January 13, 1994

Derivation of a scaled binomial as an instance of a general discrete exponential distribution

Joseph Hilbe, Arizona State University

Derivation of a scaled binomial as an instance of a general discrete exponential distribution

Joseph Hilbe

The family of discrete distributions having the form

$$
\begin{equation*}
f(y)=N p^{b y-a}(1-p)^{d y-c} \tag{1}
\end{equation*}
$$

where N is a normalization dependent upon a, b, c, and d.
(1) is a type of general exponential distribution containing several notable cases:

Bernoulli
Binomial

a	b	c	d	\rightarrow	$f(y)$
0	1	-1	-1		$p^{y}(1-p)^{1-y}$
0	1	$-n$	-1		$p^{y}(1-p)^{n-y}$
-1	0	0	1		$p(1-p)^{y}$
$-1 / k$	0	0	1		$p^{1 / k}(1-p)^{y}$

The negative binomial k is taken as the inverse of r (Hilbe 1994)
As a generalized exponential (1) becomes

```
\(f(y)=\exp \{(b y-a) \ln p+(d y-c) \ln (1-p)+\ln (N)\}\)
    \(=\exp \{y(b \ln p+d \ln (1-p))-(a \ln p+c \ln (1-p))+\ln (N)\}\)
    \(=\exp \{y \theta-g(\theta)+\ln (N)\}\)
```

where $\theta=b \ln p+d \ln (1-p)$, and $g(\theta)=a \ln p+c \ln (1-p)$
$\mu=g^{\prime}(\theta)=d p / d(\theta) * d(g) / d p$ using the chain rule
Hence

1) $\mathrm{d}(\theta) / \mathrm{dp}=\mathrm{b} / \mathrm{p}+\mathrm{d} /(1-\mathrm{p})$

$$
\begin{aligned}
& =\{b(1-p)+d p\} /\{p(1-p)\} \\
& =(b-b p+d p) /\{p(1-p)\} \\
& =\{b-(b+d) p\} /\{p(1-p)\}
\end{aligned}
$$

therefore $d p / d(\theta)=\{p(1-p)\} /\{b-(b+d) p\}$
2) $d(g) / d p=a / p-c /(1-p)$

$$
=\{a(1-p)-c p\} /\{p(1-p)\}
$$

$$
=(a-a p-c p) /\{p(1-p)\}
$$

$$
=\{a-(c+a) p\} /\{p(1-p)\}
$$

therefore

$$
\begin{aligned}
\mu=g^{\prime}(\theta) & =\{p(1-p)\} /\{b-(b+d) p\} *\{a-(c+a) p\} /\{p(1-p)\} \\
& =\{a-(c+a) p\} /\{b-(b+d) p\}
\end{aligned}
$$

$V=g^{\prime \prime}(\theta)=d p / d(\theta) * d\left(g^{\prime}\right) / d p=\{p(1-p)\} /\{b-(b+d) p\} * d\left(g^{\prime}\right) / d p$
Solving $d\left(g^{\prime}\right) / d p=(a d-b c) /\{b-(b+d) p\}^{2}$
therefore

$$
\begin{aligned}
V & =\{p(1-p)\} /\{b-(b+d) p\} *(a d-b c) /\{b-(b+d) p\}^{2} \\
& =\{p(1-p)(a d-b c)\} /\{b-p(b+d)\}^{3}
\end{aligned}
$$

Summarizing, the generalized discrete exponential formulae for μ and V are:

$$
\mu=\begin{array}{cc}
\mu-(c+a) p & V= \\
-----(b+d) p & \{b(1-p)(a d-b c) \\
b------b(b+d)\}^{3}
\end{array}
$$

with θ, the canonical link, as blnp $+d \ln (1-p)$

Testing these formulae for known members of the family:
i. Bernoulli $\quad a=0 ; \quad b=1 ; \quad c=-1 ; \quad d=-1$

$$
\mu=p \quad V=p(1-p)
$$

ii. Binomial $\quad \mathrm{a}=0 ; \mathrm{b}=1 ; \quad \mathrm{c}=-\mathrm{n} ; \quad \mathrm{d}=-1$

$$
\begin{aligned}
& \mu=n p /\{1-(0) p\}=n p \\
& V=\{p(1-p) n\} / 1=n p(1-p)
\end{aligned}
$$

iii

$$
\text { Geometric } \quad a=-1 ; \quad b=0 ; \quad c=0 ; \quad d=1
$$

$$
\begin{aligned}
& \mu=\{-(1-p)\} /-p=(1-p) / p \\
& V=\{p(1-p)(-1)\} /(-p)^{3}=(1-p) / p^{2}
\end{aligned}
$$

iv. Negative binomial $\quad a=-1 / k ; b=0 ; \quad c=0 ; \quad d=1$

$$
\begin{aligned}
& \mu=\{(-1 / k)-(-p / k)\} /-p=(-1 / k+p / k) /-p=(1-p) / k p \\
& \mathrm{~V}=\{\mathrm{p}(1-\mathrm{p})(-1 / \mathrm{k})\} /(-\mathrm{p})^{3}=(1-\mathrm{p}) / \mathrm{kp}^{2}
\end{aligned}
$$

A scaled binomial distribution that is a member of the exponential family can be derived as follows:

$$
\text { let } \quad \mu=n p \quad \text { and } \quad V=n p(1-p)(1+k)
$$

Such properties should allow modeling of overdispersed binomial models; eg overdispersed logistic regression.

Setting $a=0 ; b=1 ; c=-n ; d=-1$, we have, as in the standard binomial,

$$
\begin{aligned}
\mu=n p= & a-(c+a) p \\
& -------(b+d) p
\end{aligned}
$$

Since $d=-b, c / b=-n$, and $c=-n b$, we can formulate the desired distribution as:

$$
\begin{aligned}
f(y)_{s b} & =N \\
& =N \quad p^{b y-a}(1-p)^{d y-c} \\
& =N \\
& =N p^{b y}(1-p)^{b y}(1-p)^{-b y+c} \\
& =N \\
& =N \quad p^{b y}(1-p)^{b n-b y} \\
& =p^{b y} \\
& (1-p)^{b(n-y)}
\end{aligned}
$$

Depending on the choice of b, there is a different variance:
$V=p(1-p)(-b c)=p(1-p)\left(-b^{*}-n b\right)=p(1-p)\left(n b^{2}\right)=n p(1-p)$
(b) ${ }^{3}$
b^{3}
b^{3}
b

Since we wanted $V=n p(1-p)(1+k)$ then $b=1 /(1+k)$, giving

$$
\mathrm{f}(\mathrm{y})=\mathrm{N} \quad \mathrm{p}^{\mathrm{y} /(1+\mathrm{k})}(1-\mathrm{p})^{(\mathrm{n}-\mathrm{y}) /(1+\mathrm{k})}
$$

The correct mormalization may be found by scaling the variable terms of the binomial normalization by $1 /(1+k)$. We do this since we want the binomial if $k=0$. Given

$$
\text { Binomial } N=\frac{\Gamma(n+1)}{\frac{\Gamma(n-y+1) \Gamma(y+1)}{}}
$$

the scaled binomial normalization will appear as

$$
\begin{aligned}
\text { Scaled Binomial }= & 1
\end{aligned}
$$

The full scaled binomial probability density function is then

Recalling the general form canonical link

$$
\theta=b \ln p+d \ln (1-p)
$$

and given that, for the scaled binomial, $d=-b$

$$
\begin{aligned}
\theta & =b \operatorname{lnp}-b \ln (1-p) \\
& =b \ln (p /(1-p))
\end{aligned}
$$

which is simply the binomial link with b as a multiplicative factor.

It follows that the inverse link, in terms of p, can be derived as:

$$
\begin{array}{cl}
\theta & =\mathrm{b} \ln ((0 /(1-\mathrm{p})) \\
\theta / \mathrm{b} & =\ln (\mathrm{p} /(1-\mathrm{p})) \\
\theta(1+\mathrm{k}) & =\ln (\mathrm{p} /(1-\mathrm{p})) \\
e^{\theta(1+\mathrm{k})} & =\mathrm{p} /(1-\mathrm{p}) \\
\mathrm{e}^{-\theta(1+\mathrm{k})} & =11-\mathrm{p}) / \mathrm{p} \\
\mathrm{e}^{-\theta(1+\mathrm{k})} & =1 / \mathrm{p}-1 \\
1+e^{-\theta(1+\mathrm{k})} & =1 / \mathrm{p} \\
1 /\left(1+e^{-\theta(1+\mathrm{k})}\right) & =\mathrm{p} \\
\mathrm{p}=\begin{array}{ll}
1 & \text { or } \\
------ & 1 \\
1+e^{-\theta(1+k)} & 1+e^{-\eta(1+k)}
\end{array}
\end{array}
$$

Hence

Multiplying p by n gives μ. Hence, the inverse link has n as a numerator for grouped data models.

In terms of the table on the first page, the exponential properties of p in the pdf may summarized as:

	a	b	c	d	$f(y)$
Scaled Binomial	0	$1 /(1+k)$	$-n$	-1	$p^{y /(1+k)}(1-p)^{(n-y) /(1+k)}$

Logistic overdispersion caused by heterogeniety may be accommodated by using a scaled binomial regression model. k is adjusted such that the chi dispersion approximates 1.0. Unlike many quasilikelihood models, the scaled binomial, as a full member of the exponential family, allows meaningful interpretation and full use of related diagnostics.

