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Abstract

Uncertainty and learning are key components to many environmental external-

ities. Often the true costs of pollution, be they from greenhouse gases or defor-

estation are unknown at the time the pollution is created, and policy makers need

to decide on mitigation before they know the full extent of the damage. In this

paper, we ask two related questions: (1) What is the e¤ect of the potential for

learning on the timing and amount of investment and (2) In which environmental

policy situations will the potential for learning lead to an increase in initial mitiga-

tion? By explicitly modeling the structure of information, and treating learning as

a continuous variable, we derive a simple condition that dictates when the prospect

of learning will increase initial mitigation, namely, when the curvature elasticity of

the marginal cost of mitigation is at least twice as large as the curvature elasticity

of marginal bene�t. The lower the amount of anticipated learning, the higher the

ratio of curvature elasticity of marginal cost to bene�t required for this �precaution-

ary�result. Facing a positive discount rate increases the required ratio of curvature

elasticities, while the introduction of a small stock externality makes it more likely

that learning will increase the initial optimal level of mitigation.



1 Introduction

Uncertainty and learning are integral to many environmental policy decisions. Most

environmental externalities take time before their e¤ects are felt, and their full

impact is unknown at the time of their production. Often we learn more about the

magnitude of the future environmental damage after the creation of the pollution

itself, whether it be greenhouse gases, heavy metals, loss in genetic diversity, or

chemical spills with long plumes. During this time, policy-makers can mitigate

against the future damage, for example by reducing emissions or building dykes to

ward o¤ rising ocean levels. This paper asks what is the e¤ect of the potential

for learning on the timing and magnitude of investment in mitigation. Speci�cally,

the paper addresses the question: under what circumstances does the potential for

learning increase, or decrease, the optimal level of initial mitigation?

In the case of the e¤ect of greenhouse gases, it takes years before we learn the

true level of damage associated with the pollutants. For example, predictions

of temperature increases due to climate change range all the way from 2 to 11 �C

(Nature 2005). Those arguing for more immediate mitigation note that some aspects

of climate change may be highly damaging if they are allowed to continue unchecked;

for example, if the polar ice cap melts, global warming will accelerate as sunlight

is no longer re�ected by the white ice mass (Stern Report 2006). On the other

hand, critics of tighter emissions regulation and expenditure on mitigation often

argue that the investment should wait until better information is obtained about

the magnitude of damage and the bene�t of mitigation (O¢ ce of the President

2001). The tension between whether the potential for learning should induce more
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or less initial mitigation has been brought forward in other policy debates, such

as the regulation of biotechnology, pesticides, and the preservation of biodiversity.

Key to the question is what to do in the presence of scienti�c uncertainty, and how

does a government best respond now to anticipated future information.

Much prior literature looks at the e¤ect of learning in a world with uncertainty,

irreversible investments, and/or irreversible outcomes. Instead, we approach the

problem without imposing strict irreversibility, and we use curvature of cost and

of the bene�t of investment. In this respect, we follow Epstein (1980), but to get

an explicit rule about the e¤ect of learning on the optimal initial mitigation, we

add structure to the problem. In particular, we identify the importance of the

curvature of the marginal cost of mitigation separately from the curvature of its

marginal bene�t. Explicitly modelling learning allows us to explore the e¤ect of a

stock externality and of a discount rate on the e¤ect of learning.

In our model, having convex mitigation costs (a positive second derivative) gives

the social planner the incentive to smooth mitigation over time, and having convex

bene�ts of mitigation means that she wants to avoid high damage. On the other

hand, having convex marginal costs or bene�ts (a positive third derivative) means

that the potential for learning may induce the social planner to change the timing

of her investment. We �nd that unless the marginal cost of mitigation is increasing

at a higher rate than marginal damage, the potential for learning tends to decrease

the initial amount of mitigation. The intuition behind this result is that since the

social planner has the incentive to try to balance her expected expenditure over

the two periods, and since she can react more precisely with better information, the

expected future expenditure will be lower with better potential for learning. There-
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fore, her optimal level of initial expenditure will also be lower with better learning.

This result is exacerbated by a higher discount rate, while it is reduced with the

introduction of a small stock externality. Further, overall expected social welfare

is higher with anticipated future learning. We achieve this preference for �exibil-

ity without imposing irreversibility of investments, irreversibility of environmental

damage, or risk aversion. Yet, these components can be added when applicable.

Because pollution problems di¤er in terms of how much we will learn about the

damages before they occur, and in terms of the curvature of marginal costs and

bene�ts of mitigation, these results provide some conceptual guidance for policy

makers. Given two environmental mitigation proposals, each with steeply increasing

slopes of marginal cost, the one with the greater potential for learning optimally

receives a larger amount of initial mitigation. Further, if a third case has a marginal

cost of environmental mitigation that increases at a relatively constant rate, the

potential for learning decreases the optimal amount of initial mitigation.

We see four contributions of this paper. (1) By using a simple Bayesian in-

formation structure, we develop a su¢ ciency condition for when potential learning

increases optimal initial mitigation based on the curvature of marginal cost and

bene�t of mitigation. (2) This simple model allows us to walk through our results

graphically and give intuition behind the conditions. (3) Like Epstein and Kolstad

(1996a,b), we take the meaningful view that learning is marginal. However, by

treating the learning as a continuous variable, we can consider the e¤ect not only of

learning, but of the degree of learning, on mitigation. (4) We explore the impact

of the discount rate and the stock externality on how learning a¤ects the optimal

level of initial mitigation.
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Our approach applies generally to many environmental decisions. The three

primary constraints imposed by the model are (a) the e¤ect of mitigation is addi-

tive, (b) government knows the range of possible damage,1 and (c) society does not

see the true level of damage (or bene�t of mitigation) until after the decisions on

mitigation have been made. This scenario can cover many stock externalities (e.g.

bioaccumulants, airborne emissions, biodiversity), but it could also cover the situ-

ation of a one-time activity like a chemical spill where the severity is unknown for

years. For example, consider the mercury mines in Marin county, California, where

the pollution created by the tailings are largely being felt 100 years later. Also,

in Santa Tecla, El Salvador, deforestation allowed for a subsequent earthquake to

result in a devastating landslide (BBC 2001). Thus, although we use climate change

as an example throughout the paper, the model applies quite broadly. The paper

proceeds as follows: In the next section, we provide background, and in section 3,

we develop the model. In section 4, we present our results on the e¤ect of future

information on the timing and amount of current mitigation. We then walk through

the model and the results to develop graphical intuition. In section 6, we discuss

the e¤ect of the stock externality and discount rate, and we end with conclusions.

2 Background

Imagine a country facing damage from global warming. The government or "social

planner" optimally pursues two policy measures: one to reduce the amount of GHGs

and one to address future droughts caused by climate change. To reduce the amount

1This paper models risk, not Knightian uncertainty (Knight 1921). Expanding this simple
model of learning to incorporate Knightian uncertainty, although interesting, is beyond the scope
of this paper.
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of GHGs, the country considers switching the production of energy from coal to a

carbon-neutral source of energy such as wind, solar, or geothermal. The cost of this

mitigation is C > 0. Converting the �rst 10 percent of energy production in any

one year has costs (C 0 > 0) that are relatively low. Converting the next 10 percent

is more expensive per kwh (C 00 > 0), but still possible with current technology. The

last 10 percent of energy is very expensive to convert, and it may require technology

that is currently unavailable, such as broad-spectrum photovoltaic cells. Thus, for

any single time-period, marginal cost is increasing at an increasing rate (C 000 > 0):

On the other hand, avoiding environmental damage is the bene�t of mitigation,

(B > 0): Marginal bene�ts are positive (B0 > 0) and falling (B00 < 0). Assume

that the social planner is uncertain about the severity of climate change, and that

reducing emissions from energy production is more valuable if climate change is

severe than if it is mild, but that the incremental decrease in marginal bene�t is

reasonably steady (B000 > 0 but small). In other words, the decrease in marginal

bene�t from reducing GHG �ow from 201 to 200 tons in any one year is about the

same as the decrease in marginal bene�t from reducing the �ow from 1001 to 1000

tons. This set-up means that the curvature elasticity of cost is much larger than

that of bene�ts. Assume further that the social planner expects to learn something

more about the severity of climate change in the future. Detailed below, we �nd

that the protential for learning increases the optional amount to spend to cut GHG

emissions today.

Our second primary policy example is one where the social planner wants to

mitigate against future droughts in an area where climate change is expected to

make water supply more variable, for example, in the Paci�c Northwest of the
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United States, due to reduced snow-pack. The social planner considers building

above-ground water storage to make water available during dry spells. The cost of

building a dam increases with the amount of water storage capacity. Assume for

the moment that the marginal cost of building water storage within a single period

increases (C 00 > 0); but at a relatively constant rate. In other words, the increase

in marginal cost of storing an extra acre-foot by adding to a 200,000 acre-feet dam

is not much more than the increase in marginal cost of adding to a 10,000 acre-feet

dam. In this case, C 000 is not very large.

On the other hand, the �rst thousand acre-feet of stored water would have a

huge marginal bene�t during a drought. The highest value uses of water, such as

human consumption, could bene�t from this storage. As soon as those highest-

value uses are satis�ed, the marginal bene�t of an extra acre-foot of stored water

decreases substantially (B00 < 0). As more water is available from storage, the

marginal bene�t of an extra acre-foot of water decreases, as it goes to satisfy other

needs, such as irrigation of low-value crops. Thus, we can think of the marginal

bene�t curve as convex (B000 > 0). The social planner is debating how much storage

to build now. If the social planner expects to learn something about the severity

of future droughts, we �nd below that expected learning can reduce the amount of

storage to build today.

If the investment in either the green energy or the water storage is irreversible,

and learning is anticipated, the standard approach is to use option value to calculate

the bene�ts from retaining �exibility by reducing the initial investment (Dixit and

Pindyk 1994). On the other hand, Epstein (1980) develops a general formulation of

investment under uncertainty and learning. He shows that the e¤ect of learning on
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investment depends on the curvature of the value function of investment with respect

to information. Speci�cally, he shows that if the marginal value function of the

investment is convex in the vector of probabilities, then the initial level of investment

is no larger than investment without learning. Similarly, if the marginal value

function of the investment is concave in probabilities, the optimal initial investment

is no smaller than with learning. One of our contributions is to decompose Epstein�s

marginal value function, to look separately at curvature of costs and bene�ts, which

aids in interpetation in our policy examples.

Like investments in mitigation, the environmental outcomes such as the melt-

ing of the polar ice cap can also be irreversible. Arrow and Fisher (1974) and

Henry (1974) develop the notion of a quasi-option value, where society is willing

to pay a premium for environmental policy that enables �exibility in the future.

More recently, Ulph and Ulph (1997), Kolstad (1996a, b) and Fisher and Narain

(2003) explore the e¤ect of learning on mitigation with environmental irreversibil-

ity, modeled as a constraint that emissions cannot become negative. In their model

of climate change, Ulph and Ulph show that the Epstein result cannot be applied

to determine the e¤ect of learning on initial levels of mitigation. They derive a

su¢ cient condition for learning to increase the demand for �exibility in the �rst

period, which states that the non-negative restriction on emissions is binding in the

no-learning case. In other words, for learning to induce the social planner to cut

emissions today, the unconstrained optimal emissions must be negative tomorrow.

Next, Ulph and Ulph simulate climate change and show that for most parameter val-

ues, the potential for learning actually decreases mitigation e¤orts today. Kolstad

(1996a) looks at the e¤ect of learning in the case with both a sunk investment and
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a stock externality of pollution, where the stock externality acts as the sunk costs

of not abating now. Thus, the stock e¤ect is a form of environmental irreversibility.

Whether the environmental or investment irreversibility dominates depends on the

relative magnitudes of the decay and depreciation rates and on expectations about

damages.

Simulating greenhouse gas emissions, Kolstad (1996b) �nds that the optimal

level of investment is a¤ected by the capital stock irreversibility, while emissions

irreversibility has no impact. Too little investment in emission control in the early

periods can be compensated by a bit more investment in later periods, but it is never

optimal to emit negatively in the future to correct for over-emission today. Using a

similar framework, Fisher and Narain (2003) consider how the level of �rst-period in-

vestment varies with the irreversibility of the investment, and with the degradability

of the stock of greenhouse gases. Intuitively, a larger sunk cost of investment means

a lower investment in the �rst period. The higher the irreversibility of greenhouse

gases, the higher the investment in the �rst period. Quantitatively, like Kolstad

(1996b), they �nd that the e¤ect of capital irreversibility is much stronger than

either the e¤ect of emissions irreversibility or of endogenous risk.2

In this previous literature, the e¤ect of learning depends on whether the invest-

ment irreversibility dominates the environmental irreversibility, or vice-versa. For

a di¤erent approach, we return to Epstein�s earlier model to compare the nature of

2 In a related literature on the precautionary principle, Gollier et al (2000) and Gollier and
Treich (2003) develop a two-period model of decision-making under uncertainty with learning. They
assume a degree of irreversibility and a risk-averse decision-maker, and �nd that an increase in future
information decreases consumption or increases investment in mitigation in the �rst period. With
a stock externality, they �nd two contrasting e¤ects: by clarifying the risk in the second period,
an increase in information widens the di¤erence in perceived outcomes, producing an incentive to
remain �exible in the �rst period. However, because the agent will be able to react more e¢ ciently
in the second period, her perceived future income has increased, allowing her initially to consume
more (or mitigate less).
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the cost and bene�t functions, and we develop results based on the nature of the

environmental problem and the mitigation technique. We allow for curvature in

the marginal cost and marginal bene�t of mitigation. Thus, we assume that it may

be increasingly expensive to mitigate all at once, and/or that the marginal bene�t

from abatement is decreasing at a decreasing rate. These types of curvature yield

an e¤ect of learning on the optimal level of initial mitigation. We then explore how

the e¤ect of learning on the initial level of mitigation changes with a discount rate

or with a stock externality from pollution.

3 Model

We use a three-period model to consider the e¤ect of the degree of learning on the

optimal level and timing of mitigation, as shown in the timeline presented in Figure

1. Assume that in period 1 a social planner can invest in damage mitigation, m1.

In period 2, the social planner learns something about the probability of high versus

low damage, and then can invest again in mitigation, m2. In period 3, the economy

experiences the damage.

Environmental damage is a function of a stochastic variable K; and the amount

spent on mitigation (m1 and m2). Damage is either "high" (when K = H), or

"low" (K = L), assuming H > L > 0: One can think of K as the future stock

of GHGs without mitigation, where that level is uncertain (due, for example, to

the potential for methane to be released from melting permafrost). Damage is

reduced by mitigation, m; which can represent the reduction in greenhouse gas

emissions, or, in case of drought, investment in water storage. Further, assume
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Period 1

Planner
anticipates
learning

m1 chosen m2 chosen

Information state
revealed

(favourable,
unfavourable)

High or low damage
experienced

Period 2 Period 3

Figure 1: Time Line

that mitigation tomorrow may not be as useful as mitigation today. For a speci�c

example, converting to green electricity generation next period (m2) rather than

in this period (m1) means that the stock of GHGs has increased by the additional

emissions in the �rst period. This stock e¤ect is represented by �; where 0 < � � 1;

so mitigation in the second period is assumed to be only �-times as e¤ective as

mitigation in the �rst period:

Cost and Bene�t Functions: In our model, the mitigation cost and environ-

mental damage functions are endowed with curvature, which gives the social plan-

ner an incentive to mitigate similar amounts across the two periods and to limit

the spread between the damages across the two possible outcomes. The curvature

in cost re�ects the idea that altering the economy is assumed to be expensive, and

more alteration in a single period increases the marginal cost as in our �rst scenario

where electricity generation is converted from coal to various forms of green energy.

Thus, we assume marginal cost is positive and increasing (C 0 > 0 and C 00 > 0). For
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our model, we do not make assumptions on curvature of marginal cost (C 000 7 0):3

We model environmental damage as a function D = D(K �m1 � �m2), where

we assume D0 > 0: Note that our model di¤ers slightly from that of Ulph and Ulph

(1997) in that we have an additive, rather than multiplicative, stochastic variable

(K). Also, we assume that an increase in GHG stocks could result in a more than

proportional increase in damage (D00 > 0). This assumption means that a little

mitigation may have a larger impact when damages are high than when damages

are low. We assume that the bene�t of mitigation is simply the damage avoided.

That is, if E represents the bene�ts of an undamaged environment, then we de�ne

bene�ts as B = E�D(K�m1��m2), which we simplify to: B = B(m1+�m2�K).

It follows from the damage function that bene�ts are increasing in mitigation at a

decreasing rate (i.e. B0 > 0; B00 < 0): We make no assumptions on B000 7 0:

Given that some degree of climate change is generally accepted, we make the

assumption that even a �good�outcome implies some damage. Thus, even with low

damage (K = L), we assume that L > m1 + �m2. Therefore, we do not need

to place irreversibility constraints on the level of mitigation. For example, once

a portion of electricity generation has switched to solar energy, we assume that

the social planner does not want to revert that generating capacity back to coal.

Similarly, we do not need to limit the amount of mitigation in any one period. Thus,

we assume no physical limits on mitigation, only �nancial ones. Last, we do not

impose risk-aversion, instead assuming the social planner is risk-neutral.

3We assume that the cost �re-sets� itself each period. This way of modeling cost applies well
to situations where one might face annual capacity constraints (such as in the case of converting
electricity generation). However, it does not apply to situations that face land-constraints, such
as carbon sequestration, where the cost in period two would be a function of the amount chosen in
period 1.
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Imposing irreversibility or risk-aversion would capture some of the features of

option value, quasi-option value, and the precautionary principle, without using cur-

vature. However, these attributes could be explicitly modeled within our framework

if desired.4 Here, we focus on the implications of curvature.

Learning: In period 1, the social planner believes the damage outcome could be

high (K = H) or low (K = L) with equal probability, and she chooses mitigation

levelm1. However, the social planner anticipates learning more about the damage in

period 2, at which point additional levels of mitigation can be chosen. Speci�cally,

the social planner believes that the information forthcoming in period 2 will be

either favorable (F ) or unfavorable (U), and that those two outcomes are equally

likely.5 Conditional on period 2 information being favorable, the social planner

will revise beliefs about period 3 damages as follows: outcome H with probability

1
2 �2�; and outcome L with probability

1
2 +2�. Similarly, if period 2 information is

unfavorable, then beliefs become outcome H with probability 1
2 + 2�, and outcome

L with probability 1
2 � 2�.

The parameter � plays a central role in the analysis because it describes the

degree or quality of learning. In the extreme case of no learning, (� = 0), the social

4Traditional option value requires irreversibility. Irreversibility of mitigation requires a situation
where one would want negative mitigation in the second period. If the government initially invested
in mitigation, for example, with no damage in the low-damage state, the government would like to
reverse that mitigation in the following period, i.e. m2 < 0: One simple way of modeling option
value is to constrain mitigation in period 2 to be non-negative, i.e. m2 � 0.
On the other hand, envionmental irreversibility can be modeled as a limit on the quantity of

mitigation in any one period. If climate change results in irreversible damage, then no level of
mitigation can address that damage, and the marginal cost of mitigation at that point is in�nite,
i.e. C0(x) =1, where x is some upper limit on the feasible level of mitigation.
Last, to model �precaution�explicitly, one could assume that the decision-maker is risk averse,

and therefore maximises the expected utility of bene�t less cost.
5Although we take the timing and degree of learning as exogenous, Kelly and Kolstad (1999)

develop a model where learning is endogenous, and they solve for the timing of the resolution of
uncertainty. Hennessy and Moshini (2006) also assume uncertainy about when information is
revealed, and they allow the decision-maker to invest in research that a¤ects the timing of learning.
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planner continues to believe that high and low damages are equally likely. At the

other extreme, with perfect learning (� = 1
4), favorable information means that the

social planner is certain that damages will be low (and if information is unfavor-

able, the social planner knows damages will be high). The period 1 unconditional

probabilities of all four possible outcomes can be summarized as follows:

Unconditional probabilities

Degree of Damage

Information

Low High

Favorable 1
4 + �

1
4 � �

Unfavorable 1
4 � �

1
4 + �

In other words, an increase in the degree of learning, �; raises the probabil-

ity that favorable information is associated with low damage and that unfavorable

information is associated with high damage.

Optimization problem: The social planner�s objective function is to maximize

expected welfare. In her initial plan, she can set three choice variables: the level

of mitigation in the �rst period (m1) ; the level of mitigation to be undertaken in

the second period conditional on favorable information
�
mF
2

�
; and the level of mit-

igation in the second period conditional on unfavorable information
�
mU
2

�
. From

the vantage of period 1, expected welfare E1(W ) is the sum of the bene�t of each

outcome times its respective probability, less the expected cost of mitigation. As-

sume that the social planner has a discount factor, �, where 0 < � � 1. Then the

objective function is:

(3) Max
m1;mF

2 ;m
U
2

E1(W ) = (
1
4+�)�

2B
�
m1+�m

F
2 �L

�
+(14��)�

2B
�
m1+�m

F
2 �H

�
+(14��)�

2B
�
m1+�m

U
2 �L

�
+(14 + �)�

2B
�
m1+�m

U
2 �H

�
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�1
2�C

�
mF
2

�
�1
2�C

�
mU
2

�
�C (m1) :

The �rst order conditions are as follows:6

(4) @E(W )

@mF
2
:
�
1
4 + �

�
B0LF +

�
1
4 � �

�
B0HF � 1

2��C
0
F = 0

(5) @E(W )

@mU
2
:
�
1
4 � �

�
B0LU +

�
1
4 + �

�
B0HU � 1

2��C
0
U = 0

(6) @E(W )
@m1

:
�
1
4 + �

�
B0LF +

�
1
4 � �

�
B0HF +

�
1
4 � �

�
B0LU +

�
1
4 + �

�
B0HU

� 1
�2
C 01 = 0

where Bij is the bene�t with damage i = fH;Lg and information j = fF;Ug:

As long as our above assumptions on the curvature of cost and bene�t hold, the

second order conditions yield a maximum (for proof, see appendix).

4 Results

To determine how the social planner�s plan for mitigation changes with the degree of

learning, we totally di¤erentiate the �rst order conditions w:r:t: the three mitigation

levels,m1; m
F
2 ;m

U
2 ; and the exogenously-determined degree of learning, (�): To keep

the terms non-negative, we multiply both sides by -2 and write them in matrix form

as:

(7)

26666664
�AF +

1
��C

00
F 0 AF

0 �AU +
1
��C

00
U AU

�AF �AU AF +AU +
2
�2
C 001

37777775

26666664
dmF

2
d�

dmU
2

d�

dm1
d�

37777775
6 In a dynamic programing context, the planner�s choice of mF

2 and m
U
2 are conditioned on m1.

However, the envelope theorem allows m1, mF
2 and mU

2 to be solved simultaneously, yielding the
same results.
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=

26666664
�2NF

2NU

�2 (NF �NU )

37777775
where AF � �E2(B00F ) = �2

��
1
4 + �

�
B00LF +

�
1
4 � �

�
B00HF

�
� 0;

AU � �E2(B00F ) = �2
��
1
4 � �

�
B00LU +

�
1
4 + �

�
B00HU

�
� 0

and NF � B0HF �B0LF ; NU � B0HU �B0LU � 0:

In (7), AF or AU is the absolute value of the expected slope of the marginal

bene�t function, given that the learned information is favorable or unfavorable,

respectively. Thus, if the social planner receives favorable information, her expec-

tation in period 2 (E2) of the slope of marginal bene�t (B00F ) is AF , and if she sees

unfavorable information, she will expect marginal bene�t to have a slope of AU . In

contrast, NF and NU are the di¤erences in the marginal bene�t at high and low

damages when the information is favorable and unfavorable, respectively: A large

Ni implies that for a given outcome of learning, and the resulting level of mitiga-

tion, the social planner faces a large di¤erence between the marginal bene�t from

experiencing high damage versus low. On the other hand, a small Ni means little

di¤erence in marginal bene�t between high and low damage. Both Ni and Ai are

functions of the total level of e¤ective mitigation (m1 + �m2).

Using Cramer�s rule, we calculate how the �rst period chosen mitigation varies

with the degree of anticipated learning. Solving for dm1
d� :

(8) dm1
d� = 1

�C
00
FNF

�
AF +

1
��2
C 00F

�"��2AU+ 1
�
C00U

�
�
�2AF+

1
�
C00F

� � C00UNU
C00FNF

#
1

SOC

where the SOC is the determinant of the matrix of second order conditions of

the objective function with respect to mitigation. Note that the expression before
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the square brackets is positive, and SOC must be negative. Therefore, the sign of

dm1
d� depends on the sign of the term inside the square brackets. The sign of this

term depends on the size of the ratio of the slope of the marginal costs times the

ratio of the di¤erence in the marginal bene�t
�
C00UNU
C00FNF

�
, compared to the size of the

ratio of the second derivatives of expected welfare with respect to second period

mitigation
�
�2AU+

1
�
C00U

�2AF+
1
�
C00F
, which equals E(W )00U

E(W )00F

�
. We will show this ratio depends on

the relative curvature of marginal cost and marginal bene�t functions (C 000 vs B000).

Consider our �rst example of conversion to carbon-neutral sources of energy,

where we explained why C 000 is high relative to B000: In the simple case where the

slope of the marginal bene�t function is constant (B000 = 0), and the slope of marginal

cost is increasing (C 000 > 0), the sign of equation (8) depends on (C 00F � C 00U ) � 0;

implying dm1
d� � 0. In contrast, consider our second primary example of water

storage, where C 000 was small compared to B000, and take the extreme case where the

slope of the marginal cost curve is constant (C 000 = 0), while the marginal bene�t

curve is convex (B000 > 0). Then C 00U = C 00F , while
NU
NF

� 1 and E(W )00U
E(W )00F

� 1 from

above. In this case, the term inside the square brackets on the right-hand side

of equation (8) is positive. This term is multiplied by a positive term times the

negative SOC, and so dm1
d� � 0 for any initial learning

�
0 � � � 1

4

�
. More learning

does not increase initial mitigation. Finally, if B000 and C 000 are both zero, then

the degree of learning (�) has no e¤ect on the initial level of mitigation.7 This

last di¤ers from Ulph and Ulph (1997) who �nd that even with quadratic costs and

bene�ts, the degree of learning has an e¤ect. This di¤erence arises from our use of

an additive stochastic damage term, while they use multiplicative risk.

7Although we focus on the case when marginal bene�ts are convex, if B000 is < 0 and C000 � 0;
then dm1

d�
� 0: If C000 is < 0 andB000 � 0, then dm1

d�
� 0:
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If both marginal cost and marginal bene�t are convex (C 000 > 0 and B000 > 0),

however, the interpretation of equation (8) becomes a bit more tricky. To compare

the relative in�uence of marginal cost and marginal bene�t on how � changes the

optimal initial level of mitigation, de�ne the curvature elasticity of marginal cost as

the third derivative of the cost of mitigation over the second (C
000

C00 = "), and de�ne

the curvature elasticity of marginal bene�t as the third derivative of the marginal

bene�t curve over the second (
���B000B00

��� = �): Further, de�ne ! as the ratio of the

curvature elasticity of cost to bene�t, i.e. "=� � !: We �nd the following necessary

and su¢ cient conditions for dm1
d� � 0.

Proposition 1 (necessary) If both marginal cost and marginal bene�t are convex

(B000 > 0 and C 000 > 0), then optimal mitigation in the �rst period increases with a

marginal increase in the degree of learning only if the curvature elasticity of marginal

cost of mitigation is at least as large as the curvature elasticity of marginal damage.

Proposition 2 (su¢ cient) With no stock externality or discount rate, optimal

mitigation in the �rst period increases with the prospect of learning if the curvature

elasticity of marginal cost of mitigation is more than twice as large as the curvature

elasticity of marginal bene�t.

The proof of these propositions is in the appendix. If both marginal bene�t and

marginal cost are convex (i.e. B000 > 0 and C 000 > 0), then no su¢ ciency condition

holds for all levels of discount rate or stock externality. As we show later, a higher

discount rate or stock externality can always o¤set a larger ratio of the elasticity

of marginal cost to that of marginal bene�t, so that an increase in the degree of

learning has either no e¤ect or induces a smaller optimal level of initial investment,
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�
making @m1

@� � 0
�
. Without a stock externality or discount rate, however, we �nd

that if the curvature elasticity of cost is more than twice that of marginal bene�t, the

potential for learning always increases the optimal level of investment in mitigation.

How the initial level of mitigation varies with learning depends in general on

the relative size of the curvature elasticities of marginal cost and marginal damage.

Speci�cally, for potential learning to increase current mitigation
�
@m1
@� > 0

�
, the cur-

vature of the marginal cost function must be positive and greater than the curvature

of the marginal damage function. Essentially, marginal cost must be increasing at a

highly-increasing rate, making it very expensive to increase mitigation in the second

period. The prospect of information means that in the second period, the social

planner will want to increase or decrease mitigation, and a high curvature elasticity

of marginal cost means that the marginal cost of increasing expenditure in response

to unfavorable information outweighs the savings from decreasing mitigation in re-

sponse to favorable information. Therefore, the social planner chooses an initial

level of mitigation that is higher than she would without learning, in anticipation

of this possible future expense.

On the other hand, if the curvature elasticity of marginal bene�t of mitigation

is very high, the social planner is able to forestall a great deal of damage with

information about the chances of a bad outcome. Because she has the potential

to bene�t from learning in the second period, the social planner is not obliged to

mitigate as much in the initial period. Otherwise, with no learning, the social

planner is stuck mitigating the same amount in both periods, and therefore she has

to compensate for this lack of ability to respond to downside risk by mitigating more

today.
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The critical level of the ratio of curvature elasticities is not constant over all

levels of learning. Speci�cally, we �nd that the critical ratio of curvature elasticities

needed for @m1
@� > 0 is decreasing in �:

Proposition 3 Starting at no information (� = 0), for an increase in the degree

of learning to result in an increase in optimal initial mitigation
�
@m1
@� > 0

�
, the

minimum ratio of cost to bene�t curvature elasticity must be at least two, (! � 2).

Further, the ! needed for an increase in the degree of learning to increase the optimal

initial level of mitigation is decreasing with the degree of information.

In other words, if the social planner initially expects not to learn anything in the

second period, the curvature elasticity of marginal cost must be twice as large as

the curvature elasticity of bene�t for the prospect of some learning to increase the

optimal level of initial mitigation. The more the potential for learning, the smaller

the ratio of curvature elasticities of cost to bene�t needed for a marginal increase

in learning to increase optimal initial level of mitigation. In the limit, if the social

planner expects to learn almost fully in the second period, the curvature elasticity

of cost to bene�t needs only be greater than one for a marginal increase in learning

to increase the optimal level of initial mitigation.

Next, we shift focus from initial mitgation to the discussion of total mitigation,

m1 +m2 (as opposed to �e¤ective�mitigation, m1 + �m2). As one might expect, in

our model, increasing the degree of learning always results in lower levels of total

mitigation and a larger expected welfare.

Proposition 4 Total mitigation (m1 +m2) generally decreases with an increase in

the degree of learning.
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The proof of this proposition is in the appendix. The intuition is as follows:

learning allows the social planner to respond more e¢ ciently in the second period,

reducing the total expected second-period mitigation level. These e¢ ciency gains,

both in terms of reduced cost of mitigation and reduced damage, outweigh the po-

tential that information might induce the social planner to increase initial mitigation

(m1) by more than that reduction in m2. The greater the curvature of either the

marginal cost or marginal bene�t curves, the more information is valuable in terms

of avoiding high damage and/or high adjustment costs, and therefore the more it

reduces total mitigation.

5 Graphical Intuition

In our general results above, we show the importance of the relative size of B000 and

C 000. We next describe the model graphically. For simplicity, �gure 2 considers the

extreme case where C 000 = 0 and B000 > 0. It could represent the case where the

social planner considers building water storage in the case of drought, with linear

marginal cost and convex marginal bene�ts. Later, �gure 3 illustrates the case

where C 000 > 0 and B000 = 0, which could represent the energy-switching example,

with linear marginal bene�ts and convex marginal costs. For simplicity, we ignore

the stock externality and discount rate in these graphs, assuming � = � = 1:

Within �gure 2, we illustrate the choice of mitigation under the two extremes:

a situation with perfect learning (solid lines) compared to that with no learning

(dashed lines).
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m = m1+m2
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Figure 2: Mitigation with convex marginal bene�ts (B000 > 0) and linear

marginal costs (C 000 = 0) with no stock externality or discount rate (� = � = 1).

Because of the incentive for smoothing coming from the rising marginal cost

and falling marginal bene�t schedules, the social planner wants to equate expected

marginal bene�t and expected marginal cost across the two periods. With no

information, either outcome is equally likely. Therefore, the curve for expected

marginal bene�t in the second period is always half the vertical distance between

the curves for marginal bene�t with high damage B0(H) and with low damage

B0(L): E1 (B0j� = 0) = 1
2B

0(L) + 1
2B

0(H):8 This curve is illustrated as the dashed

line labelled as: E1 (B0j� = 0). Since in this case the social planner receives no

new information in the second period, she sets mitigation equal across the two

8The graph uses B0(H) to represent B0(m1+m2�H), and B0(L) to represent B0(m1+m2�L):
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periods, m1 = m2 (assuming � = 1): Thus, marginal cost is also equal across both

periods, and is equal to expected marginal damage C 0(m1) = C
0(m2jm1; � = 0) =

E1 (B
0j� = 0) : In our example, with no information, the social planner would build

the same amount of water storage in each period, and would set the marginal cost

of water storage equal to the average of the marginal bene�t of the water in a severe

and a light drought.

Graphically, to �nd the optimal quantity of total mitigation, start with the

marginal cost C 0(m1) in �gure 2, and imagine a curve (not drawn) also starting

at the origin but with with half the slope, representing the marginal cost of total

mitigation, m1+m2, givenm1 = m2: That total marginal cost curve would intersect

expected marginal bene�t E1 (B0j� = 0) at point e: Then divide this level of total

mitigation by 2 to obtain m0
1: Starting at m0

1 on the horizontal axis from zero

marginal cost , we can plot out the marginal cost for mitigation in the second

period, C 0(m2jm1; � = 0): Total mitigation occurs where this marginal cost curve

intersects the marginal bene�t curve, labelled as m0
1 +m

0
2: Total mitigation with

no information will then result in an expected marginal bene�t level of E(b0):9

With perfect learning (represented by solid lines and points in bold), the social

planner in the second period knows whether the damage will be high or low with

certainty, and can mitigate accordingly. If the information is unfavorable, indicating

high damage, the social planner invests to the point where the marginal cost of

second period mitigation equals the marginal bene�t with high damage. Thus, she

sets m1+m
U
2 where the B

0(H) curve intersects the C 0(m2jm1; � =
1
4) curve, at point

9Whereas an upper case B0 is used to label a marginal bene�t curve, we use a lower case b to
denote the speci�c marginal bene�t at a certain level of mitigation. In other words, the lower case
b represents a height.
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f , giving a marginal bene�t of b
1
4
HU : Similarly, with favorable information indicating

a good outcome, she sets m1+m
F
2 where the B

0(L) curve intersects C 0(m2jm1; � =

1
4), at point g, giving a marginal bene�t of b

1
4
LF : Expected marginal bene�t E(b

1
4 )

lies vertically half-way between these two points, E(b
1
4 ) = 1

2b
1
4
HU +

1
2b

1
4
LF . The

social planner will chose m1 where the expected marginal bene�t equals marginal

cost, and where the marginal costs are equal in both periods, so where E(b
1
4 ) =

C 0(m1): With full information, these levels of mitigation yield a total expected

amount of mitigation m
1
4
1 + E(m

1
4
2 ):

With perfect learning, the expected marginal bene�t is lower than with no learn-

ing. In our example, with full information, the social planner knows she will learn

whether droughts will be severe or light next year, and can therefore wait to build

the extra storage needed for a severe drought, ensuring the population has enough

to drink, and enough water for industrial uses. If the social planner has no informa-

tion, and only mitigates at the expected marginal bene�t, the population may still

have enough to drink in a severe drought, but industry might shut down. Thus,

in the case of a severe drought, an extra unit of water is less valuable with full

information, where it might go to irrigation, than with no information, where that

water might go to industrial uses, or human consumption. On the other hand, if the

social planner has no information and the drought turns out to be light, the extra

stored water would go to a low-value use, such as watering lawns. So the di¤erence

in marginal bene�t of water between full and no information is higher in a severe

drought, than in a light drought. Thus, in �gure 2, b0H�b
1
4
HU > b

1
4
LF �b0L (because of

the curvature of marginal bene�ts, B000 > 0). The average of the marginal bene�ts

with high and low damage is therefore greater with no learning than with learning,
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shown as E(b0) > E(b
1
4 ), 8m. Because of this reduction in expected marginal

bene�t with learning, the social planner has less incentive to build water storage

capacity now.

Note that in this situation, where C 000 < D000, the optimal level of mitigation in

the initial period is smaller with full learning than with no learning.

In �gure 3, we illustrate the case where marginal bene�t is linear and marginal

costs are increasing and convex. Here, return to our a story where mitigation

comes in the form of switching to non-fossil fuel sources of electricity generation.

Switching from 10 to 20 percent �green power�is relatively cheap, while moving from

80 to 90 percent green electricity is very costly. That is, we assume the marginal

cost is increasing at an increasing rate. On the other hand, we assume the marginal

bene�ts are decreasing at a relatively constant rate.

With no learning, the marginal cost curves for the two periods are illustrated as

the dashed lines; the one for the second period starts at the choice of m0
1, and the

expected marginal bene�t E(B0) is vertically half-way between the marginal bene�t

curves with high and low damage (B0(H) and B0(L)). The scenario is the same

as above: the social planner has an incentive to mitigate the same amount in the

two periods. She sets m0
1 = m0

2 and chooses the level of total mitigation where

marginal cost of m2 is equal to the expected marginal bene�t, i.e. where the height

of C 0(m1) equals the height of C 0(m2jm1; � = 0), which in turn equals the height of

E (B0) = E(b0): The resulting level of total mitigation, m0
1 +m

0
2; gives a marginal

bene�t of b0H if damage is high, and b
0
L if damage is low.
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Figure 3: Mitigation with linear marginal bene�t (B000 = 0) and convex marginal

cost (C 000 > 0) with no stock externality and no discount rate (� = � = 1).

With perfect learning (illustrated with solid lines), the social planner chooses

m
1
4
1 such that the marginal cost of mitigation in period 1 is equal to the expected

marginal cost of mitigation in period 2, setting both equal to the expected marginal

bene�t: C 0(m1) = E
�
C 0(m2jm1; � =

1
4)
�
= E

�
b
1
4

�
: In �gure 3, this intersection is

labelled as point z, where the expected marginal cost curve, E
�
C 0(m2jm1; � =

1
4)
�

intersects the expected marginal bene�t curve, E(B0); resulting in a total mitigation

equal to m
1
4
1 +E(m

1
4
2 ). The expected marginal cost of mitigation in period 2 is the

average of the marginal cost of mitigation if information is favorable (point x) and

unfavorable (point y), which are respectively equal to the marginal bene�t with low

and high damage, or E
�
C 0(m2jm1; � =

1
4)
�
= 1

2b
1
4
HU +

1
2b

1
4
LF in �gure 3. Note that,

25



unlike the situation where B000 > 0; the linear marginal bene�t curves here mean

that the expected marginal bene�t, E(B0) remains the same for the situations with

both perfect and no learning. Thus, the social planner chooses m1 so that the

expected marginal bene�t, E
�
b
1
4

�
, is equal to half the vertical distance between

the marginal bene�t with favorable and unfavorable information (b
1
4
HU and b

1
4
LF ).

The intuition for the change in the sign of dm1
d� from �gure 2 is based on the

fact that with convex marginal cost (C 000 > 0) in �gure 3, it will cost the social

planner more to react at the margin to unfavorable information than to favorable

information. Therefore, in period 1, the social planner optimally mitigates slightly

more initially, knowing she has a 50% chance of a costly upward adjustment in

mitigation in reaction to learning in the following period. Thus, m
1
4
1 > m

0
1 in �gure

3. In a sense, the incentive to smooth expenditure outweighs the savings in initial

mitigation provided by the social planner�s ability to react.

Returning to our examples, we �nd that in the case illustrated in �gure 2 where

the slope of marginal bene�ts is increasing rapidly, such as in the case of water

storage for a drought, an increase in the degree of learning leads to a decrease in the

optimal level of initial investment. Conversely, where the slope of marginal costs are

increasing rapidly, as illustrated in �gure 3, such as the case of switching to green

energy, an increase in the degree of learning leads to an increase in the optimal level

of initial investment. Later we show that the latter result does not necessarily hold

with a high stock externality of pollution (� < 1), as is the case for greenhouse gases,

nor does it necessarily hold with a high discount rate (� < 1).

As noted in proposition 3, an increase in the potential for learning tends to

decrease the total amount of mitigation. This result can be seen in the above �gures.
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In both �gures 2 and 3, total mitigation is higher with no learning than with perfect

learning. As one might expect, in �gure 2, expected marginal damage is lower with

perfect learning than with no learning, implying that learning not only allows the

social planner to save on total mitigation, but also on expected damage. In �gure 3,

we see that learning does not necessarily reduce marginal damage. When marginal

cost is more convex than marginal bene�t, expected marginal damage increases with

more learning.

6 Stock Externality and Discount Rate

Until this point, we have ignored the e¤ect of the stock externality (�) and discount

rate (�) on the level and timing of mitigation. Since these two important char-

acteristics have driven many of the models of climate change mitigation, we would

be remiss not to consider their in�uence. First, consider the e¤ect of the stock

externality on total mitigation. Figure 4 illustrates the e¤ect of a stock externality

such that it takes twice as much mitigation in the second period to have the same

e¤ect as mitigation in the �rst (i.e. � = 1
2): E¤ective mitigation, or m1 + �m2,

is shown on the horizontal axis. Thus, the illustrated marginal bene�t function

remains unchanged from �gure 2, but the marginal cost of mitigation doubles its

slope in the second period. As before, the case with no learning is shown as the

dashed marginal cost, and the case with full learning is illustrated with solid lines.

As one would expect, the stock externality increases the initial level of mitiga-

tion in both the case with no learning and with perfect learning.10 This result is

10This relationship can be proven mathematically by extending the comparative statics in equa-
tions (4�), (5�) and (6�) to include � and then using Cramer�s rule to solve for dm1

d�
. We �nd that
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intuitive, since the stock externality makes it more expensive for the social planner

to mitigate in the second period regardless of learning, and therefore, she spends

more initially. Further, note that the total level of mitigation (m1 +m2) is larger

with the stock externality. The social planner still has the incentive to set marginal

cost of (e¤ective) mitigation equal across the two periods. Since the initial level

of mitigation increases with a stock externality, the amount of mitigation in the

second period increases as well. However, the total amount of e¤ective mitigation

decreases (m1+ �m2), implying that the expected marginal bene�t is higher with a

stock externality than without.

all terms in the numerator are negative, implying dm1
d�

< 0:
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Figure 4: Mitigation with convex marginal bene�t, linear marginal cost, and

stock externality (� = 1
2).

In �gure 4, we can �nd the optimal level of total e¤ective mitigation with no

information where marginal cost in the second period C 0(�m2jm1; � = 0) crosses

expected marginal bene�t E(B0j� = 0); giving total e¤ective mitigation ofm0
1+�m

0
2:

This level of mitigation implies that if damages are high, marginal bene�t is given by

the height of the marginal bene�t curve, B0(H) at m0
1+�m

0
2, yielding b

0
H: Similarly,

if damages are low, the marginal bene�t occurs at the height of the marginal bene�t

curve, B0(L) at m0
1 + �m

0
2, that is, b

0
L: The resulting expected marginal bene�t is

vertically half-way between these two points at E(b0):
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With full information, the social planner sets C 0(�m2jm1; � =
1
4) = E(B

0j� = 1
4);

giving an expected total e¤ective mitigation of m
1
4
1 +E(�m

1
4
2 ): If information is fa-

vorable, implying damages will be low, the social planner reduces second-period

e¤ective mitigation, yielding a marginal bene�t of b
1
4
LF : If information is unfavor-

able, implying that damage will be high, the social planner increases the e¤ective

mitigation in the second period, resulting in a marginal bene�t of b
1
4
HU :

 $
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Figure 5: Mitigation with linear marginal bene�t, convex marginal cost and

stock externality (� = 1
2)

In �gure 5 we illustrate the situation where the curvature of marginal cost is

greater than that of marginal bene�t. As before, the social planner chooses mitiga-

tion so that the marginal cost of e¤ective mitigation is equal across the two periods,

and the marginal cost of e¤ective mitigation in the second period equals the ex-

pected marginal bene�t. Graphically, with no information, the optimal level of
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total e¤ective mitigation m0
1+ �m

0
2; occurs where the marginal cost of e¤ective mit-

igation in the second period given mitigation in the �rst C 0(�m2jm1; � = 0) crosses

expected marginal bene�t E(B0): If damages are high, the resulting level of mar-

ginal bene�t b0H is given by the height of the marginal bene�t curve, B0(H) at the

chosen level of total e¤ective mitigation m0
1 + �m

0
2: If damages are low, the level

of resulting marginal bene�t is found at the height of the marginal bene�t curve,

B0(L) at m0
1 + �m

0
2, giving b

0
L: As before, the resulting expected marginal bene�t

is vertically half-way between these two points at E(b0):

In the case where marginal cost is convex, the expected marginal cost is equal to

the average of the marginal cost of e¤ective mitigation given favorable information

(at point x in �gure 5) and the marginal cost of e¤ective mitigation given unfavorable

information (at point y): Expected marginal cost and expected marginal bene�t

then cross at point z, giving an expected total e¤ective mitigation of m
1
4
1 +E(�m

1
4
2 ):

If information is favorable, and the social planner knows that damages will be low,

she responds with a low level of e¤ective second-period mitigation, and the marginal

bene�t becomes b
1
4
LF : If information is unfavorable and the social planner anticipates

high damages, she increases her e¤ective mitigation in the second period, resulting

in an expected marginal bene�t of b
1
4
HU :

Although we do not illustrate it graphically, the e¤ect of the discount rate is

intuitive. As the discount rate increases, or the discount factor � decreases, the

social planner mitigates much less initially; she perceives it to be cheaper to mitigate

later, and the expected marginal bene�ts, not felt until period 3, are much less

valuable. The social planner also mitigates less in period 2, again because of the

decrease in the present value of the expected marginal bene�ts.
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Next, let us consider how the e¤ect of learning changes with the discount factor

and the stock externality.

Proposition 5 The minimum ratio of cost curvature elasticity to bene�t curvature

elasticity necessary for learning to increase the optimal initial level of mitigation (b!)
is increasing with the discount rate.

From the vantage of the �rst period, a positive discount rate implies that mit-

igation in the second period is less expensive. Thus, the social planner is less

concerned about the potential increase in second-period mitigation associated with

learning of a possible high damage. Therefore, the dominant factor for the social

planner is that learning decreases the expected future damage, thereby allowing her

to mitigate less initially. The formal proof is in the appendix.

Proposition 6 Given some degree of learning greater than zero (� > 0), the mini-

mum ratio of cost curvature elasticity to bene�t curvature elasticity needed for learn-

ing to increase the optimal initial level of mitigation (b!) decreases with the intro-
duction of a stock externality (i.e. for � < 1). At high levels of stock externality

(� � 1), a marginal increase in the stock externality increases the minimum ratio of

curvature elasticities needed for learning to increase the optimal level of mitigation

(b!).
The e¤ect of the stock externality is more complex than the e¤ect of the discount

rate. The introduction of a stock externality makes information less bene�cial than

with no stock externality, since it is more expensive to respond to that information

by adjusting e¤ective mitigation. If this were the only e¤ect, it would imply that the

change in marginal bene�t from learning would be smaller with a stock externality.
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Given that the shift in expected marginal bene�t drives the optimal level of initial

mitigation down, one therefore would anticipate that a stock externality would make

it more likely for learning to increase initial mitigation. However, the fact that the

social planner mitigates more initially means that she faces a smaller increase in

marginal costs in the second period if she learns that damage will be high. Because

she has already mitigated more, the extra cost of the added second-period mitigation

induced by learning is smaller. Therefore, the potential for learning does not concern

the social planner as much in terms of potential increased costs. Depending on the

ratio of cost curvature elasticity to bene�t curvature elasticity, this e¤ect on the

additional marginal cost may outweigh the smaller decrease in marginal bene�t

generated with learning, making the social planner less likely to increase initial

mitigation with learning when a stock externality applies.

Last, let us turn to the value of learning. Both a stock externality and a discount

rate diminish the value of learning. Because the stock externality makes it more

expensive to react to learning in the second period, information yields fewer bene�ts

in terms of avoided downside risk. On the other hand, a discount rate implies that

the social planner cares less about future damage, which means she takes less pains

to avoid high damage, implying information is less valuable.

7 Conclusions

In this paper, we ask how the potential for learning a¤ects the timing and quantity

of mitigation. Following work by Epstein (1980), Kolstad (1996a) and Ulph and

Ulph (1997), we develop a model where the social planner can choose how much to
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invest in mitigation before and after learning about future bene�ts of mitigation.

Using a simple Bayesian approach, we model the degree of learning as a continuous

parameter, which allows us to do comparative statics on the optimal level of initial

mitigation in response to an increase in anticipated learning. We generate the

conditions necessary for a marginal increase in learning to increase the initial level

of mitigation, conditions that depend on the curvature elasticities of the curves for

marginal cost and bene�t of mitigation. Even if these curvature elasticities may be

di¢ cult to measure, policymakers may �nd it relatively easier to determine if their

ratio is above of below some threshold level.

First, we �nd that unless the marginal cost of mitigation is increasing at least

as rapidly as marginal bene�t, an improvement in anticipated information tends

to decrease the initial amount of mitigation. Our result di¤ers from that of Ulph

and Ulph (1997). With irreversibility, they �nd that for learning to induce the

social planner to mitigate more initially, the irreversibility constraint must bind. In

contrast, we �nd circumstances where initial mitigation increases with an increase

in the degree of learning even without irreversibility. Thus, we �nd situations that

justify precaution, without resorting to irreversibility and without risk aversion.

This scenario of rapidly rising marginal cost of mitigation (or investment) may well

be plausible in light of mitigation that involves large social and capital costs, such

as mass dislocation or wholesale transformation from a car-based transportation

system.

Because of the convex marginal cost of mitigation (C 000 > 0); the social planner

has an incentive to try to balance its expected expenditure over the two periods. In-

creasing second-period mitigation by one unit in reaction to unfavorable information
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costs more at the margin than the social planner saves by reducing second-period

mitigation by one unit with favorable information. Thus, the fact that the marginal

cost curve is convex induces the social planner to exhibit �precaution�and mitigate

more initially. However, a convex marginal bene�t curve (B000 > 0) implies that

the social planner bene�ts more from information, in that she is able to avoid the

very damaging outcomes, while saving on mitigation if damage is light. Only when

the curvature elasticity of the marginal cost of mitigation is large relative to the

curvature elasticity of bene�t will the potential for learning increase the optimal

level of initial mitigation.

Second, we �nd that starting with a lower degree of learning makes it less likely

for learning to increase the optimal level of initial expenditure. Speci�cally, if a

social planner initially does not anticipate any learning and then hears of a study

coming out a year from now that will begin to clarify the probabilities of future

environmental damage, the curvature elasticity of marginal cost of mitigation has

to be at least twice that of the curvature elasticity of marginal bene�t for her to

optimally increase mitigation today.

The third �nding is perhaps more predictable: total expected expenditure on

mitigation is lower with a greater potential for learning. Because the social planner

can respond to the learned information, she can decrease her expected expenditure

in the second stage.

Since it is often the stock of pollution, such as GHGs, that damage the envi-

ronment, it makes sense to include a stock externality in the model. As one might

anticipate, we �nd that less e¤ective second-period mitigation makes the social plan-

ner spend more on mitigation in the �rst period, and spend more overall. However,
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the increase in total mitigation is not enough to o¤set the decrease in its e¤ective-

ness. The stock externality also a¤ects how the timing of mitigation responds to

information. Since the stock externality makes it more expensive to respond to

unfavorable information, the social planner increases the initial level of mitigation

with the prospect of better learning. This result only holds for a small stock exter-

nality, however. If the stock externality is large enough such that mitigation in the

second period has very little e¤ect on expected damage, then a marginal change in

the stock externality has either no impact on the e¤ect of learning, or may imply

that learning decreases the optimal initial level of mitigation a small amount. The

intuition here is simply that if the social planner can do very little in the second pe-

riod, she mitigates more fully in the �rst period. Learning primarily decreases the

expected marginal bene�t, inducing the social planner initially to mitigate slightly

less.

Discount rates are staples in policy decisions with long horizons such as climate

change. When the social planner discounts the future, she understandably spends

less now to mitigate against future damage. Further, she is also less likely to

increase the initial level of mitigation in response to an increase in the degree of

learning, since the information a¤ects the expected future marginal bene�ts that

are discounted. The discount rate acts as one would expect: it decreases mitigation

in both periods, particularly in the �rst.

The model provides insight to debates beyond climate change. Public policy

makers face a number of scenarios where they have to determine the level of invest-

ment when facing unknown environmental threats. For example, governments de-

bate how much to invest in parks and other means of preserving endangered species
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before knowing their exact rate of decline. By developing a relatively simple, yet,

we hope, broadly-applicable model, this paper helps develop economic intuition for

when mitigation today should be increased or decreased, for causes that have di¤er-

ent potentials for learning, based solely on knowledge of the shape of the marginal

cost and bene�t curves.
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9 Appendix

9.1 Second order conditions

From equation (7), we can solve for the second order conditions:

(A.1) SOC = �1
2

2664
�
�AF +

1
��C

00
F

��
�AU +

1
��C

00
U

��
AF +AU +

2
�2
C 001

�
��A2F

�
�AU +

1
��C

00
U

�
� �A2U

�
�AF +

1
��C

00
F

�
3775

Simplifying, one obtains:

(A.2) SOC = �1
2

2664 1
�2�2

C 00FC
00
U

�
AF +AU +

2
�2
C 001

�
+ 1

�AFAU (C
00
F + C

00
U )

+ 2
�2
C 001

�
1
� (AFC

00
U +AUC

00
F ) + �

2AFAU

�
3775 :

If assumptions (1) and (2) hold, AF ; Au; C 00F and C
00
U ; � 0: As long as not all of

these terms equal 0; then SOC < 0, implying a maximum exists.

9.2 Derivation of dm1

d�

To �nd the ratio of the two curvature elasticities, !; that allows for an increase in

the degree of learning to increase the optimal initial level of mitigation, we need to

be able to compare the terms, A00; N and C 00: Therefore, we take a Taylor series
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expansion of each of these terms, show that dm1
d� is monotonic in !, and solve for

the minimum level of ! = b! where dm1
d� = 0:

Note from equation (8) that for dm1
d� > 0; the following must be true:

(2A.1) AuC00u �
AF
C00F

Nu
NF

< 1
��2

�
Nu
NF

� 1
�
< 0

First, let us re-de�ne these terms. From its de�nition, note that

AU j�=0 = �
�
1
2B

00(m1 + �m2 �H) + 1
2B

00(m1 + �m2 � L)
	
= AF j�=0 = jB00j

while using a Taylor series expansion, we can write

AU j� = �
n�

1
2 + 2�

� �
B
00
H �B000

@mu
T

@� �
�
+
�
1
2 � 2�

� �
B
00
L �B000

@mu
T

@� �
�o

(2A.1) AU j� = jB
00j+2�

�
B
00
H �B

00
L

�
�B000 @m

u
T

@� �, where B
00
H�B

00
L = B

000(H�L):

Dividing through by B000; we get

(2A.3) AU
B000 =

1
" + 2�(H � L)� @mu

T
@� �:Similarly,

(2A.4) AF
B000 =

1
" � 2�(H � L)� @mf

T
@� �

We can also use a Taylor series expansion to re-write cost:

(2A.5) CU
C000 =

1
� +

@mu
2

@� �

(2A.6) CF
C000 =

1
� +

@mf
2

@� �

Last, we can also re-write N as a function of the elasticity of marginal bene�t.

(2A.7) NU = N �B000(H � L)@m
U
T

@� �; and

(2A.8) NF = N +B000(H � L)@m
F
T

@� �

where N
H�L = B

00
:

First, we need to show that @2m1
@�@! < 0 at @m1

@� = 0: Setting @m1
@� = 0, we

notice from the third �rst order condition (equation 6) that at the optimal level of

mitigation, 1�
�
�F � �u

�
=
�
�F2 + �u2

�
�
2 :

De�ne �
�
�F + �u

�
= 4�(H�L); where � < 1. Further, de�ne �2

�
�F2 + �u2

�
=

16�(H � L)2 and � = �
� :
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Essentially, � can be thought of as the proportion of the di¤erence between good

and bad outcomes to which the government reacts in the second period with full

learning. The function, �, is increasing in the ratio of the curvature elasticity of

cost over bene�t, !; increasing in information, �, and increasing in � and �: Note

that the smaller the curvature elasticity of cost, the more likely is the left side of

equation (9) to be positive. Further, note that the larger the di¤erence between

high and low damage, the more likely is the left hand side of equation (9) to be

negative.

Substituting the above de�nitions back into (A.3), rearranging and we obtain:

(2A.9) � = �2
�
1
�

�2
('+ !

� �
!2

� )�4�
2(H�L)2

�
2�2('� �) + �(2� + 1)(! + �)

�
where ' = C000

��2B000
. Note that � is decreasing in � and �. The �rst term in

brackets in equation (2A.9), is positive for all values of the stock externality and

discount factor (�; �) as long as ! � 2. The term in square brackets, 2�2( �
��2
� �)+

�(2� + 1)(! + �); is positive for all values of !, and is increasing in �: Therefore,

if we solve for the critical level of omega, b!; where, for any ! � b!; � < 0 at the

maximum level of �, � < 0 will hold for all levels of �:

9.2.1 Solving for maximum � and �

Now, let us turn to � � �(�F+�u)
4(H�L) : Note that �u = @mU

2
@� and �F = �@mF

2
@� are

themselves a function of !: Using the �rst order conditions for @m
U
2

@� and using the

Taylor series expansion for C 0U and A
0
U , we can solve for

@mU
2

@� :

(2A.10) 1
��

�
C
0
+ C

00
��+ C000

2 �
2�2
�

= B
0
+ 2�(B0H �B0L) +B

00 @mU
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B000
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�
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@� �
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� 2�2B000(H � L)@m
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Note that if @m1
@� = 0;

@mU
T

@� = �
@mU

2
@� � ��. Also, note that in equilibrium,
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1
��C

0
= B

0
: Thus,

(2A.11) ��u = 2!�(H�L)
1
�
('+!)+�u�

2
('��)+2�(H�L)

and, using the same trick,

(2A.12) ��F = 2!�(H�L)
1
�
('+!)��F �

2
('��)�2�(H�L)

:

De�ne a =
�
1
� ('+ !) +

�u�
2 ('� �) + 2�(H � L)

�
> 0

and b =
�
1
� ('+ !)�

�F�
2 ('� �)� 2�(H � L)

�
> 0: Thus,

(2A.13) �
�
�F + �u

�
= 4(H � L)

h
!(a+b)
2�ab

i
where the term in square brackets is de�ned as �: Since � contains endogenous

terms �U and �F , we calculate a maximum level of �; which we denote as �; and use

it to solve for !. To get �; we need to make some assumptions about the maximum

level of �U and �F : First, note that by the assumption of C 00 � 0,

(2A.14) �F� � 1
� .

Second, note that by the assumption that B00 � 0 for all possible outcomes,

then B00 is still greater or equal to zero with a good outcome, but where the social

planner assumed a bad outcome, and mitigated accordingly (setting m2 = m
u
2): In

that case, !� � ��
U�+2�(H�L) for all possible levels of �U and �: The maximum

level of �U from equation 2A.11 above, is:

(2A.15) !� � 2�(H � L) � 2!(H�L)
('+!)

Further, note that �U � 0: Substituting both both (A.16) and (A.17) into

(A.15), and solving for �; we obtain the following, admittedly ugly, expression:

(2A.16) � = !(3'+4!+�)('+2!)2

2('+!)('+3!)(2!'+2!2+'2+�('+2!))
:

9.2.2 Showing that @�
@! > 0

To show that @�@! > 0; we �rst need to show that
@�
@! � 0:
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(2A.17) @�
@! =

1
� [a

2(b�!�)+b2(a�!�)]+![a2�b�b2�a]
2a2b2

;

where �a =
�('��)
2

@�U

@! ; �b =
�('��)
2

@�F

@! , and �a < �b:

The sign of (2A.17) depends on b� !
� , since a�

!
� > 0: Note that

'
� �

�F�
2 ('�

�)�2�(H�L) > ('+��2 )�2�(H�L): Further, note that from (2A.15), 2�(H�L) �

!('+!)
�('+2!) : Therefore, as long as ! � 1:6, the term b � !

� , and
@�
@! > 0: Last, note

that at the maximum level of �; @�@! > 08!:

Next, consider @�@! : We can write � =
�2(�F2+�u2)

�(�F+�u)4(H�L) = ��
�2(�F�U)
�8(H�L)2 = ��

!
�(a+b) :

Solving for @�@! we �nd:

(2A.18) @�@! =
a4(b�!

�
)+b4(a�!

�
)+2ab(a+b)!

�

2a2b2(a+b)2

By the same reasoning above, if ! � 1:6; b > !
� , which implies that

@�
@! > 0:

Note as well that the maximum �; � = � � !
2(!+') ; is increasing in !;

@�
@! > 0 8!:

To show that @�
@! < 0, note that the �rst term in 2A.9 will decrease with ! if

1
� �

@�
@!

!
�2
�2!� < 0: Note that

1
� �

@�
@!

!
�2
= 2

h
1� ab

(a+b)2

i
< 2, while 2!� � 2 if ! � 1:

Therefore, if ! � 1, @�@! < 08�; �; �:

Now that we�ve shown that for the range of ! that can generate dm1
d� = 0; @�@! < 0;

we know a critical level of omega exists, b!; such that ; dm1
d� � 08! � b!:

9.2.3 Showing that for ! � 1; dm1
d� < 0

Returning to equation (A.11), note that the maximum level of �U = 2!(H�L)
('+!) (from

equation 2A.15 above), therefore !�
2�(H�L) �

'+2!
'+! : Substituting into (2A.9), we get

(2A.19) � � � � 2�2 ('+2!)
2

('+!)2

�
'
!2
+ 1

!�
� 1

�

�
�4�2('+ !)� (!+�)

('+!)

�
2�'� !

�
Next, we need to show that at ! = 1; � � 0: Note from A.18, � is no longer

a function of �: Because @�
@' < 0; @�

2
'

@' < 0 and @
2�'
('+!)

@' < 0; @�@' > 0: Since the
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discount factor only a¤ects the value of ', where @'@� < 0; we know that the minimum

value of � occurs at � = 1: The stock externality, however, e¤ects both the value

of ' as well as other components of �. By simulating (2A.19), we �nd that at

! = 1, the minimum � occurs at � = :523: At these values, � = 0:318 and � = 0:21:

Plugging these values into equation (2A.19), we �nd that at ! = 1; � = 0:88;8�; �:

We want to know, for some initial level of learning, � > 0, at what ! is @m1
@� = 0?

Because @'
@� < 0;

@�
@� > 0 and

@�
@' > 0: Since ' is de�ned as

C000

��2B000
, as long as � is

near zero, @�@� < 0:

Thus, for a marginal increase in learning to increase the optimal initial level

of mitigation, the curvature elasticity of marginal cost has to be greater than 1.14

times as large as the curvature elasticity of marginal bene�t, regardless of stock

externality, discount rate or the initial degree of learning expected.

9.3 3. Derivation of @b!
@�
.

To consider how the critical level of ! changes with learning, we need to consider

how � changes with learning. Given that @�
@� < 0 and @�

@� < 0; if we can show

@�
@� > 0, then it follows that

@�
@� > 0: Note that

@�
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�
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@�F
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�
; where
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('��)+2(H�L)
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a �
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a : Further, note that
@�F

@� > �@�U

@� . Thus,
@�
@� > 0: Now, � = ��

!�
a+b ; where

@�
@� =

!
�
(a+b)3(b0a�a0b)�(b0�a0)ab

h
(a+b)2+2!

�
ab
i

2a2b2(a+b)2
: Note that (b0a� a0b) > (b0 � a0)a: Therefore

@�
@� >

(b0�a0)
h
(a+b)2a

�
!
�
(a+b)�b

�
�2!

�
a2b2

i
2a2b2(a+b)2

: Note that 2!� a
3b > 2!� a

2b2 and assume

H � L > 1, so that !� > 2�(H � L) > 1: Thus @�@� > 0:

To see the sign of @�@� return to equation A.11. Note that as long as ! < 2,

the �rst term is positive. For all values of !; �; � and � > 0;the second term is
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positive, and is increasing in �: Thus, the �rst term minus the second is decreasing

in learning, or @�@� < 0: Further, this result implies that the critical level of ! needed

to yield a � < 0; is decreasing in information. Thus, @b!@� > 0:

9.4 4. Derivation of @2m1

@�2
at � = 0

From equation (8) above, we know:

(4A.1)dm1
d� = 1

��2
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3775 1
SOC

Therefore, the sign of dm1
d� depends on the ratio of how marginal welfare changes

with mitigation in the second period under unfavorable and favorable information:

�2AF+
1
�
CF

�2AU+
1
�
CU

=
E(W )00U
E(W )00F

compared to the ratio of the slope of marginal cost times

the average slope of marginal damage at the two states of information: C00UNU
C00FNF

: If

E(W )00U
E(W )00F

> CUNU
CFNF

then dm1
d� < 0: Note that with no information (� = 0), CU

CF
=

NU
NF

=
E(W )00U
E(W )00F

= 1, implying dm1
d� = 0. To determine what happens as the initial

information increases, consider how dm1
d� evaluated at no information changes with

�. In general we know that
@
CU
CF
@� > 0

@
NU
NF
@� < 0 and

@
E(W )00U
E(W )00

F
@� > 0: For simplicity,

assume C 0000 = B0000 = 0:

First, let us consider the derivative of each of these terms with respect to a

marginal decrease in the quality of information. To start, consider the ratio of cost

@C00U
@� = C 000

@mU
2

@� > 0: Similarly, @C
00
F

@� = C 000
@mF

2
@� < 0: At no information (� = 0),

assuming small changes,
@(mU

2 )
@� = �@(mF

2 )
@� the change in the ratio of the two costs

simpli�es to:

(4A.2)
@
CU
CF
@� = 2C

000

C00

���@(m2)
@�

���
45



Next, consider the change in average marginal damage with a change in infor-

mation quality.

@Nu
@� =

@(B0HU�B0LU)
@� = B00(m0+�m

u
1�H)

@(m1+�mU
2 )

@� �B00(m0+�m
u
1+L)

@(m1+�mU
2 )

@�

= (B00HU �B00LU )
@(m1+�mU

2 )
@� > 0 since

@(m1+�mU
2 )

@� < 0 and B00HU < B
00
LU < 0:

@NF
@� =

@(B0HF�B0LF )
@� = B00(m0+�m

F
1 �H)

@(m1+�mF
2 )

@� �B00(m0+�m
F
1 �L)

@(m1+�mF
2 )

@�

= (B00HF �B00LF )
@(m1+�mF

2 )
@� > 0 since

@(m1+�mF
2 )

@� < 0 and B00HF < B
00
LF < 0:

Using the above, we can derive the change in the ratio of average marginal

damage with a decrease in information quality:

(4A.3)
@
NU
NF
@� = 1

N
2
F

0BB@ NF (B
00
HU �B00LU )

@(m1+�mU
2 )

@�

�NU (B00HF �B00LF )
@(m1+�mF

2 )
@�

1CCA > 0:

At no information, an increase in unfavorable information will increase miti-

gation in the second period by the same amount that favorable information will

decrease second-period mitigation,
@(mU

2 )
@� = �@(mF

2 )
@� ; and A.3 simpli�es to:

2�
�
B00H�B00L

N

� ���@(m2)
@�

��� : Further, note that B00H�B00LH�L = �B000 and N
H�L = �B

00(m2):

Thus, (A.3) simpli�es to:

(4A.4)
@
NU
NF
@� = 2�B

000

B00

���@(m2)
@�

��� < 0:
Combining the two derivatives, we can solve for

@
C00UNU
C00
F
NF

@� at � = 0:

(4A.5)
@
C00UNU
C00
F
NF

@� =
C00U
C00F

h
2�B

000

B00

���@(m2)
@�

���i� NU
NF

h
2C

000

C00

���@(m2)
@�

���i :
Since at no information, the slope of marginal cost and average marginal damage

at favorable and unfavorable information are the same, C
00
U

C00F
= NU

NF
= 1, the above

can be simpli�ed to:
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(4A.6)
@
C00UNU
C00
F
NF

@� = 2
���@(m1)
@�

��� ��B000B00 +
C000

C00

�

Next, we need to solve how the second derivatives of expected welfare with

respect to mitigation in the second period change with a decrease in information

quality.

@E(W )00U
@� = �2 @AU@� + 1

�
@C00U
@� where A00U � �2

��
1
2 � �

�
B00LU + �B

00
HU

�
= 2�2

�
B00HU �B00LU � 1

2B
000 @(m1+�mU

2 )
@�

�
+ 1

�C
000 @(m

U
1 )

@�

@E(W )00F
@� = �2 @AF@� + 1

�
@C00F
@� where A00F � �2

�
�B00LF +

�
1
2 � �

�
B00HF

�
= �2�2

�
B00HF �B00LF + 1

2B
000 @(m1+�mF

2 )
@�

�
+ 1

�C
000 @(m

F
1 )

@� : Thus,

@
E(W )00U
E(W )00

F
@� =

0BBBBBBBBBBB@

1
E(W )00F

2664 2�
2

�
B00HU �B00LU � 1

2B
000 @(m1+�mU

2 )
@�

�
+ 1
�C

000 @(m
U
1 )

@�

3775

+
E(W )00U

[E(W )00F ]
2

2664 2�
2

�
B00HF �B00LF + 1

2B
000 @(m1+�mF

2 )
@�

�
� 1
�C

000 @(m
F
1 )

@�

3775

1CCCCCCCCCCCA
At no information, E(W )00F = E(W )

00
U giving:

(4A.7)
@
E(W )00U
E(W )00

F
@� =

h
2�2

�
2(B00H�B00F )+�B000

��� @(m2)@�

����� 2
�
C000

��� @(m2)@�

���i
E(W )00

Now we have all partial derivatives as a function of dm2
d� : Solving dm2

d� at no

information using Cramer�s rule from equation (7), we obtain:

(4A.8) dm2
d� = 2�N�

�2A+ 1
�
C00
�

We are interested in how dm1
d� changes with a marginal increase in information,

thus, with an increase in �: We can address this by combining equation (8) above

with (A.6) and (A.7). Given E(W )00U
E(W )00F

� C00UNU
C00FNF

= 0 at � = 0;
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(4A.9)
@
dm1
d�

j�=0
@� =

24@ E(W )00U
E(W )00

F
@� �

@
C00UNU
C00
F
NF

@�

35	+ �E(W )00U
E(W )00F

� C00UNU
C00FNF

�
@	
@�

=

"
� 4�2(B00H�B00L)�

�2A00+ 1
�
C00
� + 2@(m2)

@�

 
�B

000

B00 �
C000

C00 �
�3B000� 1

�
C000�

�2A00+ 1
�
C00
�
!#

	

where 	 is 2
�C

00
FNF

�
AF +

1
��2
C 00F

�
1

�2SOC>0: Substituting equation (A.8) for

dm2
d� , we obtain:

(4A.10)
@
dm1
d�

j
�=0

@� = :�

26664
4�2(B00H�B00L)�
�2A00+ 1

�
C00
�

+ 4�N�
�2A+ 1

�
C00
� ��B000B00 �

C000

C00 �
�3B000� 1

�
C000

�2A00+ 1
�
C00

�
37775	

Note that (
B00H�B00L)=(H�L)

N=(H�L) = B000

B00 . Further, notice that the last term in brackets

is just the elasticity of the second order conditions with respect to mitigation in the

second period, since �3B000 � 1
�C

000 =
@
�
�2B00� 1

�
C00
�

@m2
= 2@

3E(W )
@m3

2
and �2A00 + 1

�C
00 =

�2@
2E(W )
@m2

2
: So we can rewrite (4A.10) as follows:

(4A.11)
@
dm1
d�

j
�=1

4
@� =

h
�2�B000B00 �

C000

C00 +
�
E(W )000

E(W )00

�i ���dm2
d�

���	
If equation (4A.11) is positive, the introduction of some information will decrease

the initial level of mitigation. With no stock externality or discount rate, the

elasticity of the slope of the marginal cost curve has to be twice the absolute value of

the elasticity of the slope of marginal bene�t curve plus the elasticity of the second

derivative of expected welfare with respect to m2 for an increase in information

quality to have no e¤ect on the initial level of mitigation.

For (4A.11) to be negative, �2�B000B00 �
C000

C00 +
�
E(W )000

E(W )00

�
< 0: Multiplying through

by E(W )00 < 0: We can then obtain the following condition.

(4A.12)
���C000=C00B000=B00

���� 2
��

���C00B00

��� < �:
If C 000 = B000, (A.12) then requires the slope of the marginal cost curve to be less
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than half the slope of the marginal bene�t curve (C 00 < 1
2 jB

00j): Even before consid-

ering their e¤ect on the slope of the marginal cost or bene�t curve, the introduction

of a stock externality or discount rate increases the required di¤erence between C 00

and jB00j. Further, because it decreases the amount of e¤ective mitigation, an in-

crease in the stock externality (or a decrease in �) speci�cally increases B00; and

because it decreases the amount of mitigation in the second period, it decreases C 00.

Discounting the future clearly decreases mitigation in both periods, and therefore

a decrease in the discount factor � increases jB00j and decreases C 00, also further

increasing the di¤erence.

If the absolute value of the slopes of the marginal cost and marginal bene�t are

the same, C 00 = jB00j ; the change in the slope of marginal cost has to be at least

three times as large as the change in the slope of marginal bene�t for (A.12) to

hold. As above, the introduction of a discount rate or a stock externality increases

the magnitude of this requirement. Thus, for the amount of initial mitigation to

increase with an increase in quantity, i.e. for dm1
d� > 0, the curvature elasticity of

cost must be more than twice the curvature elasticity of bene�t, C
000

C00 > 2
B000

B00 :

9.4.1 5. Proof of proposition 2

To solve for the e¤ect of the quality of information on total mitigation, we �rst

need to solve for dm
F
2

d� and dmU
2

d� : To determine
dmF

2
d� and dmU

2
d� we can once again use

Cramer�s rule from equation (7) above to obtain:

(5A.1) dmF
2

d� = � 1
��

2664 2
�NFC

00
1

�
�2AU +

1
�C

00
U

�
+C 00U (NFAU +NUAF )

3775 1
�SOC < 0
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Similarly, solving for dm
U
2

d� we obtain:

(5A.2) dm
U
2

d� = 1
��

2664 2
�NUC

00
1

�
�2AF +

1
�C

00
F

�
+C 00F (NFAU +NUAF )

3775 1
�SOC > 0

To determine how total expected mitigation changes with information, we com-

bine the above expressions: dmT
d� = dm1

d� + 1
2

�
dmU

2
d� +

dmF
2

d�

�
obtaining (A.14)

(5A.3) dmT
d� =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

2� (C 00FNFAU � C 00UNUAF )

+ 2
��C

00
FC

00
U (NF �NU )

+ (C 00U � C 00F ) (NFAU +NUAF )

+ 2
�C

00
1

2664 NF

�
�2AU +

1
�C

00
U

�
�NU

�
�2AF +

1
�C

00
F

�
3775

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

1
�2��SOC

Note that NF � NU , C 00U � C 00F and AU � AF , so that the only term with a sign

in question is the �rst one: C 00FNFAU � C 00UNUAF :

If C 00FNFAU � C 00UNUAF � 0; then equation (A.14) is clearly positive or zero.

If C 00FNFAU � C 00UNUAF < 0; note that the third line in (A.14) can be written

as [(C 00UNUAF � CFNFAU ) + (C 00UNFAU � C 00FNUAF )] : The �rst di¤erence in the

brackets is positive by the assumption that C 00FNFAU � C 00UNUAF < 0. As for

the second di¤erence, since NFAU > NUAF , note that C 00UNFAU > C
00
UNUA

00
F and

CFNFAU > C
00
FNUAF implying the second di¤erence is positive and larger than the

�rst. Thus, (C 00UNFAU � C 00FNUAF ) > (C 00UNUAF � CFNFAU ) > 0. Therefore,

the magnitude of the third line has to be larger than the magnitude of the �rst, so2664 (C 00UNUAF � CFNFAU )

+ (C 00UNFAU � C 00FNUAF )

3775 > 2� (CFNFAU � CUNUAF ) : Therefore dmT
d� �

0, regardless of stock externality or discount rate.
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