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Numerical simulation of a gas–liquid flow in a fixed bed
Sangkyun Koo and Ashok S. Sangania)
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A countercurrent gas–liquid flow through a fixed bed of spherical particles is examined numerically
by solving the particle-scale equations governing the gas and liquid flows. The liquid is assumed to
flow along the surface of the particles forming a thin film. The case of small gas flow rates is
examined in detail first. In this limit the presence of the liquid film increases the gas pressure drop
over its value for a dry bed by three mechanisms: The liquid film makes the apparent size of the
particles larger, decreases the pore space for the gas flow, and, with its velocity pointing opposite
to the mean gas flow, increases the apparent velocity of the gas compared with the particle surface.
The excess pressure drop is determined for both periodic and random arrangements of particles.
Next, the case of high gas flow rates where the traction exerted by the gas at the gas–liquid interface
is comparable to the weight of the liquid film is examined. In this regime the liquid holdup increases
with the gas flow rate and the pressure drop-gas velocity relation is nonlinear. The results of
numerical simulations are compared with approximate models and it is shown that a simple capillary
model yields reasonably accurate predictions for the liquid holdup and gas pressure drop. ©2001
American Institute of Physics.@DOI: 10.1063/1.1331314#

I. INTRODUCTION

Fixed beds of particles are widely employed in chemical
industry for absorption, stripping, distillation, and other
separation processes, and as reactors to provide efficient con-
tact between liquid and gas~or vapor! phases. Typically, the
gas flows upward and the liquid flows downward under the
action of gravity through the bed. An important problem in
these processes is to predict the gas pressure drop across the
bed and the liquid phase volume fraction~holdup! as func-
tions of the gas and liquid flow rates and the particle volume
fraction. Another problem of interest is the prediction of
critical gas flow rate above which the liquid starts accumu-
lating at the top of the bed, a condition known as the flood-
ing.

The case of single-phase flow through a fixed bed of
particles has been examined extensively in the literature,
both theoretically as well as experimentally. Probably the
first systematic approach was due to Carman1 who modeled
the void space in the fixed bed by straight capillaries whose
diameter is taken to be a function of the volume fraction of
the particles and the size of particles. The pressure drop in
the fluid as it moves through the bed as calculated with this
model with one adjustable parameter is shown to compare
very well with the experimentally measured pressure drop in
packed beds of spherical particles when the Reynolds num-
ber based on the particle diameter and average velocity of the
fluid is less than about 10. The pressure drop at larger Rey-
nolds number can be evaluated with an empirical extension
of the above analysis using the so-called Ergun equation.2

In recent years analytical efforts have been directed at

computing the pressure drop-velocity relationship for well-
defined geometry of fixed beds. For example, Sorensen and
Stewart,3 Zick and Homsy,4 and Sangani and Acrivos5 con-
sidered the case of equal-sized spheres arranged in a periodic
array while Ladd6 and Mo and Sangani7 considered the case
of random arrays. These studies were limited to small Rey-
nolds numbers for which the fluid inertia is negligible. The
effect of inertia at moderately large Reynolds numbers~up to
about 100! have been examined for the two-dimensional case
of periodic as well as random arrays of infinitely long fixed
cylinders by Ghaddar8 and Koch and Ladd.9

In contrast to the above, rigorous analytical studies solv-
ing the equations governing the gas and liquid motion at the
particle-scale are lacking. Instead the focus has been on us-
ing volume-averaged macroscale equations to understand
various flow regime transitions in fixed beds including the
onset of flooding in the countercurrent gas–liquid flow10 and
the steady, uniform flow to pulsing in concurrent gas–liquid
flows.11,12 Although the constitutive relations and the depen-
dence of forces acting on the liquid and gas phases on the
volume fractions of the individual phases are based on em-
pirical correlations, these studies have been generally suc-
cessful in explaining, at least qualitatively, many of the mac-
roscopic features observed in these systems. Ng13 on the
other hand explained the origin of various flow regime tran-
sitions with the help of a semirigorous microscale model of
fixed bed. Observations on various flow regimes for gas–
liquid flows through fixed bed of particles may be found in
the review articles by de Santos, Melli, and Scriven.14

The present study is, to our knowledge, the first attempt
at directly solving the gas–liquid flow through an assem-
blage of fixed particles. Because of the complexity of these
flows in general the problem we shall examine is consider-
ably idealized. Nevertheless, it is hoped that such a
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microscale-based approach may help develop, for example,
better expressions for the forces on the individual phases and
may provide better insight into instability phenomena that
may originate at particle scale for which the applicability of
the averaged-equations is questionable.

In general, the phenomenon of gas–liquid flows through
a fixed bed of particles is influenced by a number of param-
eters even when the bed consists of equal-sized spheres and
the Reynolds number based on the average gas velocity is
small. At very low gas flow rates the liquid trickles down
from one particle to the next down the bed with the liquid
flow governed by the wetting characteristics of the particles,
gravity, the geometry of the bed, and the nature of liquid
distributor. We shall consider here the case of wetting liquids
with low enough flow rates such that the liquid film around
each particle can be regarded as small compared with the
size of the particles. In principle, the liquid flow distribution
at low gas flow rates can be computed given the position of
the particles and the liquid distributor geometry but, to keep
the number of parameters to a minimum, we shall limit the
flow distribution to two special cases. In the first case, the
liquid arrives at the top~the north pole! of each particle,
flows down under the influence of gravity along the particle
surface, and leaves the particle from its lowest point~the
south pole!. The liquid film in this case is nonuniform with
the maximum thickness occurring at the north and south
poles of the particle. The second case corresponds to a uni-
form film thickness. While one expects the liquid flow to be
unaffected by the presence of the gas when the flow rate of
the latter is small, the gas flow rate will be influenced by the
presence of the liquid film around each particle and we ac-
count for this in our analysis using a domain perturbation
technique. The presence of the liquid increases the pressure
drop in the gas by three mechanisms: first, the liquid film
appears to make particle bigger in size and this causes an
increase in the drag exerted by the gas on the particle; sec-
ond, at finite volume fractions of the fixed particles, the ef-
fect of film is to effectively decrease the pore space for the
gas flow which in turn leads to a greater drag force; and
third, the downward moving liquid film at the particle sur-
face makes the gas appear to have a negative slip velocity at
the particle surface causing thereby an effective increase in
the speed of the gas relative to the particles. We use a
method of multipole expansion to determine these effects
separately for both random and periodic arrays of spheres.

The preceding discussion applies to the low gas flow
rates where the liquid flow and film thickness are governed
by the gravity force acting on it and the viscous stresses at
the solid–liquid interface. The resulting gas pressure drop,
although different from that for the dry bed, varies linearly
with the superficial gas velocity owing to the small Reynolds
number. At high gas flow rates the shear stress caused by the
gas at the gas–liquid interface will also affect the liquid film
thickness. The average film thickness increases with the in-
creasing gas flow rate and the resulting pressure drop-
velocity relation becomes nonlinear in this gas flow regime
referred to in the chemical engineering literature as the load-
ing regime. Fixed beds are usually operated in this regime
since it yields higher residence time for the liquid in the bed.

We use a finite difference method to determine the liquid
film thickness and a boundary perturbation technique to-
gether with the method of multipole expansion to determine
the gas velocity distribution. The steady state solutions of the
microscale equations are determined and compared with the
predictions based approximate models and the averaged-
equations used in previous investigations. The agreement
with the approximate models is seen to be quite good.

The rest of the paper is organized as follows: Sec. II
gives the equations governing the liquid and gas velocities.
Section III considers in detail the low gas flow regime while
Sec. IV examines the loading regime. Finally, Sec. V sum-
marizes some of the important findings of the work.

II. FORMULATION OF THE PROBLEM

As mentioned in the Introduction, we shall assume that
the liquid wets the particles completely and thereby forms a
film around each particle in a fixed bed consisting ofN par-
ticles placed within a unit cell of a periodic array. The liquid
may also form drops that may travel from one particle to the
next in the bed. The effect of these drops on the gas flow will
be neglected in the present analysis. This approximation is
justified when the drop size is small compared to the size of
the particles. We shall also neglect the effect of inertia in
describing the gas flow. This may not be a reasonable ap-
proximation for commercial packed beds in which the par-
ticle size is often of order of 1 cm but the case of small
Reynolds numbers is the easiest to treat analytically and may
be expected to apply up to Reynolds number of about 10.
The results obtained here may be adjusted, perhaps in anad
hoc manner by adding an Ergun correction typical of single
phase flows, before they may be applied for predicting pres-
sure drop or liquid holdup.

For small Reynolds number flows the gas velocity satis-
fies the well-known Stokes equations of motion. The bound-
ary conditions for the gas and liquid flows are the usual
kinematic and dynamic boundary conditions at the gas–
liquid interface, the no-slip condition at the particle surface,
and the periodicity conditions for the gas flow. These equa-
tions are supplemented with additional conditions specifying
the total gas and liquid flow rates through the bed.

III. LOW GAS FLOW RATES

Let us first consider the case of gas flow rates for which
the traction exerted by gas at the gas–liquid interface is neg-
ligible. For the gas to affect negligibly the liquid flow due to
gravitational accelerationg acting on a film of thicknessd,
we must haver lgd@ f s wherer l is the density of the liquid
and f s is the magnitude of the shear stress produced by the
gas at the gas–liquid interface. For Stokes flow conditionsf s

is O(mgUg /a), a being the radius of the particle,mg the gas
viscosity, andUg the superficial gas velocity through the
bed. Thus, the case of low gas flow rates corresponds to
Ug!Ugl with

Ugl[
r lgad0

mg
, ~1!
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whered0 is the characteristic liquid film thickness@defined
more precisely later, cf.~4!#. We shall refer toUgl as the
loading velocity as it represents roughly the gas velocity
above which the liquid flow and liquid phase holdup will be
affected by the gas flow and the gas pressure drop–velocity
relation will be nonlinear even in the Stokes flow regime.
This regime will be considered in more detail in the next
section.

For Ug!Ugl we can first determine the liquid velocity
distribution and use it subsequently to provide the boundary
conditions for the gas flow. As mentioned in the Introduc-
tion, the liquid flow distribution depends in general on a
number of factors including wetting characteristics, the na-
ture of the liquid distributor, and the spatial configuration of
particles. We shall consider here the simplest case in which
the liquid flow on each particle is the same and governed by
gravity. When the liquid film thicknessd is small compared
with a, the liquid flow caused by the action of gravity gives
rise to a quadratic profile

ul5
r lgu

2m l
~2yd2y2!eu , ~2!

wherey is the distance from the surface of the particle,eu is
the unit vector along the polar angleu measured from the
x1-axis, the direction opposite to the mean liquid flow, and
gu5g sinu. The film thicknessd depends on the total liquid
flow rate. If the liquid enters atu50 and leaves fromu
5p at a steady volumetric flow rateQl , then we have, by
integrating the velocity over the azimuthal anglew andy,

Ql52pa sinuE
0

d
uul udy5

r lg

3m l
2pad3 sin2 u. ~3!

The film thickness is then given by

d5d0~sinu!22/3 with d0[S 3m lQl

2par lg
D 1/3

. ~4!

We note that the liquid film thickness diverges asu→0 and
u→p. This is a consequence of the assumption that all the
liquid arrives atu50 and leaves the surface fromu5p
where the cross-sectional areas are essentially zero and the
gravity force for flow along the surface is zero. If we assume
that not all of the liquid arrives atu50 but over a small
portion of the sphere withu,u0 and leaves the sphere from
p2u0,u,p, then the film thickness will be finite every-
where on the sphere. Accordingly, we require that the volu-
metric flow rate foru,u0 be given by

Ql~sinu/sinu0!2 for u,u0 ~5!

with a similar expression applicable top2u0,u,p. With
this flow distribution the film thickness and the velocity of
the liquid at the gas–liquid interfacey5d are given by

d5d0H0~u!, uu5A sinuH0
2 , ~6!

where

H05~sinu!22/3 for u0,u,p2u0 ,
~7!

H05~sinu0!22/3 for u,u0 and p2u0,u,p.

The characteristic liquid velocityA is given by

A5
r lgd0

2

2m l
. ~8!

In the above calculations we have neglected the effect of
surface tension and the gas density. While the latter could be
accounted for by simply replacingr l with the density differ-
encer l2rg in the above expressions, the former, i.e., the
neglect of surface tension, calls for some discussion. When
the surface tension effects are important the pressure inside
the liquid will vary as the curvature of the film changes along
the surface of the particle. With the pressure in the gas phase
set to zero, the liquid flow is now driven by the tangential
component ofr lg2¹pl . Thus,r lgu in ~2! must be replaced
by

r lgu2
1

a

]pl

]u
, ~9!

wherepl is the pressure difference across the gas–liquid in-
terface which for thin films may be evaluated using

pl5s¹•n5
2s

a F12
d

a
1

1

2a
¹s

2d1O~d2/a2!G , ~10!

wheres is the surface tension,n is the unit normal vector at
the gas–liquid interface pointing into the gas phase, and¹s

2

is the surface Laplacian on a unit sphere, i.e.,

¹s
25

1

sinu

]

]u S sinu
]

]u D1
1

sin2 u
S ]2

]w2D . ~11!

Now the liquid volumetric flow is given by, in lieu of
~3!,

Ql5
r lgd3

3m l
2paFsin2 u1

sd0

a3r lg
sinu

1

d0

]

]u
$22d1¹s

2d%G .

~12!

Thus, when the surface tension effect is important it is nec-
essary to integrate the nonlinear third-order differential equa-
tion ~12! together with suitable boundary conditions for de-
termining the liquid film thickness distribution instead of the
simple, algebraic equation~3!. Fortunately the nondimen-
sional surface tension,sd0 /a3r lg, multiplying the deriva-
tive terms is very small unless the particle is smaller than 1
mm in radius. For example, for an air–water system with
d0 /a50.05, s570 g cm/s, anda53 mm, the above nondi-
mensional number is less than 0.04. Neglecting the surface
tension term altogether from~12! will not be uniformly valid
approximation since the third-order differential equation will
then be simply reduced to an algebraic equation but this
approximation will break down only near the polesu50 and
p where, how the liquid arrives or leaves the surface would
need to be specified in more detail to determined. We ex-
pect the simple expression~4! to hold for mostu values
except near the poles.

With the liquid velocity and film thickness determined
we now turn to the problem of determining the gas velocity
field. The boundary condition for the gas motion is the con-
tinuity of velocity at the gas–liquid interface. We shall treat
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d0 /a as a small parameter and determine the gas velocity
field using a domain perturbation technique correct to
O(d0 /a). The liquid velocity and film thickness determined
above are valid only toO(1). Theanalysis of the liquid flow
is continued toO(d0 /a) in Appendix A. Let us expand the
gas velocity in powers ofd0 /a as

ug5u(0)1~d0 /a!u(1)1•••. ~13!

Now, as shown in Appendix A, the continuity of the velocity
at the gas–liquid interface yields the following boundary
conditions foru(0) andu(1):

u(0)5A sinuH0
2eu at r 5a, ~14!

u(1)52aH0

]u(0)

]r
1A@~3/4!sinuH0

3

2~1/3!cosuH0
2H08#eu at r 5a, ~15!

whereH0 is the scaled liquid film thickness given by~7!.
To model an infinitely extended fixed bed of particles we

follow the standard practice and assume the bed to consist of
a periodic array with each unit cell of the array containingN
spherical particles whose positions are generated using a
specified spatial distribution law. The above boundary con-
ditions ~14!–~15! must be satisfied on the surface of each
particle. In addition, the velocity must be spatially periodic.
Finally, an additional constraint to be satisfied is

1

tEVg

ugdV5Ug , ~16!

whereUg is the superficial gas velocity through the bed,t is
the volume of the unit cell, andVg is the volume occupied by
the gas within the basic unit cell.

We shall use the method outlined in Mo and Sangani7

for determiningu(0) andu(1). Briefly, the method consists of
writing a formal solution of Stokes equations of motion in
terms of derivatives of a periodic fundamental singular solu-
tion of Stokes equations. This formal solution containing a
number of undetermined coefficients satisfies the periodicity
and the governing Stokes equations of motion. The coeffi-
cients are subsequently determined by expanding the formal
solution around the surface of each particle and satisfying the
boundary conditions on the particle surface. The expansion
near a representative particlea is expressed in terms of
spherical harmonics according to the well-known Lamb’s
solution,15

u~x!5 (
n52`

`

@~cnr 2¹pn
a1bnrpn

a!1¹3~rxn!1¹fn
a#,

~17!

with r5x2xa and

cn5
n13

2~n11!~2n13!
, bn5

2n

~n11!~2n13!
. ~18!

Here,pn , fn , andxn in ~17! are the spherical harmonics of
order n. The harmonics of negative order are singular atr
50, and we express them as

p2n21
a 5 (

m50

n

~Pnm
s,aYnm1 P̃nm

s,aỸnm!r 2n21 ~n.0!.

~19!

~Note thatp215x215f2150.! In ~19! Pnm
s,a and P̃nm

s,a are
the coefficients of the singular harmonics and

Ynm5Pn
m~cosu!cosmw, Ỹnm5Pn

m~cosu!sinmw
~20!

are the surface harmonics withPn
m being the associated Leg-

endre polynomial andu and w the polar and azimuthal
angles defined byx12x1

a5r cosu, x22x2
a5r sinu cosw,

and x32x3
a5r sinu sinw. The singular harmonicsx2n21

and f2n21 are likewise expressed in terms of coefficients
Tnm

s,a , T̃nm
s,a , Fnm

s,a , andF̃nm
s,a .

The harmonics with non-negativen are expressed as

pn
a5 (

m50

n

~Pnm
r ,aYnm1 P̃nm

r ,aỸnm!r n n>0 ~21!

with similar expressions forxn
a andfn

a .
To satisfy the boundary conditions for the velocity atr

5a it is convenient to use

ur5 (
n52`

`

~ncn1bn!rpn1~n/r !fn , ~22!

¹s•us52 (
n52`

`

n~n11!@cnrpn1fn /r #, ~23!

er•~¹3us!5 (
n52`

`

n~n11!xn /r , ~24!

whereur is the radial component of the velocity,us5uueu

1ufef is the tangential velocity at the surface of the sphere,
and

¹5er

]

]r
1

1

r
¹s . ~25!

The expressions given above apply equally well tou(0) and
u(1). The solutions for these two quantities differ mainly
through the boundary conditions@cf. ~14! and ~15!#. Let us
denote byv the velocity distribution atr 5a. Thenv for the
u(0) and u(1) problems are given by the right-hand sides of
~14! and ~15!, respectively.

Let us expandv r , ¹s•vs ander•(¹3vs) also in spheri-
cal surface harmonics. Thus, we write

v r5 (
n50

`

(
m50

n

@~v r !nmYnm1~ ṽ r !nmỸnm#. ~26!

Similar expressions are written for¹s•vs ander•(¹3vs) in
terms of coefficients denoted by@¹s•vs#nm , @er•(¹
3vs#nm , and the corresponding quantities with tilde. The
coefficients (v r)nm , (¹s•vs), etc. appearing in these expan-
sions can be determined by integrating the functions multi-
plied by surface harmonics over a surface of a unit sphere.
Thus, for example, since¹s•vs

(0)5(2A/3)cosuH0
2 , we have
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~¹s•vs!nm
(0)5

2A

3

*u50
p *0

2p sinu cosuH0
2Ynm~u,w!dudw

*0
p*0

2pYnm
2 sinududw

.

~27!

The surface of the sphere was discretized into a number of
triangular elements to evaluate the integrals appearing in the
expressions such as above numerically.

Now using the orthogonality of surface harmonics and
the expressions~22!–~24! the boundary conditions atr 5a
yield

@2~n11!c2n211b2n21#Pnm
s,aa2n1@ncn1bn#Pnm

r ,aan11

2~n11!Fnm
s,aa2n221nFnm

r an215~v r !nm , ~28!

2n~n11!@Pnm
s,aa2n1Pnm

r ,aan111Fnm
s,aa2n221Fnm

r ,aan21#

5~¹s•vs!nm , ~29!

2n~n11!@Tnm
s,aa2n221Tnm

r ,aan21#5@er•~¹3vs!#nm , ~30!

plus similar equations involving the coefficients ofỸnm .
The singular coefficients in the above equations repre-

sent the effect of particlea, whereas the regular coefficients
represent the effect of other particles and the imposed flow.
As mentioned earlier, Mo and Sangani7 wrote the expression
for the velocity in terms of fundamental periodic singular
solution of Stokes equationsv i j as

ui~x!5Ui* 1 (
a51

N

G j
av i j ~x2xa!, ~31!

whereG j
a is a differential operator defined in terms of the

singular coefficientsPnm
s,a , Fnm

s,a , etc., in such a way that
G j

av i j (x2xa) corresponds exactly to the singular terms in
~17! as x→xa. The coefficients of the regular terms in the
Lamb’s solution, i.e.,Pnm

r ,a , Tnm
r ,a , etc., are related to various

derivatives of the regular part ofu at x5xa. The reader is
referred to Mo and Sangani7 for more details.

Finally, U* can be shown to be the same as the superfi-
cial gas velocity. Since the integrals ofv i j and its derivatives
over the unit cell vanish, integrating~31! over the volume
occupied by the gas gives

Ug5U* 2
1

t (
a51

N E
V a

udV5U* 2
1

t (
a51

N E
Sgl

a
n•urdA,

~32!

whereV a is the volume occupied by the particlea and the
surrounding liquid film,r5x2xa, Sgl

a is the gas–liquid in-
terface enclosing particlea. Note that use has been made of
the identityu5¹•(ur ) together with the divergence theorem
to convert the volume integral into the surface integral. Now
u•n50 at the gas–liquid interface proving thereby thatU*
5Ug .

The coefficientsPnm
s,a , etc., were expanded in a series in

d/a asPnm5Pnm
(0)1(d0 /a)Pnm

(1)1••• and~28!–~30! were re-
arranged and truncated as in Mo and Sangani7 to solve for
these coefficients. The force on particlea in thex1-direction
~antigravity direction! is related toP10

s,a by

Fa524pmgP10
s,a . ~33!

The above represents the force exerted by gas at the gas–
liquid interface. To calculate the total force on the particle
one must add the weight of the liquid film surrounding the
particle. The pressure drop in the gas will be related to the
force exerted by the gas, i.e., that given by~33! @cf. ~35!#.
For the sake of brevity therefore we shall refer to the above
force by gas on the gas–liquid interface as the force on the
particle.

Results: The results for the average force on a particle
are expressed in terms of coefficientsK and f 12f 3 defined
by

F56pmgaUgK~f!F11~d0 /a! f 11
A

Ug
$ f 21~d0 /a! f 3%G ,

~34!

whereK represents the nondimensional drag on the particle
in a dry bed,f 1 represents the effect of the finite thickness of
the liquid film on the force exerted on the particle by the gas
moving with finite mean velocity, andf 2 and f 3 represent the
effect of downward motion of liquid. Recall thatA is the
characteristic liquid velocity at the gas–liquid interface. Note
also that the force on a particle is nonzero even when there is
no net gas flow through the bed. The downward moving
liquid drags along with it some gas and to compensate for
this the gas away from the surface of the sphere must move
upwards causing a net nonzero force. The pressure gradient
in the gas is related to the force by

2
dP

dx1
5nF5

3fs

4pa3
F, ~35!

wheren is the number of spheres per unit volume of the bed
andfs is the volume fraction occupied by the spheres. The
results forK and f 12f 3 for the case of face-centered cubic
arrays, which permits the largest range of particle volume
fraction, are given in Table I.

The results for the dry bed pressure drop, or equivalently
K, have been obtained previously for periodic arrays by Zick
and Homsy4 and Sangani and Acrivos5 and for random ar-
rays by Ladd6 and Mo and Sangani.7 Our results for periodic
as well as random arrays forK shown in Fig. 1 were found to

TABLE I. The coefficientsK and f 12 f 3 for the face-centered cubic array.

f 2 f 3

f Ns K f 1 u05p/20 u05p/40 u05p/20 u05p/40

0.001 7 1.22 1.34 0.84 0.84 21.73 25.77
0.005 7 1.43 1.57 0.84 0.84 21.73 25.75
0.1 7 3.76 3.45 0.77 0.77 21.60 25.38
0.2 7 7.05 5.27 0.70 0.70 21.46 24.93
0.3 7 12.79 7.54 0.62 0.62 21.29 24.39
0.4 7 23.91 10.52 0.53 0.53 21.11 23.78

9 23.91 10.54 0.53 0.53 21.11 23.78
0.5 9 47.96 14.63 0.43 0.43 20.91 23.10

11 47.96 14.63 0.43 0.43 20.91 23.10
0.6 9 107.60 20.25 0.32 0.32 20.68 23.10

11 107.53 20.25 0.32 0.32 20.69 22.36
0.7 9 277.27 26.52 0.21 0.21 20.45 21.57

11 279.29 26.62 0.21 0.21 20.45 21.55
13 280.45 26.81 0.21 0.21 20.45 21.54
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be in excellent agreement with the results obtained by these
investigators. The results for random arrays were obtained by
averaging over 20 configurations generated using a hard-
sphere molecular dynamics code which employed 16 par-
ticles per unit cell.

The results forf 1 will be compared with an approximate
relation obtained by assuming that the main effect of the film
is to increase the apparent size of the particle and the appar-
ent particle volume fraction. Thus an approximate relation
for the force on a particle is obtained by writing

Fapprox56pmgUg~a1d0!K~fs1f l !

56pmgUgaK~fs!

3F11
d0

a H 11
f la

d0

K8

K J 1O~d0 /a!2G , ~36!

whereK85dK/dfs andf l is the liquid phase volume frac-
tion given by

f l5nE ddA52pna2E
0

p

d sinudu53.88fs~d0 /a!.

~37!

The coefficient 3.88 in the above expression corresponds to
the case when all the liquid arrives at the north pole of par-
ticle, i.e., whenu050. The error in using the above expres-
sion is O(u0

4/3) for small but nonzerou0 . Combining ~37!
with ~36!, and using the definition off 1 @cf. ~34!#, an ap-
proximate expression forf 1 is obtained as given by

f 15113.88fsK8/K. ~38!

The first term on the right-hand side of the above expression
represents the effect of liquid film increasing the apparent

size of the particle while the second term represents the ef-
fect of decrease in the pore space volume fraction for the gas
flow. The results of numerical computations forf 1 for the
face-centered cubic array are compared against the above
approximate estimate forf 1 in Fig. 2. For small volume frac-
tions, K8 was evaluated analytically by differentiating the
small fs expansion forK given by Sangani and Acrivos5

while numerical differentiation using a central difference for-
mula was used forfs.0.3. We see that the numerical re-
sults for f 1 are in excellent agreement with the simple ex-
pression~38!.

The above approximate theory assumed that the film
thickness is uniform and equal tod0 while the film thickness
used in computingf 1 was given byd5d0(sinu)22/3. To
check the accuracy of the numerical results, we have also
determinedf 1 for the case of a uniform filmd5d0 for which
f l53fs(d0 /a) and f 1 is given by

f 15113fsK8/K. ~39!

The above result is exact for periodic arrays. Table II shows
f 1 as a function offs for the face-centered cubic arrays with

TABLE II. Comparison between approximate@Eqs. ~38!–~39!# and exact
~computed! values off 1 for the two cases of liquid film thickness distribu-
tion at variousfs for the face-centered cubic array.

d5d0 d5d0(sinu)22/3

fs Eq. ~39! Exact Eq.~38! Exact

0.1 3.06 3.06 3.66 3.47
0.3 6.42 6.43 8.02 7.56
0.5 12.18 12.16 15.44 14.67
0.7 22.64 22.69 29.05 26.99

FIG. 1. The dry bed drag coefficientK as a function offs . The filled circles
are the results for the simple cubic arrays, pluses for the body-centered cubic
arrays, squares for the face-centered cubic arrays, and crosses for the ran-
dom arrays of spheres.

FIG. 2. The coefficientf 1 as function offs for the face-centered cubic array
of spheres. The filled circle represents the exact results and the dashed line
the approximate relation given by~38!.
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the two liquid film thickness distributions. These are com-
pared with ~38! and ~39!. We see that indeed there is an
excellent agreement between~39! and the numerical results
for the constantd case.~38! slightly overpredictsf 1 for the
case ofd5d0(sinu)22/3. In fact, it appears that the numerical
results for both cases are in a reasonable agreement with
~39!.

For random arrays the above result for the constantd
case is not exact because the spatial distribution of the par-
ticles with radiusa and volume fractionfs1f l is not the
same as for the random arrays with volume fractionfs but
with the particle radius changed toa1d0 . Nevertheless it is
of some interest to compare the relation~39! with the results
for f 1 for random arrays. We used 20 configurations of hard-
sphere random arrays with 16 particles per unit cell to deter-
mine f 1 for random arrays with uniform film thickness. Nu-
merical differentiation ofK for random arrays is difficult and
hence we used the following fit ofK for random arrays to
obtain estimates ofK8:16

K5
113~fs/2!1/21~135/64!fs ln fs117.14fs

110.681fs28.48fs
218.16fs

3

~fs<0.45!. ~40!

Figure 3 shows results forf 1 for both the uniform and the
nonuniform thickness distributions as a function offs for
random arrays. The solid line in that figure represents the
approximate value off 1 predicted by~39! with K8 and K
evaluated using~40! for the uniform thickness distribution
case.

We now present the results for the effects of the motion
within the liquid film, i.e., for f 2 and f 3 . The results for
these two quantities for the face-centered cubic array are
given in Table I for two values ofu0 corresponding tou0

5p/40 andu05p/20. Note that the results forf 1 discussed
earlier corresponded tou050, i.e., assuming that all the liq-
uid arrives exactly at the north poleu50. Small values ofu0

would have affected the results forf 1 by an insignificant
amount. The same is true forf 2 . In the limit of smallfs , f 2

is related to (¹s•vs)10 by simply

f 25@¹s•~eu sinu!#105
2

3E0

p cosu

~sinu!1/3
du50.8425 ~41!

for u050. Here, (¹s•vs)10 is the coefficient ofY10 in the
spherical harmonic expansion of¹•vs @cf. ~27!#. The correc-
tion to the above for small but finiteu0 can be shown to be
small, ofO(u0

14/3). Thus, f 2 is essentially independent ofu0

as long as the latter is not too large. The results forf 2 for all
the three cubic arrays and periodic arrays withu05p/20 are
shown in Fig. 4. The solid line in that figure represents the
approximate relation

f 250.842fs . ~42!

Finally, we note that the effect of liquid film distribution
near the north and south poles is the most significant forf 3 ,
the results for which for the face-centered cubic array were
given in Table I. Similar strong dependence onu0 is ex-
pected for the other arrays.

FIG. 3. The coefficientf 1 as a function offs for the random arrays of
spheres. The filled circles and solid line correspond, respectively, to the
exact results and the approximate relation for the case ofd5d0 at low gas
flow rates. The crosses and the dashed lines are the corresponding results for
the distributiond5d0(sinu)22/3.

FIG. 4. The coefficientf 2 as a function offs for periodic and random
arrays of spheres.u05p/20. The filled circles are the results for the simple
cubic arrays, pluses for the body-centered cubic arrays, squares for the face-
centered cubic arrays, and crosses for the random arrays of spheres. The
solid line represents the fitf 150.842fs .
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IV. THE LOADING REGIME

We now consider gas velocities for which the traction
exerted by the gas at the gas–liquid interface is sufficiently
large to affect the liquid flow and the liquid film thickness,
i.e., we considerUg5O(Ugl) with Ugl defined by~1!. The
ratio of the characteristic gas and liquid velocities in this
regime isO(Ugl /A), or O(m la/(mgd0)), which is typically
very large. Thus the pressure drop contribution due to up-
ward moving average gas velocity is much greater than the
downward moving liquid motion. In other words, the main
effect of liquid flow on the gas pressure drop is through the
finite thickness of the film and not the nonzero velocity at the
gas–liquid interface. Note also thatf 2 was generally much
smaller thanf 1 . Thus we may setA50 in determining the
effect of liquid film on the gas pressure drop and liquid
holdup. In other word, we must solve for the liquid flow and
film thickness allowing for the effect of gas flow but that in
determining the gas flow we may use the no-slip boundary
condition at the gas–liquid interface. We shall begin with the
simple capillary model of packed beds. The results obtained
using this model will be compared with those to be obtained
later for fixed beds.

A. The capillary model

In the simplest model of a packed bed/porous medium,
the medium is assumed to consist of equal-size, straight cap-
illaries of radiusac oriented in the direction parallel to the
mean flow. The radiusac , the number of capillaries per unit
cross-section, and the average gas velocityUgc through the
capillaries are chosen such that the porosity, the superficial
velocity through the medium, and the pressure gradient in
the gas for a dry bed are the same as in the actual medium.
For example,

Ugc5Ug /~12fs!, ~43!

a2

ac
2

5~9/16!fs~12fs!K~fs!. ~44!

A note on the notation used in this section will be helpful to
the reader. The subscriptc is used to denote quantities con-
cerning the capillary model; the subscript 0 is used to denote
a low gas flow rate limit quantity; the gas and liquid flows
will be characterized by subscriptsg and l, respectively; the
solid volume fraction will be denoted byfs , and the critical
gas flow rate conditions to be introduced later in this section
will be denoted by the subscript crit.

For random fixed beds of spherical particles withfs in
the range of 0.5–0.7, the dry bed force coefficientK(fs) can
be estimated from the experimentally determined Carman
correlation

K5
10fs

~12fs!
3

, ~45!

whereas~40! may be used for estimatingK, and hencea/ac

for beds withf<0.45. For periodic arrays, one may use the
results forK reported by Zick and Homsy4 and Sangani and
Acrivos.5

Let us now consider the gas–liquid flow through such
capillaries. We assume that the liquid flows down along the
inner walls of capillaries with a uniform film of thicknessdc

while the gas moves upward through the central core, 0<r
<ac2dc . Both the gas and liquid velocities are assumed to
be unidirectional and functions only of radial position. We
shall present here an approximate analysis valid for the case
when dc is small compared withac and when the ratios of
viscosities and densitiesmg /m l andrg /r l are much smaller
than unity. Appendix B gives the results obtained by an exact
analysis in which these approximations are not made. The
predictions from the two analyses will be compared later in
the section.

Since the liquid velocity is much smaller than the gas
velocity, the gas velocity can be taken to be zero atr 5ac

2dc . The pressure gradient in the gas is then related toUgc

by

u¹pu5
8mgUgc

ac
2~12ec!

4
, ~46!

whereec5dc /ac is the nondimensional film thickness. The
downward flow of liquid due to gravity equals
(2pr lgac

4/3m l)ec
3 when ec!1 while that due to upward

moving gas is (4pac
2mgUgcec

2)/(m l(12ec)
3), Ugc being the

superficial gas velocity through the capillary. The difference
between the two gives the total volumetric liquid flow rate
through a capillary. This gives the relation between the non-
dimensional gas velocity and the liquid film thickness as
given by

ec
326Uc* e0c

ec
2

~12ec!
3

5e0c
3 , ~47!

where

Uc* 5
Ugc

Ugl,c

a2

ac
2

, ~48!

e0c
3 5

3m lUl

2~12fs!ac
2r lg

, ~49!

Ul being the superficial velocity of the liquid through the
medium. Note thate0c5d0c /ac is the nondimensional film
thickness in the absence of gas flow. The loading velocity
Ugl,c is based ond0c in lieu of d0 used in~1!. The nondi-
mensional pressure gradient can be expressed in terms ofUc*
by combining~46! and ~48!,

u¹p* u[
u¹pu
r lg

5
8e0cUc*

~12ec!
4

. ~50!

Figures 5 and 6 show the nondimensional film thickness
and the pressure drop as functions ofUc* for e0c50.02 ob-
tained by the approximate expressions given here and the
exact expressions given in Appendix B. The latter requires
ratios of gas to liquid viscosities and densities. We used
mg /m l50.02 andrg /r l50. We see that the predictions of
the two models are essentially the same as long asec is less
than about 0.1. For larger film thicknesses the exact solution
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given in Appendix B is necessary to provide accurate esti-
mates of pressure drops. We also see the existence of two
steady states for most values ofUc* . These two solution
branches meet at the turning pointUc* 5Ucrit,c* . No steady
solutions exist forUc* .Ucrit,c* . The lack of steady solution at
such high gas flow rates is interpreted in the literature to be
related to the onset of flooding. For example, Dankworth and
Sundaresan10 analyzed averaged-equations for gas and liquid
flows through packed beds. Although different from the cap-
illary model, their analysis also showed qualitatively the

same behavior. The turning point was interpreted by these
investigators as corresponding to the flooding point.

Figure 7 shows the pressure gradient as a function ofUc*
for several different values ofe0c using the exact solution
given in Appendix B. The behavior is qualitatively the same
at all the indicated values ofe0c . It is interesting to note that
the nondimensional pressure at the turning point is approxi-
mately constant, at about 0.25 ase0c is varied from 0.02 to
0.2.

Figure 8 showsUcrit,c* as a function ofe0c . The solid
line in that figure corresponds to an approximate fit

Ucrit,c* e0c50.013. ~51!

The uniform thickness flow of liquid down a vertical wall is
generally unstable unless it is stabilized by sufficiently large
surface tension. The upper branch in Figs. 5–7 is very un-
stable so that in practice the pressure drop and liquid film
thickness are expected to correspond to the lower branch.
Dankworth and Sundaresan10 have performed linear stability
analysis of the steady solutions obtained from the averaged
equations for gas and liquid flows and also found that the
upper branch is very unstable. The lower branch stability
depended strongly on the surface tension, and, in particular,
for the case of zero interfacial tension, the lower branch was
found to be unstable at all gas flow rates. It may be noted,
however, that there is no experimental evidence to indicate
that the lower branch is unstable for gas–liquid flows
through packed beds.

B. Fixed bed of particles

We now consider the loading regime for a fixed bed of
particles. In this regime the gas flow affects the liquid film
thickness distribution on the surface of the particles and we

FIG. 5. ec vs Uc* . The solid line represents the exact result and dashed line
the approximate.

FIG. 6. u¹p* u vs Uc* . The solid line represents the exact result and dashed
line the approximate.

FIG. 7. The nondimensional pressure gradientu¹p* u vs Uc* at variouse0c .
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must use a numerical method to determine this distribution.
We shall use both steady and unsteady flow equations to
determine the film distribution.

Let us denote byqs the surface flow at a point (u,w) on
the surface of a particle,

qs~u,w!5E
a

a1d
us~r ,u,w!dr, ~52!

whered is the film thickness at (u,w) andus is the velocity
parallel to the surface of the particle. The mass balance for
the liquid gives

]d

]t
1¹s•qs5S, ~53!

whereS is the source.S is zero everywhere except atu50
andp for the case when the fluid arrives at the north pole,
flows down the surface, and leaves from the south pole of the
particle. For the case of the uniform thickness modeld
5d0 , we take

S5
2r lg

3m l
d0

3 cosu, ~54!

so thatd5d0 is a steady state solution of~53! when the
tangential stress at the gas–liquid interface is zero.

Since the Reynolds number for the liquid flow is much
smaller than for the gas flow, and the gas Reynolds number
is assumed to be small compared with unity, we shall neglect
the inertial terms in the momentum equation for the liquid.
The surface flow is then given by

qs5
r lg

3m l
~gs2r 21¹spl !d

32
fs

2m l
d2, ~55!

wheregs5g sinueu , pl is the pressure in the liquid film, and
fs is the tangential stress at the gas–liquid interface. Note
that fs is a function ofu andw. The gas and liquid flows are
coupled through this stress.

As in the case of low gas flow rates analysis we write the
gas velocity asug5u(0)1u(1) with the boundary conditions,

u(0)50, u(1)5v[2d~u,w!
]u(0)

]r
at r 5a. ~56!

Note thatu(0) corresponds to the gas flow in a dry bed while
u(1) is the correction due to finite film thickness.

The numerical scheme for solving the gas and liquid
flows consists of following steps:~i! The surface of a sphere
is discretized into a number of triangular elements and the
initial value of d at these points is taken to be the same as
corresponding to the low gas flow analysis.~ii ! With u(0)

determineda priori, the right-hand side of the second equa-
tion in ~56!, i.e.,v, is evaluated at the nodes of the triangular
elements. The components of this velocity are expanded in
spherical surface harmonics as in the low gas flow rate analy-
sis @cf. ~26!–~27!# and these expansions are used for deter-
mining u(1). ~iii ! The tangential stressfs and ¹spl at r 5a
1d are evaluated next at all the nodes using the combined
velocity fieldu(0)1u(1). Since the surface tension is taken to
be zero,pl is the same as the gas pressure. The surface flow
qs is evaluated at all the node points using~55!. ~iv! Next,
¹s•qs is evaluated at the node points using a second-order
difference formula. Since the liquid flow is primarily in the
u-direction we use a backward difference formula for the
derivative with respect tou and a central difference formula
for the derivative with respect tow, i.e., we evaluate¹s•qs

using

~sinu¹•qs! i , j5~1/2nu!@3~qu sinu! i , j

24~qu sinu! i 21,j1~qu sinu! i 22,j #

1~1/2nw!@~qw! i , j 112~qw! i , j 21#, ~57!

wherequ and qw are the components ofqs , i.e., qs5euqu

1ewqw , and the subscriptsi and j correspond to a node
(u i ,w j ) on the surface of the sphere. The low gas flow rate
behavior is assumed to hold near the north pole, i.e., we
assume that atu50 andu5nu, the discretization interval
for u, d5d0(sinu)22/3 at all times.]d/]t at the node points
are evaluated next by substituting for¹s•qs into ~55!. A
Runge–Kutta method is used to determined(t1nt), nt
being the time increment.~v! Steps~ii !–~iv! are repeated
until the steady state is reached. The gas flow rate is subse-
quently incremented by a small amount and the steps~ii !–~v!
repeated to determine the film thickness distribution, liquid
holdup, and pressure drop as function of the gas flow rate for
selected values offs andd0 .

In an alternative method, the steady state liquid holdup
and gas pressure drop are determined directly as described
below. As in the transient method, the gas velocity, and
hencefs and ¹spl are determined first for an assumed film
thickness distribution. These quantities are used for deter-
mining (qu sinu)i21,j , (qu sinu)i22,j , (qw) i , j 21 , and
(qw) i , j 11 using~55!. Next, (sinuqu)i,j is calculated using~57!

FIG. 8. Ucrit,c* vs e0c . The filled circles represent the exact results and
crosses the approximate. The solid line corresponds to the fitUcrit,c* e0c

50.013.
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and¹s•qs50. This is next substituted in~55! and the result-
ing cubic equation is solved to determine a new estimate of
d i , j . The cubic equation gives either three real roots or one
real root. In the case of three real roots it is found that two
are very close to zero while the third is positive and compa-
rable tod0 . We use this third root as the new estimate of
d i , j . The same procedure is used for higher values ofi and j
until the new estimates ofd i , j are obtained at all the node
points. This new distribution is used to solve again for the
gas flow and to evaluate the tangential stress, etc., at the
node points. The procedure is repeated until the sum ofd at
all nodes converges. Most calculations to be presented here
were obtained withnu5p/40 andnw5p/20 and the sum
of d ’s was required to converge to within 1024. The calcu-
lations were started with low gas flow rates where the precise
thickness distribution is known.

Figures 9 and 10 show the results of computations for
d050.02 andfs50.4 for the case of a simple cubic array of
spheres. We see that the results obtained by the two methods
are in excellent agreement with each other. The pressure gra-
dient for the dry bed is denoted byu¹pu0 . The normalized
pressure gradient, i.e.,u¹pu/u¹pu0 , approaches 11 f 1 as
U* →0. As expected both the liquid holdup and the normal-
ized pressure gradient increase with increasingU* . It should
be noted that the gas velocity is scaled by the loading veloc-
ity, i.e., U* 5U/Ugl with Ugl given by~1!. The low gas flow
rate holdup was determined usingf l053.88fs(d0 /a) while
f l was obtained by integratingd over the surface of the
sphere@cf. the first equality in~37!#.

Figure 11 shows the film thickness averaged over the
azimuthal anglew, ^d(u)&w , for selected gas flow rates. The
film thickness is symmetric aroundu590°. At low gas flow
rates the film thickness decreases monotonically asu is var-

ied from 0 to 90°. As the gas flow rate is increased, the film
thickness nearu590°, where the traction exerted by the gas
is a maximum, increases. Figure 12 shows the variation ind
with the azimuthal anglew at u590°. The maximum film
thickness occurs atw545°.

At U* .0.45 the liquid films on the surface of the two
adjacent spheres overlap atu590°. Our numerical scheme
for computing gas flow is not valid when the films overlap
and hence we have not computed the pressure drop and
holdup ~Figs. 9 and 10! beyond this gas flow rate.

FIG. 9. The ratio of pressure gradients in wet and dry beds,u¹pu/u¹pu0 , as
a function of scaled gas velocityU* . The dots represent the results obtained
by the steady state method and the line represents the results by the transient
method.f50.4; d0 /a50.02; simple cubic array.

FIG. 10. f l /f l0 vs U* . The dots are the result by the steady state method
and the line the transient method.f50.4; d0 /a50.02; simple cubic array.

FIG. 11. The azimuthal angle-averaged film thickness,^d&w , as a function
of u at variousU* .
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Figures 13 and 14 show results for the case when the
initial liquid film thickness is uniform over the surface of the
spheres. Once again the pressure drop and holdup increase
with the increasing gas flow. Figure 15 shows variations in
thew-averaged film thickness,^d&w , as a function ofu. We
see that increasing the gas flow rate increases the thickness
mostly nearu590° where the traction exerted by the gas is
maximum. Unlike the previous case, however, we find that
the liquid film thickness at some points on the sphere be-
comes zero atU* .0.35. This is illustrated in Fig. 16 which

showsd as a function ofU* and w at u5175.6°. We see
that asU* is increased the film thickness begins to vary
significantly withw exhibiting minima atw518° and at 72°.
Very near the critical gas flow rate the symmetry aroundw
545° breaks and the film thickness at 72° vanishes indicat-
ing the formation of a dry region near that point. The contact
angle and other surface tension related phenomena will be-
come important once the surface of the particle is not com-

FIG. 12. The thickness of liquid film atu.90° as a function ofw at various
U* for a simple cubic array withfs50.4 andd0 /a50.02.

FIG. 13. u¹pu/u¹pu0 vs U* for the case of uniform initial liquid film thick-
ness.f50.4; d0 /a50.02; simple cubic array.

FIG. 14. f l /f l0 vs U* for the case of uniform initial liquid film thickness.
f50.4, d0 /a50.02; simple cubic array.

FIG. 15. The azimuthal angle-averaged film thickness,^d&w , as a function
of u at variousU* for the uniform film thickness at low gas flow rates case.
fs50.4; d0 /a50.02; simple cubic array.
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pletely wetted and this would make the calculations for
higherU* very difficult.

Figure 17 shows the results for the body-centered cubic
array with the low gas flow rate thickness driven by the
gravity flow, i.e., ~4!. In this case the dry region occurs at
much smaller gas flow rates and therefore we have been
unable to compute the pressure drop and holdup at higher
gas flow rates. The same applies to the face-centered cubic
arrays.

C. Comparison with other models

We now compare the numerical simulation results for
fixed beds with those predicted using the other models. To
compare the capillary and fixed bed models we require that
the liquid holdup at very low gas flow rates in the two mod-
els be the same. As mentioned earlier the radius of the cap-
illary is chosen such that the gas pressure drop for the cap-
illary and fixed bed models are the same in the absence of
liquid flow. The results for these models will also be com-
pared with the predictions of the averaged equations used by
Dankworth and Sundaresan10 and with an approximate
theory that we shall presently describe.

Dankworth and Sundaresan used the following expres-
sions from Saez and Carbonell17 for pressure drop and
holdup calculations:

r lg2
Fg

12fs2f l
2

Fl

f l
50, ~58!

Fg5
45mgfs

2~12fs!
1.8U

a2~12fs2f l !
3.8

, ~59!

Fl5S 12fs

f l
D 2.43 45m lfs

2f l
2Ul

a2f l~12fs!
3

. ~60!

In writing the above expressions we have taken the residual
liquid holdup, i.e., the holdup in the absence of gas or liquid
flow, to be zero and we have set the Ergun parameter, which
accounts for the effect of gas inertia, in their expressions to
zero. To compare the predictions from the above expressions
with the ones obtained in the present study, we choose the
superficial liquid velocityUl in such a way that the liquid
holdups at zero gas flow rate calculated using the two models
are the same.

In the capillary model the traction exerted by the gas at
the gas–liquid interface is directly related to the total pres-
sure gradient while in the fixed bed model the two are not
directly related. The traction depends on the magnitude of
the shear stress at the interface while the pressure gradient,
being related to the total drag force, also depends on the
magnitude of the normal force at the surface of the particles.
To account for this difference we have developed an ap-
proximate theory as follows. Let us assume that the liquid
film thickness distribution is similar to the initial distribution,
i.e., d5d* (sinu)22/3. Then volumetric flow balance gives

d
*
3 1

3 f u~sinu!21/3

2r lg
d0d

*
2 5d0

3. ~61!

This equation will not hold at allu and w since we have
assumed a very simple form of film distribution with only
one parameter, i.e.,d* . To satisfy the above equation in an
approximate sense we integrate it over the surface of the
sphere and introduce a functiona(fs) defined by

E f u~sinu!21/3dA526pmgaUga~fs!K~fs!. ~62!

Thus,~61! upon integrating over the sphere surface and non-
dimensionalizing, leads to

FIG. 16. d as a function ofw for u5175.6° for the case of uniform initial
film thickness.

FIG. 17. u¹pu/u¹pu0 andf l /f l0 vs U* for the body-centered cubic array
with f50.4 andd050.02.
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e324
a~fs1f l !K~fs1f l !

fsK~fs!
~11e!U* e0e25e0

3 ~63!

with e5d* /a ande05d0 /a. Note that in writing the above
equation we have accounted for the effect of finite liquid film
thickness onf u by requiring thata andK be evaluated at the
total volume fractionfs1f l and that the nondimensional
radius of the particle be corrected from unity to 11e. The
above expression is similar to the one obtained using the
capillary model but with the coefficienta accounting now
for the difference between the shear force and the total force.
We have determineda for the simple cubic array at several
fs values in the range 0 – 0.5. The following expression
gives a good fit to the numerical results:

a~fs!50.84@111.22fs14.84fs
2#21. ~64!

Equation~63! can be used to determineU* given e and
e0 . The normalized pressure gradient can be determined us-
ing

u¹pu
u¹pu0

5
K~fs1f l !

K~fs!
~11e! ~65!

with f l53.88fse.
Figures 18 and 19 show a comparison among the four

different methods of estimating the pressure drop and liquid
holdup. The exact calculations correspond to the simple cu-
bic array. We note that up to the point where the liquid films
begin to overlap in our numerical calculations, i.e., up toU*
of about 0.45, the capillary model, the approximate model
based on~63!–~65!, and the exact method are in very good
agreement with each other. The pressure drop is better pre-
dicted by the approximate model while the liquid holdup is
better predicted by the capillary model. The pressure drop

and holdup estimated using the Saez–Carbonell~or
Dankworth–Sundaresan! equations are considerably lower.
Also the criticalU* for the capillary model and the approxi-
mate model are seen to be much smaller than that predicted
by the Dankworth–Sundaresan equations. This last observa-
tion may be significant since Dankworth and Sundaresan
found the critical gas flow rate to be significantly greater
than the flooding velocity given by the experimentally deter-
mined Sherwood correlation.18 For example, for 1.25 cm
diam particles the flooding velocity predicted using the equa-
tions proposed by Saez and Carbonell17 was about three to
four times greater than the Sherwood correlation. Dankworth
and Sundaresan also carried out calculations for the flooding
velocity based on equations suggested by Huttonet al.19 and
found that those equations overpredicted the flooding veloc-
ity by an even greater factor. While in that comparison the
gas inertia was significant, our calculations do suggest that
the expressions used in the Dankworth–Sundaresan analysis
tend to significantly overpredict the flooding velocity at least
when the Reynolds number is small. Also, our calculations
show that the simple capillary model gives reasonably accu-
rate estimates for the pressure drop and liquid holdup. It may
be noted that Specchia and Baldi20 have compared their ex-
perimental data with the Huttonet al. correlation and found
the correlation to significantly underpredict the gas pressure
drop in wet packed beds. This observation is consistent with
our calculations.

V. SUMMARY

We have solved the detailed equations governing the
flows of gas and liquid through fixed beds of spheres. The
effect of thin liquid film on the gas pressure drop is deter-

FIG. 18. A comparison among different models. The thick solid line repre-
sents the simulation, the thin solid line the approximate model, the small
dashed line the capillary model, and the large dashed line the Dankworth–
Sundaresan model based on Saez and Carbonell equations.

FIG. 19. A comparison among different models. The thick solid line repre-
sents the simulation, the thin solid line the approximate model, the small
dashed line for the capillary model, and the large dashed line the
Dankworth–Sundaresan model based on Saez and Carbonell equations.
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mined for random as well as periodic arrays of spheres. A
simple analytical relation is obtained for predicting the pres-
sure drop in the low gas flow rate regime@cf. ~34!, ~35!, and
~38!#. The presence of liquid film increases the gas pressure
drop by three mechanisms: an increase in the apparent size of
the particles, decrease in the pore space volume fraction for
the gas flow, and increase in the apparent relative velocity
between the gas and the particles. Of these three, the first two
effects are more significant and the equations listed above
could be used to estimate their effect. At higher gas flow
rates the traction produced by the gas affects the liquid
holdup and makes the pressure drop-gas velocity relation
nonlinear. We have been unable to carry out calculations up
to high enough gas velocities to compute the flooding veloc-
ity because either of the two things happened: either the liq-
uid formed a bridge between adjacent particles or some re-
gions on the particle surface became dry. Both the liquid
bridging and the contact line formation and their effect on
the gas flow rate are difficult to incorporate in our analysis.
The numerical results in the nonlinear regime are seen to be
in excellent agreement with the capillary model@cf. ~47! and
~50!# and an approximate model@cf. ~63!–~65!# developed in
the present study. The equations proposed by Saez and
Carbonell17 and Huttonet al.19 appear to predict lower pres-
sure drops and liquid holdups, at least in the small Reynolds
number limit. The critical gas flow rates obtained from the
equations proposed by these investigators are much greater
than those predicted by the capillary model and approximate
model developed in the present study.
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APPENDIX A: ANALYSIS OF FLOW WITHIN THE
LIQUID FILM

Let uu* 5Ucuu , ur* 5UceUr , p* 5m lUcp/d0 , e
5d0 /a, and r * 5a1d0Y. Here,uu , Ur , andp are scaled
velocity components and pressure,Uc5r ld0

2g/m l52A is the
characteristic liquid velocity, andY is the scaled distance
measured from the surface of the particle. We shall deter-
mine the liquid velocity profile, the film thickness, and the
gas velocity at the gas–liquid interface correct toO(e) in
this Appendix.

The continuity and momentum equations can be shown
to reduce to

]Ur

]Y
1

1

sinu

]

]u
~uu sinu!1eH 2Ur2

Y

sinu

]

]u
~uu sinu!J

1O~e2!50, ~A1!

]2uu

]Y2
1e sinuH 2

]p

]u
12

]uu

]Y J 1O~e2!50, ~A2!

]p

]Y
52cosu1e

]2Ur

]Y2
1O~e2!. ~A3!

The boundary conditions at the particle surface, i.e., atY
50, areuu5Ur50. Let the gas–liquid interface be given by

Y5H0~u!1eH1~u!1O~e2!. ~A4!

Neglecting the gas density and the effect of gas flow on the
liquid film, we havepg50 at the gas–liquid interface. For
the zero interfacial tension case then, since the normal vis-
cous stress isO(e2), the boundary condition for the liquid
pressure is

p5O~e2! at Y5H01eH1 . ~A5!

The normal and tangential vector perpendicular to the azi-
muthal direction at the gas–liquid interface are given by

n5er2eH08eu1O~e2!, t5eu1eH08er1O~e2!. ~A6!

At low gas flow rates the tangential stress at the interface is
negligible. Thus we have

f t* [eu•t* •er5t ru1e~t rr* 2tuu* !1O~e2!50, ~A7!

where t* is the dimensional stress tensor. Scaling stresses
with m lUc /d0 , and noting that the stress componentst rr* and
tuu* are O(e2), we obtaint ru50 correct toO(e2) at the
gas–liquid interface. This is equivalent to the boundary con-
dition

]uu

]Y
2euu50 at Y5H01eH1 . ~A8!

Expanding nearY5H0 , the above boundary condition re-
duces to

]uu

]Y
1eS H1

]2uu

]Y2
2uuD 1O~e2!50 at Y5H0 . ~A9!

The boundary condition of vanishing normal component of
the velocity at the interface reduces to

Ur2H08uu1O~e!50 at Y5H0 . ~A10!

Finally, scaling the liquid volumetric flow rate with
2par lgd0

3/(3m l) we have the condition,

Q~u!53 sinuE
0

H01eH1
uudY

53 sinuF E
0

H0
uudY1eH11uu~H0!1O~e2!G ,

~A11!

whereQ(u) equals unity for 0,u,u0 and (sinu/sinu0)
2 for

0,u,u0 andp2u0,u,p.
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The solution of the above set of equations is given by

uu5sinu@YH02Y2/2#1eFsinuH Y3

2
2

3H0Y2

2

1~2H0
21H1!YJ 1cosuH08H Y2

2
2H0YJ G1O~e2!,

~A12!

p5cosu@H02Y#1O~e!, ~A13!

Ur52 cosu~Y2/22YH0!2sinuYH08 , ~A14!

H152
5H0

2

8
1

cosu

3 sinu
H0H08 , ~A15!

H05~sinu!22/3 for u0,u,p2u0 . ~A16!

Near the north and south poles,H05(sinu0)
22/3.

Now we derive the boundary conditions for the gas ve-
locity. The continuity of the velocity at the gas–liquid inter-
face gives

uu,g~r 511eH01e2H1!5uu,l~Y5H01eH1!

5sinuH0
2/21e$sinu~H0

31H1H0!

2cosuH0
2H08/2%1O~e2!,

~A17!

whereuu,g anduu,l are, respectively, the gas and liquid an-
gular velocities. Now expanding the gas velocity in powers
of e, i.e., writing uu,g5uu,g

(0)1euug
(1)1•••, we obtain

uu,g
(0)~r 51!5~1/2!sinuH0

2 , ~A18!

uu,g
(1)~r 51!52H0S ]uu,g

(0)

]r D
r 51

1~3/8!sinuH0
3

2~1/6!cosuH0
2H08 . ~A19!

The boundary condition for the other components ofug
(0) and

ug
(1) may be similarly derived. The result, after expressing

the quantities in the dimensional variables, is given in the
main text.

APPENDIX B: FILM THICKNESS IN THE CAPILLARY
MODEL

In the main text we presented an analysis for the film
thickness and pressure drop that was valid for thin liquid
films. The analysis for the case of arbitrary film thickness is
straightforward. The resulting expressions are

~4/3!e0c
3 5~12u¹p* u!~ec

22ec
31ec

4/4!

2~12ec!
2@~12ec!

2 ln~12ec!1ec2ec
2/2#,

~B1!

u¹p* u5
8e0cUc*

~12ec!
4 F11

2mg

m l u¹p* u H ec~ec22!

~12ec!
2

3~12u¹p* u!22 ln~12ec!J G21

. ~B2!

The relation between the superficial liquid velocity ande0c

given by ~49! is valid only for thin liquid films. For thicker
films, the superficial liquid velocity can be computed from
d0c using

Ul5~12fs!ac
2 r lg

2m l
@e0c

2 2e0c
3 1e0c

4 /4

2~12e0c!
2$~12e0c!

2 ln~12e0c!1e0c2e0c
2 /2%#.

~B3!

In the above,u¹p* u5u¹pu/(r lg)1rg /r l .
The pressure drop for a given liquid holdup can be de-

termined using~B1!. The corresponding gas velocityUc* is
subsequently determined from~B2! by substituting for¹p*
andec .
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