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Abstract

This article presents and analyzes algorithms that systematically generate random Bayesian networks of varying difficulty levels,
with respect to inference using tree clustering. The results are relevant to research on efficient Bayesian network inference, such
as computing a most probable explanation or belief updating, since they allow controlled experimentation to determine the impact
of improvements to inference algorithms. The results are also relevant to research on machine learning of Bayesian networks,
since they support controlled generation of a large number of data sets at a given difficulty level. Our generation algorithms, called
BPART and MPART, support controlled but random construction of bipartite and multipartite Bayesian networks. The Bayesian
network parameters that we vary are the total number of nodes, degree of connectivity, the ratio of the number of non-root nodes
to the number of root nodes, regularity of the underlying graph, and characteristics of the conditional probability tables. The main
dependent parameter is the size of the maximal clique as generated by tree clustering. This article presents extensive empirical
analysis using the HUGIN tree clustering approach as well as theoretical analysis related to the random generation of Bayesian
networks using BPART and MPART.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Probabilistic reasoning; Bayesian networks; Tree clustering inference; Maximal clique size; C/V -ratio; Random generation;
Controlled experiments

1. Introduction

Essentially all inference problems studied using the Bayesian network (BN) formalism are known to be computa-
tionally hard in the general case [14,60,66]. Given the central role of BNs in a wide range of automated reasoning ap-
plications, for example in medical diagnosis [3,43,67], probabilistic risk analysis [9,45], language understanding [10,
12], intelligent data analysis [40,54,61], error correction coding [27,28,48,49], and biological pedigree analysis [68],
developing efficient algorithms for these inference problems is an important research problem. The performance of
exact Bayesian network inference algorithms—including tree clustering algorithms [2,33,38,39,46,65], conditioning
algorithms [16,17,22,32,57,58,64], and elimination algorithms [19,47,72]—depends on the treewidth or the optimal
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maximal clique size of a BN’s induced clique tree [5,17,20,21]. Treewidth was initially a theoretical concept related
to graph minors [59]; it has more recently been established that the notion of treewidth plays a key role in the analysis
of algorithms [8,20,44].

A significant component of research on inference in BNs has to be experimental and rely on the use of BN instances.
Similar experiments are needed and have indeed been performed for other problems, including the satisfiability prob-
lem (SAT) [1,13,26,55,62,63]. For SAT, it has been established empirically that there is a phase transition in the
probability of satisfiability of an instance drawn from a certain distribution [55]. This phase transition phenomenon
has been found to be closely related to a parameter describing the constrainedness of instances, namely the ratio be-
tween the number of variables V and the number of clauses C, denoted the C/V -ratio. Interestingly, it has been found
that algorithmic hardness also varies with the C/V -ratio, at least for certain algorithms [55]. As the C/V -ratio is var-
ied, there is a variation in problem difficulty (or hardness), as measured in mean or median inference time for certain
algorithms across a sample of problems. Maximal hardness for several algorithms occurs in the phase transition region.

Experimental work in Bayesian network inference can also be performed using randomly generated instances.
In this article, we investigate the following research questions: How should BNs for experimentation be randomly
generated, such that their computational hardness can be understood, analyzed, and controlled? More specifically, is
it fruitful to generalize the C/V -ratio from SAT to a BN setting? If it is, what is the relationship between the C/V -
ratio and treewidth or maximal clique size? Answering these research questions is important for several reasons.
Generating problem instances randomly, a common practice in the BN community [7,17,34,35,41,56,69,70], may
result in easy inference problems that do not present a challenge to inference algorithms [4,11,25], even though
worst case complexity results show that both exact and approximate MPE computation is NP-hard [1,66]. In this
article we extend previous research on randomly generating BN instances and present an experimental paradigm
for systematically generating increasingly hard random Bayesian network instances for tree clustering. We describe
two algorithms for controlled generation of BNs, the bipartite (BPART) and multipartite (MPART) construction
algorithms, and prove several properties for the BNs that they construct. For the BPART case, this includes the
distribution over the root node out-degrees and the minimum out-degree as well as the (small) probability that an
irregular BN is also regular. For MPART networks [41] we analyze the relationship to BPART BNs and in particular
present a formula for the probability that an MPART BN is bipartite. We characterize properties of the BN generation
algorithms in order to better understand the factors that in turn contribute to the hardness of inference, so that thorough
benchmarking and comparison of algorithms can be performed.

The inference approach we focus on, tree clustering as implemented in the HUGIN algorithm, was introduced as a
belief updating algorithm [46], and was later extended to encompass belief revision [18]. Thus, in the tree clustering
approach, computing marginal distributions and most probable explanations (MPEs) are closely related. In particular,
they both depend on the total clique tree size as well as the maximal clique size of a BN’s clique tree. In a BN, let V be
the number of root nodes and C the number of non-root nodes. We show that the C/V -ratio is a key parameter for BN
inference hardness, as it is for SAT [11,55]. Analytically, we provide a conservative lower bound on total clique tree
size and introduce a new class of BNs, only-child BNs, for which we give sufficient conditions for Hamiltonicity and
longest cycle. Formation of cycles, including Hamiltonian cycles, is important because they often need fill-in edges in
order for a triangulated graph to be constructed, and cycles thus significantly contribute to clique tree size.

Even when the topology is restricted to the BPART or MPART types, we identify several input parameters that
can be varied when randomly generating BNs. We empirically study a few of these parameters in detail and show
how changing them affects properties of the generated BNs which again can increase computational hardness for tree
clustering. For both the BPART and MPART constructions, generating random networks may result in very easy
instances, but a careful selection of the parameters along the dimensions we discuss, even while keeping the size of
the networks fixed, gradually increases the complexity of inference and results in networks that the tree clustering
algorithm cannot handle. A main empirical result is that the C/V -ratio can be used to predict an upper bound on the
treewidth (or optimal maximal clique size) of the induced clique trees for samples of BPART and MPART BNs. Our
selection of families of hard networks extends research on generating hard instances for the satisfiability problem [4,
11,25,55] as well as existing research in the BN community [34,41,70]. Increasing the C/V -ratio causes, for certain
values for C and V , an approximately linear increase in the upper bound on treewidth or the number of nodes in the
largest clique. In other words, we obtain an easy-hard-harder pattern for tree clustering algorithms including HUGIN,
which contrasts with the easy-hard-easy pattern observed for SAT formulas using the Davis–Putnam algorithm [55].
Experimenters may thus use the C/V -ratio directly, instead of or as a complement to maximal clique size or treewidth.
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In addition to the C/V -ratio, we study the regularity of a BNs underlying graph and the distributional nature of
conditional probability tables.

The rest of this article is organized as follows. Section 2 introduces Bayesian network definitions and notation as
well as the MPE problem. In Section 3 we briefly describe inference and in particular tree clustering and the HUGIN

algorithm as well as the concepts of maximal clique size and treewidth. Section 4 discusses the use of application
BNs and randomly generated BNs for experimentation. In particular, Bayesian networks generated by the BPART
algorithm as well as the MPART algorithm are presented and analyzed; there are also results on their relationship.
Section 5 discusses the interaction between properties of randomly generated BNs and their hardness for tree cluster-
ing algorithms and HUGIN in particular. In Section 6 we turn to the experimental part of the article, with experimental
results for BPART and MPART networks, using the state-of-the-art inference system HUGIN to study characteristics
of the maximal clique sizes generated as well as inference times. Section 7 concludes and discusses future work.

Earlier versions of this research have been reported previously [51,52]. In closely related work we have developed
and investigated a stochastic local search approach to computing MPEs and compared it to tree clustering for varying
C/V -ratios [51,53].

2. Preliminaries

A Bayesian network (BN) represents a multi-variate probability distribution as a directed acyclic graph (DAG),
where the nodes represent random variables.

Definition 1 (Directed acyclic graph (DAG)). Let G = (X,E) be a directed acyclic graph (DAG) with nodes X =
{X1, . . . ,Xn} and edges E = {E1, . . . ,Em}. An ordered tuple Ei = (Y,X), where 1 � i � m and X, Y ∈ X, represents
a directed edge from Y to X. Here, ΠX denotes the parents of X: ΠX = {Y | (Y,X) ∈ E}. Similarly, ΨX denotes the
children of X: ΨX = {Z | (X,Z) ∈ E}. The out-degree and in-degree of a node X is o(X) = |ΨX| and i(X) = |ΠX|
respectively. The minimal non-zero out-degree of any node in G is denoted δo(G) and the minimal non-zero in-degree
of any node in G is denoted δi(G); n(G) = |X| is the number of nodes in G.

The following characterization of graphs in general and BNs in particular turns out to be fruitful when analyzing
the performance of inference algorithms on BNs.

Definition 2 (Root node, non-root node, leaf node). Let G be a non-empty DAG and let X be a node in G. If i(X) = 0
then X is a root node. If i(X) > 0 then X is a non-root node. If i(X) > 0 and o(X) = 0 then X is a leaf node.

Any non-empty DAG G has at least one root node so V � 1 and the C/V -ratio is always well-defined for non-
empty DAGs according to Definition 2. Only non-empty graphs are considered in the rest of this article. In the
important special case of bipartite DAGs, which we formally introduce below, the C/V -ratio is the ratio of the number
of leaf nodes to the number of root nodes.

Definition 3 (Bipartite DAG). Let G = (X,E) be a DAG. If X can be split into partite sets V = {X ∈ X | i(X) = 0}
(the root nodes) and C = {X ∈ X | i(X) > 0} (the leaf nodes) such that any (V ,C) ∈ E is such that V ∈ V and C ∈ C

then G is a bipartite DAG; B is the set of all bipartite DAGs.

In tree clustering algorithms, which we return to in Section 3, a directed graph (BN) is transformed into an undi-
rected graph (a clique tree) over which inference is performed.

Definition 4 (Undirected graph). Let G = (X,E) be an undirected graph with nodes X = {X1, . . . ,Xn} and edges
E = {E1, . . . ,Em}. An undirected edge Ei = {X,Y } is a set where 1 � i � m and X,Y ∈ X. The set of adjacent (or
neighbor) nodes of a node X is denoted a(X) = {Y | {X,Y } ∈ E} while its degree, d(X) = |a(X)|, is the number of
neighbors X has in G. Finally, δ(G) is the minimal degree of all nodes in G and n(G) = |X| is the number of nodes
in G.
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In this article we will usually not distinguish, in BNs, between a graph node and the corresponding random variable.
For the purpose of this article we also focus exclusively on labelled graphs—graphs with distinguishable vertices—
both in the directed and the undirected cases. When parts of a graph (BN) are studied, the following notion of an
induced subgraph is useful.

Definition 5 (Induced subgraph). Let X be the nodes in a directed graph. The product X ×X is defined as {(Xi,Xj ) |
Xi,Xj ∈ X}. Let Y be the nodes in an undirected graph. The product Y × Y is defined as {{Yi, Yj } | Yi, Yj ∈ Y }. Let
G = (Z,E) be a (directed or undirected) graph. The induced subgraph G[W ] = (W ,E[W ]) is a graph with nodes
W ⊆ Z and edges E[W ] = (W × W ) ∩ E.

We also extend the graph notation and definitions to BNs, understanding that they apply to the graph part of the
formal definition of BNs, which follows. First, we have the following definition.

Definition 6 (BN node). A discrete BN node X is a random variable with a discrete, finite state space ΩX =
{x1, . . . , xk}.

While BN nodes can also be continuous, this article is restricted to the discrete case and we will take “BN node”
to mean “discrete BN node” in the following.

Definition 7 (Bayesian network). A Bayesian network is a tuple β = (X, E, P ), where (X, E) is a DAG with an
associated set of conditional probability distributions P = {Pr(X1 | ΠX1), . . . ,Pr(Xn | ΠXn)}. Here, Pr(Xi | ΠXi

) is
the conditional probability distribution for Xi ∈ X. Further, let πXi

represent the instantiation of the parents ΠXi
of

Xi . The independence assumptions encoded in (X,E) imply the joint probability distribution

Pr(x) = Pr(x1, . . . , xn) = Pr(X1 = x1, . . . ,Xn = xn) =
n∏

i=1

Pr(xi | πXi
). (1)

Bayesian networks are also known as belief networks, Bayesian belief networks, or probabilistic networks; a con-
ditional probability distribution Pr(Xi | ΠXi

) is also known as a conditional probability table (CPT).
Sometimes a BN is provided with observations or evidence by setting or clamping m nodes {O1, . . . ,Om} to

known states o = {O1 = o1, . . . ,Om = om} = {o1, . . . , om}. These nodes are called observation nodes and need to be
considered when computing an explanation, which is defined below.

Definition 8 (Explanation). Consider a BN β = (X,E,P ) with X = {X1, . . . ,Xn} and observations o = {o1, . . . , om}
for m � n. An explanation x assigns states to all non-evidence nodes {Xm+1, . . . ,Xn}: x = {xm+1, . . . , xn} =
{Xm+1 = xm+1, . . . ,Xn = xn}.

When discussing an explanation x, the BN β for which x is an explanation is easily understood and therefore left
implicit. Among explanations, the u most probable ones are of particular interest.

Definition 9 (Most probable explanation (MPE)). Let x range over all explanations in a BN β . Finding a most probable
explanation (MPE) in β is the problem of computing an explanation x∗ such that Pr(x∗) � Pr(x). The u most probable
explanations is X∗ = {x∗

1, . . . ,x
∗
u} where Pr(x∗) = Pr(x∗

1) = · · · = Pr(x∗
u) and Pr(x∗

i ) � Pr(x) for 1 � i � u.

Here, u = |X∗| is simply the number of MPEs in a BN and no other explanation has higher probability than
x∗ ∈ X∗. Since there might be u > 1 MPEs with the same probability we say “an” or “one” MPE rather than “the”
MPE. As is common, we compute just one MPE x∗ even when multiple MPEs exist in a BN. Following Pearl we
sometimes denote computing an MPE as belief revision, while computing the marginal distribution over a BN node is
also denoted belief updating [58].

It has been shown that exact MPE computation is NP-hard [66]. The problem of relative approximation of an MPE
is to find an assignment with probability close to that of an MPE to within a small ratio. This problem has also been
proven to be NP-hard [1]. Belief updating is computationally hard also [14,60].
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3. Inference in Bayesian networks

In addition to the arguments referring to the mapping from SAT, the claim that we have a way to generate hard and
easy BNs for the inference task needs to be supported analytically and experimentally by considering one or more
BN inference algorithms. BN inference algorithms can be classified as exact or approximate. Exact BN inference
algorithms are the main focus in this article and include tree clustering algorithms [2,33,38,39,46,65], conditioning
algorithms [16,17,22,32,57,58,64], elimination algorithms [19,47,72], and hybrid exact methods [20].

For the purpose of this article, we study in detail one of the most prominent inference approaches—the tree clus-
tering approach and more specifically the HUGIN algorithm.1 Tree clustering is further discussed in Section 3.1.
Section 3.2 briefly discusses other exact BN inference algorithms.

3.1. Inference by tree clustering: The role of maximal clique size

Tree clustering is currently one of the major approaches to inference in multiply connected Bayesian networks [58].
Like other tree clustering algorithms, the HUGIN algorithm employs two phases: a compilation (or clustering) phase
and a propagation (or run-time) phase [2,37,39,46]. During compilation, a Bayesian network is transformed into
cliques organized in a clique tree. During propagation, evidence is propagated in the clique tree, leading to belief
updating or belief revision computations as appropriate.

A clique (or junction) tree is constructed from a Bayesian network in the following way by the HUGIN algorithm.
First, an initial moral graph β ′ is constructed by making an undirected copy of β and then augmenting it as follows. Let
X systematically range over all nodes in β . For each node X, HUGIN adds to β ′ an edge between each pair of nodes
in ΠX if no such edge already exists in β ′. Second, HUGIN triangulates the moral graph β ′, creating a triangulated
graph β ′′. Triangulation amounts to adding fill-in edges to the moral graph β ′ such that no chordless cycle of length
greater than three exists. Third, a clique tree β ′′′ is created from the triangulated graph β ′′.2 This clique tree—which
consists of cliques and separators—must exhibit the property that for any two clique nodes F and H in the tree, all
nodes between them contain F ∩H . In β ′′′, where both cliques and separators have belief tables associated with them,
the joint probability Pr(X) is the product of the clique belief tables divided by separator belief tables.

The following quantities are important for characterizing computation in the clique tree [46].

Definition 10 (Clique tree parameters). Let Γ be the set of cliques in the clique tree β ′′′, created from a BN β using
tree clustering. The state space size of a clique H in β ′′′, g, is defined as

g = |ΩH | =
∏
X∈H

|ΩX|, (2)

where X is a node in β . The maximal number of nodes in a clique in β ′′′, h, is defined as

h = sup
H∈Γ

|H |. (3)

The total clique tree size (or total state space size) k of β ′′′ is defined as

k =
∑
H∈Γ

|ΩH |, (4)

while �, the maximal clique size (or maximal state space size of a clique) in β ′′′, is

� = sup
H∈Γ

|ΩH |. (5)

1 For the sake of simplicity, we generally do not distinguish between (i) the HUGIN algorithm and (ii) the HUGIN system, namely a software
implementation of the HUGIN algorithm. In general, this article discusses the HUGIN system in the experimental parts of the article, and the HUGIN

algorithm elsewhere.
2 Some tree clustering algorithms, but not HUGIN, employ an intermediate step right before clique tree construction. This intermediate step

creates a junction graph or system of cliques from the triangulated graph.
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A functional notation, for example k(β ′′′) or �(β ′′′), is sometimes used in this article in order to make β ′′′ explicit.
For the optimal (minimal) values, h∗, k∗, and �∗ are used for h, k, and � respectively. When the above parameters are
considered random variables, the letters G, H, K, and L are used.

Some of our investigations are restricted to nodes with two states, S = 2, and in this case the state space size g of
a clique (2) simplifies to

g = |ΩH | =
∏
X∈H

|ΩX| = S|H | = 2|H |.

When all BN nodes have S states the maximal number h of nodes in a clique is the same as the number of nodes
in a clique of maximal size �. Consequently, we do not distinguish between these two quantities in this article, even
though in general they need to be kept distinct. It is also easy to see that

� = Sh = 2h. (6)

When a BN is highly connected, as in some of the networks considered in this article, the cliques in the clique
tree become very large, thus making tree clustering inference slow. A crucial step in the process of creating a
clique tree from a Bayesian network is triangulation—the construction of a triangulated moral graph β ′′. Triangu-
lation determines g, h, k, and �. Optimal triangulation including the computation of h∗ is unfortunately known to
be NP-hard, but there are heuristic algorithms such as MINIMUMFILLINWEIGHT, MINIMUMFILLINSIZE, MINI-
MUMCLIQUEWEIGHT, MINIMUMCLIQUESIZE that compute upper bounds on h∗, k∗, and �∗ and in practice perform
triangulation quite well [33,37,42].

HUGIN was introduced as a belief updating algorithm [46], and was later extended to MPE computation (belief
revision) [18], using essentially the same clique tree β ′′′ in both cases. Thus, in the HUGIN approach, computing
marginal distributions and computing MPEs are closely related. There are two main algorithmic differences: First,
when computing an MPE x∗ ∈ X∗, maximization is performed, while in belief updating, summation is performed.
For our purposes, this step has essentially the same performance in both cases. Second, HUGIN belief revision must,
in cases of multiple most probable explanations |X∗| > 1, perform propagation several times [50]. On the other hand,
one propagation is sufficient in HUGIN belief updating. Of these two differences, the latter has a more significant
impact on the computational cost of propagation and is further discussed in Section 5.6.

3.2. Inference, maximal clique size, and treewidth

The complexity of most exact Bayesian network inference algorithms—including tree clustering algorithms, con-
ditioning algorithms, and elimination algorithms—has been found to depend on treewidth 	 ∗ or on optimal maximal
clique size h∗, where 	 ∗ = h∗ − 1 [20,46]. Time and space complexity for tree clustering is exponential in the
treewidth of the clique tree. Conditioning algorithms [16,17,22,32,57,58,64] transform a multiply connected graph
into several singly connected graphs by introducing cycle cutsets, and perform computations over each singly con-
nected graph. The time complexity of conditioning, for a minimal cycle cutset of size c, has been bounded from below
by treewidth 	 ∗ in the inequality 	 ∗ � c + 1 [8]. The time complexity of elimination is closely related to that of
tree clustering, and also depends on the treewidth 	 ∗ [5,21]. Finally, there are hybrid algorithms—combining tree
clustering, conditioning, and elimination—that trade off space- and time-complexity and again there is a dependency
on treewidth [17,20]. In one such hybrid algorithm it is possible to move from O(n) space and O(n exp(	 ∗ logn))

time to O(n exp(	 ∗)) space and O(n exp(	 ∗)) time in a gradual fashion [17].
Unfortunately, computing treewidth 	 ∗ for a graph is in itself computationally hard. In particular, the problem of

determining whether the treewidth of a given graph is bounded by an integer k has been shown to be NP-complete [6].
However, it is possible to empirically establish lower bounds for treewidth as well as upper bounds, computed using
heuristics, for treewidth in polynomial time [44]. Optimal triangulation is closely related to computing treewidth, and
triangulation heuristics play a key role in tree clustering algorithms, as discussed above and further investigated in the
experiments in Section 6.

4. Bayesian networks for experimentation and benchmarking

There are several ways to experiment with inference algorithms using BNs. In this section we discuss the two
main classes of BNs used for experimentation in the literature: application BNs and randomly generated BNs. While
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essential, we argue that application BNs also have limitations. It is non-trivial, for application BNs, to understand how
different BN parameters interact and contribute to inference complexity. Using randomly generated BNs, we can start
addressing those problems, but still need to make sure that the BNs generated are such that inference hardness can—at
least to some extent—be controlled and predicted.

In Section 4.1 we define subsets of the set of Bayesian networks. Section 4.2 briefly discusses BNs from applica-
tions. In Section 4.3 we discuss our two approaches to randomly generating Bayesian networks, the BPART algorithm
and the MPART algorithm.

4.1. Classes of Bayesian networks

It turns out that the regularity of a BN’s underlying graph varies between applications and also has a major impact
on maximal clique size and thus on BN inference times. In order to discuss the effect of graph regularity on BN
inference, we introduce the following terminology which applies to directed graphs in general.

Definition 11 (Regularity). Let G = (X,E) be a directed graph. If any two nodes X,Y ∈ X with in-degrees
i(X), i(Y ) > 0 have the same number of parents i(X) = i(Y ) then we say that G is parent-regular, or G ∈ UPR.
If G is not parent-regular then it is parent-non-regular, or G ∈ UPN, with UPR ∩ UPN = ∅. If G is either parent-regular
or parent-non-regular then it is parent-irregular, or G ∈ UPI, where UPI := UPR ∪ UPN. If any two nodes X,Y ∈ X

with out-degrees o(X), o(Y ) > 0 have the same number of children o(X) = o(Y ) then G is child-regular, or G ∈ UCR.
If G is not child-regular then it is child-non-regular, or UCN, with UCR ∩ UCN = ∅. If G is either child-regular or
child-non-regular then it is child-irregular: G ∈ UCI where UCI := UCR ∪ UCN.

We note that the above definitions allow a non-trivial graph G to be both parent regular and parent-irregular or
child-regular and child-irregular: G ∈ UPI ∩ UPR or G ∈ UCI ∩ UCR, where UPI ∩ UPR as well as UCI ∩ UCR are non-
empty. This turns out to simplify the construction algorithms along with their analysis as we will see in Section 4.3.4.
We will also see that the probability of a BN that is an element of UCI is also an element of UCR, in other words the
size of UCI ∩ UCR, is extremely small for the constructions and parameter values considered there.

Based on the regularity concepts introduced in Definition 11, the following four classes of directed graphs (and
BNs) are identified.

Definition 12 (Class A, Class B, Class C, Class D directed graphs). A directed graph G is a Class A (or “regular”)
graph if it is child-regular and parent-regular: G ∈ UA where UA := UCR∩ UPR. If G is child-irregular and parent-
regular then it is a Class B (or “irregular”) graph: G ∈ UB where UB := UCI ∩ UPR. If G is child-regular and parent-
irregular then it is a Class C graph: G ∈ UC where UC := UCR ∩UPI. If G is child-irregular and parent-irregular then it
is a Class D (or unconstrained) graph: G ∈ UD where UD := UCI ∩ UPI. The sets of all Class A, Class B, Class C and

Table 1
An informal presentation of directed graphs, including Bayesian networks, along the two orthogonal dimensions of child-regularity and parent-
regularity, leading to the following four classes. Class A: Parent-regular and child-regular; Class B: Parent-regular and child-irregular; Class C:
Parent-irregular and child-regular; and Class D: Parent-irregular and child-irregular. Class D is unconstrained

Child-regular set UCR: Non-leaf nodes have
the same number of children

Child-irregular set UCI: Non-leaf nodes typi-
cally have different number of children

Parent-regular set UPR: Non-root nodes
have the same number of parents

Class A: Parent-regular and Child-regular
UA := UPR ∩UCR
Classical Gallager codes [28,49]
Regular kCNF
Read-� formulas
Regular multipartite graphs

Class B: Parent-regular and Child-irregular
UB := UPR ∩UCI
Modern Gallager codes [48,49]
Irregular kCNF formulas [55]
Irregular multipartite graphs
Biological pedigrees [68]

Parent-irregular set UPI: Non-root nodes
typically have different number of parents

Class C: Parent-irregular and Child-regular
UC := UPI ∩UCR
Read-� formulas

Class D: Parent-irregular and Child-irregular
UD := UPI ∩UCI
Many application BNs
Mixed CNF formulas
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Fig. 1. Examples of Class A, Class B, Class C, and Class D bipartite Bayesian networks (BNs). The Class A BN is parent-regular and
child-regular (a “regular” BN); the Class B BN is parent-regular and child-non-regular and thus child-irregular (an “irregular” BN); the Class
C BN is parent-non-regular (thus parent-irregular) and child-regular; and the Class D BN is parent-non-regular (thus parent-irregular) as well as
child-non-regular (thus child-irregular) and therefore unconstrained.

Class D bipartite graphs (BNs) are respectively introduced as follows: BA := UA ∩ B, BB := UB ∩B, BC := UC ∩ B,
and BD := UD ∩B.

Table 1 summarizes some families of BNs, including BNs for error correction coding [27,28,48,49], and how they
can be classified into our four classes UA, UB , UC , and UD . The following example and Fig. 1 illustrate the classes of
networks presented in Definition 12 and Table 1.

Example 13. Fig. 1 contains examples of Class A, Class B, Class C, and Class D BNs.

In propositional logic, the notion of read-� means that a variable is used or “read” � times in the clauses of a formula.
This concept is used in Table 1. Also, the development in information theory from classical Gallager codes to modern
Gallager codes fits into our framework as presented in Table 1. Gallager’s original codes [28] can be encoded as Class
A BNs according to our terminology. Modern Gallager codes [48], on the other hand, correspond to Class B BNs.
Table 1 also includes biological pedigree BNs [68], which are typically also Class B BNs. In a BN representing a
pedigree, non-root nodes typically have two parents, but the number of children per non-leaf node can vary.

Note that regularity can easily be made more gradual than in the framework presented in Table 1. For example, one
could use the variance in in-degree and out-degree as a measure of regularity. With this more general measure, high
variance means irregular, low variance means regular. In this article, however, we are concerned with two extreme
cases and leave other variations for future work. We investigate, under a minor relaxation introduced in Definition 16,
the effect of regularity by considering Class A BNs as well as Class B BNs. We denote the former regular and the
latter irregular BNs when there is no chance of confusion.

4.2. Bayesian networks from applications

BN inference algorithms may be studied empirically by evaluating their performance on one or several BNs
from applications [41,51,56]. For example, BNs may be taken from Friedman’s Bayesian Network Repository at
http://www.cs.huji.ac.il/labs/compbio/Repository/. Application BNs are obviously very important when performing
experimental studies. However, we believe that it is difficult to understand the performance of a BN inference al-
gorithm by studying only application BNs. First, there is a problem of dimensionality in that application BNs vary
considerably in their many topological and distributional parameters. It is therefore unclear how much one can learn
from pooling BNs from different applications. Second, the inference times vary significantly between application BNs,
and there is in general no clear correlation between any of the BN parameters and the inference times [51]. Third, the
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number of BNs per application is most often very small—typically there is one BN per application. Restricting oneself
to BNs from one application is thus not desirable: It is very difficult to obtain good statistics using small samples.

There is also a more fundamental limitation associated with the use of application BNs as the “gold standard” for
performance. Some application BNs might have been fine-tuned to give adequate performance using existing inference
algorithms. It seems very valuable to construct BNs that are not biased in this way, in order to thoroughly characterize
existing algorithms as well as lay the groundwork for novel algorithms and more challenging applications.

4.3. Bayesian network generation algorithms

A potential solution to some of the limitations associated with using application BNs for empirical research is to
randomly generate BN instances [7,17,34,41,56,69,70]. Using randomly generated BNs, one can create as many BNs
as needed to provide a significant evaluation. This approach also reduces the problem of dimensionality, since one
may vary the BNs generated along just one or a few dimensions at a time.

Issues related to randomly generating BNs are addressed in the remainder of this section. In Section 4.3.1 we
present the parameters we have used to (partly) control the process of randomly generating Bayesian networks. In
Sections 4.3.2, 4.3.3, and 4.3.4 we present the BPART algorithm used to generate a certain class of bipartite networks,
for which the mapping from the satisfiability problem (SAT) is fairly direct. In Section 4.3.5 we discuss the MPART
construction, which we show to be related to the BPART construction and, as a result, can be studied from a similar
point of view. In Section 4.3.6 we discuss the MPART and BPART constructions as well as related work.

4.3.1. Input parameters for Bayesian network generation algorithms
Many parameters might be varied when randomly generating Bayesian networks. The following parameters, which

cover both topological and distributional issues and whose impact on inferential hardness for tree clustering is further
discussed in Section 5, correspond to the input parameters of the BPART and MPART algorithms presented later in
this section:

• Number of root nodes V in BN: The range of this integer is 1 to ∞; the default value is 30. For the special case of
SAT-like BNs (formally defined in Section 4.3.2), root nodes correspond to variables in conjunctive normal form
(CNF) formulas.

• Number of non-root nodes C in BN: The range of this integer is 0 to ∞; the default value is 90. For SAT-like BNs
(Section 4.3.2), non-root nodes are leaf nodes and correspond to clauses in CNF formulas.

• Conditional probability table (CPT) type Q and F for BN root and non-root nodes respectively: The choices are
deterministic (or, and, and xor), uniform, and random; the default value for root nodes is uniform while
it is or for non-root nodes. Section 5.6 contains further discussion of CPTs. For experimentation in this article,
or non-root CPTs and uniform root CPTs are employed except in Section 6.5 where all CPTs are random.

• Child-regularity R of BN: The choices are Class B child-irregular (R = false) or Class A child-regular (R = true).
The default value is child-irregular, or R = false. Four classes Class A, Class B, Class C, and Class D of BNs of
varying regularity have been identified; in this article we consider parent-regular BNs in detail. Section 5.4 further
analyzes the child-regular case R = true; Section 6.4 presents experimental results for R = true, the remaining
experiments in Section 6 focus on the child-irregular case and use R = false.

• The number of states for a node X in the BN, S = |ΩX|. The range of this integer is 1 to ∞; the default value is
S = 2 (boolean nodes). For boolean nodes, the states may without loss of generality be called 0 and 1 or false and
true respectively. Experiments in Section 6 are restricted to S = 2.

• The in-degree or number of parents P for each non-root node X in the BN: Given our focus on parent-regular
BNs, the number of parents P for each non-root node X is a parameter: P = i(X) = |ΠX|. The range of this
integer is 1 � P � V ; the default value is P = 3. Experiments in Section 6 use P = 3 except in Section 6.5 where
P = 2 is used.

In the following we will always assume that the constraints for V , C, Q, F , R, S, and P as presented above are all
satisfied. As an example, the default values V = 30, C = 90, Q = uniform, F = or, R = false, S = 2, and P = 3
make up a valid set of input parameters. These default values give a specific signature for, say, the BPART algorithm,
namely BPART(uniform, or, 30, 90, 2, false, 3).
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The following quantities can easily be derived from the input parameters presented above:

• The total number of BN nodes is N = C + V .
• From V and C the C/V -ratio can be obtained: The range is 0 to ∞; the default value is C/V = 3. Since V � 1,

the C/V -ratio is always well-defined. See Section 5.2 for further discussions of the C/V -ratio; experiments in
Section 6 use C/V -ratios varying from C/V = 0.75 to C/V = 3.4.

• Given C and P , the total number of BN edges is: E = C × P , giving E/V = C × P/V . Since V � 1, the E/V -
ratio is always well-defined. The E/V -ratio generalizes the C/V -ratio; we generally fix P and use C/V -ratio in
this article but E/V shows up in analytical results in Section 5.4.2.

To be consistent with the existing research literature on randomly generating problem instances in the areas of
satisfiability and constraint satisfaction, we use upper-case V to denote the number of root nodes and upper-case C to
denote the number of non-root nodes in a BN. Neither V nor C are nodes or random variables in a Bayesian network,
even though upper-case letters are also used to represent these concepts.

4.3.2. The BPART network generation algorithm: A synthetic bipartite construction
For many NP-hard problems, simply generating random instances in an undiscriminating fashion has sometimes

resulted in fairly easy problem instances [4,11,25]. This problem has been addressed in the context of satisfiability,
in the seminal work of Mitchell, Selman, and Levesque [55], where it was shown how to generate hard instances
for 3SAT. Here we show how these ideas can be generalized and used to generate, as it turns out, hard instances for
belief revision and belief updating when using tree clustering. In this section we present our approach to randomly
generating bipartite BNs of varying hardness.

Fig. 2 presents our BPART construction algorithm which generates SAT-like Bayesian networks as a special case.
When BPART is invoked using the following signature, it creates SAT-like BNs.

Definition 14 (SAT-like BN). Let β ← BPART(uniform, or, V , C, 2, false, P ). The BN β is SAT-like.

The BPART algorithm can also construct more general BNs as reflected in the following definition.

BPART(Q,F,V,C,S,R,P )

Input: Q conditional probability table (CPT) type, root nodes
F CPT type, non-root nodes
V number of “variables” (root nodes)
C number of “clauses” (leaf or non-root nodes)
S number of states per node
R create regular BN—true or false
P number of parents of clauses (non-root nodes)

Output: β Bayesian network
begin

β ← CREATEBN()
ADDLAYER(β,V,0, S, false){First, add layer of root nodes—V variables}
ADDLAYER(β,C,P,S,R){Second, add layer of child nodes—C clauses}
for i ← 1 to V + C

node ← GETNODE(β, i)

if ROOTNODE(node) then
SETDISTRIBUTION(node, S,Q) {Set CPT of root node}

then
SETDISTRIBUTION(node, S,F ) {Set CPT of non-root node}

end
end
return β

end

Fig. 2. The BPART algorithm for constructing synthetic, bipartite BNs. The input parameters Q, F , V , C, S, R and P are used to create dif-
ferent variants of BPART networks. The BPART algorithm creates classical, irregular SAT-like BNs when it is invoked with the parameters
Q = uniform, F = or, S = 2, R = false, and P = 2; in other words as follows: BPART(uniform, or, V, C, 2, false, 2).
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Table 2
Algorithms used by the Bayesian network construction algorithms. Possible values of the parameter F in SETDISTRIBUTION and details of
CHOOSEFEWESTCHILDREN are discussed in the text

Function name Description

ADD(X,X) Adds node X to the set of nodes X; sets X ← {X} ∪ X.
ADDPARENT(X,Y ) If possible, adds Y to ΠX and returns true, else returns false.
CHOOSEFEWESTCHILDREN(Y ) Randomly chooses and returns appropriate node among nodes Y .
CREATEBN() Returns a new, empty BN.
CREATENODE(β) Returns a newly created node in BN β.
GETLEAFNODES(β) Returns nodes without any children in BN β.
GETNODE(β, i) Returns the ith node in the BN β, assuming some node ordering.
GETNUMBEROFCHILDREN(X) Returns the number of children for BN node X.
GETNUMBEROFNODES(X) Returns the number of BN nodes in the set of nodes X.
RANDOMINT(L,H) Returns, uniformly at random, a natural number in the interval [L,H ].
ROOTNODE(X) Returns true if X is a root node, else returns false.
SETDISTRIBUTION(X,S,F ) Sets distribution of BN node X, with S states, to CPT of type F.

SETNUMBEROFSTATES(X,S) Creates S states in the input BN node X.

Definition 15 (BPART BNs). The set of all BNs generated by BPART is defined as UBPART = {β | β ←
BPART(Q,F,V,C,S,R,P )}. The set of regular and irregular BPART BNs are respectively denoted U r

BPART = {β |
β ← BPART(Q,F,V,C,S, true,P )} and U i

BPART = {β | β ← BPART(Q,F,V,C,S, false,P )}.

Building on an existing construction [14,60], the basic idea is to generalize from a conjunctive normal form (CNF)
formula and generate a Bayesian network for which an MPE corresponds to a satisfying assignment of the formula.
For a SAT-like BN, given a 3CNF formula f = ∧m

i=1 Ci with clauses Ci = Xi1 ∨ Xi2 ∨ Xi3 , one can construct a
bipartite Bayesian network, in which one layer of nodes (the root nodes X) corresponds to the variables and a second
layer (the leaf nodes C) corresponds to the clauses. A variable Xj ∈ X has an edge directed toward Ci ∈ C iff Xj

occurs in the clause Ci . Clause nodes are clamped during inference. The conditional probability tables are set so that
Pr(f = 1) > 0 iff the assignment to the Xj ’s satisfies the 3CNF formula. It is easy to see that this happens if for all
i, the conditional probability table associated with the node Ci simulates an or gate of three inputs. To generate a
BN that corresponds to a non-monotone CNF, the CPTs need to be generalized accordingly in a straight forward way.
It is easy to verify that an MPE x∗—an assignment of values to the Xj ’s—has a positive probability iff it satisfies
the corresponding 3CNF formula [14,60]. There may be many satisfying assignments, all with the same probability,
making them all MPEs.

There are several ways to generate random BNs corresponding to CNF formulas. Our BPART approach, presented
in Fig. 2, is based on the following policy: work with V variables and C clauses; generate the clauses by selecting
variables uniformly into clauses and negate each variable with probability p = 0.5 [55]. Subroutines used by BPART
include ADDLAYER (see Fig. 3), CHOOSEFEWESTCHILDREN, and SETDISTRIBUTION (see Table 2). Turning to
BPART in Fig. 2, CREATEBN first creates a new, empty BN β . ADDLAYER(β,V,0, S, false) then adds to β a layer
of V root nodes, where each root node has S states. Next, ADDLAYER(β,C,P,S,R) adds to β the C non-root (or
leaf) nodes. Each leaf node has P parents, chosen among the V root nodes. The nature of a leaf node’s parent selection
process, which takes place in ADDLAYER, is controlled by the regularity parameter R ∈ {true, false}. Fig. 3 presents
how a layer in the BPART construction is added by the ADDLAYER procedure. ADDLAYER, which returns the BN
β with a new layer of M nodes added to it, works differently for the regular (R = true) and the irregular (R = false)
cases as discussed further in Section 4.3.3 and Section 4.3.4 respectively.

The CPTs of all nodes are constructed in the top level of BPART (Fig. 2). Non-root node CPTs are determined by
the input parameter F , with F ∈ {or, and, xor, uniform, random}. Similarly, root node CPTs are determined by
Q ∈ {or, and, xor, uniform, random}. In a deterministic CPT (where CPTs are or, and, or xor), all entries
are either 0 or 1. In a uniform CPT of a node X with |ΩX| = S states, the probability mass for a node state for a
given parent instantiation is 1/S. In a random CPT, the probabilities are first picked from a uniform random U(0,1)

distribution, and then normalized to make sure that the conditional probabilities for a given parent instantiation sum
to 1. These types cover the CPTs that are required to provide an exact mapping from SAT problems to corresponding
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ADDLAYER(β,M,P,S,R)

Input: β BN to which new layer is added
M number of new nodes to create in the new layer
P number of parent nodes to assign to a new node
S number of states per new node
R true if regular BN layer is to be created, else false

Output: β Bayesian network with layer of nodes added
begin

parents ← GETLEAFNODES(β)

for i ← 1 to M

Xi ← CREATENODE(β)
SETNUMBEROFSTATES(Xi,S)
c ← 0
while c < P {The new node Xi is given parents}

if not R then {The irregular case R = false}
j ← RANDOMINT(1, GETNUMBEROFNODES(parents))
parent ← parents[j ]

else {The regular case R = true}
parent ← CHOOSEFEWESTCHILDREN(parents) {Pick parent with fewest children}

end
success ← ADDPARENT(Xi , parent) {false if parent among Xi ’s parents already}
if success then c ← c + 1 end

end
end
return β

end

Fig. 3. The function ADDLAYER adds a layer consisting of M nodes to the Bayesian network β . ADDLAYER is invoked by BPART.

BNs as well as idealizations of CPTs that might occur in some applications. In Section 5.6, we discuss the relationship
between these CPTs and hardness for inference.

There are two related but slightly different perspectives on BPART’s signature. The first perspective is to regard
it as a parametrized probability distribution B over BNs—as in B ∼ BPART(uniform, or, 30, 90, 2, false, 3).
The second perspective is to regard the signature as an assignment that generates one sample β from the probability
distribution B: The assignment β ← BPART(uniform, or, 30, 90, 2, false, 3) will, under reasonable assumptions
regarding the periodicity of the pseudo-random number generator, create a different BN β each time BPART is
invoked. In general, the former perspective is taken in this section as well as in Section 5, while the latter perspective
is taken in the experimental part of the article, Section 6, where we sample from B.

The BPART and MPART construction algorithms presented in this section can construct irregular or regular BNs.
The setting R = true gives a regular BN, while R = false gives an irregular BN. We now discuss these two cases
separately.

4.3.3. The BPART regular case: R = true
In the ADDLAYER procedure, if the new layer of nodes is to be regular (so R = true), the CHOOSEFEWESTCHIL-

DREN procedure is invoked as shown in Fig. 3. CHOOSEFEWESTCHILDREN selects a node X among its input nodes
Y such that no other input node has fewer children. By doing this, the algorithm ensures that the parent layer is child-
regular or “close to” child-regular. More formally, it is ensured that the BN has an underlying relaxed Class A graph,
as defined below.

We now introduce concepts closely related to Definitions 11 and 12, in order to make the notion of regularity more
widely applicable without losing the essence of regularity.

Definition 16 (Relaxed Class A directed graph). Consider a directed graph G with V non-leaf nodes and E edges. If
any non-leaf node Xi where i ∈ {1, . . . , V } has o(Xi) = 
E

V
� or o(Xi) = �E

V
� children, then the notation o(Xi) ≈ E

V
is

used and we say that G is relaxed child-regular. If a directed graph G is relaxed child-regular and parent-regular, then
G is a relaxed Class A directed graph. The set of relaxed Class A graphs is UA∗ ; the set of bipartite relaxed Class A
graphs is BA∗ := UA∗ ∩B.
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The parameter value R = true controls the number of children (the out-degree) of BPART root nodes as presented
in the following theorem and corollary.

Theorem 17. Suppose the BPART algorithm is called with R = true. If F edges have been distributed during the BN
construction process of BPART, then o(X) ≈ F

V
for any root node X.

Proof. Suppose it were not the case. This means that there exists at least one root node X where |ΨX| > 
F
V

� or
|ΨX| < �F

V
�. Consider the case |ΨX| > 
F

V
�. This means that there exists at least one root node Y with �F

V
� (or fewer)

children. Assume, for the purpose of contradiction, that all root nodes excluding X have 
F
V

� children. Since 
F
V

�
� F

V
, the number of children (edges) for these (V − 1) root nodes is

(V − 1)

⌈
F

V

⌉
� (V − 1)

F

V
= F − F

V
.

Since the number of children for X is |ΨX|, the total number of edges in the BN is F − F
V

+ |ΨX|, which is not
possible since |ΨX| > 
F

V
� � F

V
and there is a contradiction. Consequently, there exists at least one root node Y with

�F
V

� edges. However, this fact contradicts how CHOOSEFEWESTCHILDREN operates. CHOOSEFEWESTCHILDREN

always picks, for a leaf node, a parent with fewest children. However, the fact that X now has |ΨX| > 
F
V

� implies that
at some earlier stage X was picked by CHOOSEFEWESTCHILDREN while having 
F

V
� children. At the same time,

there must have been a node Y with |ΨY | � �F
V

�, and so CHOOSEFEWESTCHILDREN should have chosen Y . This is
a contradiction. The proof for the case |ΨX| < 
F

V
� is similar. �

Using Theorem 17, we formally characterize the output of the BPART algorithm in Fig. 2.

Corollary 18. With input parameter R = true, the BPART algorithm creates bipartite relaxed Class A BNs:
U r

BPART ⊂ BA∗ .

Proof. Use F = CP in Theorem 17 and apply Definition 16. �
Unless otherwise noted, we do not distinguish between relaxed Class A BNs and Class A BNs in the following,

and denote both as Class A BNs. In particular, we shall say that BPART, given input parameter R = true, creates
Class A BNs even though this is true, strictly speaking according to Definition 11, only in the special case where

CP

V
� = �CP

V
� (see Corollary 18). The notion of regularity and its impact on inference hardness is further discussed

in Section 5.4, and we turn now to the irregular case.

4.3.4. The BPART irregular case: R = false
If R = false, parent nodes are chosen uniformly at random without replacement in the ADDLAYER procedure (see

Fig. 3). It is easy to show that bipartite Class B BNs are generated.

Theorem 19. If R = false, the BPART algorithm creates bipartite Class B BNs: U i
BPART ⊂ BB .

In any BN, the parents of a non-root node must be distinct. Consequently, for a given BPART leaf node, ADD-
LAYER selects among the |V | = V root nodes without replacement and we obtain the following.

Theorem 20 (Exact child distribution). Consider a BN with root nodes V and leaf nodes C created using BPART
with input parameter R = false. For any X ∈ V , let the number of children be N = |ΨX|, and let b be the binomial
distribution. It is the case that N ∼ b(C,P/V ).

Proof. Using the V root nodes, form
(
V
P

)
distinct super-nodes, where each super-node Wi contains P different root

nodes {Vi,1, . . . , Vi,P }, where Vi,j ∈ V for 1 � i �
(
V
P

)
and 1 � j � P . Clearly, BPART performs C Bernoulli trials

among these
(
V
P

)
super-nodes. One Bernoulli trial is, for an arbitrary node X ∈ V , considered a success if X is
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an element of the chosen super-node. There are
(
V −1
P−1

)
super-nodes in which X is an element. Consequently, the

probability of Bernoulli trial success for X is

p =
(
V −1
P−1

)
(
V
P

) = P

V
,

and since there are C trials we obtain a binomial distribution b(C,P/V ). �
In the following theorem we introduce a simplifying assumption, further justified below, that parent selection in

ADDLAYER is made with replacement even though we assumed differently in Theorem 20.

Theorem 21 (Approximate child distribution). Consider a BN with root nodes V and leaf nodes C created using
BPART with R = false. As an approximation, suppose, for any Y ∈ C, that each of Y ’s P parents is picked indepen-
dently and uniformly at random among V . For any X ∈ V , let the number of children be N = |ΨX|, and let b be the
binomial distribution. It is the case that N ∼ b(CP,1/V ).

Proof. Consider a BN β with root nodes V created using the BPART algorithm with input R = false. In ADDLAYER,
which is invoked by the BPART algorithm, the ith leaf node Yi ∈ C selects P parent nodes. As an approxima-
tion, assume that each parent is picked independently. Now consider one particular root node Xk ∈ V . Call it a
success if, for the selection of the j th parent by the ith leaf node Yi , Xk gets picked as a parent node, else call it
a failure. Let Ii,j be an indicator random variable for this trial. By assumption, each selection of a root node is an
independent Bernoulli trial with probability of success p = 1/V , and we obtain a sequence of Bernoulli random vari-
ables I1,1, . . . , I1,P , . . . , Ii,1, . . . , Ii,P , . . . , IC,1, . . . , IC,P . The number of times that Xk is picked is a random variable
N = ∑C

i=1
∑P

j=1 Ii,j . Clearly, N has a binomial distribution b(n,p) with n = CP trials and probability of success
p = 1/V . �

The approximating assumption of independence in Theorem 21 is justified as follows. As V → ∞, the random
parent selection process in ADDLAYER approaches drawing independently with replacement, since the probability of
picking the same root node twice or more tends to zero.

Having introduced and analyzed the BPART construction, we return to a discussion of Definition 11 and the classes
UCI, UCR, and UCN. As an example, suppose for β ∈ U i

BPART that each child node has three parents. Clearly, β ∈ UCI

and typically β ∈ UCN also. We say “typically” because it could happen that parents are randomly picked such that
the graph ends up being child-regular “by chance”, or β ∈ UCR. As an example, each root node in β could end up
with, say, exactly six children, assuming there are twice as many leaf nodes as root nodes. However, as we will see
in Theorem 22 and Example 23, the probability of β ∈ UCR is extremely small for β ∈ U i

BPART when β is generated
using parameter values for P , V , and C of the order of magnitude used in the experimental part of this article.

Theorem 22. Consider a BN β ∈ UCI with root nodes V and leaf nodes C created using BPART with input parameter
R = false. Suppose for any Y ∈ C that each of Y ’s P parents is picked independently and uniformly at random from
V . Also assume that k := CP

V
is an integer. It is the case that

Pr(β ∈ UCR) = CP !
(CP

V
!)V

(
1

V

)CP

. (7)

Proof. The desired joint distribution over root nodes V is clearly multinomial, giving

Pr(β ∈ UCR) = Pr(N1 = k, . . . ,NV = k) = n!
(k!)V × pn.

Using Theorem 21 we have p = 1/V and n = CP ; therefore (7) follows. �
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Unfortunately, it is not easy to see what happens when CP → ∞ in (7). However, by putting n := CP and using
Stirling’s formula to approximate the factorial function in (7), we get

Pr(β ∈ UCR) ≈
√

2πnnne−n

(
√

2πn/V )V (n/V )ne−n

(
1

V

)n

=
√

V V

(2πn)V −1
, (8)

from which it is easy to see that limn→∞ Pr(β ∈ UCR) = 0. In words, when a child-irregular BPART BN β ∈ UCI
is generated, β is also child-non-regular with “high” probability Pr(β ∈ UCN) = 1 − ε, where ε := Pr(β ∈ UCR) is
characterized by (7) or (8). Here is an example.

Example 23. Consider a BPART BN β ∈ UCI constructed using parameters R = false, P = 3, V = 30, and C = 90.
Using Theorem 22 we obtain Pr(β ∈ UCR) ≈ 1.61 × 10−25, a very small probability indeed. Using (8) gives the
approximation Pr(β ∈ UCR) ≈ 2.130 × 10−25.

We now turn to a related but different question. How can the minimum out-degrees of root nodes in an irregular
BPART BN β be characterized? This question is answered in Theorem 25 below, using the fact that parents of a leaf
node are picked at random in the BPART algorithm. Before stating the result, we formally define minimal root node
out-degree, which is a random variable M.

Definition 24 (Minimum out-degree). Let X = {X1, . . . ,Xn} be a set of n BN nodes with randomly distributed chil-
dren, and let Ni ∼ o(Xi). The minimum out-degree random variable M is defined as M = min(N1, . . . ,Nn) and
abbreviated as M = min(X).

In the following, Mi is used for the irregular case (R = false), Mr for the regular case (R = true).

Theorem 25 (Expected minimum out-degree in BPART). Consider a BN β with root nodes V and leaf nodes C
created using BPART with R = false. Suppose, for any Cj ∈ C, that Cj ’s P parents are picked independently and
uniformly at random among V . Let Mi = min(V ). The expectation E(Mi ) is

E(Mi ) =
� CP

V
�∑

j=1

(
1 − B(j − 1;CP,1/V )

)V
, (9)

where B(k;n,p) is the cumulative binomial distribution function Pr(X � k), where X ∼ b(n,p).

Proof. The probability that the value of some Ni is k or greater is

Pr(Ni � k) = 1 − Pr(Ni < k) = 1 − B(k − 1;n,p), (10)

where B is the cumulative binomial distribution. (Recall that Theorem 21 uses the binomial distribution when R =
false.) Considering all V root nodes in β , for the minimum to be k, all V nodes need to be k or greater: Pr(Mi � k) =
Pr(N1 � k,N2 � k, . . . ,NV � k). Since, as an approximation, root nodes are assumed to be picked independently and
uniformly at random, there is independence between N1, . . . ,NV . By introducing N = N1 = · · · = NV as well as (10)
we obtain

Pr(Mi � k) =
V∏

i=1

Pr(Ni � k) = (
1 − Pr(N � k − 1)

)V = (
1 − B(k − 1;n,p)

)V
. (11)

Given a random variable Mi with possible values {0,1, . . . ,m}, the tail sum formula for expectation is

E(Mi ) =
m∑

j=1

Pr(Mi � j) (12)

which by combining (11) and (12) yields

E(Mi ) =
m∑

j=1

(
1 − B(j − 1;n,p)

)V
.
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By substituting in m = �CP
V

�, n = CP and p = 1
V

we obtain (9) as desired. �
The following example illustrates Theorem 25 using parameter values from experiments in this article.

Example 26 (Expected minimum out-degree in BPART). Consider a BPART network constructed using input pa-
rameters C = 60, V = 30, P = 3, and R = false. Using Theorem 25, we obtain E(Mi ) ≈ 1.72. If instead we use
C = 102, while the other parameters stay the same, we obtain E(Mi ) ≈ 4.39.

While Eq. (9) can be used to compute values for E(Mi ) as shown in Example 26, it is unfortunately not obvious how
E(Mi ) changes when the C/V -ratio changes. However, based on Theorem 21 we may use the binomial distribution
b(CP,1/V ) with Ê(Mi , a) = μ − aσ as an approximation to E(Mi ), where a is the number of standard deviations.
A more explicit form is thus obtained:

Ê(Mi , a) = μ − aσ = CP

V
− a

√
CP(V − 1)

V 2
= CP − a

√
CP(V − 1)

V
. (13)

The impact of an increasing C/V -ratio can now be observed from Eq. (13): For a fixed number of standard deviations
a, when the C/V -ratio increases due to an increase in C, it is clear that Ê(Mi , a) in Eq. (13) will increase as well.
Table 3 provides, by means of example, some insight into the difference between the irregular and regular cases. The
difference in the expectations of the minimal degrees, E(Mr ) versus E(Mi ), is quite dramatic. Table 3 also compares
Eq. (13) with Eq. (9) for V = 30, P = 3, C varying from 60 to 102, and a = 1 or a = 2 standard deviations. Here,
E(Mi ) is bounded as follows: Ê(Mi ,2) < E(Mi ) < Ê(Mi ,1); Ê(Mi ,1) provides a conservative upper bound.

4.3.5. The MPART network generation algorithm: A synthetic multipartite construction
Are the patterns of hard and easy restricted to the BPART construction? If not, then what is construction-specific,

and what is general across constructions? In order to explore these questions, we investigated a different but re-
lated algorithm for generating random Bayesian networks, the MPART construction. MPART is closely related to

Table 3
These results are relevant for BPART BNs with V = 30, P = 3, and C varying from 60 to 102. The table shows the expectation of minimum
out-degrees E(Mr ) in Class A (regular) BNs and E(Mi ) in Class B (irregular) BNs. For the irregular case, the approximation Ê(Mi , b) = μ − aσ

for a = 1 and a = 2 standard deviations is also displayed

C/V 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Class A: E(Mr ) 6 6 7 7 8 9 9 10
Class B: Ê(Mi ,1) 3.59 4.07 4.56 5.05 5.55 6.05 6.55 7.06
Class B: E(Mi ) 1.72 2.07 2.44 2.81 3.20 3.59 3.99 4.39
Class B: Ê(Mi ,2) 1.18 1.55 1.92 2.31 2.70 3.10 3.51 3.92

Fig. 4. Example Bayesian network generated by the MPART algorithm. This BN has four root nodes {X1, . . . ,X4} and seven non-root nodes
{C1, . . . ,C7}. Among the non-root nodes, only C3 could have appeared in a BPART network; the remaining non-root nodes are MPART-specific
since they either have at least one non-root child or parent. For instance, C1 has non-root C4 as parent and C5 as child.
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Fig. 5. Generation of Bayesian networks using the BPART and MPART constructions. Edges between nodes are, for simplicity, omitted. In both
constructions, nodes are treated sequentially. Let Xi be the BN node currently being processed. For Xi , a fixed number of P parent nodes is
randomly selected. For BPART, parent nodes for Xi are chosen among the root nodes {XC+1, . . . ,XN }, while they are chosen among the nodes
{Xi+1, . . . ,XN } for MPART. The MPART construction is a generalization of the BPART construction: When it so happens that all parent nodes
for an MPART BN are picked from the root nodes, the BN could also have been generated by BPART.

an approach of Kask and Dechter [41]. The procedure they describe can be viewed as follows. Choose these three
parameters: N—the number of nodes in the network; V —the number of root nodes; and P —the number of parents
of a non-root node. Construct a network as follows: Index the nodes from 1 to N , and iterate from the Cth node XC .
At the ith step, process the ith node Xi , with 1 � i � C, and pick, uniformly at random, P parents among the nodes
indexed from i + 1 to N . Repeat until all C non-root nodes {X1, . . . ,XC} have been assigned parents.

Example 27. An example MPART BN is shown in Fig. 4.

The MPART and BPART constructions are compared in Fig. 5. The essential difference is that MPART BNs allow
non-root nodes to have other non-root nodes as parents, while this is not allowed in BPART networks. Essentially, the
MPART algorithm is similar to the BPART algorithm except a slight variation on BPART’s ADDLAYER algorithm
(ADDLAYER is presented in Fig. 3). Instead of BPART’s ADDLAYER statement “if success then c ← c+1”, MPART
sequentially uses the statements “if success then c ← c + 1” and “ADD(node, parents)”. The signature of MPART
mirrors BPART’s signature as presented in Fig. 2 and is MPART(Q, F , V , C, S, R, P ).

Definition 28 (MPART BNs). The set of all BNs generated by MPART is UMPART = {β | β ← MPART(Q,F,V,

C,S,R,P )}. The sets of regular and irregular MPART BNs are respectively defined as U r
MPART = {β | β ←

MPART(Q,F,V,C,S, true,P )} and U i
MPART = {β | β ← MPART(Q,F,V,C,S, false,P )}.

This multipartite construction algorithm typically creates BNs with a tree-like topology. However, if the number
of non-root nodes C = N − V is much smaller than V , the graph may be bipartite or “close to” bipartite. To reflect
different types of MPART BNs, we introduce the following terminology.

Definition 29. Let an MPART BN β have root nodes V and non-root nodes X = {X1, . . . ,XC} with C = |C|. We
define the bipartite subset of U i

MPART as Bi
MPART = B ∩ U i

MPART = {β | ΠX1 ⊆ V , . . . ,ΠXC
⊆ V } ∩ U i

MPART.

Given this terminology, we show in the following theorems that the MPART construction is a generalization of the
BPART construction in the case of irregular MPART BNs.
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Theorem 30. Irregular BPART BNs are a subset of irregular MPART BNs: U i
BPART ⊂ U i

MPART.

Proof. First, we show that if β ∈ U i
BPART then β ∈ U i

MPART, and thus that U i
BPART ⊆ U i

MPART. Assume, for purposes
of contradiction, that β ∈ U i

BPART and β /∈ U i
MPART. For this to happen, there must exist a node X in β with ΠX con-

structed by BPART such that ΠX cannot be constructed by MPART. However, this is not possible, since the candidate
set for ΠX in BPART is a subset of that in MPART. This follows from the structure of the MPART construction
algorithm, and in particular the statement ADD(node, parents) which adds “node” to the candidate set “parents”. This
statement in the MPART algorithm is lacking in the BPART algorithm. Second, we exhibit a β ∈ U i

MPART such that
β /∈ U i

BPART, and therefore U i
BPART � U i

MPART. Consider the three-node chain β with nodes {X1,X2,X3}, and edges
{(X1,X2), (X2,X3)}. Clearly, β /∈ U i

BPART since β is not bipartite. However, β ∈ U i
MPART since β may be constructed

by the MPART construction algorithm using the signature MPART(Q,F,V,C,S,R,P ) with V = 1 and C = 2. �
Theorem 31. Irregular BPART BNs are the same as irregular bipartite MPART BNs: U i

BPART = Bi
MPART.

Proof. We need to show that (i) U i
BPART ⊆ Bi

MPART and (ii) U i
BPART ⊇ Bi

MPART. From the proof of Theorem 30 we
have U i

BPART ⊂ U i
MPART, which gives (i) as follows:

U i
BPART ∩B ⊆ U i

MPART ∩B,

U i
BPART ⊆ Bi

MPART.

For (ii), consider a BN β ∈ Bi
MPART. Since β is bipartite, the MPART statement ADD(node, parents) had no effect

on the structure of β , and could have been left out. In that case we have, by construction, the BPART algorithm and
clearly β ∈ U i

BPART. �
Finally, we provide the probability that a randomly generated irregular MPART BN will be bipartite, and in par-

ticular an irregular BPART BN.

Theorem 32. Let β ∈ U i
MPART. For P � 1 and C � 1, the probability of the event β ∈ Bi

MPART is

Pr(β ∈ Bi
MPART) =

C∏
i=1

P−1∏
j=0

(
V − j

C + V − i − j

)
.

Proof. Let C be the set of C non-root nodes and let Xi ∈ C be the node in β currently processed by the MPART al-
gorithm. For Xi , parents are picked among {Xi+1, . . . ,XC} ∪ {XC+1, . . . ,XN }; the non-root nodes already processed
and all root nodes. Clearly, Xi ’s parents ΠXi

must all be picked among the root nodes V = {XC+1, . . . ,XN } for the
event β ∈ Bi

MPART to take place. For MPART’s first pick of a parent Y for Xi there are k = C − i non-root nodes
{Xi+1, . . . ,XC} to avoid. For R = false, MPART’s selection distribution is uniform, giving a probability of success
for Xi of Pr(Y ∈ V ) = V

k+V
. The nodes in ΠXi

need to be distinct but are otherwise picked independently and the
multiplication principle can be applied, giving

Pr(ΠXi
⊆ V ) =

(
V

k + V

)
×

(
V − 1

k + V − 1

)
× · · · ×

(
V − P + 1

k + V − P + 1

)
=

P−1∏
j=0

(
V − j

k + V − j

)
. (14)

For β ∈ Bi
MPART to occur, a condition similar to (14) needs to hold for all C non-root nodes; by Definition 29 we get

Pr(β ∈ Bi
MPART) = Pr(ΠX1 ⊆ V , . . . ,ΠXC

⊆ V ). Since the selection of parents for Xi is independent of the selection
of parents for Xj , for i �= j , the multiplication principle applies again and we obtain for non-root nodes {X1, . . . ,XC}
in β

Pr(ΠX1 ⊆ V , . . . ,ΠXC
⊆ V ) =

C∏
i=1

Pr(ΠXi
⊆ V ). (15)
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Substituting (14) into (15) and using the fact that k = C − i gives

Pr(β ∈ Bi
MPART) =

C∏
i=1

Pr(ΠXi
⊆ V ) =

C∏
i=1

P−1∏
j=0

(
V − j

k + V − j

)
=

C∏
i=1

P−1∏
j=0

(
V − j

C + V − i − j

)
.

Since P � 1 and C � 1 by assumption, 0 � Pr(β ∈ Bi
MPART) � 1 and is thus a well-defined probability. �

A reader might ask how our MPART algorithm relates to the work of Kask and Dechter [41]. MPART is based on
their approach and the topologies of the BNs generated are quite similar. There are some minor differences, including
some details in the algorithms; the CPTs generated; and the clamping of evidence. Our main contribution is not
MPART itself but rather the following: The observation that BPART is a special case of MPART as characterized
in Theorems 30, 31, and 32; the fact that C/V -ratio is key also for MPART; and finally the fact that MPART BNs
generated using C/V � 0.75 turn out to be relatively easy for tree clustering as further investigated in Section 6.5. The
reason for our interest in C/V � 0.75 is that this inequality holds for the BNs investigated by Kask and Dechter [41].

4.3.6. Discussion and related work
The BPART construction is, as already mentioned, a generalization of the random generation of problem instances

for the satisfiability problem (SAT) [55]. Satisfiability might seem like a limited problem to consider since (i) it is
a decision problem rather than an optimization problem like the MPE problem (see Definition 9) and (ii) it gives a
particular bipartite BN topology. Before discussing these possible concerns, we note that the BPART algorithm can
generate Bayesian networks that are not SAT-like, using parameter settings such as F = random or S > 2.

Concerning (i), even though satisfiability is obviously a decision problem, decision problems are special cases
of optimization problems. For instance, it has proven fruitful to view the SAT decision problem as the MAXSAT
optimization problem [15,30]. MAXSAT is an optimization problem where one maximizes the number of satisfied
clauses. So even though satisfiability is a decision problem, there is a strong connection to an optimization problem.

Concerning (ii), we argue that the bipartite topology is interesting in its own right and inference algorithms have
been specifically designed for bipartite BNs [31]. Important classes of application BNs, including medical diagnosis
BNs such as the QMR-DT BN [67] and information theory BNs [27,28], are essentially bipartite.3 Bipartite medical
BNs typically model diseases and symptoms—diseases are root nodes, symptoms are leaf nodes [43,67]. These BNs
may be used to compute an MPE over the disease nodes given known symptoms. Bipartite information theory BNs
are used for coding and decoding in the presence of noisy transmission [27,28]. Two classes of information theory
Bayesian networks are Hamming code BNs and low density parity code BNs, and for both there is a close relationship
to BPART networks in general and SAT-like BNs in particular. The fact that “traditional” information theory BNs
[28] have a fixed number of children per root node corresponds to a BPART parameter value R = true in Fig. 2.
A parameter value R = false gives “modern” Gallager codes [48].

The BPART topology also provides a well-understood stepping stone towards other topologies, and in particular
it is a component in multi-partite BNs. Furthermore, as we detail in the MPART construction above, one can regard
the leaf nodes in a BPART BN as corresponding to the non-root nodes in an arbitrary, non-bipartite BN such as an
MPART BN.

Finally, we note that our approach is independent of and complementary to related research which relies on Markov
chain convergence in order to randomly sample BNs [34,35]. While the use of a Markov chain is different from our
approach, there is some similarity between their use of heuristic width [35] and our use of heuristics for clique
tree optimization. However, there is an important difference between these two approaches. While we generate BNs
randomly without directly controlling maximal clique size or total clique tree size, Ide et al. enforce a constraint on
heuristic width as part of the random BN generation process [35]. This makes their approach more general but also
potentially slower and more difficult to analyze compared to our approach.

3 The QMR-DT BN is computationally challenging, but is unfortunately not publicly available and is consequently not used for experimentation
here.
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5. Analysis of hard and easy synthetic networks

This section synthesizes the discussion, in Section 4, of parameters of randomly generated BNs and the presenta-
tion of tree clustering in Section 3. In particular, we discuss how varying some of these BN parameters might affect the
performance of tree clustering inference. This discussion motivates the experiments performed in Section 6 and justi-
fies our expectations regarding the effect of varying different parameters. Section 6 also provides further quantitative
details regarding how clique sizes and inference times increase with the C/V -ratio and when different triangulation
heuristics are used.

The rest of this section is organized as follows. In Section 5.1 we relate our focus on the C/V -ratio to previous
research. The following few sections discuss topological issues. In Section 5.2 we identify a conservative lower bound
on clique tree size. Qualitatively, this lower bound gives an easy-hard-harder pattern, with increasing C/V -ratio, for
BN inference using tree clustering. Section 5.3 introduces the structural concept of only-child BN as well as results
used in the following. Section 5.4 focuses on cycle formation in the moral graphs of Regular Class A BNs. The reason
for our analysis of cycles in general and Hamiltonian cycles in particular is that cycles in the moral graph force tree
clustering (including HUGIN) to add fill-in edges to the moral graph, which again significantly impacts the size of the
clique tree and thus inference time. In Section 5.5, we argue that regular (Class A) BNs should be harder than irregular
(Class B) BNs based on insights regarding cycle formation. The final section, Section 5.6, discusses how the nature
of CPTs can impact tree clustering inference.

5.1. Previous research and the C/V -ratio

For the problem of solving SAT instances, a phase transition phenomenon has been observed for the probability
of satisfiability [11,55]. This phase transition phenomenon has been studied by controlling the ratio C/V between
the number of variables V and the number of clauses C in a CNF formula, generating problem instances, and ex-
perimentally observing the resulting probability of satisfiability [55]. Through extensive experimentation it has been
established that for large 3CNF formulas the phase transition occurs for C/V ≈ 4.25. For smaller instances, the phase
transition is at higher C/V values. For example, for V = 20 the transition is at C/V ≈ 4.55. Interestingly, it has been
found that the computational cost of finding a satisfying instantiation is correlated with the probability of satisfiabil-
ity [11,55]. For instance, when using the Davis–Putnam algorithm to search for satisfying assignments, there is an
easy-hard-easy pattern for SAT. The hardest instances are found in the region around the phase transition, the hard
region, of the easy-hard-easy pattern [13,26,55,71].

The nature of the hardness pattern depends on the algorithmic approach investigated, as has been clearly recognized
for SAT [55]. Similar to the results for SAT, there is a need for investigations of synthetically generated BPART and
MPART networks using a BN inference algorithm such as HUGIN. This is what we do in this section. It should be
noted that we are not aiming to establish a phase transition exactly like the one established for SAT; rather our goal is
to develop an approach to systematically generate BNs of varying and predictable hardness.

5.2. A lower bound

In the BPART and MPART constructions, the C/V -ratio is controlled by varying the values of the input parame-
ters C and V .

Via the construction described in Section 4.3.2 and the discussion in Section 5.1, we hypothesized that the im-
portance of the C/V -ratio carries over to BPART BNs. Given the way we have generated the SAT-like networks
corresponding to generation of CNF formulas, we have mapped V to be the number of root nodes in a BN and C to
be the number of non-root nodes in the BN. When limiting our attention to SAT-like BNs, the problem is exactly the
same as the SAT problem, so one might on first thought expect very similar result. However, in previous work the
Davis–Putnam algorithm, a recursive splitting approach [30], was used [55]. The Davis–Putnam algorithm is quite
different from tree clustering algorithms including HUGIN. Consequently, while an easy-hard-easy pattern has been



O.J. Mengshoel et al. / Artificial Intelligence 170 (2006) 1137–1174 1157

observed for SAT formulas using Davis–Putnam [55], there is a different pattern for tree clustering.4 Our reasoning,
which is summarized below in Theorem 34, is based on the following definitions.

Definition 33 (Clique tree metrics). Let β ′′′ be a clique tree constructed from a BN β by tree clustering. The total size
of cliques containing only root nodes from β is defined as kR(β ′′′). The total size of cliques containing a mixture of
root nodes and non-root nodes from β is defined as kM(β ′′′).

Clearly, no cliques contain leaf nodes only, and thus k(β ′′′) = kM(β ′′′) + kR(β ′′′). For BPART in particular there
are two types of cliques: Cliques with root nodes only (with total size kR), and cliques with leaf nodes and root nodes
(total size kM ). The total size of cliques with root nodes only, kR(β ′′′), turns out to be important in the experimental
part of this article; we first focus on kM(β ′′′) below.

Theorem 34 (Lower bound). Consider a BN β with C non-root nodes, each with P � 0 parents. Let S = |ΩX| � 2
for all nodes X in β . Then, for β’s clique tree β ′′′, kM(β ′′′) � CSP+1.

Proof. Suppose the m mixed node cliques in the clique tree are enumerated from 1 to m. Let the number of root
nodes and non-root nodes in the ith such clique be denoted V (i) and C(i) respectively, where V (i) � P and C(i) � 1.
Clearly, SC(i)+V (i) � SC(i)+P � C(i)SP+1. The last inequality follows because it is easy to show, for S � 2, P � 0
and C(i) � 1, that SC(i)+P � C(i)SP+1. The total size is therefore

kM(β ′′′) =
m∑

i=1

SC(i)+V (i) �
m∑

i=1

C(i)SP+1 = SP+1
m∑

i=1

C(i) � CSP+1,

where the last inequality follows because
∑m

i=1 C(i) � C. �
An informal explanation of this result is as follows: By construction, each non-root node Ci in β has P parents

and each node in β has S states. Recall from Section 3.1 that as a result of moralization, a non-root node Ci and its
parents ΠCi

always end up in the same clique. After moralization, a given non-root node Ci will therefore belong
to a clique whose size is at least SP+1. As stated in Theorem 34, one can as a lower bound argue that this is true
for all C non-root nodes, thus the total size of β ′ after moralization is at least CSP+1. Since edges are potentially
added but never deleted in subsequent steps of tree clustering, CSP+1 is a lower bound for the total size k(β ′′′) of
the clique tree β ′′′. Clearly, this space complexity lower bound implies a time complexity lower bound of CSP+1 as
well. Given Theorem 34 and our focus on C/V , how may one make C/V increase? If we hold V constant, then C

needs to be increasing, and consequently CSP+1 increases. Therefore, the HUGIN compilation and propagation times
will typically increase, too. An argument for an easy-hard-harder pattern can therefore be made based on HUGIN’s
moralization step only, and considering all non-root nodes in BNs (including BPART and MPART BNs). In other
words, when considering moralization only, one would for tree clustering expect an easy-hard-harder pattern with
increasing C/V -ratio when V is kept constant and C is increased. This expectation is confirmed in experiments in
Section 6.

5.3. Only-child BNs

For a subclass of Class A BNs, namely only-child BNs (see Definition 36), we can show Hamiltonicity (see The-
orem 42). In preparation for that result, we introduce a few definitions that apply to BNs in general. Intuitively, two
BN nodes X and Y are q-siblings if they have q parents in common.

Definition 35 (q-siblings). Let q be a non-negative integer. Consider two nodes X and Y in a directed acyclic graph
(BN). If |ΠX ∩ ΠY | = q , then X and Y are q-siblings.

4 For Davis–Putnam, SAT formulas become easier with a very high C/V -ratio, C/V > 4.25, due to the overwhelming proportion of unsatisfiable
instances where the Davis–Putnam procedure encounters inconsistencies and can prune the search space. Suppose there is an inconsistency for a
BN when employing Davis–Putnam. When using tree clustering on the same BN, this inconsistency is not detected until during the propagation
phase, which is where the CPT values come into play.
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Based on the concept of q-siblings, the notion of “only (common) child” is introduced below. Informally, a node
X is an only-child node if its parents ΠX do not have any other children in common.

Definition 36 (Only-child). Let X be the nodes in a directed graph (BN). A node X is an only-child node if, for all
Y ∈ X − {X}, X and Y are k-siblings with k < 2, where k is a non-negative integer. A graph (BN) is an only-child
graph (BN) if all nodes are only-child nodes.

We hypothesize that the notion of only-child provides a good approximation to the BNs constructed by BPART
and MPART in the following sense: When the number of root nodes V is “large”, both BPART and MPART will
“often” construct a node that is an only-child, as long as the number of non-root nodes C is “not too large” compared
to V . Stated differently, a “high” proportion of the children will be only-children, given “reasonable” assumptions on
the number of non-root nodes and root nodes. We believe that these ideas can be further formalized, and leave this for
future work.

The notion of only-child is not, in general, valid in application BNs and we have not built the assumption into the
BPART and MPART algorithms either. However, the notion of only-child paves the way for a formal analysis based
on filtering of clique trees, which we now introduce.

Definition 37 (Filtering). Let β ′′′ be an undirected graph (X′′′,E′′′) that is a clique tree. The filtering of clique nodes
X′′′ using nodes V is defined as X′′′〈V 〉 = X′′′ ∩P(V ), where P(V ) is the power set of V .

Given a filtered set of nodes, one can construct an induced subgraph (Definition 5) of the clique tree β ′′′ as follows:
First, consider the tuple of clique tree nodes and edges (X′′′,E′′′) in β ′′′, and form Y ′′′ ← X′′′〈V 〉. Second, form
the induced subgraph Z′′′ ← β ′′′[Y ′′′] by using the clique tree nodes Y ′′′. This process, where we define β ′′′[V ] =
β ′′′[X′′′〈V 〉], is illustrated below. For simplicity we say, for example, V1V2C1 rather than {V1,V2,C1} to represent a
clique tree node containing the BN nodes V1, V2, and C1. The difference between Y ′′′ and β ′′′[Y ′′′] is that the former

Fig. 6. An example of compiling an only-child BPART BN. Only the subgraph induced by the BN root nodes, V , are shown for the moral graph,
the triangulated moral graph, and the junction (or clique) tree. This is an only-child BN because no leaf node Ci has, for all i �= j , more than one
common parent with another leaf node Cj . For instance, |ΠC1 ∩ ΠC2 | = |{V1,V3} ∩ {V2,V3}| = 1.
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is a set of nodes while the latter is a graph. In Example 38 the notions of only-child, induced subgraph, and filtering
are brought together.

Example 38 (Only-child BN). Fig. 6 shows a bipartite only-child BN β as well as the induced subgraphs β ′[V ],
β ′′[V ], and β ′′′[V ] of β ′, β ′′, and β ′′′ respectively. This is an only-child BN because no leaf node Ci has more than
one parent in common with another leaf node Cj for any i �= j . There is a loop (V5,V7,V6,V4,V2,V3,V1) in the
moral subgraph β ′[V ], which again causes fill-in edges (V5,V6), (V5,V4), (V1,V4), and (V1,V2) in the triangulated
subgraph β ′′[V ] and cliques as shown in the clique subtree β ′′′[V ].

In Example 38 there is a Hamiltonian cycle in the moral graph for the root nodes, which again causes four fill-in
edges and five cliques in the subgraph of the junction tree induced by the BN root nodes.

The notion of only-child is useful when we analyze how moralization affects the non-leaf nodes in a BN. In
particular, the only-child definition is used in the following theorem.

Theorem 39 (Degree of moralized only-child BNs). Let C be the non-root nodes in a BPART only-child BN β

(Definition 36), and let V be the root nodes. If P = |ΠC | � 2 for all C ∈ C, then any V ∈ V has degree d(V ) =
(P − 1)|ΨV | in the subgraph γ ′ = β ′[V ] of the moralized graph β ′ induced by V .

Proof. There are three cases: |ΨV | = 0, |ΨV | = 1, and |ΨV | � 2. For the first two cases, it holds true for V ∈ V

that d(V ) = 0 and d(V ) = P − 1 respectively and so the formula is correct. We now consider the case of |ΨV | � 2.
Since each C ∈ C has P parents, moralization ensures that each parent V ∈ ΠC has at most (P − 1) neighbors in the
moralized graph β ′ due to C. Consider arbitrary Ci,Cj ∈ C such that Ci,Cj ∈ ΨV , where i �= j . By assumption, each
C ∈ C is an only-child. Due to the assumed only-child property, (ΠCi

− V ) ∩ (ΠCj
− V ) = ∅ for any V ∈ V . Each of

Ci and Cj consequently give (P − 1) neighbors for V in the graph γ ′ = β ′[V ] induced by V in the moralized graph
β ′. This holds for any Ci,Cj ∈ ΨV , giving a total of d(V ) = (P − 1)o(V ) = (P − 1)|ΨV |. �

An example of applying Theorem 39 follows.

Example 40 (Degree of moralized only-child BNs). Consider Fig. 6 again, and in particular the subgraph γ ′ = β ′[V ]
induced by the BNs root nodes V = {Vi | 1 � i � 7}. (The second graph from the top in Fig. 6 is γ ′.) For all Vi ∈ V ,
d(Vi) = (P − 1)|ΠC | = 2 as predicted by Theorem 39.

5.4. Regular BNs

In BPART and MPART, setting R = true creates regular BNs. In this section, the focus is on how regularity
impacts cycles in the moralized graph of a BN. Long, undirected cycles (loops) in the moralized graph are one of the
main factors causing large maximal clique sizes. Consequently, a key question for tree clustering is the impact of the
moralization and triangulation steps in terms of cycles. We focus on the longest cycle as well as the extreme case of
cycles visiting all nodes exactly once, Hamiltonian cycles.

5.4.1. Regular Class A BNs
The issue of the regularity of the underlying graph of a Bayesian network has received some attention in information

theory [27,28,48]. Gallager’s original codes, which are denoted classical Gallager codes in Table 1, require each root
node to have the same number of children and each leaf node to have the same number of parents. They are therefore
of the Class A type [28]. Recently, a compelling argument has been provided for why lifting the Class A regularity
constraints may be beneficial when computing the MPE in BNs for decoding [48]. In particular, when using iterated
belief propagation to compute the MPE given a codeword transmitted over a noisy channel, irregular BNs have been
found to perform better than regular ones [29].

The intuition is that, using iterated belief propagation, high degree root nodes may tend to get quicker to the “right”
setting, given that they need to satisfy more constraints. This leads to a “wave effect” that helps lower degree root
nodes find their “right” setting. For belief propagation it is therefore beneficial to have a mixture of high-degree and
low-degree (“low regularity”) root nodes in information theory BNs. These observations raise the question of how BN
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regularity might impact tree clustering. In the following we provide further insight into this question by considering
cycle formation; some related work exists [29].

5.4.2. Regular only-child BNs
We now turn to cycle formation in the moralized graph of only-child BNs. Example 38 and Fig. 6 illustrate the

importance of Hamiltonian cycles. The following Hamiltonicity result by Jackson [36] is used below.

Theorem 41 (Hamiltonicity, Jackson). Let G be an undirected graph where all vertices have degree δ(G) = d(G) = k.
If d(G) � n(G)/3 then G is Hamiltonian.

In Theorem 42 we apply Theorem 41 to a BNs moral graph β ′.

Theorem 42 (Hamiltonicity of BPART only-child BN). Consider an only-child BPART BN β constructed with
R = true, let β ′ be the moralized graph of β , and let γ ′ = β ′[V ] be the subgraph in β ′ induced by the root nodes V

of β . If

(P − 1)

⌊
CP

V

⌋
� V

3
(16)

then γ ′ is Hamiltonian.

Proof. The theorem follows from Theorem 41, Corollary 18, and Theorem 39. Consider the subgraph γ ′ induced by
the root nodes V in the moralized graph β ′, γ ′ = β ′[V ]. Since β is an only-child BN it is known from Theorem 39 that
for a root node X ∈ V ′, where γ ′ = (V ′,E′), d(X) = (P − 1)|ΨX|. Due to the BPART BNs regularity, Corollary 18
applies and |ΨX| ≈ CP

V
. Consequently, each root node X from the BN has, in γ ′, the degree d(X) = (P − 1)�CP

V
� or

d(X) = (P − 1)
CP
V

�. For the purposes of this proof we drop edges for nodes with (P − 1)
CP
V

� edges, if any, thus

constructing γ ′′ where all nodes have degree d(γ ′′) = (P − 1)�C(P−1)
V

�. Since γ ′′ is a regular graph, we can apply
Theorem 41 with n(γ ′) = n(γ ′′) = V and obtain (16). �

We note how, for constant P , the ratio C/V plays a prominent role in Theorem 42, specifically in the expression
�CP

V
�. And, as the following example illustrates, the C/V -ratio does not need to be very high before a Hamiltonian

cycle is guaranteed.

Example 43 (Hamiltonicity of BPART only-child BN). Consider an only-child BPART network with C = 90, V =
30, P = 3, and R = true. In particular, consider the undirected graph γ ′ induced by the root nodes V in β , after
moralization to β ′. Using Theorem 42, we obtain (P − 1) �CP/V � = 18, while n(γ ′)/3 = 10, so a Hamiltonian
cycle is guaranteed.

There are cases where one might not be able to show that a Hamiltonian cycle must exist, but one can compute the
longest cycle c(γ ′) and apply the following theorem due to Dirac [23].

Theorem 44 (Longest cycle, Dirac). Let c(G) be the length of the longest cycle of an undirected graph G. If G is
2-connected then c(G) � min(n(G),2δ(G)).

The longest cycle is determined by the following result when the underlying BN β is of a certain type.

Corollary 45 (Longest cycle in BPART only-child BN). Consider an only-child BPART BN β constructed with
R = true, and let V be the root nodes in β . Further, let β ′ be the moralized graph of β , and consider γ ′ = β ′[V ], the
subgraph of β ′ induced by V . If γ ′ is 2-connected then

c(γ ′) � min

(
V,2(P − 1)

⌊
CP

V

⌋)
. (17)
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Proof. Theorem 44 applies with n = V = |V | and δ(G) � (P − 1)�CP
V

�; the result follows. �
Again, we see that the C/V -ratio is part of a lower bound (17), here for the longest cycle c(γ ′).

Example 46. Consider a 2-connected undirected graph γ ′ = β ′[V ] constructed, using tree clustering, from an only-
child BPART BN β created using input parameters R = true, P = 3,V = 30, and C = 60. In this case, Corollary 45
applies and the longest cycle is c(γ ′) = min(30,24) = 24.

While only the longest cycle c(γ ′) is mentioned in the corollary and example above, it is clear that there may be
several cycles, of varying length, in a moralized BN. Due to the limited number of root nodes V these cycles are likely
to interact, increasing the chances of fill-in edges, leading to larger cliques and larger maximal clique sizes.

5.5. Irregular BNs

So far, the role of the C/V -ratio in regular Class A BNs has been established. We now turn to irregular Class B BNs,
which are generated by setting R = false when invoking BPART and MPART. How do Class A regular (R = true)
BPART BNs compare to Class B irregular (R = false) BPART BNs, specifically with regard to the Hamiltonicity
of the moralized graph as induced by the root nodes of the BN? The following theorem addresses this question by
considering random variables Mi and Mr representing the minimal root node out-degree in the BPART irregular
and regular case respectively (see Section 4.3.4). Using expectations, we consider undirected graphs Gr and Gi , both
induced over the moralized graphs using the root nodes of the respective Class A and Class B BPART networks.

Theorem 47. Let V r and V i be root nodes for only-child BPART BNs α and β generated using R = true and
R = false respectively, and put Mr = min(V r ) and Mi = min(V i ). Let Gr = α′[V r ] and Gi = β ′[V i]. Further, for
b > 0, let d(Gr ) := bE(Mr ) and d(Gi ) := bE(Mi ) respectively and assume that there exist BPART input parameters
for any E(Mr ) where 0 � E(Mr ) < C. There exist BPART input parameter values (excluding for R) such that Gr is
Hamiltonian while Gi is not necessarily Hamiltonian.

Proof. For R = true, set the other input parameter values to BPART such that E(Mr ) = V
3(P−1)

, which according to

Theorem 39 gives d(Gr ) = V
3 . Using Theorem 41, Gr is Hamiltonian. For R = false, suppose that the same BPART

input parameters values are used as for the R = true case (except for R). Clearly, E(Mi ) < E(Mr ) and consequently
d(Gi ) < d(Gr ) and d(Gi ) < V

3 and as a result Gi is not necessarily Hamiltonian according to Theorem 41. �
Theorem 47 says that, for certain BPART input parameter values excluding R’s, the induced subgraph Gr con-

structed from a regular BPART BN is Hamiltonian, while there is no such guarantee for Gi constructed from an
irregular BPART BN.

The result above and the analysis in Section 4.3.4 suggest that regular Class A BPART networks are, for given
values of the input parameters excluding R, more likely to have cycles that need fill-in edges than irregular Class B
BPART networks. This again makes the inference problem harder for tree clustering in the Class A BPART case.
Further insight is provided by the experiments discussed in Section 6.4, where we consider the effect of regularity on
the hardness of tree clustering in terms of maximal clique sizes and inference times.

5.6. Hardness and conditional probability tables

To investigate the effect of different conditional probability tables (CPTs), we consider, as described in Sec-
tion 4.3.2, three CPT types: deterministic CPTs (or, and, and xor), uniform CPTs, and random CPTs. In the
BPART and MPART algorithms, CPTs are controlled using the Q and F input parameters.

The values of CPTs have, with a few notable exceptions discussed below, little significance during tree clustering’s
compilation phase, since this phase is primarily impacted by a BNs topology. The exceptions include the two tech-
niques of zero-compression and approximation, techniques that also take numerical CPT values into account [24].
These techniques are not used or investigated in this article; we leave this for future research. In the remainder of this
section, we focus on tree clustering’s propagation phase.
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5.6.1. Random root nodes and random non-root nodes
The nature of a BNs CPT impacts the number of MPEs, which we formally define as follows in the case of randomly

generated BNs.

Definition 48 (Number of MPEs). Let β be a randomly generated BN with MPEs X∗ = {x∗
1, . . . ,x

∗
u}. The number of

MPEs in β is defined as a random variable U = |X∗| = |{x∗
1, . . . ,x

∗
u}|.

For both BPART and MPART BNs with random CPTs there will be very few MPEs, typically one, or E(U) ≈ 1.
The reason for this is that it is very unlikely that two different explanations will have exactly the same probability,
when all conditional probabilities are sampled from a continuous distribution as is done when Q = random and
F = random. The existence of one MPE means that just one propagation in the clique tree β ′′′ is required. The time
required for one clique tree propagation increases with the C/V -ratio, on average, due to increased clique sizes, as
argued earlier in this section.

5.6.2. Uniform root nodes and deterministic non-root nodes
We consider now the case of uniform root nodes and boolean leaf or-nodes, or Q = uniform and F = or.

For these SAT-like BPART BNs there are lessons to be learned from the extensive research on SAT and constraint
satisfaction problems using search algorithms [11,13,26,71]. Specifically, an approximately log-linear relationship
between the C/V -ratio and the expected number of solutions E(U) has been empirically established, with for example
Ê(U) ≈ 1000 for C/V = 3 and Ê(U) ≈ 11.5 for C/V = 4.67 for the case of V = 24 variables and satisfiable problem
instances [71]. In other words, as the C/V -ratio increases the number of solutions decreases on average. While other
characteristics of search space structure, such as the size variability of global minima [26] and the decrease in the
number of local minima with the C/V -ratio [71] are important, it is clear that the drop-off in E(U) as a function of
the C/V -ratio is prominent.

For SAT-like BNs the number of MPEs would depend on the C/V -ratio exactly as for SAT. The propagation part
of the inference problem should thus be relatively harder for HUGIN belief revision to handle at low C/V -ratios since
repeated propagations are required to arrive at an MPE x∗ [50]. As the C/V -ratio is increased, a question is how the
resulting decrease in E(U)—suggesting decreased inference time due to fewer propagations—will interact with the
increase in inference time due to larger cliques in the clique tree. The experimental part of this article sheds light on
this question.

6. Experiments with hard and easy synthetic networks

In this section we report on experiments performed with the HUGIN system using BNs generated by implemen-
tations of the BPART and MPART algorithms. Different parameters, as presented in Section 4.3.1, that control the
nature of BNs generated by BPART and MPART have been varied in the experiments. Which parameters should
be systematically varied? Our main concern in answering this question is to make sure that inference hardness, in
terms of tree clustering’s maximal clique size, can be varied in an interesting fashion. Some of the parameters, such
as total number of BN nodes N = V + C and number of states per BN node S, are obviously tied to the complexity
of inference, and are somewhat less interesting. Other structural and distributional effects may not be as obvious and
are therefore the main focus in the experiments below. Specifically, we study the effect—on maximal clique size and
inference times—of varying the C/V -ratio, the graph regularity parameter R, and the CPT value parameters F and Q.

In the following, Section 6.1 outlines the methodology used. In Section 6.2, we present results from computa-
tional experiments that show how maximal clique size and inference time vary with the C/V -ratio for SAT-like
BNs generated using the BPART construction. Section 6.3 follows up on Section 6.2 and compares, using the
same BPART instances, the MINIMUMCLIQUEWEIGHT and MINIMUMFILLINWEIGHT triangulation heuristics.
Section 6.4 presents experiments for BNs of varying regularity, again for the BPART construction. Section 6.5 pro-
vides experimental results for the MPART construction—unlike for the other experiments we here used random
CPTs and also kept the total number of BN nodes constant.



O.J. Mengshoel et al. / Artificial Intelligence 170 (2006) 1137–1174 1163

6.1. Methodology

In the experiments reported here, we generated random samples of BN instances according to the BPART or
MPART constructions, ran the HUGIN system [24] on the samples, and recorded key clique tree characteristics as
introduced in Definition 10. In particular, we focused on the closely related statistics for maximal clique size � (5)
and maximal number of nodes in a clique h (3). Given the random generation of instances, these characteristics may
be considered random meta-variables, and we investigated maximal clique size L and number of nodes in a maximal
clique H, with corresponding sample statistics such as maximal clique size sample mean x̄L and maximal clique
size sample standard deviation sL.5 For tree clustering, the maximal clique size results obviously impact both belief
updating and belief revision since both rely on clique trees.

While we focus primarily on maximal clique size results, we also present some inference time results for belief
revision. Specifically, we present inference time statistics such as sample median m, sample mean x̄, and sample
standard deviation s for the time (in seconds) to compute an MPE x∗ ∈ {x∗

1, . . . ,x
∗
u}—all as a function of the C/V -

ratio. These results are, we believe, interesting in their own right and also upper bound the inference time for belief
updating. For the timing experiments, a Dell 410 700 MHz Pentium III CPU with 1 GB of RAM and using up to 9 GB
of swap space was used.

The number of parents of a non-root node was P = 3 in all experiments except for those reported in Section 6.5,
where non-root nodes have two parents, so P = 2. Note that state space sizes of cliques including � (6), “clique
sizes” for short, are given as numbers indicating memory requirements, where the amount of primary memory (RAM)
required for storage is implementation-dependent. For instance, an implementation of tree clustering might use a
double data type requiring 8 bytes, in which case the amount of RAM r needed to store a 24-node clique consisting
of binary (S = 2) nodes is r = � × 8 bytes = Sh × 8 bytes = 224 × 8 bytes = 128 MB.

We do not report on experiments with as large SAT-like networks as the propositional formulas used in earlier ex-
perimental research on SAT—see, for example, [55] or repositories such as SATLIB at http://www.satlib.org. HUGIN

was not able to process these large networks for non-trivial C/V -ratios. For the same reason, many of our results do
not approach or go beyond the region where C/V ≈ 4.25, even though this is the phase-transition region for SAT for-
mulas [55]. This is in line with our goal of constructing BNs for benchmarking and understanding BN computational
hardness rather than focusing on the C/V ≈ 4.25 phase transition. We should also note that HUGIN’s default settings
were generally used in these experiments. The MINIMUMFILLINWEIGHT triangulation heuristic was used, except in
Section 6.3. HUGIN’s default “off” settings were used for compression and approximation. As far as evidence for leaf
nodes, the default was to clamp binary nodes to 1 (or true).

6.2. BPART Class B networks: Hardness and the C/V phenomenon

What is the empirical impact, on maximal clique sizes and inference times, of varying the C/V -ratio when gen-
erating irregular (R = false) BPART BNs? In order to investigate this question, 800 SAT-like BNs were generated
using the signature BPART(uniform, or, 30, C, 2, false, 3), varying the number of leaf nodes from C = 60 to C =
102. In other words, the C/V -ratio was varied from C/V = 2.0 to C/V = 3.4. The leaf nodes were clamped to 1
during HUGIN inference. In Table 4, Fig. 7, and parts of Table 5, maximal clique size and inference time results from
these experiments are reported.

From the results and analysis provided in Table 4, we conclude that for BPART the maximal clique size increases,
on average, with the C/V -ratio. This is in correspondence with the theoretical results earlier in the article. Fig. 7
shows, using linear regression, how the number of nodes in the maximal clique varies with the C/V -ratio. This linear
regression result shows that for BPART, given the parameters used here, the sample mean number of nodes in the
maximal clique, x̄H, grows linearly with C/V -ratio. We obtain the following empirical expressions for the maximal
number of nodes in a clique h and maximal clique size �: h = 3.06 × C/V + 10.0 and � = 2h = 23.06×C/V +10.0. The
regression is statistically significant, with an R2 = 0.716, an F -ratio of 2013, and a p-value of 2.10 × 10−220. The
95% confidence interval for the slope of the regression line is (2.93,3.20).

Let us now discuss the inference time results presented in Fig. 7 and Table 5. The linear growth of x̄H and h

with C/V translates into exponential growth of x̄L and � with C/V . This exponential growth of � with C/V in turn

5 The term “meta-variable” is used to distinguish these random variables from the random variables or nodes making up the BNs themselves.
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Table 4
Experimental results showing statistics for BNs generated by the BPART algorithm with R = false (the irregular case), with V = 30 and C ranging
from 60 to 102. The number of nodes in and sizes of the maximal cliques are shown for instances with varying C/V ratios. The smallest maximal
clique contained h = 14 nodes (for 5 instances with C/V = 2.0), while the largest maximal clique contained h = 22 nodes (for 7 instances with
C/V = 3.4)

Maximal clique size C/V -ratio of BPART Class B (irregular) BNs

Nodes H State space L 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Total

14 16,384 5 1 6
15 32,768 26 7 33
16 65,536 48 28 10 1 87
17 131,072 19 37 35 23 10 2 126
18 262,144 2 23 41 50 33 10 7 1 167
19 524,288 4 13 20 41 46 30 16 170
20 1,048,576 1 6 14 41 42 39 143
21 2,097,152 2 1 20 37 60
22 4,194,304 1 7 8

Number of instances 100 100 100 100 100 100 100 100 800
Mean number of nodes x̄H 15.87 16.86 17.60 18.07 18.65 19.29 19.78 20.33 18.31
Mean size (in 1000s) x̄L 70.94 150.6 238.6 329.7 503.3 720.9 1,077 1,565 582.0

Fig. 7. These results are for Class B (irregular) BPART BNs with V = 30 root nodes and a C/V -ratio ranging from C/V = 2.0 to C/V = 3.4.
Left: The number of nodes in the clique tree’s maximal clique is plotted as a function of the C/V -ratio. In this scatter plot, points representing BN
instances as well as linear regression results are displayed. Right: In this graph of averages and medians, the MPE computation time sample means
x̄T and sample medians mT are shown.

explains the approximately exponential growth in inference times reported in Fig. 7. This result provides an empirical
answer to the question raised in Section 5.6: On the one hand, we recall that fewer propagations due to a decrease in
E(U) should cause a decrease in the total inference time. On the other hand, an increase in expected maximal clique
size E(H) should cause an increase in inference time. Clearly, the latter effect outweighs the former here.

We note, in Table 5, that the standard deviations si
T

for the inference times are substantial. The high standard
deviation is typical for this area of research and has been observed also for SAT [55,62,63]. Both Table 4 and Fig. 7
provide evidence for why the inference time standard deviation si

T
is substantial: Inference time clearly depends on the

maximal clique size L, which is exponential in the number of nodes in the maximal clique H. A change in H has an
exponential effect on L, which again has an approximately linear effect on inference time. In the column C/V = 2.0
in Table 4, H ranges from 14 to 18 giving a 28.6% increase from the smallest (H = 14) to the largest value (H = 18).
This causes L to range from 16,384 to 262,144, a 1500% increase from the smallest (L = 16,384) to the largest
(L = 262,144) value.
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Table 5
The effect of regular and irregular BPART BNs on HUGIN maximal clique sizes and computation times (in seconds) is shown. The following
sample statistics are presented for the regular case: median computation time mr

T
, mean computation time x̄r

T
, standard deviation for computation

time sr
T

, and mean maximal clique size x̄r
L

. Similar statistics are presented, with “i” superscripts, for the irregular case

BN parameters BPART Class A (regular) BNs BPART Class B (irregular) BNs Ratios

V C C/V mr
T

x̄r
T

sr
T

x̄r
L

mi
T

x̄i
T

si
T

x̄i
L

x̄r
T
/x̄i

T
x̄r
L
/x̄i

L

30 60 2.0 16.70 19.4 11.5 382.1 3.67 3.10 2.10 70.94 3.13 5.39
30 66 2.2 29.00 33.1 16.4 655.4 7.11 8.21 5.01 150.6 4.04 4.35
30 72 2.4 42.84 45.6 19.8 923.0 9.94 11.61 6.75 238.6 3.93 3.87
30 78 2.6 58.41 65.8 31.8 1,376 14.60 18.38 12.52 329.7 3.58 4.17
30 84 2.8 101.45 109.8 59.7 2,081 21.43 26.31 17.98 503.3 4.17 4.13
30 90 3.0 121.05 131.0 66.3 2,642 29.41 35.32 21.36 720.9 3.71 3.66
30 96 3.2 156.45 158.4 65.4 3,324 45.64 53.78 33.90 1,077 2.95 3.09
30 102 3.4 168.30 192.0 97.4 4,708 58.74 67.36 42.79 1,565 2.85 3.01

Table 6
Randomly generated BPART Class B instances, for V = 30 and C = 60, showing the seven instances with the smallest and largest maximal clique
sizes. A column contains, for the clique tree β ′′′

i
of a BN instance βi , the number of cliques it contains for different clique sizes. From a sample

of 100 BNs, the five columns β0, β12, β73, β89, and β92 present the BN instances with smallest maximal clique size � = 16,384, while the two
columns β6 and β80 present the BN instances with largest maximal clique size � = 262,144. Of these instances, β6 has the largest total clique size
k = 39,776, while β92 has the smallest total clique size k = 53,344

Clique size Clique trees for BPART Class B BNs, C/V = 2.0

Nodes h State space � β ′′′
0 β ′′′

12 β ′′′
73 β ′′′

89 β ′′′
92 β ′′′

6 β ′′′
80

4 16 60 62 61 60 60 60 60
5 32 2 1 3 3 1 1
6 64 2 1 2 1 1
7 128 2 4 1 3 4 2
8 256 1 2 2 2 2 1
9 512 2 1 2 3 2 2

10 1,024 1 1 1 1
11 2,048 2 1 1
12 4,096 2 1 1 1 2 2 2
13 8,192 1 3 1 1
14 16,384 2 4 4 4 2 2
15 32,768
16 65,536
17 131,072 1
18 262,144 1 1

Maximal clique size � 16,384 16,384 16,384 16,384 16,384 262,144 262,144
Total clique tree size k 61,056 75,840 81,200 99,138 53,344 439,776 284,192
Maximal number of nodes h 14 14 14 14 14 18 18
Maximal clique �

k
×100% (%) 26.8 21.6 20.2 16.5 30.7 59.6 92.2

Top three cliques (%) 60.4 64.8 60.5 49.6 76.8 93.1 96.6

Table 6 contains further details for the seven extreme instances listed in the column C/V = 2.0 in Table 4. Table 6
displays the five instances with smallest maximal clique size �(β0) = �(β12) = �(β73) = �(β89) = �(β92) = 16,384
and the two instances with largest maximal clique size �(β6) = �(β80) = 262,144. The following example illustrates
how total clique tree size k were distributed among kM and kR (Definition 33) for one of these example BPART
instances.

Example 49. Table 6 contains a BPART(uniform, or, 30, 60, 2, false, 3) instance β12. The total state space size
for the clique tree β ′′′

12 is given by k(β ′′′
12) = kM(β ′′′

12) + kR(β ′′′
12) = 75,840, where kM(β ′′′

12) = 60 × 24 = 960 and
kR(β ′′′

12) = 2 × 24 + 1 × 25 + · · · + 1 × 213 + 4 × 214 = 73,792.
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In terms of number of cliques in the above example, the cliques of size Si = 24 are clearly dominant, with qi = 60
cliques contributing towards kM(β ′′′

12): 60×24 = 960. However, in terms of impact on k(β ′′′
12), kR(β ′′′

12) and in particular
the maximal cliques of size Si = 214 are much more important, with contribution 4 × 214 = 65,536. Several points
can be made regarding these seven extreme instances. First, while most cliques have size |ΩH | = 16 as indicated by
the lower bound of Theorem 34, there is a strong heavy tail effect present, in particular in β6 with total clique size
k = 439,776 and in β80 with k = 284,192. The three largest cliques make up 93.1% and 96.6% of total clique size
in BNs β6 and β80 respectively. In fact, β80 is extreme; the size � of the largest clique is 32 times that of the second
largest clique. Clearly, whether cliques of size 217 and 218 are present (for β6 and β80) or absent (for the rest) has,
in this example, a dramatic impact on total clique tree size and thereby on variation in total clique tree size between
the different instances. This is a pattern that may in part explain the large standard deviations for inference times in
Table 5.

In related experiments, details of which are omitted due to space restrictions, the randomly generated BNs consisted
of V ∈ {20,30,35,40} root nodes, the number of leaf nodes C was varied from 40 to 140, and the C/V -ratio was
ranging from 2.0 to 4.0. The results were similar to what was reported above: As the C/V -ratio increased, the mean
inference time increased at an approximately exponential rate.

Stated qualitatively, our experiments confirm the hypothesis that a “high” C/V -ratio implies a “large” maximal
clique size which again implies a “long” inference time. There is a strong causal relationship from a high C/V -ratio to
a large maximal clique size. Of course, this is for the BPART topology, using certain ranges for the input parameters
of BPART, and for a particular tree clustering triangulation heuristic MINIMUMFILLINWEIGHT. In the next section
we turn to a more detailed study of triangulation heuristics.

6.3. BPART Class B networks: Triangulation heuristics

Here, we report on experiments with the MINIMUMCLIQUEWEIGHT triangulation heuristic. A first question is
whether varying the C/V -ratio has a similar impact when using the MINIMUMCLIQUEWEIGHT heuristic as was
observed for the MINIMUMFILLINWEIGHT heuristic in Section 6.2. In order to answer this question, additional
experiments were performed using the BPART Class B instances from Section 6.2, but this time compiled by tree
clustering using the MINIMUMCLIQUEWEIGHT heuristic. The maximal clique sizes resulting from this set of experi-
ments were analyzed using linear regression. The regression results for MINIMUMCLIQUEWEIGHT were statistically
significant, with an R2 = 0.695, a standard error of 0.906, and an F -ratio of 1822. This regression gives the following
empirical results for the maximal number of nodes in a clique h and maximal clique size �: h = 2.98×C/V +10.5 and
� = 2h = 22.98×C/V +10.5. The 95% confidence interval for the slope of h is (2.85,3.12) with a p-value of 3.3×10−208.
The 95% confidence interval for the intercept of the regression line is (10.13,10.89) with a p-value of 2.9 × 10−273.
These results show that the number of nodes in the maximal clique h grows linearly with C/V -ratio also when the
MINIMUMCLIQUEWEIGHT heuristic is used. This gives an exponential growth in � with implications similar to what
was discussed in Section 6.2 for MINIMUMFILLINWEIGHT.

A second question is whether MINIMUMCLIQUEWEIGHT and MINIMUMFILLINWEIGHT produce very different
maximal clique sizes. Comparing the respective regression lines, it is clear that MINIMUMFILLINWEIGHT is, on
average, slightly superior to MINIMUMCLIQUEWEIGHT for the C/V range considered here. One might ask whether
the difference is statistically significant. Out of the 800 BN samples, there were 525 instances in which the maximal
clique sizes were the same for the two heuristics, 231 instances in which the MINIMUMFILLINWEIGHT was better,
and 44 instance in which MINIMUMCLIQUEWEIGHT was better. Doing a paired comparison using the sign test, we
found a difference between the two heuristics at the 1% significance level; MINIMUMFILLINWEIGHT was indeed
better according to this statistical test.

6.4. BPART Class A networks: Hardness and graph regularity

What is the impact, on maximal clique sizes and inference times, of varying the C/V -ratio when generating
regular (R = true) BPART BNs? To answer this question and to complement our analysis of regularity, as presented
in Section 5.4, we created BNs using the BPART construction while varying the C/V -ratio, as earlier, but generating
Class A (regular) BNs. Specifically, the signature used for BN construction was BPART(uniform, or, V, C, 2,
true, 3). A similar signature BPART(uniform, or, V, C, 2, false, 3) was used to construct Class B (irregular) BNs
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Fig. 8. Tree clustering results for BPART BNs with V = 30 root nodes and C/V -ratios from C/V = 2.0 to C/V = 3.4 are shown. The plots reflect
both Class B irregular and Class A regular BNs. Left: The number of nodes in the maximal clique is shown as a function of the C/V -ratio. Data
points representing Class A regular BPART instances as well as regression results are displayed. The regression line for Class B irregular BPART
instances is also included. Right: The mean computation times (in seconds) is plotted as a function of C/V -ratio. Specifically, the sample mean x̄r

T

for the Class A regular BNs and the sample mean x̄i
T

for the Class B irregular BNs are shown for varying levels of the C/V -ratio.

Table 7
Experimental tree clustering results showing statistics for BNs generated using BPART with input parameters R = true (Class A regular case),
V = 30, and C ranging from 60 to 102. The number of nodes and size of the maximal clique is shown for varying C/V ratios. The smallest
maximal clique contains h = 16 nodes (for C/V = 2.0), while the largest maximal clique contains h = 23 nodes (for C/V = 3.4)

Maximal clique size C/V -ratio of BPART Class A (regular) BNs

Nodes H State space L 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 Total

16 65,536 3 3
17 131,072 14 4 18
18 262,144 44 16 10 1 71
19 524,288 31 44 31 14 1 2 123
20 1,048,576 8 36 48 48 28 13 3 3 187
21 2,097,152 11 36 57 53 45 17 219
22 4,194,304 1 14 31 48 57 151
23 8,388,608 1 4 23 28

Number of BN instances 100 100 100 100 100 100 100 100 800
Mean number of nodes x̄H 18.27 19.12 19.60 20.22 20.84 21.16 21.53 22.00 20.34
Mean size (in 1000s) x̄L 382.1 655.4 923 1,376 2,081 2,642 3,324 4,708 2011

in Section 6.2. The essential difference between the two signatures is that in the relaxed Class A regular case, each
root node has essentially the same number of children, while in the Class B irregular case, the number of children is
exactly distributed as b(C,P/V ) (see Theorem 20) and approximately distributed as b(CP,1/V ) (see Theorem 21).

Maximal clique size and inference time results for these experiments, where leaf nodes again were clamped to 1
during HUGIN inference, are presented in Table 5 and in Fig. 8. Table 5’s columns x̄r

L
and x̄i

L
summarize the bottom

rows of Tables 7 and 4, respectively. Table 7 presents in detail how the maximal clique size and number of nodes in
the maximal clique vary with the C/V -ratio.

Fig. 8 summarizes linear regression results, showing how the number of nodes in the maximal clique, x̄H, varies
linearly with the C/V -ratio. The regression gives these results for the maximal number of nodes in a clique h and
maximal clique size �: h = 2.59 × C/V + 13.4 and � = 2h = 22.59×C/V +13.4. The regression, which is based on 800
observations, is statistically significant, with R2 = 0.703, an F -ratio of 1893, and a p-value of 7.5 × 10−213. The
95% confidence interval for the slope of the regression line is (2.47,2.70). For the parameters used here, the result
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for h shows that for the BPART Class A construction, the number of nodes in the maximal clique grows linearly
with C/V -ratio. This linear growth of h explains, similar to what was discussed in Section 6.2, the approximately
exponential growth of � and increasing inference times.

Can we conclude that the maximal clique sizes for BPART Class A and Class B BNs are significantly different?
Comparing with the corresponding results for Class B BNs in Table 4, we note that the regular Class A instances
in Table 7 are skewed towards higher maximal clique sizes. A statistical t-test for two population means, assuming
unknown population means and variances, was performed for the maximal clique sizes of the Class A and Class B
samples. With t = 26.5, and critical values for t of 1.65 (one-tail) and 1.96 (two-tail), the null-hypothesis that the
two population means are equal, μi

L
= μr

L
, is rejected. This result, along with Table 7 and Fig. 8, sheds additional

light on the difference in computation times between Class A and Class B BNs. This result is also consistent with the
theoretical analysis in Section 5.4.

The regular BPART BNs on average required three to four times more time for computation compared to irregular
BPART BNs. More formally, consider the sample mean computation times for the regular case, x̄r

T
, versus the irreg-

ular case, x̄i
T

. From the ratios x̄r
T
/x̄i

T
one can easily determine that HUGIN consistently was faster on irregular than

on regular BNs: 2.85 � x̄r
T
/x̄i

T
� 4.17 in Table 5. The results for maximal clique size sample means, x̄r

L
and x̄i

L
, were

in line with the results for x̄r
T

and x̄i
T

. From the ratios between these sample means, x̄r
L
/x̄i

L
, we see that there was a

corresponding larger sample mean for Class A regular BNs than for Class B irregular BNs: 3.01 � x̄r
L
/x̄i

L
� 5.39 in

Table 5.
In summary, we have shown that regularity is a factor not only for iterated belief propagation when used on

information theory BNs [28,48], but also for tree clustering on closely related BNs. Confirming and adding detail to
the analytical results, we have shown empirically that regular Class A BNs are harder, on average, than irregular Class
B BNs due to their larger maximal cliques.

6.5. MPART Class B networks: Hardness and conditional probabilities

In Sections 6.2, 6.3, and 6.4 we reported results for BPART BNs. What happens if several of the parameters as
well as the topology are changed such that quite different BNs are generated? Is the C/V -ratio still important when
BNs are generated using the MPARTconstruction? These questions are investigated empirically in this section, using
a data set containing 800 MPART samples. The signature used to generate BNs was MPART(random, random, V,
C, 2, false, 2) with C ∈ {110, . . . ,156} and V = 256 − C, giving a C/V -ratio ranging from 0.75 to 1.56. Following
Kask and Dechter [41], we kept N constant, varied V , and determined C by setting C = N −V . The effect of this is a
non-linear change in the C/V -ratio as a function of change in C. Also note that there are P = 2 parents per non-root
node rather than P = 3 as used in the experiments above; other differences are that random CPTs were used and leaf
nodes were not clamped during inference.

Fig. 9 plots results in the form of individual data points—number of nodes in the maximal clique of a sample BN
as function of C/V -ratio—and also displays linear regression results. The following empirical results for h and �

were obtained: h = 17.7 × C/V − 5.87 and � = 2h = 217.7×C/V −5.87. The regression is statistically significant, with

Table 8
Inference times (in seconds) for a total of 800 BNs generated using the MPART construction are shown. Median computation time mT, mean
compilation time x̄C with standard deviation sC , mean propagation time x̄P with standard deviation sP , mean computation time x̄T with standard
deviation sT , and the mean size of the maximal clique x̄L are also presented

BN parameters Statistics for MPART BNs

V C V + C C/V mT x̄C sC x̄P sP x̄T sT x̄L

146 110 256 0.75 0.156 0.148 0.013 0.010 0.008 0.158 0.014 0.21
136 120 256 0.88 0.203 0.195 0.047 0.014 0.009 0.209 0.050 1.36
126 130 256 1.03 0.281 0.268 0.071 0.047 0.046 0.315 0.109 13.40
116 140 256 1.21 0.688 0.566 0.359 0.300 0.352 0.867 0.710 97.08
106 150 256 1.42 4.204 3.439 3.594 3.174 3.617 6.614 7.208 1,186
104 152 256 1.46 8.039 5.565 5.121 5.365 5.163 10.929 10.281 1,951
102 154 256 1.51 12.080 10.030 10.935 9.852 11.103 19.882 22.035 3,509
100 156 256 1.56 20.420 17.811 22.477 17.585 22.568 35.396 45.044 7,229
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Fig. 9. For BNs generated using the MPART construction, these plots display tree clustering results as function of C/V -ratio. Here, the C/V -ratio
ranges from C/V = 0.75 to C/V = 1.56. These results are for non-root nodes C ranging from C = 110 to C = 156, and for root nodes V ranging
from V = 146 to V = 100. Left: The number of nodes in the maximal clique is plotted as a function of the C/V -ratio. This scatter plot shows
BN instances as well as linear regression results. Right: The sample mean computation times x̄T and sample median computation times mT are
displayed in this log-plot.

Table 9
Experimental results for tree clustering on BNs generated using the MPART construction. Here, C + V = 256 for all C/V ratios, with C ranging
from 110 to 156 and V ranging from 100 to 146. The number of nodes in and sizes of the maximal cliques are shown for a number of instances for
varying C/V ratios. The smallest maximal clique contains h = 4 nodes (for C/V = 0.75), while the largest maximal clique contains h = 26 nodes
(for C/V = 1.56)

Maximal clique size C/V -ratio of MPART BNs

Nodes H State space L 0.75 0.88 1.03 1.21 1.42 1.46 1.51 1.56

4 16 1
5 32 9
6 64 25
7 128 32 3
8 256 17 17
9 512 12 23 3

10 1,024 3 29 7
11 2,048 1 18 18
12 4,096 7 18 4
13 8,192 3 31 3
14 16,384 7 10 1
15 32,768 8 26
16 65,536 7 22 4 1 1
17 131,072 1 23 11 4 3 1
18 262,144 10 22 10 9 3
19 524,288 1 18 16 10 7
20 1,048,576 1 25 33 21 17
21 2,097,152 10 21 21 22
22 4,194,304 5 9 20 20
23 8,388,608 4 4 9 18
24 16,777,216 2 5 5
25 33,554,432 1 4
26 67,108,864 3

Number of BN instances 100 100 100 100 100 100 100 100
Mean number of nodes x̄H 7.08 9.75 12.61 15.79 19.15 20.07 20.72 21.58
Mean size (in 1000s) x̄L 0.21 1.36 13.40 97.08 1,186 1,951 3,509 7,229
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an R2 = 0.908, an F -ratio of 7882, and a p-value of 0. The 95% confidence interval for the slope of the regression
line for h is (17.3,18.1). As before, the regression results show that h increases linearly with C/V -ratio, giving an
approximately exponential growth in � with the C/V -ratio. An approximately exponential growth in maximal clique
size � explains, to a large extent, the inference times reported in Table 8 and to the right in Fig. 9. Table 9 provides
further details on how statistics of the maximal clique size, including x̄H and x̄L, increase with the C/V -ratio.

The results for MPART were in many respects similar to the results for BPART. However, there was slightly
greater variation in the MPART case, as can be seen by comparing the sample standard deviations or by comparing
Tables 4 and 9. Also, the growth in maximal clique size and thus in computation time as a function of C/V -ratio
was in fact stronger for MPART than for BPART. This is clearly in part due to the different CPTs used, following
the discussion in Section 5.6. For MPART, CPT values were picked from a random distribution, giving just one
propagation, while for BPART multiple propagations were in general needed.

We also note that these MPART BNs are similar to the multipartite BNs investigated by Kask and Dechter [41].
They also randomly generated BNs with C/V � 0.75 and N = V + C = 256 nodes. For C/V � 0.75, our MPART
samples were relatively easy for HUGIN to solve on the average. For example, the highest C/V -ratio used by Kask
and Dechter, C/V = 0.75, had for MPART a sample mean inference time of x̄T = 0.1579 seconds (see Table 8, row
C/V = 0.75) and a maximal clique size sample mean x̄L = 210 (see Table 9, column C/V = 0.75). For MPART, the
largest maximal clique size in the C/V = 0.75 subsample is � = 2,048. When using MPART BNs with C/V � 0.75
in experiments with other algorithms, one should keep in mind that these BNs are in fact relatively easy for HUGIN to
solve on average. On the other hand, with C/V � 1.50 these MPART BNs are typically quite challenging.

7. Conclusion and future work

The performance of Bayesian network (BN) inference algorithms has in previous research been empirically evalu-
ated using BN instances from applications. To complement such experiments, randomly generated BNs have also been
used [7,17,34,41,56,69,70]. We believe that a certain amount of care is required when randomly generating BNs. The
generation algorithms need to provide “knobs” for controlling the difficulty of the generated instances. The synthetic
BNs need to be idealized, to support analysis, but at the same time they also need to be somewhat realistic and relevant
to applications.

We have developed, based on previous research, a paradigm for systematically generating increasingly hard random
instances for BN inference. One of the classes of BNs, the bipartite BPART networks generated by the BPART
algorithm, extends research on generating hard instances for satisfiability problems [55]. Here, we have exploited
the relationship between computing an MPE and finding a satisfying assignment of a corresponding CNF formula to
construct hard instances for the MPE problem. These BPART networks are also similar in structure to application
BNs from medicine [67] and information theory [27,28,49], and our results should be relevant to these two areas of
research. The other class of BNs, the MPART networks, is closely related to an approach of Kask and Dechter [41].
For these MPART networks we have analyzed the relationship to the BPART BNs.

Different algorithms for BN inference in general and MPE computation in particular have been investigated using
our experimental paradigm [51]. In this article, we have focused on the HUGIN tree clustering algorithm [2,37,39,46].
HUGIN is one of the best probabilistic inference algorithms available, and using this algorithm, and systematically
varying some structural and distributional parameters of the synthetic Bayesian networks, we have shown how HUGIN

inference is impacted. In particular, we randomly generated BNs by using the BPART and MPART algorithms and
varying these parameters:

• the ratio C/V of the number of non-root nodes, C, to the number of root nodes, V , in the BN,
• the regularity structure of the BN’s underlying graph, and
• the conditional distribution tables (CPTs) of the nodes in the BN.

We have carefully studied how these parameters impact inference hardness, expressed in terms of maximal clique
size or inference time, in tree clustering. We identified, for HUGIN, an easy-hard-harder pattern for both the BPART
and MPART networks. For both classes, generating random networks can result in very easy instances. On the other
hand, by carefully varying parameters along certain dimensions, one can construct BNs that existing tree clustering
algorithms cannot handle. Specifically, we have found that the C/V -ratio, through its impact on maximal clique size,
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is an indication of the inferential hardness of the network under suitable structural and parametric assumptions. As the
C/V -ratio grows, even when fixing the number N = C + V of nodes in the network, the inference problem becomes
harder, on average, due to an increasing maximal clique size. We now summarize our results in more detail.

Four structurally distinct classes of BNs were identified in this article—Class A, Class B, Class C, and Class D
BNs—of which we more closely investigated Class A (regular) and Class B (irregular) BNs. For Class B irregular
BPART BNs, our analysis showed an easy-hard-harder pattern with increasing C/V -ratio. Through regression analy-
sis, a linear relationship was established between the C/V -ratio and the mean number of nodes in the maximal clique,
giving an approximately exponential growth in maximal clique size which was also reflected in HUGIN tree clustering
inference time. Results were similar for tree clustering’s MINIMUMFILLINWEIGHT and MINIMUMCLIQUEWEIGHT

triangulation heuristics, with the former being slightly but significantly better in terms of optimizing maximal clique
size.

A second structural parameter we considered, again using the BPART construction, was the regularity of the
underlying graph of the BN. Our analysis showed that regular Class A BPART BNs should be harder than irregular
Class B BPART BNs, and this expectation was confirmed in experiments. A regression analysis exhibited exponential
growth in maximal clique size as a function of C/V -ratio, similar to the irregular case. We also showed experimentally,
while keeping other parameters of the generated networks fixed, that maximal clique size sample means were from 3.0
to 5.4 times greater for Class A BNs compared to Class B BNs. These results also shed new light on the computational
benefit of irregularity in information theory BNs [27,28,48].

Our studies with MPART used quite different input parameters for BN sample generation. Still, the regression
results bear resemblance to BPART’s regression results. There turned out to be approximately linear growth in the
mean number of nodes in the maximal clique as a function of C/V , giving an approximately exponential growth in
maximal state space size, from which one can expect an approximately exponential growth in inference times. In fact,
the graph of averages showed slightly stronger than exponential growth. It also turned out that previous work with a
similar class of BNs, using C/V � 0.75 [41], correspond to a relatively easy region of the MPART distribution.

Since the complexity of most exact Bayesian network inference algorithms—including tree clustering algorithms,
conditioning algorithms, and elimination algorithms—depend on treewidth or optimal (minimal) maximal clique size
[5,17,20,21], we believe that our results are of interest to researchers investigating exact Bayesian network inference
algorithms. Our empirical results are limited by the fact that we employed the suboptimal MINIMUMFILLINWEIGHT

and MINIMUMCLIQUEWEIGHT triangulation heuristics; however due to the hardness of BN inference problems [1,
14,60,66] and the widespread adoption of these and similar heuristics we believe that our results are of significant
interest.

In addition to showing some interesting aspects of HUGIN and the tree clustering approach, we believe this line of
research to be essential so that valid experimental evaluation of other algorithms can be performed. For instance, in
related work we have used BPART and MPARTnetworks to benchmark stochastic local search and have found strong
dependence of inference time on the C/V -ratio, qualitatively similar to the results reported here [51,53]. The approach
of constructing synthetic BNs has guided us in developing a stochastic local search approach to the point where it
outperforms HUGIN on certain synthetic instances as well as on certain application BNs [51,53]. Similar research
would help in developing a better understanding of different algorithms under varying conditions. In particular, our
results can be used by other researchers to focus their work on areas in the space of Bayesian networks where we
found time- or space-consumption to be relatively high for tree clustering.

This research can be extended in several other directions. It is important to develop a better understanding of other
dimensions (beyond C/V , regularity and different CPT types), intermediate cases, and other inference algorithms.
While we have studied extreme cases in a few dimensions, it is essential to perform similar studies for other dimen-
sions. Other important areas include improved analytical models for clique tree cluster formation and growth, loop
formation, interactions between loops, and the placement of fill-in edges in the moral graphs induced by BNs. Improv-
ing the understanding of the relationship between synthetically generated networks and networks from applications
would also be a natural extension of this research.
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