true teacher quality. I use the variance of the classroom demeaned residuals as an estimate of 
2ˆ . Because the variance of the residuals is equal to the sum of the variances of the true teacher 

effects, the classroom effects, and the student errors, I compute the variance of the classroom errors
2
c by subtracting 2

 and 2ˆ
j from the total variance of the residuals. For each teacher I compute 

[d], a weighted average of their mean classroom residuals, where classrooms with more students 
are more heavily weighted in proportion to their reliability.  

[d]   
2 2

2 2
1

1

(1/ ( ( / ))ˆ
(1/ ( ( / ))

j

j

T
c c

j jt T
t c ct

N
z

N




 
 




 





       

Where cN  is the number of students in classroom c, and jT is the total number of classrooms for 

teacher j. The correlation between this measure and the teacher-level mean residual is above 0.9 
for both subjects. 
 
 
 

                                                 
1 These are either the only English I teacher in a school in a given year, or those teachers who are listed in the testing 
files and also have perfectly matching class characteristics.  See appendix Note 1 for details. 
2 A similar approach is also used in Jackson (2009, 2012). 
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Evidence of student sorting to teachers 

 The evidence thus far indicates that is sorting of student and teachers to tracks. However, 
one may wonder about student sorting to teachers directly. To asses this, following Aaronson, 
Barrow, and Sander (2007), I calculate mean within-teacher-year student test-score dispersion (i.e. 
the average across all teacher-years of the standard deviation of test scores computed for each 
teacher in a given year) observed in the data and compare that to the mean within-teacher student 
test score dispersion for other counterfactual assignments. The table below displays the actual 
within teacher-year test score dispersion, what one would observe with full student sorting to 
teachers within schools, and random student assignment to teachers within schools.3 The actual 
within-teacher-year test score dispersion is between 88 and 100 percent of what one would observe 
under random assignment of students to classrooms within schools. However, in a Monte Carlo 
simulation of mean test score dispersion under random assignment within schools, none of the 500 
replications yielded dispersion levels as low as that observed ─ suggesting that there is some 
systematic sorting of student to teachers based on incoming achievement.  
 
 
Table B2: Evidence of Students Sorting to Teachers based on Prior Test Scores 

 Math  Reading 
Average teacher-year 
level SD of variable 

8th 
grade 

7th 
grade growth   

8th 
grade 

7th 
grade growth 

Actual  0.5750 0.5737 0.4990 0.6910 0.6676 0.5678
Full sorting within 0.1530 0.1683 0.1434 0.1720 0.1788 0.1502
Full sorting across 0.0012 0.0012 0.0012 0.0017 0.0010 0.0014
Random assignment 0.6514 0.6360 0.4978 0.7445 0.7138 0.5645
Random assignment 0.7411 0.7117 0.5106 0.7946 0.7593 0.5698
This table displays the average within-teacher-year standard deviation (i.e. the average across all teacher-years of 
the standard deviation of test scores computed for each teachers classroom in a given year) of 8th grade scores, 
7th grade scores, and test-score growth between 7th to 8th grade for both math and reading. I present the actual 
within teacher-year test score dispersion, what one would observe with full student sorting (of the variable) within 
schools, full student sorting across all classroom and schools, random student assignment within schools and 
finally random student assignment across all classrooms and schools. 

 
 
 

                                                 
3 For the interested reader, I also present the test score dispersion with full student sorting across all classroom and 
schools and random student assignment across all classrooms and schools. 
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