Arizona State University

From the SelectedWorks of Joseph M Hilbe

January 13, 1994

Derivation of a scaled binomial as an instance of a general discrete exponential distribution

Joseph Hilbe, Arizona State University

Available at: https://works.bepress.com/joseph_hilbe/10/

Derivation of a scaled binomial as an instance of a general discrete exponential distribution

Joseph Hilbe

The family of discrete distributions having the form

 $f(y) = N p^{by-a} (1-p)^{dy-c}$

exponential (1)

where N is a normalization dependent upon a,b,c, and d.

(1) is a type of general exponential distribution containing several notable cases:

	a	b	C	d ->	• f(y)
Bernoulli	0	1	-1	-1	р ^у (1-р) ^{1-у}
Binomial	0	1	-n	-1	p ^y (1-p) ^{n-y}
Geometric	-1	0	0	1	p(1-p) ^y
Neg. Binomial	-1/k	0	0	1	$p^{1/k}(1-p)^{y}$

The negative binomial k is taken as the inverse of r (Hilbe 1994) As a generalized exponential (1) becomes

 $f(y) = \exp\{ (by-a) lnp + (dy-c) ln(1-p) + ln(N) \} \\ = \exp\{ y(blnp + dln(1-p)) - (alnp + cln(1-p)) + ln(N) \} \\ = \exp\{ y\theta - g(\theta) + ln(N) \}$

where θ = blnp + dln(1-p), and g(θ) = alnp + cln(1-p)

 $\mu = g'(\theta) = dp/d(\theta) * d(g)/dp$ using the chain rule

Hence

=	b/p + d/(1-p)
=	${b(1-p)+dp}/{p(1-p)}$
=	$(b-bp+dp) / \{p(1-p)\}$
=	${b-(b+d)p}/{p(1-p)}$
	=

therefore $dp/d(\theta) = {p(1-p)}/{b-(b+d)p}$

2)	d(g)/dp	=	a/p - c/(1-p)	
		A8.=	$\{a(1-p)-cp\}/\{p(1-p)\}$	
		=	$(a-ap-cp)/\{p(1-p)\}$	
		=	$\{a-(c+a)p\}/\{p(1-p)\}$	

therefore

 $\mu = g'(\theta) = \{p(1-p)\}/\{b-(b+d)p\} * \{a-(c+a)p\}/\{p(1-p)\}$ = $\{a-(c+a)p\}/\{b-(b+d)p\}$ $V = g''(\theta) = dp/d(\theta) * d(g')/dp = \{p(1-p)\}/\{b-(b+d)p\} * d(g')/dp$ Solving d(g')/dp = (ad-bc)/{b-(b+d)p}² therefore 3 2

$$V = \{p(1-p)\}/\{b-(b+d)p\} * (ad-bc)/\{b-(b+d)p\}^{2}$$

= $\{p(1-p)(ad-bc)\}/\{b-p(b+d)\}^{3}$

Summarizing, the generalized discrete exponential formulae for $\boldsymbol{\mu}$ and V are:

$\mu = a - (c+a)p$	V = p(1-p)(ad-bc)
b-(b+d)p	${b-p(b+d)}^{3}$

with θ , the canonical link, as blnp + dln(1-p)

Testing these formulae for known members of the family:

i.	Bernoulli	a=0;	b=1;	c=-1;	d=-1
	$\mu = p$	V = p(1-p)			

iii.	Geometric	a=-1;	b=0;	c=0;	d=1
	$\mu = \{-(1-p)\}/-p =$	(1-p)/p			
	$V = \{p(1-p)(-1)\}/$	(-p) ³ =	$(1-p)/p^{2}$		
iv.	Negative binomial	a=-1/k;	b=0;	c=0;	d=1
	$\mu = \{(-1/k) - (-p/k)\}$)}/-p =	(-1/k+p	/k)/-p =	(1-p)/kp
	$V = \{p(1-p)(-1/k)\}$	$/(-p)^{3}$	= (1-p)/	'kp ²	

A scaled binomial distribution that is a member of the exponential family can be derived as follows:

let $\mu = np$ and V = np(1-p)(1+k)

Such properties should allow modeling of overdispersed binomial models; eg overdispersed logistic regression.

Setting a=0; b=1; c=-n; d=-1, we have, as in the standard binomial,

 $\mu = np = a - (c+a)p$ b - (b+d)p

Since d = -b, c/b=-n, and c=-nb, we can formulate the desired distribution as:

f(y) _{sb}	=	N	p ^{by-a}	(1-p) ^{dy-c}
	=	N	pby	(1-p) -by-c
	=	N	pby	(1-p) ^{-by+nb}
	=	N	p^{by}	(1-p) ^{bn-by}
	=	N	p^{by}	$(1-p)^{b(n-y)}$

Depending on the choice of b, there is a different variance:

V = p(1-p)(-bc)	=	p(1-p)(-b*-nb)	=	$p(1-p)(nb^2)$	=	np(1-p)
(b) ³		b ³		b ³		b

Since we wanted V = np(1-p)(1+k) then b=1/(1+k), giving

 $f(y) = N p^{y/(1+k)} (1-p)^{(n-y)/(1+k)}$

The correct mormalization may be found by scaling the variable terms of the binomial normalization by 1/(1+k). We do this since we want the binomial if k=0. Given

Binomial N = $\Gamma(n+1)$ $\Gamma(n-y+1)\Gamma(y+1)$

the scaled binomial normalization will appear as

Scaled Binomial = $1 \qquad \Gamma\{n/(1+k) + 1\}$ 1+k $\Gamma\{(n-y)/(1+k)+1\}\Gamma\{y/(1+k)+1\}$

The full scaled binomial probability density function is then

 $f(y)_{sb} = \frac{1}{1+k} \frac{\Gamma\{n/(1+k) + 1\}}{\Gamma\{(n-y)/(1+k)+1\}} p^{y/(1+k)} (1-p)^{(n-y)/(1+k)}$

3

Recalling the general form canonical link

 $\theta = blnp + dln(1-p)$

and given that, for the scaled binomial, d=-b

 $\theta = blnp - bln(1-p)$ = bln(p/(1-p))

which is simply the binomial link with b as a multiplicative factor.

It follows that the inverse link, in terms of p, can be derived as:

$ \begin{array}{c} \theta \\ \theta/b \\ \theta(1+k) \\ e^{\theta(1+k)} \\ e^{-\theta(1+k)} \\ e^{-\theta(1+k)} \\ 1+e^{-\theta(1+k)} \\ 1/(1+e^{-\theta(1+k)}) \end{array} $	<pre>= bln(0/(1-p) = ln(p/(1-p)) = p/(1-p) = (1-p)/p = 1/p - 1 = 1/p = p</pre>)
p = 1	or	1

 $1 + e^{-\theta(1+k)}$

Hence

Multiplying p by n gives μ . Hence, the inverse link has n as a numerator for grouped data models.

 $1 + e^{-\eta(1+k)}$

In terms of the table on the first page, the exponential properties of p in the pdf may summarized as:

	a	b	C	d	f(y)
Scaled Binomial	0	1/(1+k)	-n	-1	$p^{y/(1+k)}(1-p)^{(n-y)/(1+k)}$

Logistic overdispersion caused by heterogeniety may be accommodated by using a scaled binomial regression model. k is adjusted such that the chi2 dispersion approximates 1.0. Unlike many quasilikelihood models, the scaled binomial, as a full member of the exponential family, allows meaningful interpretation and full use of related diagnostics.

Jan 13, 1994

Y