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Abstract—Power consumption is an increasing concern in
real-time systems that operate on battery power or require heat
dissipation to keep the system at its operating temperature. To-
day, most processors allow software to change their frequency
and voltage of operation to reduce their power consumption.
Frequency scaling in real-time systems must be done in a way
that ensures that the tasks’ deadlines are met. In this paper
we present the Growing Minimum Frequency (GMF) algorithm
for voltage and frequency scaling in uniform multiprocessors
for real-time systems. This algorithm runs in polynomial time
and computes the optimal voltage and frequency assignment,
achieving better power efficiency than previous algorithms.
We present the optimality proof and evaluate the practical
improvement over previous algorithms with simulated tasksets.
Our evaluation shows up to 30% power efficiency improvement
over previous algorithms.

Keywords-real-time; frequency scaling; uniform multiproces-
sor; power efficiency;

I. INTRODUCTION

Power consumption is an increasing concern in real-time

systems that operate on battery power or require heat dissi-

pation to keep the system at its operating temperature. Today,

most processors allow software to change their voltage of

operation to reduce their power consumption. Given that the

maximum frequency (f ) of these processors depend on the

supply voltage (V ), these changes adjust both the frequency

and the voltage together in what is commonly known as volt-

age and frequency scaling (VFS). The power consumption

of the circuit technology used in these processors (CMOS)

is proportional to the product of the frequency multiplied

by the square of the voltage (P ∝ fV 2 [1]). As a result,

voltage and frequency scaling can lead to significant power

consumption savings. For brevity, in the rest of the paper

we use frequency scaling to refer to voltage and frequency

scaling. Since the algorithm presented in this paper is used to

determine the optimal frequency assignment at either design

time or task admission time, the power consumption remains

constant during the execution of the taskset. For that reason,

power and energy minimization are equivalent when we limit

ourselves to only processor power (as we do in this paper).

The analysis in this paper is done in terms of power.

Frequency scaling in real-time systems require the re-

evaluation of whether real-time tasks can complete their

execution before their deadlines every time the frequency

(and speed) is changed. This verification is simplified when

we use optimal algorithms such as the Earliest-Deadline

First (EDF) [2] in uniprocessors with periodic tasksets.

Recently, a number of research projects (e.g. [3], [4], [5])

have focused on system-wide energy management. These

projects take into account not only the energy consumed by

the processor but also the energy consumed by the devices in

the system (e.g. screen, memory, etc.). This trend signals the

maturity of the research in single-core VFS. However, this is

not the case for multiprocessors where not even scheduling

has reached full maturity. As a result, in this work we focus

exclusively on VFS for multiprocessors and leave system-

wide energy management for future work.

Frequency scaling in multiprocessor systems can be per-

formed by reducing the frequency of all the processors to

the same level. This scheme in known as uniform frequency

scaling. Unfortunately, this approach cannot reduce the

frequency below the frequency needed by the task with

the largest utilization. For instance, if such a task has an

utilization of 100% no reduction is actually possible even if

we have more than one processor. This is because this task

needs CPU cycles in a sequential fashion (i.e., cannot be

parallelized) at the top frequency.

Given the limitations imposed by the highest-utilization

and other high-utilization tasks (a.k.a. heavy tasks), recent

approaches use non-uniform frequency scaling where differ-

ent processors can be assigned different frequencies. Such

an scheme is also applicable for multiprocessors where

the frequency and voltages can be adjusted independently

in each processor [6]. Multiprocessors systems where the

processors can have different speeds are known as uniform

multiprocessors.1 In this paper we present our optimal non-

uniform multiprocessor frequency scaling algorithm for real-

time system called Growing Minimum Frequency (GMF).

GMF takes advantage of recent developments in optimal

multiprocessor scheduling when processors can be assigned

different speeds (known as uniform multiprocessors).

1Although it is unfortunate that uniform implies different allowed speeds
in multiprocessors, but same speeds in frequency scaling, we have opted
for keeping the terms already used in the literature.



A. Related Work

Previous work on real-time voltage and frequency scaling

algorithms can be divided in uniprocessor and multiproces-

sor schemes. Among the uniprocessor schemes techniques

for fixed-priority scheduling were presented in [7]. In this

paper the authors present an algorithm for fixed-priority

scheduling. The focus of the paper is on the practicality of

the algorithm and the simplicity and pervasiveness of fixed-

priority scheduling. In [8], Pillai and Shin present a dynamic

voltage scaling algorithm and its implementation in the OS

for hard real-time systems. This algorithm is implemented

on top of an Earliest-Deadline First (EDF) scheduler. In [9]

Cheol-Hoon and Shin present an on-line voltage scaling

scheme extending [8] for non-periodic tasksets. While it

is possible to use uniprocessor schemes in a partitioned

scheduling approach, our work takes advantage of global

scheduling to achieve optimality.

Among the frequency scaling algorithms for multiproces-

sors [10] presents a scheme for tasksets with probabilistic

workload. In this paper the authors focus on a partitioned

scheme and use a load balancing approach that has been

proven to minimize the power consumption. However, this

scheme is not optimal for deterministic workloads. Another

scheme for multiprocessors is presented in [11]. In this

paper the authors model the allocation cost of processors

and develop a cost-minimization algorithm. In [12] the

authors model the problem as slack-sharing to implement

the frequency scaling. This scheme is dynamic and does

not achieve static optimality. In [13] the authors create an

optimal static algorithm for continuous frequency scaling in

multiprocessors based on the LNREF scheduling algorithm.

This is the work closest to ours. However, they focus on

the creation of partitions that, in the end produces internal

fragmentation when frequencies can only be varied in dis-

crete steps. In [14] the same authors extend their algorithm

to dynamic voltage scaling.

The rest of the paper is organized as follows. Section II

discusses the bottleneck problem imposed by heavy tasks on

frequency scaling algorithms. Section III presents our opti-

mal static frequency scaling algorithm for multiprocessors.

Section IV present the optimality proofs of our algorithm.

In Section V we present our evaluation. Finally, Section VI

presents our conclusions.

II. FREQUENCY-SCALING BOTTLENECKS

In a previous work Funaoka et al. [13] discovered that

when a global scheduler is limited to use the same frequency

for all the processors it can cause inefficiencies due to the

presence of heavy tasks. Specifically, the authors discovered

that when the task with the highest utilization (the heaviest

task) has a utilization that is higher than the sum of the

utilization of the other tasks divided by the number of

processors available, the heavy task becomes the bottleneck.

In other words, if the processor frequency required by the
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Figure 1. Uniform Frequency Scaling – No Scaling
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Figure 2. Uniform Frequency Scaling at 75%

heaviest task is higher than the frequency required by all the

other tasks, the former must be chosen in order to guarantee

meeting the deadline of the heaviest task.

Let us illustrate the bottleneck effect with the example in

Figure 1. This figure presents the frequency of the processors

and its accumulated frequency in the vertical axis and the

time in the horizontal axis. In addition, the execution time of

each of the two tasks in the figure (that have the same period2

T ) is represented by a rectangle. The height of the rectangle

roughly represents the total frequency consumed by the task

(that can be less or more than what a single processor offers),

and the width represents the time it takes to execute. The

label inside the rectangles shows the percentage of time that

the tasks needs to be active, which is equivalent to the width

divided by T . Figure 1 depicts the processors running at their

maximum frequency f . Figure 2 on the other hand, depicts

the processors running at 75% of f , which is the minimum

uniform scaling possible. This is because at this frequency

task τ1 already needs to run 100% of the time. However, τ2
still only runs 66% of the time and the rest of the cycles in

p2 are idle, wasting energy.

A. Non-Uniform Frequency Scaling

Non-uniform frequency scaling allows each processor to

have its own frequency setting. This leads to additional

frequency reductions in the processors not used by the

bottleneck task. This is illustrated in Figure 3. This figure

shows the non-uniform frequency scaling of the processors

for the example presented in Figure 1. In this case, the

frequencies of both processors are reduced to the minimum

possible (75% and 50%) in order to keep them busy 100%

of the time and avoid idle cycles.

2Same period tasks are used to simplify the visual depiction but in reality
they can have any period.
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Figure 3. Non-Uniform Frequency Scaling

Funaoka et al. [13] designed the DecideIndependentFre-

quency (DIF) algorithm in order to overcome the heavy task

bottlenecks. This algorithm classifies tasks into heavy and

light giving their own processor to the heavy tasks. A task

is classified as heavy if its utilization is greater than the

sum of the utilization of all the lighter tasks divided by the

number of processors not previously assigned to heavy tasks.

The heavy-or-light classification is performed on a taskset

ordered in non-increasing order of utilization starting with

all the tasks classified as light. Then, the tasks are tested one

at a time to check whether they are heavy or light. Every

time a task turns out to be heavy, it is separated from the set

of light tasks and it is given its own processor. This process

is repeated until no task can be classified as heavy. In the

end, the set of tasks classified as light are scheduled in a

pool of all the processors not assigned to heavy tasks with

an optimal global scheduling algorithm (LNREF in [13]).

The frequency of each heavy-task processor is adjusted to

the minimum possible that still makes the task schedulable.

The frequency of the pool of processors for the light tasks,

on the other hand, is determined with the DecideUniformFre-

quency [13] frequency scaling algorithm (all the processors

are assigned the same frequency). This algorithm selects the

uniform frequency as either the maximum utilization of the

tasks assigned to it or the sum of all the tasks’ utilizations

divided by the number of processors, whichever is largest,

where a frequency of 1 correspond to processors executing at

100% of the maximum speed. This frequency is used if the

frequency can be adjusted continuously, but since processors

support a discrete set of frequencies, in practice, the next

higher available frequency is used.

Table I presents a sample taskset and the output of DIF

with four processors with discrete frequency steps of 25%,

50%, 75%, and 100% of the maximum frequency. It is worth

noting that only two tasks are classified as heavy, running

in their own processors, and the rest are classified as light

running in a processor pool.

Figure 4 presents a visual representation of Table I using

the same abstraction used to discuss bottlenecks. This figure

allows us to identify two types of idle cycles resulting from

this frequency assignment and taskset partitioning. First, idle

cycles in heavy-task processors. These cycles cannot be used

by any other task. And, secondly, idle cycles in the light

Table I
FREQUENCY SCALING EXAMPLE WITH

DECIDEINDEPENDENTFREQUENCY

Processor Frequency Task Utilization Heavy/Light

P1 1.0 τ1 1.0 Heavy

P2 1.0 τ2 0.9 Heavy

P3 0.75 τ3 0.6 Light

P4 0.75 τ4 0.5 Light

τ5 0.1 Light
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Figure 4. Sub-Optimal Non-Uniform Frequency Scaling

processor pool. These cycles can be used by other light tasks

but cannot be used by heavy tasks. In other words, idle

cycles are fragmented inside partitions and cannot be used

by tasks outside these partitions. This is commonly known

as internal fragmentation.

Funaoka et al. proved that DIF is optimal if the frequency

of the processors can be adjusted continuously. Unfortu-

nately, such an algorithm is not optimal if the frequency can

only be adjusted to a limited number of discrete frequencies.

The intuition behind this is that if the frequency of the

processors can be adjusted to perfectly fit the required

utilization, the idle cycles in the heavy-task processors are

eliminated, and the idle cycles left in the light-task processor

pool are all in the same partition and not fragmented.

The authors proposed an exhaustive algorithm for the

discrete case that looks for all possible ways to partition

the taskset (into co-scheduled tasks) to be scheduled on a

virtual processor (a processor pool scheduled with a global

optimal scheduler) with the appropriate frequencies.

Table II shows the result of the exhaustive algorithm when

assigning the frequencies of the taskset presented in Table I.

The visual depiction of this result is presented in Figure 5.

Note that in this case task τ4 runs in its own processor

and the processor frequency is adjusted to make task τ4 use

100% of the processor.

It is worth noting that the exhaustive method reduces

the inefficiencies by repartitioning exhaustively to find the

best fit given that the processors within each partition are

assigned the same frequency. In Section III we will show

that GMF does not need this separation thanks to the use of

an optimal multiprocessor scheduler that allows processors

to have different frequencies while scheduling the taskset in



Table II
FREQUENCY SCALING EXAMPLE WITH EXHAUSTIVE SEARCH

Processor Frequency Task Utilization Partition

P1 1.0 τ1 1.0 Partition 1

P2 1.0 τ2 0.9 Partition 2

P3 0.5 τ4 0.5 Partition 3

P4 0.75 τ3 0.6 Partition 4

τ5 0.1
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Figure 5. Exhaustive Non-Uniform Frequency Scaling

a single pool of processors.

III. GROWING MINIMUM FREQUENCY (GMF)

ALGORITHM

In this section we present the Growing Minimum Fre-

quency (GMF) algorithm in detail. GMF is a non-uniform

frequency scaling algorithm for multiprocessors that uses

the U-LLREF [15] optimal multiprocessor scheduling algo-

rithm for uniform multiprocessors. GMF takes advantage of

the incremental test in U-LLREF. Specifically, U-LLREF

verifies the schedulability of a subset of tasks in a subset

of processors, growing these subsets one element at a time.

GMF follows this test and increments the frequency of the

subset of processors being tested by U-LLREF just enough

to satisfy the current subset of tasks. GMF is optimal on

processors with uniform frequency steps, i.e., the separation

between any two consecutive frequency set points is given

by a constant δ.

Before we get into the details of our algorithm we

first define our system model and describe the U-LLREF

algorithm.

A. System Model

A system is composed of a computing platform Π and a

task set Γ. The computing platform consists of m uniform

processors with a number of frequency set points. It is

defined as Π = (δ, fmin, A) where δ is the frequency step

between two consecutive frequencies, fmin is the minimum

frequency setting of a processor, and A = {f1, f2, . . . , fm}
is a particular frequency assignment for the m processors.

Without loss of generality we normalize the frequency

settings so that the maximum frequency is 1 and use them

as the normalized speed of the processors. The set A is

assumed to be ordered in non-increasing order of frequency

such that i < j =⇒ fi ≥ fj .3 Each of these frequencies is

restricted to take a value fi = fmin+kiδ ≤ 1 with ki ∈ N0.

The normalized frequency assignment for the processors are

used as processor speeds to calculate the capacity of the

processors and evaluate the schedulability of the system.

We denote the power consumption of processor i as P (fi).
Using a similar approximation as previous authors [1], we

calculate this power consumption as Cf3
i . The total power

consumption of a frequency assignment A is denoted as

P (A) and is calculated as
∑m

i=1 P (fi). Similarly, the power

consumption of the first i processors for assignment A is

denoted as Pi(A).
The taskset Γ = {τ1, τ2, . . . , τn} is the set of n periodic

tasks with deadlines at the end of the period. The utilization

of a task is defined as ui =
Ci

Ti

with Ci as the worst-case

execution time and Ti as its period.

B. U-LLREF

U-LLREF is an extension to the LLREF [16] algorithm

for uniform multiprocessors. LLREF is used to schedule

tasksets in identical multiprocessors (same instruction set

and same speed) executing all tasks at a constant rate. To

do this, LLREF divides the schedule of the taskset into two

execution time planes: Time and Local (TL-planes). TL-

planes are intervals of time between consecutive deadlines.

For each of these intervals, LLREF calculates an amount

of computation necessary for each task to keep up with

the fluid schedule, i.e., the execution time in this interval

in order to keep a constant rate of execution for the task.

LLREF then assigns the m tasks with the largest amount

of computation to execute on the m processors. Such an

assignment is recalculated at two events: (1) when a task

completes its amount of computation for the plane, and (2)

when a task reaches its zero-laxity instant, i.e., the instant

when the task needs to start executing continuously and to

completion in order to meet its deadline.

U-LLREF extends LLREF to schedule a taskset on a

uniform multiprocessor allowing processors to have different

speeds. In order to do this, U-LLREF uses a scheduling test

that verifies that a subset of tasks fits in the capacity of a

subset of processors. The tasks and processors are ordered

in non-increasing order of utilization/capacity. The subset

of tasks and processors starts with just one element (the

first of each set). Then if the total utilization of the tasks

is smaller or equal to the total capacity of the subset of

processors, the number of elements on the set is increased

by one and the test is performed again. These tests continue

until min(m − 1, n) number of elements is reached in the

set. Then, if n > m a final test comparing the capacity of all

3Note that, since the m processors are identical, frequency fi does not
necessarily have to be assigned to the ith physical processor.



the processors in the set with the total utilization of the tasks

is done. The system is schedulable only if all the tests are

satisfied. These test are encoded in the following equations4:

∑k

i=1 ui ≤
∑k

i=1 fi for k = 1, . . . ,min(m− 1, n)
∑n

i=1 ui ≤
∑m

i=1 fi
(1)

It is worth noting that U-LLREF assumes (as do other

global schedulers) that the cost of migrating a task from one

processor to another is negligible. We keep this assumption

and leave the evaluation of the migration cost for future

work.

C. The Algorithm

GMF works as follows. First, it sorts the tasks in non-

increasing order of utilization and initializes the frequency

of each processor to the lowest supported frequency. The

core of the algorithm consists on taking the first i (starting

at 1) tasks (i-taskset) and the first i processors (i-processors),

and comparing the sum of the utilization of tasks in the i-

taskset to the sum of the frequencies of the i-processors. If

the sum of the utilization of the subset of tasks is larger, then

we increase the frequency of the processor with the lowest

frequency among the i-processors (the slowest processor) by

one δ step. We keep increasing the frequency of the slowest

processor (which can change after each δ increment) until

the sum of the frequencies of the i-processors is larger than

or equal to the sum of the utilizations of the i-taskset (the

ith U-LLREF equations from 1). If all the processors in the

subset reach the maximum frequency before satisfying this

condition, then the taskset is ruled not schedulable. Other-

wise, when the condition is satisfied, i is incremented by

one and the frequency-increment cycle is repeated, thereby

considering one more task and one more processor. This

process is repeated incrementing i until it reaches m and

all the processors have been considered. The last iteration

uses the complete set of processors and the complete set of

tasks (not just the first m). This algorithm is presented in

Algorithm 1.

GMF does not have the fragmentation problems that

previous algorithms suffer. Specifically, because the taskset

is not partitioned into subsets (e.g. heavy and light tasks),

there is no idle time left by one subset that cannot be used

by another subset.

Let us illustrate the fragmentation-free nature of GMF

with an example. Consider the taskset in Table II. GMF

produces the same frequency assignment as the exhaustive

algorithm executing the following steps. First the frequency

of all processors are initialized to 0.25. Next, the first

processor and the heaviest task are considered (i = 1). The

frequency of just this processor is incremented three times

4We replaced the original normalized speed (si) for the normalized
frequency (fi) to improve readability.

Algorithm 1 GMF (Π : (fmin, δ, A : {f1, . . . , fm}),Γ :
{τ1, . . . , τn, })

1: sort tasks such that u1 ≥ · · · ≥ un

2: for all i ∈ [1 . . .m] do

3: fi ← fmin

4: end for

5: Usum ← 0
6: for i = 1 to min(m,n) do

7: if i < m then

8: Usum ← Usum + ui

9: else

10: Usum ←
∑n

j=1 uj

11: end if

12: while Usum >
∑i

j=1 fj do

13: slowest← min
(

argminj∈[1...i] fj

)

14: if fslowest = 1 then

15: return ∅ // not schedulable

16: end if

17: fslowest ← fslowest + δ

18: end while

19: end for

20: return {f1, . . . , fm}

until it reaches 1 and can satisfy task τ1 with u1 = 1. Then i

is incremented to two (i = 2) and the two heaviest tasks are

tested against the two fastest processors. Because the sum

of the frequencies of the processors is smaller than the sum

of the utilization of the tasks ((1 + 0.25) < (1 + 0.9)) the

frequency of the slowest processor (i = 2) is incremented

multiple times until such a condition is false (when f2 = 1).

At this point i is incremented to 3 and the schedulability test

compares the three first processors and tasks ((1+1+0.25) <
(1 + 0.9 + 0.6)). Again the processor with the slowest fre-

quency (f3 = 0.25) is incremented up to f3 = 0.50 to satisfy

our test. Now the fourth processor and task are considered

and f4 is incremented once to pass their schedulability test

((1 + 1+ 0.50+ 0.50) = (1+ 0.9+ 0.6+ 0.5)). In the final

step all the tasks are considered and tested for schedulability

((1+1+0.50+0.50) < (1+0.9+0.6+0.5+0.1)) requiring

one increment to the frequency of the slowest processor f4
(or f3 since they are equal) to reach 0.75 making the taskset

schedulable ((1+1+0.75+0.5) ≥ (1+0.9+0.6+0.5+0.1)).

While the final frequency assignment of GMF and the

exhaustive algorithm from [13] is the same, because GMF

uses U-LLREF it allows any task to use idle cycles from

any processor in the system. This is depicted in Figure 6.

Figure 6 shows how, even though the frequencies of the

processors are assigned considering only subsets of tasks

(and only one task at the beginning), every task can use the

cycles from any processor in the system. This is because

all processors are scheduled with U-LLREF. The difference

between GMF and the exhaustive method from [13] becomes
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Figure 6. GMF Sample Frequency Assignment

Table III
FREQUENCY ASSIGNMENT FOR u5 = 0.25 WITH THE EXHAUSTIVE

ALGORITHM

Processor Frequency Task Utilization Partition

P1 1.0 τ1 1.0 Partition 1

P2 1.0 τ2 0.9 Partition 2

P3 0.75 τ3 0.6 Partition 3

P4 0.75 τ4 0.5 Partition 4

τ5 0.25

evident when we increment the utilization of task τ5 to

u5 = 0.25. In this case, the exhaustive method still creates

partitions giving tasks τ1, τ2, and τ3 their own individual

partitions and bundling τ4 and τ5 in a common partition as

shown in Table III.

Figure 7 depicts these partitions in a frequency/time graph

indicating how partitions 1 and 4 are fully utilized while

partitions 2 and 3 contain idle cycles. If these cycles could

have been used by other tasks outside the partitions (say

by τ5) it would have not been necessary to increase the

frequency f4 to 0.75.

In contrast, in GMF only the last increment to i changes.

Specifically, when i = 5 task τ5 is considered with u5 =
0.25. In this case the frequency increment still results in

f4 = 0.5 and the schedulability test is successful ((1 + 1 +
0.75 + 0.5) = (1 + 0.9 + 0.6 + 0.5 + 0.25)).

Figure 8 presents the frequency/time graph that shows

how the spreading of the idle cycles from one processor to all

task enables GMF to avoid fragmentation within partitions.
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Figure 8. Optimal Assignment with GMF Algorithm

In addition to computing a more power efficient frequency

assignment, GMF has the advantage that its complexity

is polynomial as opposed to NP-Hard in the case of the

exhaustive algorithm.

IV. GMF OPTIMALITY

We say that a frequency assignment A = {f1, . . . , fm} is

optimal if the task set Γ can be scheduled by U-LLREF on

platform Π with frequency assignment A, and there is no

frequency assignment A′ = {f ′
1, . . . , f

′
m} such that P (A′) <

P (A) and task set Γ can be scheduled by U-LLREF on

platform Π with frequency assignment A′.

A frequency assignment A is i-optimal, where i ≤ m,

if the first i frequencies of A are an optimal frequency

assignment for the first min(i, n) tasks of Γ on the first

i processors of platform Π. A frequency assignment is 0-

optimal if each processor is assigned the lowest possible

frequency (fmin).

The capacity of the platform with frequency assignment

A is S(A) =
∑

fi∈A fi.

Now we prove three lemmas that are used to prove the

optimality of our algorithm.

Lemma 1. An increment to a frequency fi by δ incurs a

larger power increase the larger fi gets.

Proof: This is a general acceleration property of func-

tions that have positive first and second derivatives.

Given that P (f) = Cf3, we have that

P ′(f) = 3Cf2

P ′′(f) = (P ′(f))
′
= 6Cf

where both C and f are positive. With the positive first

derivative the function is increasing, and with the positive

second derivative the slope is also increasing. That is,

P (f) is a monotonically increasing convex function, and

consequently, the same frequency increase produces a larger

increase in power when the base frequency is larger.

Lemma 2. If A is an i-optimal solution, and A′ is an (i+1)-
optimal solution, the first i frequencies of A′ are bound from

below by the first i frequencies of A. That is, ∀j ≤ i : f ′
j ≥

fj .



Proof: For A′ to be (i + 1)-optimal, it has to satisfy

the first i + 1 equations of the U-LLREF scheduling test.

Since the capacity added by processor i + 1 does not have

any effect on the satisfaction of the first i equations of

the U-LLREF scheduling test, we can focus on the first

i processors to prove that their speeds are bound by A.

Assume for contradiction that ∃j ≤ i|f ′
j < fj . There are

only two possible cases.

• No other processor frequency f ′
k such that f ′

k ∈ A′ ∧
k ≤ i is increased to compensate for the reduction of

f ′
j . Then either the frequency reduction causes one of

the first i equations of the scheduling test not to be

satisfied and A′ is not (i + 1)-optimal, or Pi(A
′) <

Pi(A), and consequently A was not i-optimal, both of

which are contradictions.

• The frequency of one or more other processors is

incremented to compensate for the reduction in a way

that satisfies the first i equations of the U-LLREF

scheduling test. Suppose that only one processor fre-

quency fk is increased to compensate for the decrease

of fj ; that is, ∃f ′
k ∈ A′, fk ∈ A|f ′

k > fk. It must be that

k < j, otherwise the jth U-LLREF equation would not

be satisfied. Since, k < j, we have that fk ≥ fj . With

f ′
k > fk ≥ fj > f ′

j . By Lemma 1, the power difference

between fj and f ′
j is smaller than the power difference

between f ′
k and fk. Consequently, the power saving of

the frequency reduction is not enough to compensate

for the frequency increase. Since A′ requires more

power to provide the same capacity, it is not optimal,

which is a contradiction. Now, suppose that a subset

of processor frequencies fk with 1 ≤ k < j were

increased to compensate for the frequency decrease

of fj . Then, for each processor frequency fk we can

apply the same argument presented above for a partial

decrease/increase portion.

Lemma 3. Given a frequency assignment A with capac-

ity S(A), and A(k), which is the most power efficient

assignment with capacity S(A) + kδ bound from below

by A, the most power efficient assignment with capacity

S(A)+(k+1)δ bound from below by A, A(k+1), is obtained

by incrementing the slowest speed of A(k).

Proof: Assume for contradiction that

∃B(k+1)|S(B(k+1)) = S(A) + (k + 1)δ

∧ P (B(k+1)) < P (A(k+1))

We now show that this is false. Starting from an assignment

A with capacity S(A), usually there are several possible

sequences of k single frequency increases that can be taken

to reach another assignment of capacity S(A) + kδ. Each

single frequency increase adds the same amount δ to the ca-

pacity, but requires a possibly different power increase ∆Pj .

Let ∆P = {∆P1,∆P2, . . .} be the set of power increases

corresponding to the available frequency increases among all

the processors beyond the frequency assignment A, where

i < j ⇔ ∆Pi ≤ ∆Pj . Note that ∆P may contain more than

one power increase for the same processor, corresponding to

successive frequency increases in that processor. Achieving

a frequency increase of kδ requires taking a valid subset

of size k of the power increases (i.e., the sth increase for

a processor can only be taken if it is the first increase for

that processor or if the (s − 1)th was taken previously).

Since A(k) is the most efficient allocation providing a kδ

increase over A, it must have taken the smallest k power

increases {∆Pj |j ∈ {1, . . . , k}}. Otherwise, the selection of

a power increase ∆Pr|r > k instead of a ∆Ps|s ≤ k implies

∆Pr > ∆Ps, which would add ∆Ps − ∆Pr more power.

Given that the frequency increment from A(k) to A(k+1)

is obtained incrementing the slowest frequency of A(k), by

Lemma 1, the power increase would be the smallest, that is

∆Pk+1 because the k smallest power increases have already

been taken. That is, the frequency assignment A(k+1) is

obtained by taking the k + 1 frequency increases with the

smallest power increase. Consequently, any other subset of

∆P of size k + 1 that the frequency assignment B(k+1)

could take requires at least the same amount of power

increase. That is, P (B(k+1)) ≥ P (A(k+1)), completing the

contradiction.

Let us now prove the optimality of GMF.

Theorem 1. Algorithm 1 is optimal in the sense that it

computes the most power efficient frequency assignment to

schedule a task set with U-LLREF on a multi-processor

platform with uniform frequency steps.

Proof: We show that at the end of its execution, the

algorithm has computed the most power efficient frequency

assignment that satisfies the U-LLREF scheduling test if the

task set is schedulable.

Line 1 sorts the tasks in descending order of utilization,

which is the assumption of the U-LLREF scheduling test.

Lines 2-4 initialize the frequency assignment with each

processor at the slowest possible frequency. That is, the

initial frequency assignment is 0-optimal.

Let i be the number of times the loop body of the outer

loop (lines 6-19) has been executed. The invariant for the

outer loop is that the frequency assignment is i-optimal. In

the base case, when i = 0, the invariant holds because the

initial assignment is 0-optimal.

We now show that after each execution of the body of the

outer loop, the invariant is maintained. Let A be the (i−1)-
optimal assignment computed by the previous iteration of

the outer loop or the initial assignment. By lines 7-11

Usum(i) =

{

∑min(i,n)
j=1 uj when i < m

∑n

j=1 uj when i = m



Inner loop invariant. Let k be the number of times

the inner loop body has been executed. The frequency

assignment A(k) satisfies the following invariants:

1) A(k) is bounded from below by A 5

2) S(A(k)) = S(A) + kδ

3) P (A(k)) ≤ P (B) ∀B|S(B) = S(A(k)) ∧ B is

bounded from below by A

Inner loop base case. The algorithm does not actually

keep a copy of frequency assignment A(k) separate from A.

When k = 0, A(k) = A. Invariants 1 and 2 hold trivially.

Invariant 3 holds because S(A(k)) = S(A) and A is optimal

for that capacity.

Inner loop induction. The index of the processor

with the slowest frequency assignment is slowest =
argminj∈{1...i} fj (line 13). Recall that frequencies are

ordered in non-decreasing order such that f1 refers to

the slowest frequency, f2 to the second slowest, and so

on. Assume that at least one of the first i processors is

still not assigned the maximum frequency, otherwise Γ is

not schedulable on the platform (line 15). By Lemma 3,

increasing the slowest frequency (line 17) results in the

most power efficient frequency assignment with capacity

S(A) + (k + 1)δ, which is bound from below by A. That

is, the loop invariants hold after going through the body of

the loop.

Inner loop termination. The loop terminates as soon as

the ith U-LLREF equation is satisfied (line 12), which is

evaluated after each single-step increment. When the loop

terminates, the speed assignment computed by the algorithm

is the most power efficient that satisfies the first i U-LLREF

equations.

If n ≥ m, the outer loop executes m times, the last one

with i = m. Since of the invariant of the outer loop is

maintained, the final allocation is m-optimal, thus optimal.

If n < m, the resulting frequency assignment is n-optimal,

and because the frequency of all processors j|n < j ≤ m is

the slowest possible frequency, the frequency assignment is

optimal.

V. EVALUATION

To evaluate the performance of the GMF algorithm, we

randomly generated 15,000 tasksets and computed the power

they would consume with different VFS algorithms when

run on two platforms with different frequency settings, both

with 4 processors. The tasksets were generated with different

utilization levels (up to 100% of the processors) to give

room to the VFS algorithm to scale down the frequencies.

These utilization levels range from 0.5 up to 4 (100% of

all four processors) with increments of 0.25. Then, for

each utilization level we generated 1,000 tasksets. Within

each taskset we generated tasks with a utilization generated

5This implies that the first i − 1 equations of the U-LLREF conditions
are satisfied

Table IV
PROCESSORS FOR EVALUATION PLATFORMS

Platform 1

Frequency Volts

1 5

0.75 4

0.5 3

Platform 2

Frequency Volts

1 3.5

5/6 2.8

4/6 2.2

3/6 1.6

2/6 1.4

randomly from a uniform distribution within the interval

[0.01, 1] adjusting the last task’s utilization to add up to

the target utilization.

For each taskset we run four VFS algorithms: DIF, GMF,

Exhaustive, and Optimal. The Exhaustive algorithm is the

one that searches for the optimal partitioning, and Optimal

searches the optimal frequency assignment without partition-

ing. Then, given each frequency assignment, we calculated

the power consumption and normalize it to one.

Figures 9 and 10 show plots of the average power

consumption in two different platforms. Table IV shows

the (normalized) frequencies supported by each platform

with the corresponding voltage required for each speed. The

description for platform 2 corresponds frequencies and volt-

ages of an Intel Core 2 Duo T7700 processor. Note, however,

that we assumed a 4-core platform for our evaluation instead

of a dual-core. The plots on Figures 9 and 10 show that GMF

perform better than the other frequency scaling algorithms.

Furthermore, since GMF does not partition the processors,

it can achieve in polynomial time better power efficiency

than Exhaustive, which searches for the solution with an

NP-Hard algorithm. In both plots, the GMF curve exactly

matches the Optimal curve as expected, given that GMF

is optimal. It is worth noting that GMF achieves larger

relative power savings in platform 1 than in platform 2,

specially at high utilization. This is because when there

are fewer frequencies available, the amount of idle time

left unused by the partitioned approaches is larger than in

the cases in which more available frequencies allow for a

finer control on the frequencies of the partitions. By avoiding

partitioning completely, GMF leaves less idle time unused,

and, consequently, achieves better power efficiency.

The two platforms used for the previous experiments

satisfy the assumption of uniform frequency steps that was

used to prove the optimality of GMF. In addition, we ran

simulations using the characteristics of a processor that has

frequency steps that are not uniform. Specifically, we used

the characteristics of the Intel XScale processor shown in

Table V [17]. Note that in this case, instead of computing

power from the voltage for each frequency, we directly show

the power from the specifications, which includes both the

dynamic and leakage power. Although GMF does not use the

power from the table to compute the frequency assignment,
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Figure 10. Power Consumption on Platform 2

we use it to compare the power consumption of the solutions

calculated by the different algorithms. Figure 11 shows

the results obtained running the same simulation described

before using a 4-processor platform with the characteristics

of Table V. In this case, GMF also computes the optimal

frequency assignment. We know there are cases with non-

uniform frequency steps in which GMF is not optimal. For

example, if the frequency steps and their associated power

are such that the utilization of the last task can be satisfied

by increasing the frequency of either the slowest processor

Table V
PROCESSOR CHARACTERISTICS FOR PLATFORM 3

Frequency Power (mWatt)

1 1600

0.8 900

0.6 400

0.4 170

0.15 80
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Figure 11. Power Consumption on Platform 3 (Non-Uniform Frequency
Step)

i or another processor j, and the power increase is smaller

for processor j, which would imply that the next frequency

step for j is smaller than that of i. Based on this observation

and the results of this last experiment, we believe that GMF

is also optimal for some relaxation of the uniform frequency

steps condition. Hence, we propose the following conjecture.

Conjecture 1. Algorithm 1 is optimal in the sense that it

computes the most power efficient frequency assignment to

schedule a task set with U-LLREF on a multi-processor

platform with frequency steps such that the power increase

in each frequency increasing step does not decrease.

VI. CONCLUSIONS

In this paper we presented the Growing Minimum Fre-

quency (GMF) frequency scaling algorithm for real-time

systems for uniform multiprocessors. GMF computes the op-

timal frequency assignment necessary for the multiprocessor

to guarantee the deadlines of a real-time taskset with the

minimum power consumption. GMF relies on the optimal



global scheduler for uniform multiprocessor U-LLREF to

implement a greedy strategy that always increments the

minimum frequency. This strategy allows us to keep the

complexity of GMF polynomial, avoiding the combinatorial

nature of previous algorithms (e.g. when searching for the

optimal partitioning). We proved the optimality of GMF for

processors with uniform frequency steps. This requirement

is satisfied by commercially available processors such as

the Intel T7700. In addition, we conjectured that GMF is

optimal if that assumption is partially relaxed. Finally, we

performed an experimental evaluation to compare the power

consumption of GMF against three other frequency scaling

algorithms. In these experiments we observed that GMF

achieves up to 30% better power efficiency than previous

algorithms, and confirmed its optimality.
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