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Effective-medium theories for predicting hydrodynamic transport
properties of bidisperse suspensions

Sangkyun Koo and Ashok S. Sangani®
Department of Chemical Engineering and Materials Science, Syracuse University,
Syracuse, New York 13244

(Received 27 December 2001; accepted 9 July 2002; published 5 Septembgr 2002

Effective-medium theories for predicting conditionally averaged velocity field and hydrodynamic
transport coefficients of monodisperse suspensions are extended to bidisperse suspensions. The
predictions of the theory are shown to agree very well with the results of direct numerical
simulations of bidisperse suspensions with hard-sphere configurations up to volume fractions at
which phase separation in bidisperse hard-sphere systems are obsen2@02@merican Institute

of Physics. [DOI: 10.1063/1.1503352

I. INTRODUCTION may be extended to predict the properties of bidisperse sus-
pensions. A detailed comparison of the numerical simulation
Effective-medium theories use simple models for detertesults for conditionally averaged fields and various transport
mining conditionally averaged fields, and hence, the effecproperties of bidisperse suspensions with those predicted by
tive properties of suspensions. The advances in algorithmsodified effective-medium theories is necessary for this pur-
for computing multiparticle interactions in recent years havepose.
allowed us to estimate accurately various effective properties In Sec. Il an effective-medium theory for monodisperse
of monodisperse suspensions, i.e., suspensions of equi-sizedspensions is reviewed and several possible ways of modi-
particles in a viscous fluid. Results for hydrodynamic trans{ying it are considered to treat bidisperse suspensions. In
port coefficients, such as the self- and collective-mobility ofSec. Il the results of numerical simulations for various hy-
the particles, the effective viscosity of the suspension, androdynamic transport coefficients of bidisperse suspensions
the permeability of a fixed array of particles, determined us-and conditionally averaged velocity fields are presented and
ing rigorous numerical method8rady and Bossi$;Ladd?  compared with the predictions of two selected modified
Mo and Sangan) have been shown to be in good agreementeffective-medium theories. The simulation results are ob-
with the estimates obtained using an effective-mediuntained by modifying the method described in Sangani and
theory for monodisperse suspensions of spherical particles iMo.> It is shown that modified effective-medium theories
a viscous fluid(see, e.g., Spekt al®). Although these nu- vyield reasonably accurate estimates of the hydrodynamic
merical methods can be used to estimate the properties dfansport coefficients and the conditionally averaged veloci-
bidisperse and polydisperse suspensions often encounteredties.
practice, the results covering wide range of parameter values
are not available in the literature. One of the problems inI
presenting the results for these suspensions is the rather large
parameter space required for characterizing these suspen- As mentioned earlier, effective-medium theories esti-
sions. For example, for the case of bidisperse suspensions theate the conditionally averaged fields, and hence the effec-
transport coefficients must be determined as functions of théve properties of a suspension, by solving suitably averaged
individual volume fractions and the size ratio of the particles.equations for a relatively simple model which captures some
The spatial configurations of these suspensions may addpf the important multiparticle effects. The first step in devel-
tionally depend on the nature of nonhydrodynamic interparoping the theory is to derive an equation for the conditionally
ticle forces. Thus, it is desirable to develop approximateaveraged velocity and to introduce appropriate closures, and
theories that can be used to estimate hydrodynamic propethe second step is the construction of a model to evaluate the
ties more readily than rigorous numerical simulatidns. unknown constants appearing in the closures. As an example,
The present study is concerned with the modificationdet us consider sedimentation of equi-sized particles through
that may be made to yield estimates for bidisperse susper viscous fluid when the Reynolds number based on the par-
sions, i.e., suspensions containing particles of two distincticle radius and their average velocity is small. The suspend-
sizes. These suspensions are encountered frequently in pracg fluid motion satisfies
tice and it is not clear at the outset how the effective-medium

EFFECTIVE-MEDIUM THEORIES

. . . O-ij
theory that is commonly used for monodisperse suspensions — + 5.g;=0, (1)
(7Xj
3Telephone:  315-443-4502; fax: 315-443-2559; electronic maiI:Where‘_Tij is the stress at pOim'in the fluid, py th? density of
asangani@syr.edu the fluid, andg; the acceleration due to gravity. The stress
1070-6631/2002/14(10)/3522/12/$19.00 3522 © 2002 American Institute of Physics
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inside the sedimenting particle satisfies a similar equation

with p¢ replaced by the particle density,. Ensemble aver- S(O)Zf [P(x[0)—P(x)]dV,. 8

aging these equations subject to the presence of a particle

with its center at originQ, yields It is easy to show that the apparent force for the
X effective-medium model with an exclusion radius Rfis

(x/0)+p(x)g;=0, (27 givenby
FoP=—(4m3)g[ppa’+(RP~ad)pi—pR%. (9

g ij>l
an
with
In order that the effective-medium model predicts correct
PO)=pi+(pp=p)(X)1(X|0). ) behavior for the conditionally averaged stress, and hence the
Here, x(x) is a particle phase indicator function whose valuevelocity, at large distances from the test particle, the apparent
is unity whenx lies inside a particle and zero otherwise. Theforce calculated front9) must be the same as that calculated
conditional average of this function may be expressed as from (7). This requiresR to be given by
3_,3
0100= [ POV, @  RTAlmSOle 10
x=x'|<a The results of numerical simulations for monodisperse
whereP(x'|0) is the probability density for finding a particle suspensions presented by La@md Mo and Sangahtorre-
with its center atx’ given the presence of a particle at the spond to hard-sphere molecular configurations. The zero
origin. Note that(x), approaches, the volume fraction of wave number structure factor for the hard-sphere molecular
the particles, as=|x|—c. For suspensions with an isotro- systems is well approximated f@¥<0.5 by the Carnahan—
pic pair probability density a closure relation for the stress isStarling approximation
introduced
(1-¢)*

, 5) SO g+ 47— a5+ 6"

a<ui>l+ HUj)1 (11

(7XJ' X

(oij)1=—(P)16ij + u(r)

. . Sedimentation velocity and other hydrodynamic transport
where(p), is the conditionally averaged pressure an)  hrgnerties such as the effective viscosity and the permeabil-
is the viscosity of the suspension. The conditionally averagegj[y of hard-sphere random suspensions have been determined
pressure and velocity are required to approach, respectivelgy solving the Stokes flow equations rigoroughadd?2 Mo
the unconditionally averaged pressure and velocity-asc  5ng Sangaf. The effective-medium estimates obtained

(PY1—{(PYo=psTiXi, (U)1—0 as r—o, (6) with R determined using10) qnd(ll) _have been shown t.o

) . ) be in very good agreement with the rigorous res(@angani
whereps=p;+(pp—pr) ¢ is the suspension density. The av- gng Mo® Speltet al?). It is natural, therefore, to extend the
erage sedimentation velocity of the particles equals the conypgye method for determinir@to estimate the properties of

To determine the sedimentation velocity, the above set of | et ys consider a bidisperse suspension with the particle
equations is solved for a simple effective-medium model iny5jj g, , densitiesp,;, and volume fractionsp;, i=1,2.

which u(r) is taken to equal the suspending fluid viscosity Now the conditionally averaged stress, given that a particle
wt in the exclusion regiom<r<R and equal to the effec- f radjusa, is centered at origin, satisfies

tive viscosityu* of the suspension far>R. Similarly, { x),

is taken equal to zero in the exclusion region and equél to a(giJ.)l
in the effective-medium. The exclusion radiBsis chosen T(X|0:al)+ Pf+k21 (Ppk—Pe){(XK1(X|0,a1) | =0,

such that the behavior of the conditionally averaged velocity J (12)
obtained from the effective-medium model agrees with its

rigorous behavior as—. The latter is obtained by recog- Where y, (k=1,2) are the indicator functions fdespecies
nizing that the apparent hydrodynamic force on the test pamarticles. The apparent force on the particle as seen from
ticle at origin as “seen” from a large distance from the par-large distances from the particle is obtained by integrating
ticle must balance the net force due to gravity. This apparerthe body force term in the above expression over the entire
force obtained by integrating¢;)1—(oij)o)n; on the sur-  space to yield

2

face of a sphere of large radiugi—being the unit outward 5
normal on the surface—is given by Far= _(477/3)921 (Ppk— Pf)ai’skl, (13)
ap— _(, — , _
F (Pp pf)g'f [O0)1(X|0) = p]dVy. @ with the zero wave number structure factor defined by

The integral in the above equation equals the volume of the

particle multiplied by the zero wave number structure factor ~ Sjj =f [P(x,ai|0,a)) = P(x,a;)]dV,, (14
S(0) so that the apparent force on the particl&S{®) times

the force on the same patrticle in a very dilute suspensionyvhere P(x,ai|0,aj) is the probability density for finding a
The zero wave number structure factor is defined by particle of radiusa; in the vicinity of x given that a particle
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FIG. 2. R;j /a, as a function of¢, for ¢,=0.1 and\=0.5.

sphere configurations. For very dilute bidisperse suspensions
(¢p= 1+ $p,<<1) the structure factors for the hard-sphere
systems can be shown easily to be given by

Sij:5ij_¢i(ai+aj)3/ai31 (16

FIG. 1. A schematic representation of the effective-medium model. g thatRij—>ai +a in the limit —0. The structure factors
for non-dilute bidisperse suspensions can be estimated using
the method outlined by Ashcroft and Langrétiihe neces-
sary formulas are given in Appendix &;; decreases mono-

of radiusa; is centered at origin anB(x,a;) is the (uncon- ’ S .
J 9 (x.a) ( tonically as the volume fraction is increased. An example is

ditional) probability density for finding a particle of radias seen in Fig. 2 which showR;; for the size ratio =a /a,

atx.A ffecii di del t timate th di ; =0.5 and¢,=0.1. The decrease iR;; occurs due to higher
. n efiective-medium modet 1o estimate the sedimen a'probability of finding a pair of particles separated by a dis-
tion velocity of the particles in bidisperse suspensions con

) : . . . fance close t@; + a; as can be seen from Figs. 3 and 4 which
sists of assuming that the particle of species 1 is centered ghow the radial distribution functiong,; and g,, for the

origin and :_slcted_upon _by the gr_avitaFiona! force d_ue_to it}ard-sphere bidisperse systems wity= 0.1 at two selected
mass. Outside this particle, species 1 is uniformly distribute alues of ;. A radial distribution functiong;; is the pair

forr>Ry, W'.th volume fractiong, and, "k‘?W'Se’ species 2 probability density normalized bf(a;) so that its value is
for r>Ry, with volume fractloq¢2 (see Fig. .J' A similar nity at r=c. For hard-sphere bidisperse systems these
modgl may be useq to determllne the cond|t|onally_ayerage nctions can be determined using the formulas given in Ap-
velocity with a particle of species 2 centered at origin. Thependix B. The sharp rise ig,; atr =2\ =1 for ¢, =0.35 is

density and the effective viscosity of the ef'fectlve-medlumr sponsible foR,; to decrease to such an extent tRat is,

are augmented according to the density of the particles g fact, even lower tham\, the nondimensional radius of

ecies 1. In other words, the effective-medium model for

model agree with the rigorous resuftsf. (13)], we must tributed starting from a radial distané®, that is less than

choose the radius of the particle—clearly a model that is physically
Rﬁza?( 5= i, (15) meaninglgss. This difficulty arises whenewgy is _greater
than a critical value that depends anand ¢,. Figure 5
where g;; is the Kronecker delta function. shows this critical value fox =0.5 and 0.7. The criticad,
The above effective-medium model requires a knowl-is seen to decrease &g is increased ok is decreased.
edge of zero wave number structure factgsfor bidisperse It is interesting to note that hard-sphere bidisperse sus-

suspensions. The present study will be concerned witlpensions undergo phase separation beyond a critical value of
bidisperse suspensions corresponding to bidisperse harg-, for given ¢; and \. Dinsmoreet al® have carried out
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r FIG. 5. The critical values ofp; as a function of¢, beyond whichR;;

becomes less thaa; for two different size ratiosA=0.7 and 0.5. The
unfilled circles indicate the conditions where phase separation is experimen-
tally observed and the filled circles are the conditions with no phase sepa-
ration for A =0.5 [Dinsmoreet al. (Ref. 8]. The star represents the condi-
tions for which the numerical are carried out with = ¢,=0.175 and\

experiments with bidisperse collidal systems and observed 0->
phase separation for the conditions shown in Fig. 5. As seen
from this figure the phase transition appear to occur beyond

the value of¢, for whichRyy<a;. consider other variants of the effective-medium model. It is
For dense bidisperse suspensions wRh;<a; the  required that the model to be chosen should satisfy the fol-
effective-medium model described above cannot be used. Qdwing criteria: (i) The leading order behavior of the condi-
course, this problem could also arise for monodisperse Susipnally averaged velocity at large distances from the particle
pensions that have configurations other than the hard-sphegg st agree with its rigorous behavidii) the effective prop-
configurations examined in previous studies. Thus, we Must ties estimated using the model should be reasonably accu-
rate at least for the case of monodisperse suspensions; and
(iii ) extension to bidisperse suspensions must be natural.
The idea that the medium in the immediate vicinity of
the test particle must be a clear fluid, i.e., that the properties
of the medium fora<r <R must be the same as that of the
suspending fluid, is meaningful when the clustering of par-
ticles is not significant, or, equivalently, the radial distribu-
tion function at contactr(=2a) is not too large. For suspen-
sions whoseR defined by(10) is less thara, we must allow
for the presence of the particles in the immediate vicinity of
the test particle. Thus, a more general effective-medium
model might assume that the medium immediately close to
the particle corresponds to a suspension with a volume frac-
tion ¢, up to radiusR. and to a suspension with volume
fraction ¢ for r>R. with both ¢, and R, to be specified.
The condition that the apparent force on the particle be the
same as given by7) gives one relation betweep, andR;

b(RE—a%)=p(RI-R%), (17)

whereR s given by(10). Thus one may arbitrarily choos

and then use the above equation to estimate the volume frac-
tion ¢. in the immediate vicinity of the particle. One simple
FIG. 4. Radial distribution functions, at two different values ofs,, 0.35  choice for monodisperse suspension®is-2a. The exten-
(solid line) and 0.15(dotted ling, with ¢,=0.1 and\=0.5. sion to the bidisperse suspensions will then be natural with

FIG. 3. Radial distribution functiog,; at two different values o, 0.35
(solid line) and 0.15(dotted ling, with ¢,=0.1 and\ =0.5.
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U/Ug 0.1 - Wy

.01

o
¢
FIG. 7. Effective viscosity as a function gf for monodisperse, hard-sphere
rsqspensions. The thick-dotted, long-dashed, and solid lines are, respectively,
e predictions by EM, EM |, and EM Il theories. The filled triangles indi-
cate simulation results by Lad®ef. 2.

FIG. 6. Sedimentation velocity as a function éffor monodisperse, hard-
sphere suspensions. The thick-dotted, long-dashed, and solid lines are,
spectively, the predictions by EM, EM |, and EM Il theories. The filled
circles indicate simulation results by Ladgef. 2.

dependent of the orientation of the pair, the volume integral
é'n (4) can be reduced using simple geometrical consider-
ations to an integration ovet:

Rqij=a+a;. Equation(17) may likewise be extended to
allow for the presence of the two species in the immediat
vicinity of the test particle.

Unfortunately, this modified effective mod@M I) does a
not work as well as _the ongmgl effective-medium model (X)l(f)znﬂf g(R)(2R—R?/r—r+a?r)RdR
(EM) based on exclusion of particles faxr <R as can be r-a
seen from Figs. 6 and 7 which show the predictions of the (19
sedimentation velocity and effective viscosity of suspensions
with monodisperse, hard-sphere configurations. The circlekigures 6 and 7 also show predictions of sedimentation ve-
represent the results determined using rigorous numeric4City and effective viscosity obtained by this model. We see
simulations (Laddf). At ¢=0.45 the nondimensional sedi- that the predictions obtained by this model are better than the
mentation velocity and effective viscosity are, respectivelyEM | model but not as good as those obtained by the EM
0.136 and 5.629 using the EM | model and 0.042 and 5.71model. The extension to bidisperse suspensions is straight-
using the EM model, the rigorous values being 0.046 andorward for this model.
5.6. Although our primary objective in the present study is

The two models described above involve some arbitrarghe development of effective-medium approximations for
choices: EM sets the volume fraction of the particlesdor Which it is sufficient to compare the results of numerical
<r<R to zerowhile EM | setsR.=2a. A model with no  simulations for hard-sphere configurations with the predic-
arbitrary choice was proposed by Chang and Acrivos in dions obtained from approximate theories, it may be noted
series of papers(AcriVOS and Chané?vll Chang and that the numerical simulation results by Lé‘d'mnd hence
Acrivos’). According to this model, henceforth to be referredthe theory predictions—are also in very good agreement with
to as the EM Il model, the density and other properties of théhe experiments by Buscagt al*? for the sedimentation ve-
medium are allowed to vary continuously. For example, thdocity and by van der Werfet al.*® for the high-frequency
density is taken to be given biB). Likewise, the effective effective viscosity of nearly monodisperse suspensions.
viscosity of the medium is taken as In summary, the effective-medium model based Rn
given by (10) gives the best estimates for the monodisperse
suspensions. Its application to bidisperse suspensions, how-
ever, is limited to volume fractions for whidR; >a; . When
this condition is not satisfied, the EM Il model may be pre-
Here, (x); (r|0) is the conditional average of the particle ferred to EM | or EM. Therefore, the results of numerical
volume fraction given a particle at origin as defined(4n. simulation for bidisperse suspensions will be compared with
For suspensions in which the pair probability density is in-the EM and EM Il models.

w(r)= e+ (uw* —pe)(x)1(r[0)/ ¢. (18

Downloaded 03 Mar 2012 to 128.230.13.126. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 14, No. 10, October 2002 Effective-medium theories 3527

11l. NUMERICAL METHOD TABLE I. A comparison of theoretical predictions and numerical simulation
) ) ) results for sedimentation velocity nondimensionalized by the terminal
The Stokes equations of motion for monodisperse andelocity of an isolated sphetld, .

bidisperse suspensions were solved using the method of mut
tipole expansion outlined in Sangani and Mehich uses a
fast summation method that requires computational effort ¢ N  simulaton EM EMIl simulaton EM EMII
Fhat scales roughly With the number of parti_cles. The velocity 01 07 0221 0197 0201 0517 0486 0.487
induced by each particle was expressed in terms of multi-o1 05 0095 0074 0059 0524  0.486 0.464
poles of up to third ordefi.e., Ng=3 in the notation of 035 0.7 0.028  0.023 0.010 0.111  0.096 0.086
Sangani and MY. This amounts to 26 unknowns per par- 0.35 05 —0.003 —-0.014  0.116 0.092
ticle. The lubrication effects require even greater values of
Ng, and hence multipoles, to determine hydrodynamic trans-

port properties accurately. Since including the lubrication ef-

fects explicitly according to the scheme outlined by Sangani ~ ¥= fa(r)Qn(1), (21)

and Mo slows down the convergence rate of the iterativewhere,u:cose, 6 being the polar angle measured from the

method used in the algorithm, and since modifying thexl-axis, andQ,, is the integral of the Legendre functidsee,

method for monodisperse suspensions outlined in Sangagig. |eal’). For determination of permeability and sedimen-

and M@ to account for the lubrication effects in bidisperse tation velocity we taken=1, and that for the viscosity cal-

suspensions requires considerably more effort, it was chosefyjation, n=2. The functionf ,(r) must be determined by

to carry out calculations with greaté; for one configura-  nymerical integration of the equations of motion.

tion and apply the correction obtained from the single con-  The above calculations apply to infinitely extended ran-

figuration to the results obtained ;= 3. dom suspensions. Numerical simulations are carried out with
In addition to calculating the overall properties such asy particles placed in a unit cell of a periodic array. For the

(U/Ugp), (UlUg),

the sedimentation velocity and the effective viscosity, thesedimentation and self-diffusivity problems, for which the
predictions for the conditionally averaged velocity fields ob-conditionally averaged velocity decays only as, Me must
tained using the effective-medium theories will be also com-ccount for the effect of finitél before the comparison be-
pared with those obtained numerically. For this purpose, th@yeen the two can be made. The velocity in the infinite me-
velocity of the fluid or a particle at selected points in the giym due to a point force is given by
basic unit cell was computed as described in Koch and
Sangani* Typically, the velocity was evaluated at 512 o 7P 51&_ 7 (L” 22
points, and, wittN particles per unit cell, this provides 5412 U Aqur | U axioxj\2] |’
velocity versus distance from a particle data points per CONg, periodic suspensionsriandr/2 in the above must be
figurgtion. The condiFiqnaI averaged yelocity and hydmdy'replaced by, respectively, spatially periodic functi®sand
namic tranqurt coeﬁmmnts were obtained by. averaging Ove§2 defined by Hasimot®® In the numerical simulation the
1.0 to 2.0 conflguratlons. The number of partichisised in angular average afi; is computed. The angular average of
simulation was 1024 in most cases. S, and the derivatives db, were determined separately and
compared with the angular averages af &nhd the deriva-
IV. EFFECTIVE-MEDIUM CALCULATIONS tives of r/2 to obtain a correction factor for accounting for
The conditionally-averaged velocity and hence proper-'clnlte _N' Accprdmgly, the_"?'oc'ty computed. using the
ties such as the sedimentation velocity, permeability, and e@ffectlve—medlum was multiplied by the correction factor
fective viscosity were determined by solving the effective-  C(r)=1-2.8/h, (23
medium equations numerically. The conditionally average
velocity satisfies
VALu([Vu+(Vu) "1+ p(r)g—Vp=p(r)u/k*(r),

dn being the unit cell size related to the volume fractions and
radii of each particles and the number of particles.

(20
. . V. RESULTS
whereu andp are, respectively, the conditionally averaged
velocity and pressure, arid is the Darcy permeability. The Table | shows the results for sedimentation velocities in

term on the right-hand side of the above equation must béidisperse suspensions. The volume fractions of the two spe-
used only for the case of fixed array of particles, e.g., in thecies are equalg,= ¢,=¢/2. We see that EM provides
calculation of permeability. For that case the viscosity to beslightly more accurate estimates than EM Il. Ror=0.35
used is Brinkman viscosity, which is taken to be the same aand A=0.5 the EM theory cannot be applied singg;

the fluid viscosityu; . For particles free to move the viscos- <ahk. The EM Il theory predictions are in reasonable agree-
ity must be taken to be given Hit8). In all calculations the ment with the numerical results for this case. It may be noted
mean flow was chosen such that the conditionally averagethat the smaller particles actually move against the gravity
velocity is axisymmetric aroung;-axis. Thus, it is possible for this case—a result that is in qualitative agreement with
to introduce a stream function to simplify the equations ofthe EM Il predictions. Figure 8 compares the predictions for
motion. The stream function can be expressed as a functiaime conditionally averaged velocity with those obtained nu-
of r times a function ofu merically. We see excellent agreement in all cases with the
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FIG. 8. A comparison of the conditionally averaged velo¢ity), nondimensionalized by superficial velocltyas a function of from numerical simulations

(filled and unfilled circleswith that from the effective-medium theories, Efthick-dotted liney and EM Il (solid lineg. The upper lines and filled circles
correspond to the case when a larger sphere is at origin, and the lower lines and unfilled circles correspond to the case with a smaller sphéag at origin.
¢=0.1, $,=0.05, and\=0.7. (b) ¢=0.1, ¢»,=0.05, and\ =0.5.(c) ¢=0.35, ¢, =0.175, and\=0.7. (d) ¢=0.35, ¢»;=0.175, and\ =0.5.

predictions from both the EM and EM Il models in good suspensions is given by the Stokes—Einstein relation
agreement with each other and with the data obtained from
numerical simulation.
The sedimentation velocities of noncolloidal bidisperse  Dy=bkT=
particles have been measured by Hogosl’ for the size
ratios of 0.6 and 0.35. The reduction in the velocity of
smaller particles observed by these investigators is muctvhereb, is the mobility, defined as velocity with which a
smaller than the results obtained here indicating that the miparticle will move when acted upon by a force of unit mag-
crostructure of sedimenting bidisperse suspensions must betude, k is the Boltzmann constant, ardis the absolute
significantly different from the hard-sphere microstructuretemperature. To determine the short time self-diffusivity in
for which the numerical simulations are carried out. bidisperse suspensions, a force of unit magnitude is applied
Table 1l shows results for short time self-diffusivity in to one of the particles in the suspension and its velocity is
bidisperse colloidal suspensions with hard-sphere spatialomputed. The results shown in Table Il were obtained by
configurations. The short time self-diffusivity in very dilute averaging over 20 numerical experiments. We see that the

kT

Grpa’ (24)
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TABLE II. A comparison of theoretical predictions and numerical simula- gccurate to third decimal plagethe dilute theory result that
tipn results for‘ short time self-diffusivityp scaled by the value for very the Viscosity of a suspension is relatively insensitive to the
dilute suspensionB,,. . . . . .
size ratio of particles apparently applies even to nondilute
(D/Dg); (D/Dg), suspensions as the results in Table Il would suggest. Thus,
for example, the effective viscosity of suspensions wgth
=¢$,=0.35/2 and\ =0.7 is 3.30 times the suspending fluid
01 07 0794 0782 0778 0733  0.742 0.739 vyjscosity. The corresponding result for a monodisperse sus-
o1 05 082 0792 0790 0736 0711 0.707 nhansion with¢=0.35 is 3.33 and a bidisperse suspension
035 0.7 0.332 0355 0.371 0.303  0.322 0.330 | . .
035 05  0.355 0373 0.287 0.293 With A=05is 3.35.
Finally, Table IV shows the results for pressure drop in
bidisperse fixed bed of particles given by

estimates by the two effective-medium theories agree with VP=niFy+nafe (26)

each other and that these estimates are lower than the corfhe limiting values of the force being the Stokes drag, i.e.,

puted values of self-diffusivities. Foj=—6mua;U, U being the superficial velocity of the
Table Il shows the results for the effective viscosity of fluid through the bed. We see an excellent agreement among

hard-sphere bidisperse suspensions. The effective viscosityise two theories and the simulation results. As seen in Fig.

related to the average stresslé@atchelot®) induced by the 10, the conditionally averaged velocities are also well de-

particles of each species by scribed by the effective-medium theories.

1) N simulaton EM EMIl simulaton EM EMII

* —
with the limiting values ofS; in very dilute suspensions be-

ing given by &;)o=1078;/3. Here,n; is the number density suspensions depend on a relatively large number of param-

Of. the particles of SPEcIeR Once'agam thg estlmat'es Ob- eters, e.g., the volume fractions of the individual species and
tained by the two effective-medium theories are in goodt

The hydrodynamic transport coefficients of bidisperse

Erence. Thus, simple theories that provide reasonably accu-

tlon?/u;/l ?]\;errz%%dV\\//zlggﬁfﬁ%';’nzhg\gg e;g E?v.egldetermine d rate estimates are useful. Two effective-medium theories,
9 EM and EM I, have been considered. The former cannot be

average stressletg for d|.Iut.e hard-sphere b|d|sperse SUSPElkeq beyond some values of the volume fractpnof the
sions to O(¢) using pair interactions calculations. Their

smaller species for giveg, and size ratio(cf. Fig. 5 for

Sihich the EM I approximation is more useful. Both theories

pensions having the same volume fraction as a monodisperzﬁve reasonably accurate results whén is less than the
suspension is smaller and that the effective viscosity de:

he si i The d h critical value given by Fig. 5. The effective-medium theories
itfsregaesrfesrsllsyts‘ranlelzeFroaruexZ(r:rrw;?esetsﬁe eﬁec‘;(\:/;eiisseéos%\;v%\;e;are shown to give quite accurate profiles of the conditionally
monodisperse suspension with=0.1 is 1.300 times the sus- averaged velocities in the suspensions.
pending fluid viscosity according to the dilute theory and that
for a bidisperse suspension withy = ¢»,=0.05 and\ =0.5 ACKNOWLEDGMENTS
is 1.299. These estimates were obtained from the theoretical Financial support for this work was provided by the Na-
results presented by Jon@sThese dilute theory estimates tional Science Foundation under Grant No. CTS-9909234.
may be compared with the numerical simulations of Ladd forThe computations were performed using the resources by the
monodisperse suspensions which gave the effective viscosityational Center for Supercomputing Applications at Univer-
ratio of 1.311, and the present study for bidisperse suspersity of lllinois at Urbana-Champaign.
sions which gives for;= ¢,=0.05 and\ =0.5 an effective
viscosity that is 1.294 times the suspending fluid viscosityAPPENDIX A: STRUCTURE FACTORS FOR BINARY
(The results obtained in the present study were limited to MXTURES OF HARD SPHERES

small number of configurations, and therefore, may not be | epowitZ! has obtained a generalized Percus—Yevick
equation for determining radial distribution functions in bi-
disperse and polydisperse systems. For bidisperse systems
the result can be expressed in the form

gij(r)[exp=(Beij(r)) —1]=exp—(Be¢;;)Cij(r), (Al)

whereg;; (r)=P(r,a;|0,a;)/n; is the radial distribution func-
tion, n; being the number density of thih speciesC;; is the

g-i 8-; H;g i-igg i-igg i-;gg i;;g igg direct correlation function representing the effect of adding a
035 0.7 2499 2494 2.302 2763 2628 2.496 part!cle ata distance from th_e origin in'a system oR -1
035 05 2470 2981 2904 2649 Particles with one of the particles being of radajscentered

at origin, ¢;; is the pair potential, andg is a con-

TABLE Ill. A comparison of theoretical predictions and numerical simula-
tion results for stresslet scaled by its value for very dilute suspensions.

Si/(S1)o S, (S2)o
[ N simulaton EM EM Il simulaton EM EM Il
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FIG. 9. A comparison of the conditionally averaged radial velogity), , nondimensionalized bya,, as a function of from numerical simulationfilled
and unfilled circleswith that from the effective-medium theories, Hihick-dotted linesand EM Il (solid lineg. The lower lines and filled circles correspond
to the case when a larger sphere is at origin, and the upper lines and unfilled circles correspond to the case with a smaller sphe(e) dtherigatume
fractions=0.1, ¢;=0.05, and\ =0.7. (b) $=0.1, ¢;=0.05, and\ =0.5. (c) ¢=0.35, ¢»;=0.175, and\=0.7.(d) ¢=0.35, ¢»;=0.175, and\ =0.5.

stant related to the inverse of temperature. For hard-sphefer r>a;+a; and the above equation cannot be used directly

systems the pair potential is, if course, zero fora;+3;

to determineg;; for such values of. Note that the direct

and infinity otherwise. Thus, the quantity inside the squarorrelation functions also vanish for>a;+a;. Neverthe-

point, and using the method of functional Taylor expansion,

TABLE IV. A comparison of theoretical predictions and numerical simula- {0 determine botiC;; for r <a; +a; andg;; forr>a;+a;, as

tion results for drag forc& scaled by the value for an isolated sphEge

was done by Lebowit?! Ashcroft and Langrethshowed

that the structure factors are related to the Fourier transforms

(FIFo) (FIF) _ ) _ :
ot o2 of the direct correlation functions. We give here the results
¢ A\ simulaton EM EMIl simulation EM EMIl  gphtained by these investigators for reader’s convenience in
01 07 2.479 2415 2.468 3.169 3.238 3.236 the notation used in the present study and then specialize the
(?-315 8-57’ g-;gé 12(-)2:836 1262%7 fgggs ifggl i?géo results obtained to zero wave number structure factors.
035 05 8650 9273 23518 24887 The direct correlation function<;;(r) are given by

(LobowitZ?})
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origin. () $=0.1, ;=0.05, and\=0.7. (b) $=0.1 and¢,=0.05, and\ =0.5. (c) $=0.35, »;=0.175, and\ =0.7. (d) ¢=0.35 and¢,=0.175, and\

=0.5.

_Cll(r):a1+blr+dr3, r<2a1,

_sz(r):a2+b2r+dr3, I’<2a2,

—Cur)=ay, r<a—a;
=a;+[bR?+4kdR3*+dR*]/r,

a27a1<r<a2+ al,

whereR=r—(a,—a;), k=a,—a;, anda,; anda, are the

ag

B P
dpy’

CEZZ)\

-3

aP

rﬁz )

2810, = 1= —6[ 1GI1+ 1o(1+N)°NG],

28,0,= Bo=—6[ G5, + 11N 3(1+N)?NG,],

2a,b=—3(1+ N[N 2$1G13+ ¢2G15]G1o,

radii of small and large spheres, respectively. The coeffi-

cientsa;, b;, b, andd are given by

2ajd=y,=3[ ¢1a;+ \3pra,],
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where  P=(¢1+\2¢,)(1+ p+ %) —3¢1hp(1-N)7[1 R dxV(1—x)12

+ N1+ ¢r)](1— @) 2 andG,;, G,p, andGy, are the —n1ny"C10) = m[ ai(1-))%24\°
radial distribution functions at=2a,, 2a,, anda;,=a;
+a,, respectively,

11—\
(ﬂ_lz 7_12+£)

X [
2\ | 3 4 5
Gu=[(1+3¢)+3p(A—1)1(1— ) 2,
Bz Y12 M
Goo=[(1+34)+ 31 (N1 =1)](1-¢) 7%, (A8) totste
1 31—\
_ - e _ N2 1 1-x 1-\
Gro=|| 1+ 56|+ 5 Ty 11— 2) [(1-4) 2 +“1(§+T+4_>\7>”’
As mentioned above Ashcroft and Langreshowed that Where
the Fourier transform of the correlation functions are related n
to the structure factors. Their results can be specialized to = —2
zero wave numbers to yield Ni+ Ny
a2 o 2y (A1)
~ n1n2C12(0) Y12= £7Y1 ’
511(0):[ L e A
-n _
2 Bio=—3N(1+ M)A~ 21G1r+ 6,620 G-
2240 -1 Note thatB;, B», andy, are given in the expressions for
522(0):{ 1—n2622(0)— ninz A12( ) ] ’ b;, by, andd, respectivelycf. (A4), (A5), and(A7)].
1-n,Cy4(0)
(A9)  APPENDIX B: RADIAL DISTRIBUTION FUNCTIONS
S10)=n¥2C,(0){[1-n;C11(0)] FOR BINARY MIXTURES OF HARD SPHERES
. AR LebowitZ! has given expressions for the radial distribu-
X[1=n3C55(0)]—n1nCix(0)} 7, tion functionsg;; for binary mixtures of hard spheres by
o I solving the generalized Percus—Yevick equation. His solu-
521(0) =1z C1A 0){[1- M C14(0)] tions for g;; are given in terms of their Laplace transforms.
><[1—nzézz(o)]—nlnzéfz(o)}_l- These need to be inverted to determgigas functions of

for the purpose of calculations based on EM Il theory.
Here,éij(O) are the Fourier transforms of the direct corre-Throop and Bearma&h have used a numerical method for
lation functions in the limit of zero wave numbers inverting the Laplace transforms. Later, Leonatdl > pro-
vided an explicit expression fag;; using the inversion pro-
B1 cedure described by Throop and Bearrfaiowever, the
Z“L E]' formulas given by these later investigators are incorrect.
We, therefore, followed the calculation procedure for
gi; (r) given by Throop and Bearm&h.The inversion inte-
grals of the Laplace transforms fgy;(r) are given by

- n1611(0)224¢1

ay
—+
3

B> 7

~ a2
—NyCoy(0)=24¢, 372 el (A10)

1 % 1 STH—Ly(s)exp2say) ][1(s)]"exd s(r —2a;—2a,)]ds
f911(f)—fflmomf [F(s)]™ L ,

1 s[H—L,(s)exp2sa;)][I(s)]"exd s(r —2a;—2a,)]ds

9241 = 126, & 2t f [F(s)I™"? o

©

1 | meg2 _ d
fglz“):mzomf ([12<§2a§’—§1a'z‘><a2—a1>—a12 [1(s)]"s” exs(r —ay7)]ds

[F(s)]™" |

1
1- Ed’) s—(1+2¢>))
where¢;= mn;/6, n; being the number density of speciedd, L(S), L,(s), F(s) andl(s) are given by
H=72¢16(az—ay),
L1(8)=128,[ (1+ 3) + 12£1a5 (8, a1) [ap5*+ [ 1265(1+2¢) — 2Hay s+ H,

Lo(s)=12¢1[ (1+ 36) +12£a5(a; — 8,) Jay s?+[ 126 (1+ 2¢) — 2Hay]s+H, (B2
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F(S)=H+[12(£+ &) (1+2¢)—2H(ay+a,) ]s— 72 £,a2 + £,83)2S%— 24(£,85+ £,83) (1— ¢)S°
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—(1-¢)%s",

I(s)=Ly(s)exp—2sa) +L (s)exp—2sa,) —H exd —2s(a;+ay)].

The integrals in(B1) can be expressed as equal to 'J.F. Brady and G. Bossis, “Stokesian dynamics,” Annu. Rev. Fluid Mech.

2R}, using the residue theorem where

1 dm*l

Xﬁ ¢Lj(s>exp(s[r—wu<al,az>]>)’ ©3)

[F(s)]™

wheret; correspond to the four roots &f(s)=0. Here,<p‘kj
are polynomials irs and are given by

Lo(s)s
9011_

1 125

H
2(s), ell=o E(s),

H
¢1= 122) =), =1 E(9) (B4)

1- S

1
QD%ZZ{[12(5232_glai)(az_al)_au §¢)

—(1+2¢)S?E(s),

=0,
htdz +83= Mol qy)
where Z(5= B 3 B ey
X Lo(s)%1L4(s)%2(—H)%.
il are linear combinations af; anda,
yr'=2(m—gy)a;+2(m—gy—1)ay,
Y3'=2(m—qy)a;+2(m—qy)a,,

$i=2(m—q,—1)a; +2(m—qy)a,, (B5)
'/132: 2(m—gy)a;+2(m—qp)ay,
Y1°=2(m—q,—

Da+2(m—q;—3ay, ¢3>=0

Now g;;(r) can be determined by carrying out the dif-
ferentiation in(B3). Since the contour integrals (B1) equal
the sum of the residueR!, for r—yi/(a;,a,)>0 and are
zero otherwise, the evaluatlon of; as a function ofr is

limited by the differentiation ordem. Calculation ofg;;(r)

at larger requires higher order differentiation which be-
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