
Carnegie Mellon University

From the SelectedWorks of Gabriel A. Moreno

November, 2010

Designing for Incentives: Better Information
Sharing for Better Software Engineering
Mark Klein, Software Engineering Institute
Gabriel A. Moreno, Software Engineering Institute
David C. Parkes, Harvard University
Kurt Wallnau, Software Engineering Institute

Available at: https://works.bepress.com/gabriel_moreno/18/

http://www.cmu.edu/
https://works.bepress.com/gabriel_moreno/
https://works.bepress.com/gabriel_moreno/18/


Designing for Incentives: Better Information Sharing for
Better Software Engineering

Mark Klein
Software Engineering Institute

Carnegie Mellon University
Pittsburgh PA 15213

mk@sei.cmu.edu

Gabriel A. Moreno
Software Engineering Institute

Carnegie Mellon University
Pittsburgh PA 15213

gmoreno@sei.cmu.edu

David C. Parkes
Harvard SEAS,

Cambridge MA 02138

parkes@eecs.harvard.edu

Kurt Wallnau
Software Engineering Institute

Carnegie Mellon University
Pittsburgh PA 15213

kcw@sei.cmu.edu

ABSTRACT

Software-reliant systems permeate all aspects of modern so-
ciety. The resulting interconnectedness and associated com-
plexity has resulted in a proliferation of diverse stakeholders
with conflicting goals. Thus, contemporary software engi-
neering is plagued by incentive conflicts, in settling on de-
sign features, allocating resources during the development
of products, and allocating computational resources at run-
time. In this position paper, we describe some of these
problems and outline a research agenda in bridging to the
economic theory of mechanism design, which seeks to align
incentives in multi-agent systems with private information
and conflicting goals. The ultimate goal is to advance a prin-
cipled methodology for the design of incentive-compatible
approaches to manage the dynamic processes of software
engineering.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management

General Terms

Economics, human factors

1. INTRODUCTION
The practice of software engineering typically involves mul-

tiple communities of interest, and requires that delicate trade-
offs be struck involving resource allocation and design deci-
sions, and involving compromises between various stakehold-
ers. Software engineering is a very people-intensive disci-
pline [4, 17]. Despite being also a highly technical discipline,
most project failures in software engineering are not due to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright ©2010 ACM and Carnegie Mellon University
978-1-4503-0427-6/10/11 ...$10.00.

technology issues but to people issues such as poor project
management [11], and conflicting stakeholder interests [7].
Members of these communities are quite naturally driven by
numerous forms of self-interest; promotion, salary increases,
profit sharing, recognition, and technical inquiry and discov-
ery are several examples. Mechanism design (MD), which
aims directly at promoting truthful information sharing for
the purpose of coordinated decision making, is ideally suited
to these types of issues. The challenge is to adapt the theo-
retical framing provided by MD to the practice of software
engineering.

Much of software engineering has typically been done in
a value-neutral way [3].1 It is only recently, and in recogni-
tion that the ultimate goal of software engineering is to de-
liver value to different stakeholders, that a research agenda
of Value-Based Software Engineering (VBSE) has been ad-
vanced [3, 2]. VBSE seeks to integrate value considerations
into the software engineering practices.

But VBSE does not directly address the challenge of strate-
gic behavior, and the assumptions that stakeholders will be
able to cooperatively negotiate may break down in cases
of stakeholders with conflicting interests [8]. For example,
users may want better performance whereas other stakehold-
ers may want to reduce the cost. Furthermore, stakeholders
often have information that affects decisions that they care
about [9], and there will then exist an incentive to misreport
this information.

In this paper, we outline a number of the incentive prob-
lems that arise in this multi-faceted process of software en-
gineering. Our aim is to make the connection with mecha-
nism design, which seeks system-optimal outcomes through
the careful alignment of incentives. Ultimately, we seek to
advance the following challenge problem:

Develop incentive-aligned software engineering processes
such that stakeholders will choose to participate in continual
and truthful information sharing that will lead to decentral-
ized but optimal decision making.

Mechanism design provides a toolkit for eliciting prefer-

1For instance, so-called “earned value analysis,” a method
for tracking project progress, is based on the cost of project
resources consumed relative to schedule and not on the value
of the current developed features to the customer.



ence information from self-interested agents, in order to sup-
port useful system-wide decisions [10]. But it is no panacea.
A significant research effort will be required by the sci-
entific community if robust tools, based around the theo-
ries of MD, are to have an impact on software engineering.
Progress may also require a significant re-engineering of de-
velopment processes, for instance through the wider adop-
tion of performance-based pay and through steps to sustain
competition throughout development processes.
By way of illustration, we include a simple example of

a method by which an incentive payment scheme can pro-
mote truthful information sharing about the resource re-
quirements for different technical features in a product. In-
centive considerations come into play because of joint con-
straints on the resource profile of a developed product and
different teams jockeying to get their own best-of-breed tech-
niques into the product.
Other than this, our main focus is given to explaining

some of the research problems that exist in making progress
on this grand challenge facing our field. These problems
arise because of the complexity of managing the process of
software engineering, which is inherently dynamic, uncer-
tain, and with interconnected decisions.

1.1 Related Work
A small literature exists on market-based approaches to

problems of design, both from the perspective of propos-
ing conceptual frameworks for thinking about design and
in terms of supporting a decision-making process. For ex-
ample, Wellman [18] studies a computational market model
for “design economies” in which design problems are formal-
ized as problems of constrained optimization and solved via
market-based algorithms. The computational market could
in principle be extended to represent the preferences of mul-
tiple stakeholders, but was studied only in the context of a
single customer and thus one set of preferences and avoid-
ing the need to address any incentive challenges. Parunak et
al. [15] introduced the MarCon algorithm for the support of
a design process between multiple human product designers,
but without providing any formal incentive properties. Both
papers contribute the framing of preference elicitation and
constrained optimization, but consider only static problems
in which participants commit to a one-time decision about
the design of an engineering artifact.

2. WHY WORRY ABOUT INCENTIVES?
Software engineering problems are traditionally situated

within an organizational structure that consists of multiple
communities of interest, whose interests are collected by a
development organization, which in turn delegates the job of
developing parts of the system to suborganizations. In what
follows, we will often associate the communities of interest
with product consumers (PCs), the development organiza-
tion with product managers (PMs) and the suborganizations
with product producers (PPs). We consider in turn some of
the incentive conflicts that arise between competing subor-
ganizations, competing communities of interest, and then
taking both considerations together.

2.1 Competing Suborganizations
A single development group is tasked to develop a prod-

uct. The group is led by a chief architect (PM) who needs to
elicit technical information from the experts (PPs) who work

for her. The chief architect is responsible for making opti-
mal tradeoff decisions, considering the available resources
(e.g., staff hours, or competition for CPU between different
features) and the effect on the overall value of the product.

For example, one PP may be a security expert and an-
other a video expert. In this case, the feature set, which
is the set of possible features that could be included in the
design, would comprise various levels of security and video
quality. The CPU usage at run-time may be the constrained
resource, with higher levels of security or higher video reso-
lution requiring a larger share of CPU utilization.

To model this, we associate the PM with a value function
for the developed product that depends on the combination
of feature levels, with vpm(y) ≥ 0 denoting the value for
different feature levels y = (y1, y2), with y1 ∈ Y1 and y2 ∈ Y2

denoting the levels of features 1 and 2 respectively (and Y1

and Y2 denoting the possible feature levels). Let F denote
the set of feasible resource allocations to features 1 and 2,
so that x = (x1, x2) ∈ F indicates the resource allocated to
each of features 1 and 2.

For each PP, i ∈ {1, 2}, there is a technology production
function, yi(xi) ∈ Yi, which defines the feature level achiev-
able given resource allocation xi. Given this, the design
objective is to allocate resources (and thus select a design)
to maximize the total value of the product:

arg max
(x1,x2)∈F

vpm(y(x)),

where y(x) = (y1(x1), y2(x2)). The PM must make a trade-
off across different feature levels in achieving a product that
meets resource constraints while optimizing end value. The
challenge is that we assume that the technology production
function is private to the PPs.

One way in which incentive issues may arise is when each
PP has an intrinsic value for the technical quality of work
performed, and thus the feature level selected in the opti-
mal design. Based on this, a PP might benefit from over-
representing the resource requirement for a less interesting
feature level in order to promote the selection of a more so-
phisticated feature level for the product. Alternatively, a PP
might overstate the required resources in order to be given
an easier task and to be able to shirk work.

For a related example in the context of software devel-
opment across organizational boundaries, we can consider a
contractor (PM), who is tasked to develop a product and
subcontract to development organizations (PPs). Each sub-
contractor has private information about its expertise and
costs, while the contractor wants to allocate budgetary re-
sources to maximize the value of the final product.

2.2 Competing Communities of Interest
Turning to the question of different communities of inter-

est, consider now a single product that is being developed
by a firm (PM) with multiple end customers (PCs), each of
whom wants a product with a specific set of features.

It stands to reason that each community of interest can
stand to benefit by overstating the importance of certain
features, while understating the importance of other features
that will be requested in any case by another community.
To model this, we can think about two PCs, j ∈ {1, 2},
each with a different value vj(y) ≥ 0 for feature levels y =
(y1, y2). Given a finite budget for any given product release,
the PM must select feature levels that maximize joint value
while remaining on budget. Let B denote the set of feasible



feature levels, such that the project will remain in budget.
Given this, one design objective is to select feature levels
that maximize the total value of the PCs:

arg max
(y1,y2)∈B

v1(y) + v2(y)

In the case that the budget constraint is private, the PM
may also face a strategic decision in deciding how forthcom-
ing to be in revealing the possible tradeoffs.
For a related example within a single organization, we can

consider a contractor (PM) who is developing a single prod-
uct to serve multiple communities of interest (PCs) within
the organization. Joint programs in the U.S. Department
of Defense are examples of this situation. For example, the
Joint Tactical Radio System (JTRS) has the mission of de-
veloping a family of interoperable software defined radios
for the Joint Forces (Army, Marine Corps, Navy, and Air
Force) [12]. The existence of diverse requirements is one
reason why these projects are difficult to complete on bud-
get and on time and with a feature set that is effective in
meeting the needs of stakeholders [5].

2.3 Competition from Both Sides
In general, we see competition amongst both suborganiza-

tions and communities of interest in a single software engi-
neering project. For example, a PM within one firm may
consider the demand for features from each of multiple mar-
ket segments while simultaneously handling the technical
wishes of competing development teams. Similarly, a con-
tractor may be trying to balance the competing require-
ments from upstream communities of interest and the com-
peting capabilities and interests of downstream subcontrac-
tors. Now the incentive conflicts are between all parties,
with the product manager or contractor needing to elicit
missing information and reconcile the possibly misaligned
requirements of many different stakeholders. An additional
challenge is that a typical software engineering process is dy-
namic, with decisions made and refined continually as new
information comes to light about technical difficulties and
revised requirements of customers and other groups.

3. ILLUSTRATION: INCENTIVE DESIGN

FOR COMPETING SUBORGANIZATIONS
Consider again the allocation of the fraction of a shared

CPU resource for the use by competing video and security
features. With more resource allocated to video, the PP
representing the video technology can deploy a more sophis-
ticated form of video processing technology.
Table 1 shows the PM’s value for different possible video

and security levels. Table 2 shows the production functions
of each PP. The minimal resource requirements, as indicated
in bold, are assumed to be known to the PM. But otherwise
the technical data in regard to video and to security is pri-
vate to the video and security PPs, respectively. The opti-
mal design, denoted y∗ = (y∗

1 , y
∗

2) will allocate 0.5 CPU to
each feature, providing M-level video and 512-level security
and a value for the PM of 85.
We will assume that it is possible to provide payments

to each PP that depends on the value of the final product
developed and the incremental value that is contributed by
the PP.
A first idea is to make payment vpm(y∗)− vpm(y0

i , y
∗

−i) to
each PP i, where y0

i is the minimal feature level associated

Table 1: PM’s value function
security

128 256 512 1024

video
L 20 40 60 65
M 45 65 85 90
H 55 75 95 100

Table 2: PPs’ technology production functions

CPU video

0.3 L
0.5 M
0.7 H

CPU security

0.1 128
0.3 256
0.5 512
0.7 1024

with PP i. This payment is the amount by which the PM’s
value is greater under the optimal solution (which benefits
from the expertise of PP i) than when y∗

i is substituted
for the feature level achieved when i receives its minimal
resource level. Notation y∗

−i simply means the feature level
selected by the other PP (i.e., by the PP other than PP i.)

But this leads to an incentive problem whereby each PP
will seek to contribute a higher-level of its own feature than
is optimal overall, for example by overstating the resource
requirements of simpler feature levels. When reporting true
technology functions, the payments are 25 (=85-60) and 40
(=85-45) to the video and security PPs respectively. How-
ever, the video PP can misreport her production function,
and claim that M-level video requires 0.6 CPU. In this case,
the optimal allocation would be (0.7,0.3) CPU to video and
security respectively, with a reduced total value for the PM
of 75. On the other hand, this is effective for the video PP,
who obtains a higher payment of 35 (=75-40).

There is a well-known solution to this problem. One can
use the payment of the Vickrey-Clarke-Groves (VCG) mech-
anism [10] to align incentives by providing transfer:

vpm(y∗)− vpm(y0
i , ŷ−i),

where ŷ−i is the optimal feature level for the other PP given
that y0

i is adopted for PP i. That is, rather than receiv-
ing payment equal to the additional value contributed while
fixing the feature level associated with the other PPs, the
payment is equal to the additional value for the design com-
pared to the design that would be picked if the level associ-
ated with PP i was the minimal level.2

The effect on the example is that the payments, when
truthful, are 20 (=85-65) and 30 (=85-55) to the video and
security PPs respectively. Now, if the video PP misreports
her production function as before, then she would be hurt
by a reduced payment of 10 (=75-65).

4. THE RESEARCH CHALLENGE
Making design and resource allocation decisions requires

sharing information that is privately held by different stake-
holders. For a developer, this information includes the cur-

2To see that this aligns incentives, notice that the second
payment term vpm(y0

i , ŷ−i) is independent of anything re-
ported by PP i, while the first term aligns agent i’s incentives
with maximizing the overall value vpm(y) of the product. To
achieve this, a PP i should report the true technology pro-
duction function whatever the report by the other PP.



rent state of progress towards achieving functional and qual-
ity goals and beliefs about the probability of achieving those
goals by different dates, and about the responsiveness of
these estimates to additional resources or changes to the re-
quirements. For a program manager, this includes the cur-
rent state of resource allocation (e.g., developer time, frac-
tion of CPU, etc.) and beliefs about the probability with
which the availability of resources will change during the
lifetime of the project, including the probability of competi-
tion for resources with other projects. For a customer, this
includes the current estimate of expected value for different
combinations of features and also beliefs about the probabil-
ity with which these requirements will change as the product
is developed and the customer’s understanding of different
features and actual needs is refined.
Success in applying the methods of mechanism design to

software engineering will require that we are able to craft
simple ways to elicit this kind of information from differ-
ent stakeholders. Success will also require the adoption of
outcome-dependent payment schemes, along with new gov-
ernance methods. Finally, success will require a new willing-
ness to retain competition across different development or-
ganizations for the bulk of development, rather than having
a single competitive tender that quickly whittles the field
down to a single developer. This, in turn, will lead to an
increased emphasis on open standards so that different or-
ganizations can fluidly switch in and out of a project.
In adopting mechanism design to facilitate effective coor-

dination in software engineering, we will also need progress
on the following technical research problems:

Problem 1. Handling PPs with intrinsic values while
respecting payment norms in organizations. For example, a
PP could associate value with building best-of-breed compo-
nents. The existence of private information on both sides of
a market, for example with PPs and PMs both having value
functions for different feature levels, takes the VCG mecha-
nism off the table. This is because it may require payments
from PPs to the PM, rather than in the other direction. But
it seems unnatural for payments to be made in this direction,
except perhaps when the PPs are independent contractors
and looking for tasks in order to gain experience and/or rep-
utation. For example, suppose that there are levels L and
H for feature 1 and the values are (0,20), (5,5) and (15,10),
for level L and H for each of the first PP, second PP and
the PM respectively. The optimal decision is level H, with
total value 35. In the VCG mechanism, the first PP would
be asked to make a payment of 5 for its influence on this
outcome. This is the smallest z ≥ 0, for report (0, z), that
it could make and still have the choice be H instead of L.

Problem 2. Handling complex value interdependencies
between the features of multiple modules while retaining sim-
ple methods for expressing preferences. Software engineer-
ing often has to deal with interdependencies between fea-
tures provided by different components, where the value of
a feature depends on the features provided by another com-
ponent, and vice versa (e.g., authentication and authoriza-
tion). This provides additional complexity because coordi-
nated decision making is required across components, based
for example on value statements by developers for the fea-
tures provided by their own module and by other modules.
It seems likely that the modularity that is essential in de-
veloping manageable and robust code bases is useful here;
e.g., in allowing succinct representations of the valuations of

different modules (since the value may only depend in a de-
tailed way on the spec of a small number of other modules.)
But it is clearly a major challenge to develop simple, yet ex-
pressive methods by which developers can share information
about value interdependency between modules.

Problem 3. Handling uncertainty and dynamics: en-
abling continual information sharing throughout the software
engineering process. Software engineering is a dynamic pro-
cess. Decisions are made and continually refined as new in-
formation comes to light about requirements, technical diffi-
culties, and competencies of core team members. In fact, an
important consideration in estimating the value of a module
is the extent to which it enables experimentation and creates
the option of changing its internal details in the future [16].
Although traditionally developed for static systems with one
time decision making, MD has been extended in recent years
to promote continual information sharing and decision mak-
ing in dynamic systems [13, 14, 6, 1]. On the other hand,
there remain many outstanding research problems in ex-
tending these methods so that they scale to the complexity
presented by software engineering processes. For example,
methods that extend the VCG mechanism to dynamic con-
texts rely on correct probabilistic models (e.g., about how a
customer’s requirements might change, or how long a partic-
ular task might actually take to complete). These methods
also rely on being able to compute an optimal decision policy
within the confines of these probabilistic models. But the
problems can quickly become intractable due to the curse of
dimensionality that affects multi-faceted systems with the
kinds of interactions between different modules that exist in
software engineering. In addition, another source of value
could be allowing team members to gain new skills through
doing new things, or promoting the design of modules for
reuse, so that a decision that considers only the needs of a
current project can be overly myopic.

5. CONCLUSION
In this paper we have presented different incentive issues

that arise, both within and across organizations, because of
the competing interests of the multiple stakeholders involved
in the process of software engineering. These problems will
continue to increase in the future due to the ever increasing
interactions between development organizations, consumers,
and systems. We take as self-evident the commercial impor-
tance of developing effective methods by which to coordinate
the process of software engineering, along with the obvious
failings of current practice.

Mechanism design provides a framework and a set of re-
sults that, in theory at least, seem suitable to achieving
continual, truthful sharing of information for the purpose
of coordinated and adaptive decision making. But the re-
search challenge that faces the community is large: not only
will ultimate success require continued progress in the the-
ory of mechanism design, but ultimate success will also de-
pend crucially on the ability to develop productivity and
decision-support tools that succeed without placing overly
onerous requirements on developers, program managers, and
customers in explaining the kinds of information that is cur-
rently held private and only selectively revealed.

6. REFERENCES

[1] D. Bergemann and J. Välimäki. Efficient dynamic



auctions. Technical Report Cowles Foundation
Discussion Paper No. 1584, Yale University, 2006.

[2] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and
P. Grünbacher, editors. Value-Based Software
Engineering. Springer-Verlag, 2006.

[3] B. Boehm. Value-based software engineering. ACM
SIGSOFT Software Engineering Notes, 28(2):3, 2003.

[4] B. Boehm and R. Ross. Theory-W software project
management principles and examples. IEEE
Transactions on Software Engineering, 15(7), 1989.

[5] M. M. Brown, R. M. Flowe, and S. P. Hamel. The
acquisition of joint programs: The implications of
interdependencies. CrossTalk: The Journal of Defense
Software Engineering, pages 20–24, May 2007.

[6] R. Cavallo, D. C. Parkes, and S. Singh. Efficient
mechanisms with dynamic populations and dynamic
types. Technical report, Harvard University, 2009.

[7] T. DeMarco and T. Lister. Risk management during
requirements. IEEE Software, 20(5), Sept.-Oct. 2003.

[8] P. Grünbacher, S. Köszeqi, and S. Biffl. Stakeholder
value proposition elicitation and reconciliation. In
S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and
P. Grünbacher, editors, Value-Based Software
Engineering, pages 133–154. Springer-Verlag, 2006.

[9] M. Halling, S. Biffl, and P. Grünbacher. The role of
valuation in value-based software engineering. In 6th
International Workshop on Economics-Driven
Software Engineering Research Proceedings. IEE, 2004.

[10] M. O. Jackson. Mechanism theory. In U. Derigs,
editor, The Encyclopedia of Life Support Systems.
EOLSS Publishers, 2003.

[11] C. Jones. Software project management practices:
Failure versus success. CrossTalk: The Journal of
Defense Software Engineering, October 2004.

[12] R. North, N. Browne, and L. Schiavone. Joint Tactical
Radio System - connecting the GIG to the tactical
edge. In IEEE Military Communications Conference,
2006. MILCOM 2006., Oct. 2006.

[13] D. C. Parkes. Online mechanisms. In N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editors,
Algorithmic Game Theory, chapter 16. Cambridge
University Press, 2007.

[14] D. C. Parkes and S. Singh. An MDP-based approach
to Online Mechanism Design. In Proc. 17th Annual
Conf. on Neural Information Processing Systems
(NIPS’03), 2003.

[15] H. V. D. Parunak, A. Ward, and J. Sauter. The
MarCon Algorithm: A Systematic Market Approach
to Distributed Constraint Problems. Artificial
Intelligence for Engineering Design, Analysis, and
Manufacturing (AI EDAM), pages 217–234, 1999.

[16] K. Sullivan, P. Chalasani, S. Jha, and V. Sazawal.
Software design as an investment activity: A real
options perspective. In L. Trigeorgis, editor, Real
Options and Business Strategy: Applications to
Decision Making, chapter 10. Risk Books, 1999.

[17] J. E. Tomakyo and O. Hazaan. Human Aspects of
Software Engineering. Charles River Media, 2004.

[18] M. P. Wellman. A computational market model for
distributed configuration design. Artificial Intelligence
for Engineering Design, Analysis, and Manufacturing
(AI EDAM), pages 125–133, 1995.


	Carnegie Mellon University
	From the SelectedWorks of Gabriel A. Moreno
	November, 2010

	Designing for Incentives: Better Information Sharing for Better Software Engineering
	Introduction
	Related Work

	Why Worry about Incentives?
	Competing Suborganizations
	Competing Communities of Interest
	Competition from Both Sides

	Illustration: Incentive Design for Competing Suborganizations
	The Research Challenge
	Conclusion
	References

