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EQUATIONS WITHOUT EQUATIONS: CHALLENGES ON A
WAY TO A MORE ADEQUATE FORMALIZATION OF

CAUSALITY REASONING IN PHYSICS,
BY

ROBERTO ARAIZA, VLADIK KREINOVICH, AND
JUAN FERRET

1.1 Need to formalize causality reasoning in physics

Our interest in causality reasoning in physics was enhanced by the need to formal-
ize reasoning in physics. In medicine, geophysics, and in many other applications
areas, expert systems use automated expert reasoning to help the users; see, e.g.,
(2).

We expect that similar systems may be helpful in general theoretical physics
as well. To design such systems, we must formalize physicists’ reasoning inside an
automated computer system. To do this, we must be able to describe physicists’
reasoning in precise terms.

Physicists’ reasoning has a clearly formalized part: indeed, physical theories
are usually formulated in terms of differential equations

dx

dt
= F (x) (1.1)

(in general, partial differential equations) that describe how the corresponding
fields (and/or physical quantities) x change with time t.

From the purely mathematical viewpoint, the situation seems to be straight-
forward:
• from the observations, we find the initial conditions x(t0) at some moment

of time t0;
• we then solve the differential equation (1.1) and find the values x(t) for all

moments of time t.
In mathematical physics, the problem of finding the solution to the differential
equation with the known initial conditions is called the Cauchy problem.

In physical terms, this mathematical description reflects the basic idea of
causality: the future dynamic of the system is caused by the initial state x(t0).

The above description does not capture the known fact that not all solutions
to the equation (1.1) are physically meaningful. For example, when a cup breaks
into pieces, the corresponding trajectories of molecules make physical sense. If we
now reverse all the velocities, we get pieces spontaneously assembling themselves
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into a cup. This reverse process is clearly physically impossible. However, since
Newton’s equations remain valid when we change the time direction t → −t
(i.e., are, in physical terms, T-invariant), the reverse process also satisfies the
Newton’s equations.

To provide an adequate description of physicists’ reasoning, we must be able
to capture not only the equations, but also the fact that some solutions of these
equations are not physical. A usual physical explanation of this fact is that,
e.g., the “time-reversed” solution is non-physical because its initial conditions
are “degenerate”. Specifically, this means that if we modify the initial conditions
even slightly, the pieces will no longer get together.

So, for a solution to be physically meaningful, not only the equations must be
satisfied, but also the initial conditions must be “non-degenerate”. It is known
that the notion of non-degeneracy in physics can be adequately described by the
use of Kolmogorov complexity and algorithmic randomness; see, e.g., (3; 4).

However, there is another important challenge that it not easy to resolve:
that the separation between equations and initial conditions depends on the way
equations are presented.

In this paper, we will illustrate this dependence on the example of simple
physical equations.

1.2 First example: Schrödinger’s equation
As our first example, let us consider Schrödinger’s equation, the basic equation
of non-relativistic quantum mechanics:

i · h̄ · ∂Ψ
∂t

(x, t) = − h̄2

2 ·m
· ∇2Ψ(x, t) + V (x) ·Ψ(x, t). (1.2)

This equation describes the dynamic of a wave function Ψ(x, t) that characterizes
the state of a particle of mass m in the potential field V (x).

In this representation, the potential V (x) is a part of the equation, and the
initial conditions are the values Ψ(x, t0) of the wave function at the moment t0.

On the other hand, we can undertake the following simple transformation
of the equation (1.2). First, by moving the right-hand side term not containing
V (x) to the left-hand side and dividing both sides by Ψ(x, t), we can represent the
potential field V (x) as a function of the wave function Ψ(x, t) and its derivatives:

V (x) =
i · h̄
Ψ
· ∂Ψ
∂t

+
h̄2

2 ·m
· ∇

2Ψ
Ψ

. (1.3)

The left-hand side V (x) of this equation does not depend on time. So, if we
differentiate the right-hand side of the equation (1.3) by time t, we should get 0:

∂

∂t

(
i · h̄
Ψ
· ∂Ψ
∂t

+
h̄2

2 ·m
· ∇

2Ψ
Ψ

)
= 0. (1.4)

The original Schrödinger’s equation is first order in terms of time; the new
equation (1.4) is second order with respect to time.
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We have shown that every solution of the Schrödinger’s equation for any
potential field V (x) satisfies this new equation (1.4). Let us show that this new
equation is actually equivalent to the Schrödinger’s equation in the sense that

• every solution of the Schrödinger’s equation for any V (x) satisfies this new
equation, and

• every solution of the new equation satisfies Schödinger’s equation for some
potential field V (x).

Indeed, if the equation (1.4) is satisfied, i.e., the time derivative of the corre-
sponding expression

i · h̄
Ψ
· ∂Ψ
∂t

+
h̄2

2 ·m
· ∇

2Ψ
Ψ

. (1.5)

is equal to 0, this means that this expression cannot depend on time t, it can
only depend on the spatial coordinates x. If we denote this dependence by V (x):

V (x) def=
ih̄
Ψ
· ∂Ψ
∂t

+
h̄2

2m
· ∇

2Ψ
Ψ

, (1.6)

then, by multiplying both sides of this equation by Ψ and moving the terms
containing the second derivative to the other side, we get the Schrödinger’s equa-
tion (1.2).

From the purely mathematical viewpoint, the equations (1.2) and (1.6) are
equivalent. However, from the viewpoint of causality reasoning, these equations
are different:

• In the original Schrödinder’s equation, the potential field V (x) was a part
of the equation. So, the “non-degeneracy” restrictions on initial conditions
did not limit possible fields.

• In contrast, in the new equation (1.4), initial conditions, in effect, include
V (x). Thus, we are no longer allowing arbitrary potential fields: the “non-
degeneracy” (“randomness”) condition must now include V (x) as well.

It is worth mentioning that the transformation leading to the equation (1.4)
is not simply a purely mathematical trick. The new equation can be used to find
the wave functions by solving the corresponding Cauchy problem:

• In the Schrödinger’s equations, once we know the initial values Ψ(x, t0) of
the wave function for all locations x, we can predict its values Ψ(x, t) at
all future moments of time.

• Similarly, once we know the initial values of the wave function Ψ(x, t0) and

its first time derivative
∂Ψ
∂t

(x, t0) for all locations x, we can predict its

values Ψ(x, t) at all future moments of time t.

Comment. Readers must be cautioned that while theoretically, this reconstruc-
tion is possible, its practical applicability may be limited. Indeed, the corre-
sponding equation (1.4) requires that divide by Ψ(x, t). Thus, in areas where the
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value of the wave function Ψ(x, t) is close to 0, we will need to measure this value
with a very high accuracy to get practical results.

1.3 Towards second example: general physical theories

In the previous section, we discovered an interesting feature of the Schrödinger’s
equation, a specific equation describing a single physical field Ψ(x, t). The exact
derivation of our result used specific features of this equation. It is therefore
natural to ask: how important are these features for our derivation? Is our result
true only for the Schrödinger equation – or is it also true for an arbitrary theory
describing a scalar field?

To answer this question, we need to recall how general physical theories are
described. Starting from the 17 century Newton’s mechanics, physical theories
have been usually described in terms of differential equations. For example, New-
ton’s mechanics is described by the equation

m · ẍ = F, (1.7)

where ẍ def=
d2x

dt2
and F = −∇V is a force field corresponding to the potential

field V (x).
In the 18 century, an important discovery was made: that most physical the-

ories can be reformulated in terms of the least action principle, i.e., as a require-
ment that a certain functional S (called action) attain its smallest possible value:
S → min; see, e.g., (1). For example, Newton’s mechanics (1.7) is equivalent to
minimizing the functional S =

∫
Ldt→ min, where

L =
1
2
·m · (ẋ)2 − V (x)

is the difference between the kinetic energy
1
2
·m · (ẋ)2 and the potential energy

V (x) of the system.
The least action principle, originally proposed by Pierre Louis Moreau de

Maupertuis, enables us to derive optical trajectories (such as Snell’s law) from
a simple requirement that the light trajectories minimize travel time. This prin-
ciple enables us to come up with good approximate solutions to electrostatic
problems (1).

The least action formulation is, at present, the main way of presenting phys-
ical theories.

For example, the most widely used quantization technique – the technique of
Feynman integrals over trajectories – describes the (complex-valued) amplitude

of a transition between the two states as the normalized sum
1
N
·
∑

exp
(

i · S
h̄

)
,

where N is a normalization constant, the sum is taken over all trajectories con-
necting the two states, and S is the value of the action along the trajectory.
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Since few non-physicists are well familiar with the least action formulation of
physical theories, let us briefly (and informally) describe the main formulas for
the interested readers.

How can we find the minimum of a functional? This question is similar to
the question of finding the minimum of a function, the question which was suc-
cessfully solved by calculus. Specifically, for a function f(x) of one variable, its

derivative
df

dx
is defined as the limit of the ratio

f(x+ ∆x)− f(x)
∆x

when ∆x→ 0.

Informally, the limit means that when the value ∆x is small (i.e., close to 0),
then the derivative is close to this ratio:

df

dx
≈ f(x+ ∆x)− f(x)

∆x
. (1.8)

Multiplying both sides of this approximate equality by ∆x and moving the term
proportional to ∆x to the other side, we get

f(x+ ∆x) ≈ f(x) +
df

dx
·∆x. (1.9)

When the function f(x) attains its minimum at a point x0, then, according to
this formula:

• the derivative
df

dx
cannot be positive, since then we have f(x0+∆x) < f(x0)

for negative ∆x < 0, which contradicts to our assumption that the values
f(x0) is the smallest; and

• the derivative
df

dx
cannot be negative, since then we have f(x0 + ∆x) <

f(x0) for positive ∆x > 0.

Thus, the only possibility is to have
df

dx
= 0. This is how calculus recommends

to search for the minimum of a function of one variable: by finding the values
where the derivative is equal to 0.

For a function of several variables f(x) = f(x1, . . . , xn), if we change the
variable x1, we similarly get

f(x1 + ∆x1, x2, . . . , xn) ≈ f(x1, . . . , xn) +
∂f

∂x1
·∆x1. (1.10)

When we then change the second variable x2, we get

f(x1 +∆x1, x2 +∆x2, x3, . . . , xn) ≈ f(x1 +∆x1, x2, . . . , xn)+
∂f

∂x2
·∆x2, (1.11)

i.e., substituting (1.10) into the right-hand side of (1.11), that

f(x1 + ∆x1, x2 + ∆x2, x3, . . . , xn) ≈
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f(x1, x2, . . . , xn) +
∂f

∂x1
·∆x1 +

∂f

∂x2
·∆x2. (1.12)

By changing all the other variables one by one, we thus conclude that

f(x1 + ∆x1, . . . , xn + ∆xn) ≈

f(x1, x2, . . . , xn) +
∂f

∂x1
·∆x1 + . . .+

∂f

∂xn
·∆xn. (1.13)

The same argument as for the function of one variable shows that minimum is

attained when all the coefficients at ∆xi are equal to 0, i.e., when
∂f

∂xi
= 0 for

all i.
A functional S(f) is a function whose inputs are also functions f(x). Each

function f(x) requires infinitely many parameters to describe – e.g., its values
f(x) at different locations x. Thus, a functional can be viewed as a function of
infinitely many variables f(x) – a family of variables which are described by a
continuous parameter x. It turns out that for many functionals, we can have a
formula similar to (1.13) – with the only difference that instead of a finite sum,
we have a natural continuous limit of the sum – an integral:

S(f + ∆f) ≈ S(f) +
∫
δS

δf
(x) ·∆f(x) dx, (1.14)

for appropriate “variational derivatives”
δS

δf
. If one of the values of the variational

derivative is non-zero, i.e., positive or negative, then we can have S(f + ∆f) <
S(f) for appropriate ∆f . Thus, at the point where the minimum is attained, all
these derivatives are equal to 0:

δS

δf
= 0. (1.15)

In physics, the action S usually takes the form S =
∫
Ldx for a “Lagrange”

function L that depends on the fields ϕ, . . . , and their derivatives ϕ,i
def=

∂ϕ

∂xi
.

For such functional, the Euler-Lagrange equations describe the minimum:

δS

δf
=
∂L

∂f
−
∑

i

∂

∂xi

(
∂L

∂f,i

)
= 0. (1.16)

(For interested readers, a simple derivation of this formula is given in the Ap-
pendix.)
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To simplify formulas, we will use “Einstein’s rule” according to which re-
peated indices mean summation: e.g., f,if,i means

∑
i

f,if,i. This rule enables us

to somewhat simplify the formula (1.16) into

δS

δf
=
∂L

∂f
− ∂

∂xi

(
∂L

∂f,i

)
= 0. (1.17)

In particular, for the case of a a single scalar field ϕ, this equation takes the form

∂L

∂ϕ
− ∂

∂xi

(
∂L

∂ϕ,i

)
= 0. (1.18)

Now, we are ready to describe the second example.

1.4 Second example: general scalar field

A general scalar theory, with a single scalar field ϕ, is characterized by a Lagrange
function L = L(ϕ,ϕ,i) that depends on this field and on its derivatives ϕ,i.

In the 3-D case, it is reasonable to consider rotation-invariant Lagrangian
functions L. Rotation invariance means that L depends only on the (square of
the) length

ϕ,iϕ
,i = (ϕ,1)2 + (ϕ,2)2 + (ϕ,3)2

of the vector ϕ,i, not on its orientation.
Similarly, in 4-D case, it is reasonable to require that the Lagrangian L be

invariant w.r.t. Lorentz transformations (4-D “rotations”). Under this require-
ment, we can similarly conclude that L = L(ϕ, a), where

a
def= ϕ,iϕ

,i = (ϕ,0)2 − (ϕ,1)2 − (ϕ,2)2 − (ϕ,3)2 .

By a general scalar theory, we will therefore understand a theory with a La-
grangian of this type.

Our main result is that there exists a third order equation such that:
• if ϕ satisfies the Euler-Lagrange equation for some Lorentz-invariant L,
• then ϕ satisfies this new equation.

The proof of this result is given in the next section.
From the purely mathematical viewpoint, the new equation is a consequence

of the standard Euler-Lagrange equations. However, from the viewpoint of causal-
ity reasoning, the new equation is drastically different from the usual ones. In-
deed:
• In the original description of the scalar theories, the Lagrangian L(ϕ, a)

is incorporated in the equation, so “non-degeneracy” restrictions on initial
conditions did not limit possible Lagrangians.

• In contrast, in the new equation, initial conditions, in effect, include L(ϕ, a).
Thus, we are no longer allowing arbitrary Lagrangians: the “non-degeneracy”
(“randomness”) condition must now include L(ϕ, a) as well.
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Similarly to the case of the Schrödinger equation, the transformation leading
to the new equation is not simply a purely mathematical trick. The new equation
can be used to find the scalar function ϕ(x) by solving the corresponding Cauchy
problem:
• In the original second-order Euler-Lagrange equations, once we know the

initial values ϕ(t0, x1, . . . , xn) of the scalar function and its first time deriva-

tive
∂ϕ

∂t
(t0, x1, . . . , xn) for all spatial locations (x1, . . . , xn), we can predict

its values ϕ(t, x1, . . . , xn) at all future moments of time t.
• Similarly, in the new 3rd order equation, once we know the initial val-

ues of the scalar function ϕ(t0, x1, . . . , xn) and its first two time deriva-

tives
∂ϕ

∂t
(t0, x1, . . . , xn) and

∂2ϕ

∂t2
(t0, x1, . . . , xn), we can predict its values

ϕ(t, x1, . . . , xn) at all future moments of time t.
The new “equation” does not contain L at all – and is still able to predict

how the scalar field changes with time. In this sense, we have “equations without
equations”:
• on the one hand, we have equations – in the sense that prediction is possible,

but
• on the other hand, we do not have equations – in the sense that no specific

Lagrange function is given.
This situation is somewhat similar to Wheeler’s cosmological ideas of “mass

without mass” and “charge without charge”; see, e.g., (5). As an example of
charge without charge, we can consider a space-time with a wormhole. It is
possible to set up an electric field in this curved space-time whose lines enter one
of the wormhole’s mouths and exit at the other one. While there are no charged
particles in this space-time model, there is an electric attraction to one of the
mouths and repulsion by the other – as if these mouths have opposite charges.

1.5 Scalar fields: proof of the main result

For the Lagrangian L = L(ϕ, a), where a def= ϕ,iϕ
,i, the Euler-Lagrange equations

take the form
∂L

∂ϕ
− ∂i

∂L

∂ϕ,i
= 0. By using the chain rule, we conclude that

∂L(ϕ, a)
∂ϕ,i

=
∂L

∂a
· ∂a
∂ϕ,i

=
∂L

∂a
· 2 · ϕ,i. (1.19)

Thus, the Euler-Lagrange equations take the form

L,ϕ − ∂i(2 · L,a · ϕ,i) = 0, (1.20)

where we denoted L,a
def=

∂L

∂a
. Using chain rule again, we get

L,ϕ − 2 · L,a ·2ϕ− 2 · L,aϕ · (ϕ,iϕ
,i)− 4 · L,aa · ϕ,ijϕ

,iϕ,j = 0, (1.21)
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where L,ϕ
def=

∂L

∂ϕ
, 2ϕ

def= ϕ,i
,i, L,aϕ

def=
∂2L

∂a∂ϕ
, and L,aa

def=
∂2L

∂a2
.

In general, L depends on a, so L,a 6= 0. Thus, by moving the term L,a · 2ϕ
to the right-hand side and dividing both sides by 2L,a, we conclude that

2ϕ =
L,ϕ

2 · L,a
− L,aϕ

L,a
· (ϕ,iϕ

,i)− 2 · L,aa

L,a
· ϕ,ijϕ

,iϕ,j . (1.22)

Here, the values L,ϕ, L,a, L,aϕ, and L,aa at a point x depend only on the values
of ϕ and a at this same point. So,

• if at two points, we have the same values of ϕ, a = ϕ,iϕ
,i, and b

def=
ϕ,ijϕ

,iϕ,j ,
• then we have same values of c = 2ϕ at these two points.

In particular, this means that if we have dxk for which ϕ,kdx
k = 0, a,kdx

k = 0,
and b,kdx

k = 0, then replacing x by x + dx will not change the values of ϕ, a,
and b, and thus, the value of c will not change, i.e., we should have c,kdxk = 0.

In geometric terms, the condition ϕ,kdx
k = 0 means that the vectors ϕ,k and

dxk are orthogonal: dxk ⊥ ϕ,k. In these terms, the above condition means that
for every vector dxk:
• if dxk ⊥ ϕ,k, dxk ⊥ a,k, and dxk ⊥ b,k,
• then dxk ⊥ c,k.
It is known that this property is equivalent to c,k being in the 3-plane gen-

erated by the vectors ϕ,k, a,k, b,k. In other words, the four vectors ϕ,k, a,k, b,k,
and c,k lie in the same 3-plane. In algebraic terms, this means these four vectors
are linearly dependent, i.e., that if we form a matrix with these vectors as rows,
then its determinant is 0:

εijkl · ϕ,i · a,j · b,k · c,l = 0, (1.23)

where εijkl = 0 if some indices are equal and is ±1 else (depending on the parity).
The equation (1.23) is the desired third order partial differential equation.

Knowing this equation, we can predict future evolution – without knowing the
actual Lagrangian L.

1.6 Possible relation to dimension of space-time

Our conclusion is based on the idea that the four vectors ϕ,k, a,k, b,k, and c,k
lie in a 3-D plane. If the dimension of space-time is 3 or smaller, this is always
true. Thus, the “equations without equations” are only possible when dimension
is ≥ 4. Maybe this explains why our space-time is 4-dimensional?

What about the case when we have two scalar fields ϕ and ψ? Here, we can
similarly conclude that the preservation of 11 quantities

ϕ ψ
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ϕ,iϕ
,i ψ,iψ

,i ϕ,iψ
,i

ϕ,ijϕ
,iϕ,j ϕ,ijϕ

,iψ,j ϕ,ijψ
,iψ,j

ψ,ijϕ
,iϕ,j ψ,ijϕ

,iψ,j ψ,ijψ
,iψ,j

means that 2ϕ and 2ψ are also preserved. Thus, 12 vectors – gradients of the
above quantities and of 2ϕ – must be in the same 11-D space. This requirement
is always true in spaces of dimension ≤ 11. Thus, for two scalar fields, equations
without equations are only possible in dim ≥ 12. This inequality is in good
accordance with the known fact that a consistent quantum field theory is only
possible when dim ≥ 11.

1.7 Conclusion

Not all mathematical solutions to physical equations are physically meaningful:
e.g., if we reverse all the molecular velocities in a breaking cup, we get pieces self-
assembling into a cup. The resulting initial conditions are “degenerate”: once we
modify them, self-assembly stops. So, in a physical solution, the initial conditions
must be “non-degenerate”.

A challenge in formalizing this idea is that it depends on the representation.

Example 1: we can use the Schrödinger equation i·h̄·∂Ψ
∂t

= − h̄2

2 ·m
·∇2Ψ+V (x)·Ψ

to represent V (x) = F (Ψ, . . .) as a function of Ψ(x) and its derivatives. The new

equation
dF

dt
= 0 is equivalent to the Schrödinger equation, but now V (x) is in

the initial conditions.
Example 2: for a scalar field ϕ, we describe a new equation which is satisfied

if ϕ satisfies the Euler-Lagrange equations for some Lagrangian L(ϕ,ϕ,iϕ
,i). So,

similarly to Wheeler’s cosmological “mass without mass”, we have “equations
without equations”.

Thus, when formalizing physical equations:
• we must not only describe them in a mathematical form,
• we must also select one of the mathematically equivalent forms.
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Appendix: Informal derivation of Euler-Lagrange equations

In general, the Lagrange function has the form L(f, f,i), i.e., the form

L(f, f,0, . . . , f,n).

For small ∆f , we have

L(f+∆f, f,0+∆f,0, . . . , f,n+∆f,n) ≈ L(f, f,i)+
n∑

i=0

∂L

∂f
·∆f+

∂L

∂f,i
·∆f,i. (1.24)

Thus, we have ∫
L(f + ∆f, f,i + ∆f,i) dx ≈∫

L(f, f,i) dx+
∫
∂L

∂f
·∆f dx+

n∑
i=0

∫
∂L

∂f,i
·∆f,i dx, (1.25)

i.e.,

S(f + ∆f) ≈ S(f) +
∫
∂L

∂f
·∆f dx+

n∑
i=0

∫
∂L

∂f,i
·∆f,i dx. (1.26)

Each of the integrals
∫

∂L

∂f,i
· ∆f,i dx can be computed by using the formula

(A ·B)′ = A′ ·B +A ·B′ which implies that∫ ∞
−∞

A ·B′ dx = −
∫ ∞
−∞

A′ ·B dx+A ·B|∞−∞. (1.27)

In our case, we have A =
∂L

∂f,i
and B = ∆f . Since physical fields usually tend

to 0 at infinity, the last term disappears and therefore, we conclude that∫
∂L

∂f,i
·∆f,i dx = −

∫
∂

∂xi

(
∂L

∂f,i

)
·∆f dx. (1.28)
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Substituting this expression into the formula (1.26), we conclude that

S(f + ∆f) ≈ S(f) +
∫
∂L

∂f
·∆f dx−

n∑
i=0

∫
∂

∂xi

(
∂L

∂f,i

)
·∆f dx, (1.29)

i.e., that

S(f + ∆f) ≈ S(f) +
∫
δS

δf
·∆f dx, (1.30)

where
δS

δf
=
∂L

∂f
−

n∑
i=0

∂

∂xi

(
∂L

∂f,i

)
. (1.31)

The formula has been derived.

Example. For the Newtonian Lagrange function

L(x, ẋ) =
1
2
·m · (ẋ)2 − V (x), (1.32)

the Euler-Lagrange equation leads to

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0, (1.33)

i.e., to

−∂V
∂x
− d

dt
(m · ẋ) = 0, (1.34)

or, equivalently, to Newton’s equations

m · ẍ = −∂V
∂x

. (1.35)
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