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Abstract

Graduated income tax rates and transfer programs create piecewise-linear budget constraints that

consist of budget segments and kink points. With any change in these tax rules, each individual may

switch between a kink point and a budget segment, between two budget segments, or between two

kink points. With errors in the estimated labor supply equation, the new choice is uncertain, and so

the welfare effects of a tax change are uncertain. We propose a simulation-based method to compute

expected welfare effects that is easy to implement and that fully accounts for uncertainties about

choices around kink points. Our method also provides information about expected changes in

working hours.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Graduated income tax rates and income transfer programs create piecewise-linear

budget constraints that are composed of a collection of budget segments and kink points.

A considerable body of work estimates labor supply under such budget sets.1 Key insights

in this literature are that the consumer may choose a budget segment or a kink, whichever

provides maximum utility, and that this behavior is estimated with error.

Economists also calculate welfare loss due to taxation of labor supply. Many use labor

supply estimates to calculate average and marginal welfare loss, and many evaluate the

* Corresponding author. Tel.: +1-512-4758540; fax: +1-512-4713510.

E-mail address: gan@eco.utexas.edu (L. Gan).
1 For surveys, see Hausman (1985), Moffit (1990, 2002), and Blundell and MaCurdy (1999).
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economic effects of proposed and real tax reforms. As reviewed below, however, existing

welfare cost calculations often do not fully account for the errors of estimation and their

interaction with the nonlinear budget constraint for each individual. In particular, with a

change of tax schedule, the stochastic specification means that each individual has a

distribution of possible outcomes: she may switch to another budget segment, switch to a

kink point, or even switch to or from participating in the labor force. In general, each

different budget segment produces a different net wage and a different virtual income.

In this paper, we develop a method to calculate welfare cost that employs the full

stochastic specification of any estimated labor supply model. In particular, we account for

uncertainties that arise from estimating errors by using Monte Carlo simulation across

heterogeneous individuals. For each individual, this method uses the estimated probabil-

ities of switching from each segment or kink point to another to calculate ‘‘expected’’

welfare loss for each individual. This method also identifies the expected change of work-

ing hours. Moreover, it provides a natural way to aggregate welfare loss and the change in

working hours for various types of heterogeneous individuals. We then illustrate this

method using three existing samples of individuals and estimates of labor supply behavior.

The problem of welfare loss from labor taxes under piecewise-linear budget constraints

is essentially the same problem as calculating consumer surplus or willingness-to-pay in

discrete choice models where choices are mutually exclusive. Similarly, in the labor supply

model, a worker may choose only one budget segment or kink point. Small and Rosen

(1981) were among the first to study systematically the effect of a price change on welfare

for discrete choice models. However, their study did not account for the possibility of

changing income. McFadden (1999) thoroughly discusses a willingness-to-pay problem in

discrete choice models by explicitly comparing the choices that yield maximum utilities

before and after changes in some specific attributes of arguments in the utility function.

Possible changes in income, prices or attributes may change the choice that maximizes

utility and hence affect the values of the compensating variation (CV) and equivalent

variation (EV). While his study concerns fishing,2 other examples concern housing3 or

wealth accumulation.4

Previous literature on calculating welfare loss of labor taxation with piecewise budget

constraints is based on analytical solutions. Examples include Hausman (1983) and

Blomquist (1983). In order to allow for this analytical solution in his study of the change

from one piecewise-linear budget constraint to another, Hausman assumes that each

2 In McFadden’s example, evaluating environmental damages at various fishing sites, the attributes include

the quality and quantity of fish at each site. The CVor EVare those that equalize the maximum utilities before and

after some change in fishing quality.
3 In a study of housing and taxes, Berkovec and Fullerton (1992) use a simulation approach to calculate

welfare loss. They employ eight mutually exclusive regimes, with discrete choices about whether to hold owner

housing, rental housing and corporate equity. For each household, they compare the utility levels in each regime

before the tax change, and again after the tax change. Within each regime, they consider what tax bracket the

person would face. Since they study housing choice, however, they ignore the choice of working hours. The

implicit assumption is that hours do not change in response to a change in tax rate.
4 Hubbard et al. (1995) show that the often-assumed monotonic relationship between wealth and

consumption may not be valid anymore due to piecewise-linear budget constraints. Also, the breakdown of this

monotonic relationship may have important effects on wealth accumulation and life-cycle behavior.

D. Fullerton, L. Gan / Journal of Public Economics 88 (2004) 2339–23592340



person’s new optimal choice is on a segment of the new budget constraint. Blomquist

allows for kinks in the existing tax system, but calculates the welfare gains of moving to a

proportional tax system (with no kinks). By using a simulation approach, we can allow for

changes to or from a kink.

The framework we adopt here is pioneered by various studies of Hausman in the 1980s

(Hausman, 1981b, 1983, 1985). Blundell and MaCurdy (1999) discuss several attractive

features of this framework: it explicitly recognizes the institutional features of the tax

system, and it readily incorporates the fixed cost of holding a job. However, some

concerns on how to estimate labor supply in this framework have also emerged. The most

notable concern is of Heckman (1983), that the budget set for each individual often cannot

be accurately determined and that a special type of errors-in-variable bias results.5 Yet a

recent paper by Gan and Stahl (2002) shows that the Heckman concern can indeed be

addressed in the Hausman framework by introducing measurement error in nonlabor

income, because it creates a random budget set. Such a labor supply equation can be

estimated in a framework of piecewise-linear budget constraints without suffering from the

Heckman concern.

This paper does not provide any assistance in estimating labor supply functions.

Rather, the point is to employ the stochastic specifications of such models along with

their parameter estimates when calculating welfare effects of tax changes. It is to be

consistent with those labor supply models that we suggest a Monte Carlo method. These

models often have multiple random errors, and they have no closed-form solution for

welfare cost. Our method yields strikingly different results compared to the use of point

estimates in a simple welfare cost formula. Then, once the Monte Carlo method is

employed, several other complications can easily be incorporated as well.

In particular, this paper makes several contributions relative to existing welfare cost

calculations. First, we calculate welfare cost using labor supply estimates that account for

the Heckman concern. Second, earlier analytical approaches had to assume that each

person’s new indifference curve is tangent to a line segment on the new budget, while our

approach allows movement to or from a kink point. Third, we account for the fact that the

EVor CV itself is a transfer that may also affect the person’s choice. Fourth, our simulation

method is easy to implement and to calculate, with no additional difficulty for a

nonconvex budget set. Finally, earlier analytical approaches could not employ the entire

estimated distributions of multiple error terms. For example, Hausman (1983) allows for

measurement error and for heterogeneity in one of the preference parameters. To get a

probability-weighted choice of hours, one needs to integrate over both distributions. To

simplify, one might use just the mean of each distribution. Later we call this the simple

‘‘Harberger’’ method (Harberger, 1964), because the person’s choice is only one point.

Instead, Hausman uses an approximation, evaluating the distribution at the means of

intervals. Here, we employ the entire estimated distributions of both error terms. For each

5 Also, MaCurdy et al. (1990) argue that the likelihood setup in Hausman’s framework may create artificial

constraints on the parameter values. Blundell and MaCurdy (1999) suggest that the Triest (1990) dual random

error model is not subject to this problem. In fact, however, Hausman’s random coefficient model is not subject to

this problem since the Triest model is a special case of Hausman’s model. See Gan and Stahl (2002) for a detailed

discussion on this point.
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individual in the data set, our Monte Carlo simulation takes a large number of random

drawings from the two estimated distributions. For each drawing, it calculates the chosen

segment or kink, and the resulting welfare cost. We then have a probability distribution of

the welfare cost. Because welfare cost increases with the square of the tax rate, the

expected welfare cost exceeds the welfare cost at the expected point. Compared to the

simple Harberger method, this procedure might be important, especially if the errors are

large and the tax system is steeply graduated.6

Indeed, we find larger welfare effects in each of our three illustrations. In one

calculation, Harberger’s welfare cost is 26% of tax revenue, Hausman finds 58%, and

we find 75%. For the rate reduction of the Tax Reform Act of 1986, Harberger’s gain is

6% of tax revenue, and ours is 35%. In a final example where the point estimate of the

compensated labor supply elasticity is near zero, the Harberger-type welfare cost is near

zero but ours is not: the elasticity is estimated with error, and the possibility of a positive

elasticity implies positive expected welfare cost.

In Section 2, we define and provide a framework to estimate the CV and EV under

budget constraints that are piecewise linear. These budget constraints are discussed in

Section 2.1, while the issues related to CV and EV under piecewise budget constraints

are in Section 2.2. Then Section 3 provides a framework to calculate welfare loss

using the simulation method. Section 4 offers three empirical examples to compare the

values of welfare loss derived from alternative methods. Section 5 concludes the

paper.

2. Basic framework

In this study, we consider a static partial equilibrium labor supply model. The before-

tax wage is constant, with no inter-temporal optimization of labor supply. All of the

following variables are individual-specific, but we suppress the index for notational

convenience.

We begin with a typical labor supply model of utility maximization with respect to

choices about leisure and other consumption goods x. The hours of work are defined to be

h, so � h is leisure. With no taxes, the person’s nonlabor income is y, and the real wage is

w. The indirect utility v(w,y) is the maximum value of the direct utility u(x,h) that can be

obtained when facing the budget constraint:

vðw; yÞ ¼ max
x;h

uðx; hÞ

s:t: x� wh ¼ y

ð1Þ

where the price of x is normalized to 1, and the cost of leisure is the wage rate w.

6 Suppose, for example, that the mean of the distribution places the person in the 20% tax bracket but that the

person actually has a 40% probability of being in the 30% bracket. The simple welfare cost is some constant times

0.2 squared (which is 0.04), while the true welfare cost involves the same constant times [(0.6)(0.2)(0.2) +

(0.4)(0.3)(0.3)], which is 0.06. In this simple example, the welfare cost measure is raised by 50%.
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2.1. Budget segments and tax revenues

Graduated tax rates and income transfers imply different combinations of real wage

rates and incomes in Eq. (1). Let a tax bracket be represented by {tj; Yj� 1, Yj}, where tj
is the marginal tax rate for a person whose before-tax income lies within the interval

[Yj� 1, Yj]. Information about {tj; Yj� 1, Yj} can often be found from tax tables. Note

that the relevant budget set is based on after-tax income. Let the end points of the

segment in a budget set that corresponds to bracket {Yj� 1, Yj} be { yj� 1
a , yj

a}, where ya

refers to after-tax income. A complete characterization of budget segments requires

information on working hours that correspond to the set [ yj� 1
a , yj

a], and we denote these

hours as [Hj� 1, Hj]. To calculate the location of each budget segment, we start with the

first budget segment and proceed through all budget segments. Besides the before-tax

wage rate w, another critical piece of information necessary is Y n, the nonlabor income

this person may have. Let yn be after-tax nonlabor income, where the tax is calculated as

if the person had no labor income. Then labor income pushes the person into

successively higher tax brackets. We summarize information on budget segments in

Table 1.

One interesting observation from Table 1 is that nonlabor income affects the location of

the budget segments for each individual, since the end points of a budget segment are

functions of Y n or yn:

Hj ¼ ðYj � Y nÞ=w

yaj ¼ yn þ
Xj

k¼2

ð1� tkÞðYk � Yk�1Þ ð2Þ

A change in nonlabor income Yn will lead to a change of the whole budget set. If Y n is

measured with error, the whole budget set will be measured with error. This point is used

by Gan and Stahl (2002) as a way to resolve the critique that Heckman (1983) raises with

respect to the Hausman labor supply estimates.

Table 1

Summary of budget segments

Budget segment 1 Budget segment j>1

Function for after-tax income ya ya = yn +w(1� t1)h ya = yj� 1
a +w(1� tj)(h�Hj� 1)

Kink points for income ya y0
a = yn yj

a = yj� 1
a +w(1� tj)(Hj�Hj� 1) = y

n +

Ak = 2
j

(1� tk)( Yk� Yk� 1)

Kink points for working hours h H0 = 0 Hj =( Yj� Y n)/w

H1=( Y1� Y n)/w

Virtual income yv y1
v = yn yj

v = yj� 1
a �w(1� tj)Hj � 1 = Y

n(2� t1� tj)�
Yj(1� tj) +Ak = 1

j
(1� tk)( Yk� Yk� 1)

We define t1 as the first tax rate applied to the labor income of this person (after taxation of nonlabor income).

Using the person’s nonlabor income, tj and Yj are also individual-specific, but can be found from the tax table.
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It is well known in the literature that a person’s optimal hours may be at a kink point

instead of being on the interior of a segment, in the framework of piecewise-linear budget

constraints. Define

Sj u
1 if on the interior of segment j;

0 otherwise;

8<
:

ð3Þ

Kj u
1 if at kink j;

0 otherwise:

8<
:

The conditions determining the values of Sj and Kj require knowledge of the labor

supply function. For example, consider a commonly estimated linear labor supply function

h ¼
awj þ byvj þ s; if positive

0 otherwise

8<
: ð4Þ

where wjuw(1� tj) and where s includes zc (the effect of other socio-demographic

variables z) and the statistical error. In this equation, yj
v is virtual income, defined as the

intercept of the line that extends budget segment j to the zero-hours axis. Given that labor

supply function, the conditions for Sj = 1 or Kj = 1 are:

Sj ¼ 1 if Hj�1 < awj þ byvj þ s < Hj

Kj ¼ 1 if awjþ1 þ byvjþ1 þ sVHjVawj þ byvj þ s ð5Þ

If a budget set is globally convex, the highest indifference curve must either touch a

single kink point or be tangent to a single segment. Only one of Sj or Kj will be 1.

However, often a budget set is not convex due to the fixed cost of working or some income

transfer program (such as AFDC or TANF).7 A possibility then arises that more than one

of the Sj and/or Kj is 1. In this case, we must compare the utility levels for all Sj = 1 and

Kj = 1 and pick the segment or kink point that yields the highest utility level.

Another key variable in the calculation of welfare cost is the tax revenue from this

person, which can be obtained based on the information in Table 1. Let working hours be

ha[Hj� 1, Hj) as in the table. Then the tax revenue R for this individual is:

R ¼ Rn þ
Xj�1

k¼1

ðHk � Hk�1Þwtk þ ðh� Hj�1Þwtj

¼ Rj�1 þ ðh� Hj�1Þwtj ð6Þ

where Rn is the tax revenue from nonlabor income, and Rj� 1 is defined as the tax revenue

if the working hours were h=Hj� 1 (which may be obtained from the tax table and Table 1

when the wage rate w is given).

7 Aid to Families with Dependent Children (AFDC) was replaced in 1996 by Temporary Assistance for

Needy Families (TANF).
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2.2. CV and EV under piecewise budget constraints

The welfare cost of the tax may be based on either the compensating variation (CV) or

the equivalent variation (EV). In a simple proportional tax system, consider the case where

a change in tax moves the pair of after-tax wage and virtual income from (w0,y0) to

(wV,yV). The CV and EV may be formally defined as:

u0 ¼ vðw0; y0Þ ¼ vðwV; yVþ CVÞ

vðw0; y0 � EVÞ ¼ vðwV; yVÞ ¼ uV ð7Þ

Calculating welfare cost in the framework of piecewise-linear budget constraints is

similar to the problem of calculating willingness-to-pay in a discrete choice model. After a

tax change, when a utility-maximizing individual chooses new working hours on a budget

segment that provides the highest utility, the chosen segment or kink point has likely

changed. We then compare the difference between the old and new utility levels and find a

CV or EV value to equalize them. This basic idea is in McFadden (1999), but in our case

the CV or EV is a transfer that may itself affect the person’s choice of kink point or

segment.

At any kink point where Kj= 1, we use the direct utility function u(x,h), where x = yj
a,

and h =Hj. A person whose optimal hours are zero or negative does not participate in the

labor force. The utility level of this person is u( y0
a,0), where y0

a = y0
v = yn.

Suppose k0 and kV are the total numbers of segments before and after the tax change.

For a convex budget set, since only one of the Sjs and Kjs is 1, we can find the utility levels

before and after a tax change as:

u0 ¼
Xk0
j¼1

S0j vðw0
j ; y

v0
j Þ þ

Xk0
j¼0

K0
j uðya0j ;H0

j Þ

uV ¼
XkV
j¼1

SjVvðwjV; y
vV
j Þ þ

XkV
j¼0

KjVuðyaVj ;HjVÞ ð8Þ

Note, in general, that Sj
0 p SjV and Kj

0 p KjV. Under the new tax regime, a person may

switch to a different kink point or segment.

When the budget set is not convex, we must consider the possibility that more than one

of the Sjs and/or Kjs is 1 (while other segments and kinks are not relevant). Define

vjuvðwj; y
v
j ÞSj þ ð1� SjÞm

ujuuðyaj ;HjÞKj þ ð1� KjÞm ð9Þ
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where m is a large negative number used to represent a floor under all possible utility

evaluations: m <minj{v(wj, yj
v), u( yj

a, Hj)}. The utility levels before and after a change in

tax can be written as

u0 ¼ maxjfv0j ; u0j ; j ¼ 1; . . . ; k0g

uV ¼ maxjfvjV; ujV; j ¼ 1; . . . ; kVg ð10Þ

where vj and uj are defined in Eq. (9).8

Additional complications arise because a lump-sum transfer of CV or EV may change

a person’s entire budget set. The new budget set is still piecewise linear, in a way that

corresponds to tax rules, but the extra transfer means that the person can buy more leisure

(as well as other goods). For the end point of budget segment j, Hj does not change, but yj
a

and virtual income yj
v do change—by the amount of lump sum transfer. As a conse-

quence, the optimal working hours change. Therefore, it is entirely possible that a person

moves to a different segment or kink point. Let U represent variables after the person is

given the EV:

vjW ¼ vðw0
j ; y

v0
j � EVÞSjWþ ð1� SjWÞm

ujW ¼ uðya0j � EV;H0
j ÞKjWþ ð1� KjWÞm ð11Þ

In Eq. (11), the values of SjU and KjU are functions of the unknown EV, and m is the

same as in Eq. (9). A correct measure of EV must take this complication into account, as

the solution to:

EV : uV ¼ max
j
fvjW; ujW; j ¼ 0; . . . ; k0g ð12Þ

where uV is defined in Eq. (10). Because Sj and Kj depend on the unknown EV, a solution

to Eq. (12) must be obtained iteratively. A similar calculation can be undertaken for CV.

In order to compare these procedures to those suggested in Hausman (1983), we first

rewrite Hausman’s methods in our notation. In particular, consider the expenditure

function, Eq. (2.4) in Hausman (1983). The calculation of EV based on such an

expenditure function depends on the condition that a person must fall on a particular

segment. In our notation, suppose j0 is the segment chosen under old tax rules, such

that:

let u0j0umax
j
fvðw0

j ; y
v0
j Þ; j ¼ 1; . . . ; k0g;

then vðwj0 ; y
v
j0 � EV Þ ¼ uVumax

j
fvðwjV; y

vV
j Þ; j ¼ 1; . . . ; kVg ð13Þ

8 The purpose of introducing m is to compare utility levels vj and uj only at the relevant segments and kinks.

Eq. (9) assign this large negative number m to the segments and kinks that are not relevant.
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Eq. (13) can be compared to Eqs. (11) and (12), revealing two differences: first, Eq.

(13) does not consider a kink point, and second, it does not consider the case that a transfer

of EV may further change the chosen segment. Also, Hausman (1983) mentions that

calculation of Eq. (13) by integration over the error terms’ distributions is numerically

difficult when the budget set is nonconvex. Therefore, he uses various simplifications to

calculate a good approximate solution. Because we use Monte Carlo simulations, however,

these simplifications are no longer necessary. Finally, note that the simulation method

based on Eqs. (11) and (12) is not affected by whether the budget set is convex or

nonconvex.

3. Welfare loss based on stochastic simulations

In this section, we introduce a stochastic specification into the model of the previous

section, and we provide a simulation-based method to calculate expected welfare loss for

each individual.

3.1. Specifying the utility function

Calculations based on Eq. (10) require complete knowledge of a person’s direct and

indirect utility functions. Two approaches have been proposed in the literature. In the first

approach, one may start with an assumed utility specification and then solve for demand

functions including leisure demand (labor supply). For example, Dickens and Lundberg

(1993) use a CES-type of utility function. After estimating the corresponding demand

function, they can use the parameters to calculate welfare loss. In the second approach,

introduced in Hausman (1981a), one starts with and estimates a specification of the

demand function, such as a linear specification, and ‘‘recovers’’ the utility function for that

demand function by using Roy’s identity. That is, using

Bvðw; yÞ=Bw
Bvðw; yÞ=By ¼ h; ð14Þ

one can solve a differential equation to get v(w,y). Although Slesnick (1998) points out that

closed-form solutions to Eq. (14) can only be obtained for a limited class of demand

functions, Hausman and Newey (1995) show that a relatively simple algorithm can

numerically solve the differential equation. Thus, more general functional forms could be

used for labor supply.

Nevertheless, we adopt the second approach and use labor supply functions that yield

closed-form solutions. In particular, we consider a linear labor supply function as in Eq.

(4). Following Hausman (1981a), when h>0, the corresponding indirect utility function

is:

vðyvj ;wjÞ ¼ ebwj yvj þ
a
b
wj �

a

b2
þ s

b

� �
ð15Þ
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When a person is at a kink point, the indifference curve is not tangent to the budget set,

so the utility level can only be obtained from the direct utility function. At kink point j, the

direct utility function corresponding to the labor supply function in Eq. (4) is:

uðyaj ;HjÞ ¼ exp
byaj þ s� Hj

Hj � a=b

� �
Hj � a=b

b

� �
ð16Þ

3.2. A stochastic specification and simulation procedures

So far, we have discussed how to obtain utility functions from empirically estimated

labor supply functions, but these functions are estimated with stochastic error. Part of this

error may represent the deviation between actual hours and desired hours (which

econometricians do not observe). Another part may be a deliberate effort by the

econometrician to represent the heterogeneity of preferences or to represent specification

errors. A typical example is in a random coefficient model where a parameter of the model

is assumed to be randomly distributed, and where the task of the estimation is to obtain the

parameters of that random distribution.

When the stochastic errors enter into an objective function linearly, they tend to cancel

out. In that case, a nonstochastic calculation might be sufficient. In our case, however, the

welfare loss is a nonlinear function of the stochastic errors. Comparing a stochastically

specified model and a nonstochastic one, the welfare loss calculation may be significantly

different. We show this difference below.

Researchers may obtain information from a stochastic model that would be difficult or

impossible to obtain from a nonstochastic model. For example, if one is interested in the

probability of switching segments, or of switching from participating in the labor force to

nonparticipation, one can acquire this information rather easily in a stochastically

specified model. That information may be very hard to obtain from a nonstochastic

model.

In this section, we consider a stochastic specification based on empirically estimated

labor supply equations. The stochastic errors in different specifications of labor supply

have different forms. In Hausman (1981b), for example, the labor supply equation is:

h ¼ awj þ ðb þ gÞyvj þ zc þ f ð17Þ

where b̄ is the mean value of b, the coefficient on virtual income yj
v. Eq. (17) has two

errors: g represents heterogeneity of preferences, and f is the error in measuring working

hours. Another example is in Triest (1990), where the labor supply equation is:

h ¼ awj þ byvj þ zc þ g þ f ð18Þ

In this equation, g is an optimization error. It is not observed by the econometrician but

only observed by the individual to determine her segment or kink point. Again, f serves as
measurement error for working hours. At a kink point in this model, we only have error g,
but both g and f are present when a person is on a line segment.
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For both Eqs. (17) and (18), the indirect and direct utility functions are given in Eqs.

(15) and (16), respectively. Often, when labor supply equations are estimated, the density

forms of g and f are assumed, and the parameters of the density functions are estimated.

Our simulation procedure is based on random draws of g and f from the estimated

densities. We now describe the basic procedure of this simulation method.

We start with the choice of estimated labor supply Eq. (17) or (18), and then for each

worker we take I = 1000 draws of the error term eiu(g, f). The draws may come from a

‘‘known’’ parametric distribution specified and estimated for the labor supply function.

Alternatively, it may come from the empirical distribution of the residuals of the labor

supply function.9

For the ith random draw, ei=(gi, fi), we find the values of Sij
0, SijV, Kij

0 and KijV from Eq.

(5). Then from Eqs. (9) and (10), we find the optimal segment or kink point in each of

the two tax regimes, given ei. This procedure applies whether the budget set is convex or

nonconvex.

Let ji
0 and jiV be the optimal choice of segment or kink in the two tax regimes, given the

ith draw of e, and let ui
0 be the optimal utility in the old tax regime given ei. We can obtain

the EVi, given ei, and uiV, using Eqs. (11) and (12). Note that the chosen segment or kink

point reflects the transfer of EVi. Solving Eq. (12) requires numerical iteration.

For any individual worker, we know the ji
0 and jiV for the ith draw, so it is easy to obtain

the tax revenues in the two tax regimes Ri
0 and RiV (and DRi uRiV�Ri

0). One definition of

deadweight loss (DWL) for this person, just for the ith drawing from the whole

distribution of e, is:10

DWLiu� ðEVi � DRiÞ: ð19Þ
Naturally, the mean of all these DWLi can be made arbitrarily close to the expectation

of DWL by increasing the number of draws I (and similarly for DRi):

EðDWLÞ ¼ mDWLidFðeiÞc
1

I

X
DWLi;

EðDRÞ ¼ mDRidFðeiÞc
1

I

X
DRi: ð20Þ

The mean square error of the simulation is proportional to 1/I (see Geweke and Keane,

2001). One may also calculate the probability of moving from segment j0 to segment jV.

Probðsegment j0Zsegment jVÞ ¼ 1

I

XI

i¼1

Sj0
i
� SjiV ;

or the probability of moving from segment j0 to kink jV:

Probðsegment j0Zkink jVÞ ¼ 1

I

XI

i¼1

Sj0
i
� KjiV

9 In principle, using this kind of simulation method, one could also introduce errors on parameters to account

for standard errors of parameter estimates.
10 See Mohring (1971) and Auerbach (1985). Since EV< 0 for a gain, we take the negative of (EV�DR) in

order to show a positive number for a welfare gain from removing the tax (loss from having the tax).
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In addition, we can calculate the change of working hours. If labor supply is estimated

using Eq. (18), for example, and if ji
0 and jiV are chosen segments, for each random draw ei,

then working hours can be calculated as:

hiV ¼ âwjiV þ b̂yvjiV þ zĉ þ gi þ fi

h0i ¼ âwj0
i
þ b̂yv

j0
i
þ zĉ þ gi þ fi

The difference between hi
0 and hiV is the change in labor supply, Dhi. The average from

all random draws provides a number that converges to the expected value of the change in

working hours:

EðDhÞ ¼
Z

DhidFðeiÞc
1

I

XI

i¼1

ðhiV� h0i Þ

All the estimated factors are calculated conditional on the wage rate w, virtual income

yv, and other socio-demographic variables z. We can then integrate over these factors to get

the population average. In practice, we just repeat the previous process for each successive

individual in the sample and take the average of all individuals (applying sample weights,

if available).

4. Examples

This section provides three illustrations of the procedures just described.

4.1. Example 1: the welfare loss of taxation for a married woman

As in Hausman (1981b), we consider a married woman whose wage rate is $4.15 an

hour, and whose husband is earning a fixed $10,000 (both in 1975 dollars). She works full

time (1925 h/year) and files a joint return. The tax regime she faces is shown in Table 2,

the federal tax brackets of 1975 (the sample year for Hausman, 1981b). The ‘‘new tax’’

regime is no tax at all. We choose this example for several reasons: First, this example is

considered in Hausman (1981b), where he estimates labor supply using data from the

Panel Study of Income Dynamics (PSID) and applies the estimates to calculate welfare

loss. Second, the standard deduction for a married couple filing a joint return in 1975

creates a nonconvex budget set.11 Third, this example has only one person, so it can be

used to illustrate how the stochastic specification yields various possibilities for the chosen

11 In 1975, for income below $11,800, the standard deduction for a married couple filing a joint return was

$1900. Then, when total income is between $11,800 and $16,250, the true marginal tax rate falls because the

standard deduction is $1900 plus 16% of the income that exceeds $11,800.
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segment or kink point. It is also easy to compare the results with a traditional welfare cost

calculation such as the Harberger triangle.

The estimated hours equation is given by

h ¼ awj þ bðyvj � FCÞ þ zc þ f ð21Þ

where h is in thousands of hours, yj
v is in thousands of dollars, wj is in dollars per hour, and

FC is the fixed cost of working (1.26 thousand dollars per year). Hausman estimates that

â = 0.4608, with a standard error 0.106, and b is a random coefficient representing

variations in taste, with a truncated normal distribution (i.e., b = bk where bkfN(2.0216,

0.52622) and bk < 0). The mean of this truncated normal is E(b) =� 0.123. Also, ffN(0,

0.28012). Then we obtain zc = 0.2595, from the equation

zc ¼ h� âwj þ EðbÞðyvj � F̂CÞ ð22Þ

where h= 1.925 thousand hours, and j is the chosen segment. At the means of the

parameters and of the error distribution, the marginal tax rate for this woman is 28%.

The random draws represent both the preference heterogeneity and measurement errors

of working hours among all those married women who have exactly the same observed set

of characteristics as this woman (working full time at 1925 h/year, filing joint tax returns,

having nonlabor income of $10,000, and earning $4.15/h). Therefore, our simulation

results can be said to estimate welfare effects for a subset of the population that has the

observed characteristics of the woman in this example.

Table 2

Tax schedule for example 1 (married woman filing a joint 1975 tax return)

Income Rates

0–$1900 0.0

$1900–$2900 0.14

$2900–$5900 0.16

$5900–$9900 0.19

$9900–$11,800 0.22

$11,800–$13,900 0.185

$13,900–$16,250 0.21

$16,250–$17,900 0.25

$17,900–$21,900 0.28

$21,900–$25,900 0.32

$25,900–$29,900 0.36

$29,900–$33,900 0.39

$33,900–$37,900 0.42

$37,900–$41,900 0.45

$41,900–$45,900 0.48

$45,900 + 0.50
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Table 3 first shows that the DWL estimate is $471/year for this person using a simple

Harberger triangle approximation.12 Our stochastic specification not only yields an

expected DWL that is substantially larger ($1401), but it also provides an estimate of the

standard error for DWL ($716). The welfare loss based on the Harberger triangle is about

26.0% of tax revenue for this woman, but the expected DWL over expected revenue is

75.5%. The estimate by Hausman is in between, at 58.1% of tax revenue. All of these

numbers are large because of the large compensated elasticity from the Hausman estimates.

In the stochastic specification, this person has probabilities of being on different

segments or kink points, as shown in Table 4. The probability that this working woman

chooses the segment with the 28% tax rate (segment 5) is 47.2%. The sum of the

probabilities of choosing kink points is 13.1%. Generally speaking, segments or kink

points closer to segment 5 have higher probabilities, with two exceptions. First, kink

points 1 and 2 have zero probabilities, since the budget set is nonconvex around these two

kink points. Second, the probability of being at kink point 0 (not working) is positive

(0.032) because of the fixed cost of working in this model. Not working yields the highest

utility for some random draws where the optimal working hours are relatively small. In the

new tax regime with no tax at all, the person has 96% probability of working, and 4%

chance of not working.

The simple Harberger calculation is possible when the individual switches from an

observed segment of a nonlinear budget constraint to a known segment after the tax

change (such as the zero tax rate in the example above). With a switch from one nonlinear

12 For this purpose, we use Eq. (4) in Browning (1987) for DWL as a function of the compensated labor

supply elasticity, the fixed gross wage rate, labor hours and the marginal tax rate.

Table 3

Welfare effect in example 1 with the 1975 tax system

Before-tax wage = 4.15; before-tax nonlabor income=$10,000

Deterministic evaluation

Working hours 1925

Marginal tax rate 0.28

Compensated elasticity 1.084

Tax revenue $1815

Harberger DWL $471

DWL as % of tax revenue 26.0%

Means using stochastic evaluationa

Old working hours (with 1975 taxes) 2019 (753)

New working hours (with no taxes) 2386 (943)

Change in tax revenue $1856 ($187)

EVb � $3257 ($895)

DWLc $1401 ($716)

E(DWL) as % of tax revenue, E(R0) 75.5%

a Standard errors are in parentheses.
b EV< 0 means a gain from removal of the tax.
c The DWL is � (EV�DR).
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tax system to another, however, the simulation of the new tax regime may place the

individual on a number of possible segments or kinks. Thus, no direct Harberger

calculation is feasible for our next two examples, the Tax Reform Act of 1986 and the

Bush tax cut of 2001. Instead, for comparison, we use the results of our simulations to

calculate the income-weighted average of marginal tax rates before and after reform, and

use those to calculate a Harberger-type DWL before and after reform—a calculation that

would not be possible without our model.

4.2. Example 2: the Tax Reform Act of 1986 for married women

The parameter estimates used in this example are from Triest (1990), and they are

applied to a cross section of married women extracted from the 1983 PSID.13 Table 5 lists

the tax rates and income brackets for both tax regimes. We assume all individuals take the

standard deduction and file jointly.14

The basic labor supply function in Triest (1990) appears above as Eq. (18). In our data

set, we observe each woman’s working hours and wage rate in 1983. The nonlabor income

is calculated from the husband’s income and other family income. We can therefore derive

the budget constraint for each woman and determine her chosen segment or kink point.

Triest assumes no fixed cost of working. If the chosen segment is j, with observed net

wage wj and virtual income yj
v, then we can use Triest’s parameter estimates â= 0.235

and b̂=� 0.022 to calculate for each observation:

zc ¼ h� âwj � b̂yvj

Table 4

The probability that the working woman in example 1 is on each initial budget segment or kink

Number Segments Kink points

Marginal tax rate Probabilities Probabilities

0 0.032

1 0.22a 0.020 0.0

2 0.185 0.042 0.0

3 0.21 0.111 0.021

4 0.25 0.128 0.039

5 0.28b 0.472 0.039

6 0.32 0.086 0.0

a This woman has $10,000 of nonlabor income, so the first tax rate applied to any of her labor income is 22%

(even though that is the fifth bracket of the 1975 tax system shown in Table 2).
b Using only the mean of the distribution, this woman would be on segment 5 in the old tax regime.

13 We extract data from the 1983 PSID following the procedures described in Triest (1990), but some

differences appear between our data and the Triest data. Our data set has 1136 observations, while Triest has only

978 observations, but the summary statistics for our data and the Triest data are very close. One possible

explanation is that the new version of the PSID has fewer missing values.
14 We model only the reduced rates of the 1986 Act, not the redefinition of taxable income to broaden the tax

base, so we probably overestimate tax rate reduction for women whose loss of tax deductions push them back into

higher brackets.
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The random errors gi and fi are distributed as gfN(0, 0.672) and ffN(0, 0.772).

Snce the mean of the observed workings hours is 1.074 thousand hours in a year, the

standard deviations of the random errors g (0.67 thousand hours) and f (0.77 thousand

hours) represent substantial variations in working hours.

For each individual, we take 1000 random draws from the joint distribution of (g,
f).15 We first calculate EV, working hours and taxes for each random draw, and then we

average over 1000 random draws to get this individual’s EV, working hours and taxes.

Each random draw can be considered to represent a different person with the same

observed variables as the current individual. Different random draws yield different

initial working hours, although averaging over 1000 random draws yields working hours

very close to the observed working hours of the individual. Together, the 1000 random

draws represent a subset of population that shares the same observed variables as this

individual. By averaging over all random draws, we get the average welfare effect for

that subset of the population. Since we have a representative sample of married women,

averaging over all 1136 individuals yields estimates for the population of married

women.16

Table 6 shows the change in tax revenue, the change in working hours, the equivalent

variation and the net welfare gain from this tax reform for the population represented by

our sample. Interestingly, even though the tax reform generally reduces tax rates, it slightly

reduces average working hours. This ‘‘backward bending’’ labor supply behavior indicates

that the income effect dominates. The income-weighted average of marginal tax rates is

15 The errors are large enough, however, that a few extreme drawings yield implausible results. To avoid

unreasonably large EV, we constrain the absolute value of EV to be smaller than before-tax total family income.

The EV hits this constraint for 0.43% of all individuals at all random draws.

Table 5

Tax schedules for example 2, the Tax Reform Act of 1986 (married women filing joint 1983 tax returns)

Old tax regime New tax regime

Income Rates Income Rates

0–$3400 0 0–$3000 0.11

$3400–$5500 0.11 $3000–$28,000 0.15

$5500–$7600 0.13 $28,000–$45,000 0.28

$7600–$11,900 0.15 $45,000–$90,000 0.35

$11,900–$16,000 0.17 $90,000– 0.385

$16,000–$20,200 0.19

$20,200–$24,600 0.23

$24,600–$29,900 0.26

$29,900–$35,200 0.30

$35,200–$45,800 0.35

$45,800–$60,000 0.40

$60,000–$85,600 0.44

$85,600–$109,000 0.48

$109,000+ 0.50

16 We did not consider the fact that the PSID oversamples minorities.
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reduced from 33.9% to 28.7%.17 Tax revenue in the new regime falls by 37.7%. Since

marginal tax rates are reduced more for initial brackets, the percentage fall is larger for tax

revenue than for the average of all marginal tax rates.

Since EV on average is negative, the utility level in the new tax regime is higher.

Because of the large standard deviations of the random errors (g, f), the EV in Table 6 also

has a large standard deviation. The expected net welfare effect is $1790 per family, or

34.9% of old tax revenue.

If Triest’s estimates are evaluated at the mean wage and mean marginal tax rate of his

sample, the compensated labor supply elasticity is 0.686 for a full-time worker.18 This

elasticity could be used in a simple Harberger formula to calculate the DWL of the old tax,

compared to no tax system. When the new marginal tax rate is unknown, however, the new

DWL is not so simple. Our method is useful to predict the new marginal tax rate of each

person. When we employ the predicted rates in the Harberger formula, before and after

reform, Table 6 shows that the change in DWL is only 5.7% of old tax revenue.

4.3. Example 3: the tax change of 2001 for married women

In this example, we apply the parameter estimates of Gan and Stahl (2002) to the

Economic Growth and Tax Reconciliation Act of 2001 (the Bush tax cut). Their model

assumes measurement error in nonlabor income Y n,

Y n ¼ Y n*� g ð23Þ

Table 6

Welfare effect in example 2, the Tax Reform Act of 1986

Old tax regime New tax regime Difference

Tax revenue $5132 ($5566)a $3196 ($3693) � $1936 ($1915)

Working hours 1230 (711) 1170 (715) � 60 (410)

Marginal tax rates 33.9% (26.1%) 28.7% (25.2%) 5.2% (4.1%)

EVb � $3725 ($3706)

Welfare effectc $1790 ($3057)

Welfare effect as a % of old

tax revenue

34.9%

% with negative welfare effect 18.6%

Harberger DWLd as % of tax

revenue

$874 $581 $293

17.0% 11.3% 5.7%

a Standard errors are in parentheses.
b EV< 0 means a gain.
c The welfare gain is � (EV�DR).
d Evaluated at the mean wage and mean marginal tax rate for a full-time worker.

18 To compare the Triest and Hausman estimates, we can apply the Triest estimates to the woman in the first

example above. Her compensated elasticity would then be only 0.430 instead of 1.084.

17 This summary statistic is used only in the simple Harberger formula, and it reflects the fact that a higher

income person contributes more to tax revenue (and aggregate DWL) than a lower income person.
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where Y n is observed nonlabor income, and Y n* is the true nonlabor income (known to the

individual herself but not to the econometrician). The measurement error, gfN(0,rg
2), in

nonlabor income produces a random budget set: the end points of each segment are

random variables. Such a model is not subject to the Heckman critique. In fact, it conforms

to the insights in Heckman (1983). Gan and Stahl show that such a model yields very

different parameter estimates and performs better statistically. Given the error in Yn, which

affects yj
v, the estimated labor supply equation is:

h ¼ awj þ byvj þ zc þ f ð24Þ

Here, we use the same data set as in Gan and Stahl (2002): married women in the

Current Population Survey (CPS) of March 2001 between the ages of 25 and 55. This data

set has 16,829 observations. The parameter estimates and summary statistics are listed in

Table 7. One interesting aspect of the parameter estimates is the large standard deviation of

the measurement error in nonlabor income (rg = 1.33, where income is in thousands of

dollars). Another interesting aspect is that the income elasticity is very small (the

compensated wage elasticity and the uncompensated wage elasticity are both 0.012).19

Table 7

Estimation results and summary statistics from the CPS (March 2001)a

Coefficient estimates Summary statistics

Working hours (in 1000 h/year) 1.353 (0.954)b

Constant � 0.218 (0.027)

Wage (in $/h) 0.00012 (0.000034) 16.16 (25.5)

Nonlabor income (in $1000/year) � 0.00176 (0.00013) 58.59 (59.3)

Number of kids ages 0–5 � 0.214 (0.008) 0.369 (0.675)

Number of kids ages 6–18 � 0.088 (0.0046) 0.880 (1.06)

Age minus 40 � 0.012 (0.0036) 0.36 (2.65)

Unemployment rate (%) � 0.011 (0.0037) 4.01 (1.61)

Education (in years) 0.034 (0.0020) 10.14 (3.14)

Number of observations 16,829

% labor participation 75.2%

S.D. of measurement error (rg) 1.33 (0.12)

S.D. of optimization error (rf) 0.65 (0.0034)

Elasticities (evaluated at means)

Uncompensated 0.012

Compensated 0.012

Source: Gan and Stahl (2002).
a Married women between ages 25 and 55.
b Standard errors are in parentheses.

19 We recognize that these low elasticity estimates may be controversial. The purpose here is not to endorse

their method, or even to repeat discussion of it, but just to show that the simulation method described here is

applicable to any estimated model. This example also is useful to show that the expected welfare effect may still

be positive even when the point estimate of the labor supply elasticity is near zero.
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Their estimates are used here to evaluate the effect of the Economic Growth and Tax

Relief Reconciliation Act of 2001, or simply the ‘‘Bush tax cut.’’ We consider only the

changes in marginal tax rates, and since the changes are phased in, we use only the rates

after 2006 when all changes are fully implemented. Table 8 compares the regimes before

and after the Bush tax cut. Again, we assume that all of these married women take the

standard deduction and file jointly.

We take 50 random draws of the error in Eq. (24), ffN(0, 0.652), where hours are in

thousands, and for each f, we take 50 random draws of the error in Eq. (23), gfN(0,

1.332). Note that each different g yields a different budget constraint.

Averaging the 16,829 individuals, Table 9 shows the change in tax revenue, the change

in working hours, the equivalent variation, and the welfare gain from this tax reform. The

net result is almost no change in expected working hours. The tax revenue is lowered by

Table 8

Tax schedules for example 3, the Bush tax cuts of 2001(married women filing joint 2001 tax returns)

Old tax regime New tax regimea

Income Rates Income Rates

0–$7600 0 0–$7600 0

$7601–$51,450 0.15 $7601–$13,600 0.10

$51,451–$113,550 0.28 $13,601–$51,450 0.15

$113,551–$169,050 0.31 $51,451–$113,550 0.25

$169,051–$295,950 0.36 $113,551–$169,050 0.28

$295,951 + 0.396 $169,051–$295,950 0.33

$295,951+ 0.35

a The new tax regime is the Bush tax cut, the Economic Growth and Tax Reconciliation Act of 2001.

Table 9

Welfare effect in example 3, the 2001 Bush tax cuts

Old tax regime New tax regime Difference

Tax revenue $10,061 ($16,610)a $9218 ($15,050) � $843 ($1568)

Working hours 1390 (340) 1381 (344) � 9 (113)

Marginal tax rates 27.5% (33.2%) 27.3% (33.3%) � 0.2% (1.1%)

EVb � $1200 ($3570)

Welfare effectc $357 ($3054)

Welfare effect as a %

of old tax revenue

3.5%

% with negative

welfare effect

31.6%

Harberger DWLd as %

of old tax revenue

$19.50 $19.10 $.40

0.19% 0.19% 0.0%

a Standard errors are in parentheses.
b EV< 0 means a gain.
c The welfare gain is � (EV�DR).
d Evaluated at mean wage and mean marginal tax rate for a full-time worker.
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an average of $843 per person, and the expected welfare gain is $357 per person. This

number has a large error, but the point estimate is 3.5% of revenue in the old tax regime. In

contrast, using the point estimate of the compensated labor supply elasticity (0.012) yields

a change in Harberger DWL that is $0.40, or 0% of old tax revenue.

5. Conclusion

The calculation of welfare loss suggested in this paper depends on estimates of labor

supply. An ongoing debate concerns how to estimate the labor supply function under

piecewise-linear budget constraints, but recent estimates are able to address the

Heckman concern within Hausman’s framework. The first contribution of this paper,

relative to existing literature, is to calculate the welfare cost of labor taxes using labor

supply estimates that address this concern. Second, we allow each individual to move

from any kink or linear segment of the original budget constraint to any kink or linear

segment of the new budget constraint. Third, we account for the fact that the equivalent

variation is a transfer that itself would change the choice of each individual. Fourth, the

method we propose is relatively easy to implement and to calculate. Finally, our

method uses Monte Carlo simulation in order to employ the entire estimated

distribution of each error term. Thus, we need not assume that the person chooses

one particular point, which would ignore the fact that labor supply is estimated with

error.

Using this new method, we calculate the welfare effect of three illustrative labor tax

changes. First, we employ the example of Hausman (1981b) with one married woman

who works full time. We show that the welfare effect of eliminating the tax system in this

example using the stochastic evaluation is significantly larger than when using a simple

Harberger triangle approximation. Second, we employ Triest’s (1990) estimates to

consider 1136 married women in the 1983 PSID data. In this case, we show that the

mean welfare gain from the tax rate reduction of Tax Reform Act of 1986 is 34.9% of the

original tax revenue. In the third case, we apply the estimates from Gan and Stahl (2002)

to a recent data set from the CPS (March 2001) to investigate the welfare gains of the

Bush tax cut of 2001. We find almost no change in working hours for these married

women. Even though the point estimate of the labor supply elasticity is near zero, the use

of all error distributions yields an expected welfare gain that is 3.5% of the old tax

revenue.
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