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Abstract Mobile sources contribute large percentages of each pollutant, but technol-
ogy is not yet available to measure and tax emissions from each vehicle. We build a
behavioral model of household choices about vehicles and miles traveled. The ideal-
but-unavailable emissions tax would encourage drivers to abate emissions through
many behaviors, some of which involve market transactions that can be observed for
feasible market incentives (such as a gas tax, subsidy to new cars, or tax by vehicle
type). Our model can calculate behavioral effects of each such price and thus calculate
car choices, miles, and emissions. A nested logit structure is used to model discrete
choices among different vehicle bundles. We also consider continuous choices of miles
driven and the age of each vehicle. We propose a consistent estimation method for
both discrete and continuous demands in one step, to capture the interactive effects of
simultaneous decisions. Results are compared with those of the traditional sequential
estimation procedure.
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Vehicle choices, miles driven, and pollution policies 5

The standard case for market-based incentives requires a tax or price on each unit
of emissions. Each form of abatement is then pursued until the marginal cost of reduc-
ing pollution matches the tax per unit of pollution, and the resulting combination of
abatement technologies minimizes social costs (Pigou 1920). For vehicles, a tax on
emissions could induce drivers to: (1) buy a newer, cleaner car, (2) buy a smaller, more
fuel-efficient car, (3) fix their broken pollution control equipment, (4) buy cleaner gaso-
line, (5) drive less, (6) drive less aggressively, and (7) avoid cold start-ups.1 Moreover,
economic efficiency requires different combinations of these methods for different
consumers.

Yet the technology is not available to measure each car’s emissions in a reliable and
cost-effective manner. On-board diagnostic equipment is imperfect, and it is costly to
retrofit millions of vehicles (Harrington and McConell 2003). Remote sensing is less
expensive and has been used to identify high-polluting vehicles, but it cannot measure
emissions clearly enough to tax each car.2 Moreover, vehicle emissions are important.
In 2001, vehicles in the U.S. contributed 27 percent of volatile organic compounds
(VOC), 37 percent of nitrogen oxides (NOx ), and 66 percent of carbon monoxide (CO)
emissions.3

For these reasons, vehicle emission policies have relied almost solely on mandates:
refineries must make clean gasoline, and new cars must meet required emission stan-
dards.4 Yet the mandated combination of abatement methods is unlikely to match the
cost-minimizing combination that households would choose if faced with a tax on
emissions. In fact, the cost of abatement using such mandates can be several times the
minimum cost achieved by using an emissions tax (Newell and Stavins 2003).

While the inability to measure emissions may preclude a vehicle emissions tax, it
does not preclude any use of incentives. Those who sell new or used cars or light-trucks
can collect tax on vehicle characteristics that are associated with emissions, or provide
subsidy for vehicles with low emissions. Most states charge annual registration fees
that can be made to depend on vehicle characteristics. Such policies might reduce
emission rates, while changes in the gasoline tax can reduce miles driven.

What vehicle characteristics or behaviors should be targeted by a tax or subsidy?
How would consumers react to those new incentive instruments? How much would
each tax reduce emissions? To address these questions, we build a general purpose
model of discrete choices by households about how many cars to own and what types

1 Heeb et al. (2003) find that cold start emissions rates (in g/km traveled) exceed stabilized emissions
rates by a factor of two to five, depending on the pollutant. Sierra Research (1994) finds that a car driven
aggressively has carbon monoxide emissions that are almost 20 times higher than when driven normally.
2 See Sierra Research (1994). Remote sensing in Texas (http://www.tnrcc.state.tx.us/air/ms/vim.html#
im3) and Albuquerque NM (http://www.cabq.gov/aircare/rst.html) is used in 2005 to identify polluting
vehicles.
3 See http://www.bts.gov/publications/transportation_statistics_annual_report/2004/. We focus on local
pollutants, where emission rates depend on car characteristics. In contrast, CO2 is linked directly to gas
use.
4 In the U.S., new cars face emission standards of .254 g/km of HC’s, 2.11 g/km of CO, and .248 g/km
of NOx . Light trucks face a variety of weaker standards, but all are scheduled to become more stringent.
These figures pertain to a test in the U.S. with a cold start-up phase, a transient phase at different speeds,
and a hot start phase, for a total distance of 18 km at an average speed of 34 km/h.
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6 Y. Feng et al.

of cars to own, plus continuous choices about how far to drive. In our model, we
embrace individual heterogeneity. We estimate all decisions simultaneously, and we
use the estimated parameters to predict the effects of certain price changes on choices
and on emissions.

Several existing papers explore market incentives that could be used in place of a
tax on emissions.5 In addition, several papers estimate models of the discrete choice
among vehicle bundles (including number, size, and age categories).6 Some models
estimate the demand for gasoline or for vehicle miles traveled (VMT) as functions of
price and income (as reviewed in Harrington and McConell 2003). As well, we note
that other models predict emissions.7 A major contribution of our research, then, is to
include all such choices simultaneously. In general, we capture the effect of any price
change on each household’s choices about the number of vehicles to buy, the type and
age of each, the consequent emissions rates, miles driven, and the consequent total
emissions.

In a two-step procedure, Dubin and McFadden (1984) estimate a discrete choice
model (for household appliances) and use the predicted shares to correct for endogene-
ity in the estimation of a continuous choice (usage hours). Others extend this model
to the discrete choice among vehicle bundles and a continuous choice of miles (e.g.
Goldberg 1998; West 2004). A single set of parameters appear both in the indirect util-
ity function used to estimate discrete choices and in continuous demands. Using this
sequential procedure, however, the estimated parameters of the continuous demand
are not constrained to match the same parameters in the estimated discrete choice
model.

Hanemann (1984) proposes a method to estimate discrete and continuous demands
at the same time. Bhat (2005) allows consumers to choose multiple discrete alterna-
tives, while Bhat et al. (2009) use this approach to analyze the effects of gasoline
price on the choice of vehicle type, vintage, and use. Bento et al. (2009) estimate car
choices and miles driven with one set of parameters; they combine those demands
with a model of new and used car supplies to simulate efficiency and distributional
effects of an increase in the gasoline tax. These papers estimate discrete and continu-
ous demands in one step with one set of parameters, but without the same individual
error term in both choices. This unobserved individual heterogeneity is a key factor in
the Dubin-McFadden model.

Relative to this literature, we make a number of contributions. First, we capture the
simultaneity of these decisions by proposing a method for consistent estimation of
both discrete and continuous choices in one step with the same individual error term,
yielding a single set of parameters. In other words, whereas the Dubin-McFadden
method corrects for selection of vehicle on the choice of miles, our procedure allows
for individual unobserved heterogeneity to affect both the fuel demand and the choice

5 For examples, see Eskeland and Devarajan (1996), Innes (1996), Kohn (1996), Train et al. (1997), Plaut
(1998), Sevigny (1998), and Fullerton and West (2002, 2010). For a review article, see Parry et al. (2007).
6 See McFadden (1979), Mannering and Clifford (1985), Train (1986), Brownstone et al. (1996), Goldberg
(1998), Brownstone and Train (1999), West (2004), and other papers reviewed in McFadden (2001).
7 For example, the U.S. Environmental Protection Agency (U.S. Environmental Protection Agency 1998,
p.3–68) discusses the use of EPA’s MOBILE5a model or California’s EMFAC7F model.
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Vehicle choices, miles driven, and pollution policies 7

of vehicles simultaneously. Second, we allow for two continuous choices of miles – in
each vehicle of a two-vehicle household. These choices are bundle-specific.8 Third,
we allow for an additional continuous choice of the age of each vehicle. Fourth, we
use the estimated parameters not only to predict changes in choices about vehicles and
miles, but also how those choices affect emissions.9

As it turns out, results for all continuous demands are broadly similar for the
sequential and simultaneous models. For discrete choices, however, our simultane-
ous model finds substantially larger effects from a change in the gas price per mile,
income, or vehicle-specific costs. Signs of some elasticities are reversed. In other
words, household-specific heterogeneity does affect discrete choices.

We find that a higher price of gasoline would shift households out of the Car-SUV
pair and into the bundle with two cars. It also would reduce miles driven. Both of these
changes reduce emissions. A tax on vehicle age would induce shifts to newer vehicles
and would also shift families out of bundles with an SUV. Both of these changes
also reduce emissions. Similarly, a tax on SUV’s would shift families into cars and
reduce emissions. The size of such a shift is important for environmental policy.
Rather than pin down the exact size of key parameters, however, this paper points to
important problems with existing methods and suggests an alternative approach with
more internal consistency.

The next section describes a behavioral choice model for one-vehicle households
and then extends it to consider two-vehicle bundles. It also presents a new method
designed for jointly estimating all discrete and continuous choices. Section 2 describes
data sources, while Sect. 3 provides estimation results for both discrete and continuous
demands. Section 4 compares elasticities, and Sect. 4 concludes.

1 The model and estimation

All cars in a given year are made to a single emission rate standard, while a weaker
standard has applied to “sports utility vehicles” (SUV, for short, but defined here to
include all light trucks and vans). For each vehicle, we therefore model the discrete
choice between a car and SUV. Each household also faces a discrete choice among a
finite number of vehicle bundles. The nesting structure is shown in Fig. 1. One choice
is the number of vehicles (0, 1, or 2), and another choice for each vehicle is the type
of vehicle (a car or an SUV). Other structures are possible, of course, including all
options on the same level. For our final model, we use the structure shown in the figure.

8 With a higher price of gas, some households might drive fewer miles in their SUV and more in their
car. We do not estimate separately the miles in each vehicle, but we do estimate a change for the (Car,
SUV) bundle that can differ from the (Car, Car) bundle. Other papers have estimated substitution between
vehicles within the family, but they treat the vehicles as given rather than chosen. Greene and Hu (1985)
find that this kind of substitution occurs to a large extent in some households, while Sevigny (1998) finds
small effects.
9 Our household responses represent market outcomes only if supply curves were horizontal. The simu-
lation of a change in the price of getting a car that is one year newer can be interpreted as a new local tax
or subsidy in a small open jurisdiction that can import more of those newer cars at a constant price. How-
ever, our demand system could be combined with some other estimates of supply to calculate equilibrium
outcomes.
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8 Y. Feng et al.

Fig. 1 Nesting structure for
choice among vehicle bundles

The choice of vehicle age is also important for emissions, so we also model this
decision.10 A household that chooses two vehicles has four continuous choices: age
of each vehicle and miles to drive each vehicle.11 Our model requires a price that
does not depend on the amount demanded, but the price per year of age is not linear
(because owning a new car costs more depreciation per year than owning an old car).
We therefore construct a continuous variable called “Wear”, the fraction of a vehicle
that has depreciated (between 0 and 1). A constant rate of depreciation means that Wear
is a nonlinear function of age, but then the price per unit of Wear does not depend
on its amount. This price is estimated for each vehicle type using hedonic regressions
below. The household makes a discrete choice about a brand-new “concept vehicle”,
and then gets reimbursed by the price of Wear for accepting an older car. In other
words, in our model, a household makes simultaneous decisions about which concept
vehicles, how old, and miles to drive. Specifically, “Wear” is calculated for each car
in our sample by assuming 20 % depreciation per year, so Wear = 1 − (1 − 0.2)age.
Thus, a new car has Wear = 0.

Then, since choice of age is considered separately, each discrete vehicle bundle
must be defined in a way that is independent of age. For this reason, we define each
“concept” vehicle as a bundle of attributes of a brand-new vehicle (car or SUV). The
household must pay the price of that brand-new vehicle (the “capital cost”), but then it
gets back some money for accepting Wear on that vehicle (the “reimbursement” price
of Wear).

Since the discrete choice in Dubin and McFadden (1984) involves only two alter-
natives, that paper can use a simple logit model. Our model has six choices, however,
and so we require a more general logit structure. We use the nested logit. The next sub-
section describes the simple case for households with only one vehicle, and the second

10 Older vehicles have higher emissions both because older vintages were produced to weaker standards
and because pollution control equipment deteriorates with age. Panel data would be required to distinguish
these.
11 Fullerton and West (2010) also simulate effects of incentives in a model of heterogeneous households’
continuous choices of car size, car age, and VMT, but they use calibrated rather than estimated parameters.
That model avoids discrete choices, but it considers only one car per agent. In our model, we estimate
discrete choices to consider the household’s number of vehicles.
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Vehicle choices, miles driven, and pollution policies 9

subsection considers multi-vehicle households. In the third and fourth sub-sections,
we discuss the estimation procedure and elasticity calculations.

1.1 Our model of car choice and miles driven

This description starts with the choices of VMT and Wear, assuming that a one-car
household has already chosen vehicle number-and-type bundle i . Given bundle i , an
agent’s direct utility is a function of VMT, Wear, and another consumption good c.
That is, U = U (VMTi , Weari , ci ). Given income y, the budget constraint is given by:

pg

MPG i
VMTi − qi Weari + ci = y − ri , (1)

where pg is the price of gasoline (in dollars per gallon), and MPGi is fuel efficiency
(in miles per gallon), so that pi ≡ pg/MPGi is the marginal price per mile in the
i th vehicle bundle. The “reimbursement” price of Wear for vehicle type i is denoted
as qi . The price of the other consumption good is normalized to be 1. The annual-
ized capital cost of the concept-vehicle bundle is ri . Thus, gasoline is the only cost
per mile, whereas capital cost is a fixed cost of each bundle.12 The indirect utility
for bundle i is a function of household income and prices, denoted as V (y − ri ,

pi , qi,).
One common way to obtain the indirect utility function is to use parametric demand

and then solve a system of partial differential equations using Roy’s identity (Hausman
1981). For comparability with other studies, we want VMT demand as a log-linear
function of the price per mile pi , available income y−ri , and a vector of observed socio-
demographic variables x . We then add the reimbursement price qi to that equation to
get:

ln(VMTi ) = αi
V + αi

p pi − αqqi − β (y − ri ) + x ′γ + η, (2)

where η represents an agent-specific unobserved factor (see below). Also, we assume

ri = (δ + ρ) ki , (3)

where ki is the total capital value of bundle i (depreciated or market value), δ is
the annual rate of further depreciation in value, and ρ represents the interest and
maintenance cost. When we plug (3) into (2) and integrate, the implied indirect utility
is:

Vi = 1

β
exp

(
−αi

0 + βy − β1ki − x ′γ − η
)

− 1

αi
p

exp
(
αi

p pi − αqqi

)
+ εi , (4)

12 Time variation in gasoline prices may cause time variation in used vehicle prices. Our use of cross-section
data helps avoid this problem.
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10 Y. Feng et al.

where β1 = β(δ + ρ).13 This equation includes an extra additive error εi that is
bundle-specific. As in the usual discrete choice model, this error term represents the
difference between true individual utility at choice i and the calculated utility level.14

For households who choose the no-vehicle bundle #6, continuous variables such as
pi , qi , and VMTi are unobservable. Implicitly, we assume that these households may
purchase a bicycle or a fare card for public transportation with a fixed fee, similar to
the capital cost ki . With no cost per mile or of Wear, their second exponential term
in (4) is 1.0. Their capital cost ki is unobserved, so β1ki and α6

0 are not separately
identifiable. Since we allow for a choice-specific intercept, however, we combine both
terms into one constant, α6

0.
Note that the simple addition of αqqi to Eq. (2) dictates the form of indirect utility

in (4). This indirect utility then implies specific forms for both demands:15

ln(VMTi ) = αi
V + αi

p pi − αqqi − βy + β1ki + x ′γ + η (5a)

ln(Weari ) = αi
W + ln

(
αq/αi

p

)
+ αi

p pi − αqqi − βy + β1ki + x ′γ + η (5b)

This specification has pros and cons. One limitation is the use of specific functional
forms, but these log-linear forms are comparable to prior literature and allow for two
different demand functions (5a, 5b) that are consistent with a single indirect utility
function (4). An advantage of this specification is that it allows the price of Wear (qi )
to enter the VMT demand, and price of VMT (pi ) to enter the Wear demand, but a
limitation is that the expression αi

p pi − αqqi enters both demands the same way.16

Also, both continuous demands have the same income effect, β. A more general model
could not be estimated. Note, however, that we have added generality where it matters
most. In particular, the price per mile has a bundle-specific coefficient (αi

p), to allow
for different effects on the demand for miles in each type of vehicle. Thus a gas tax
might decrease miles in an SUV more than in a car, in a way that depends on fuel
efficiency, and the change in miles for each household can depend on their vehicle
types.

13 Our model provides estimates of β and β1, and these can be used to calculate (δ + ρ), but we do not
provide separate estimates of δ and ρ. Some of our steps below require an assumption about δ, and we use
20 % for this purpose. Estimates of the depreciation rate for automobiles range from 33 % (Jorgenson 1996)
or 30 % (Hulten and Wykoff 1996) to 15 %, the rate implicit in the vehicle depreciation schedule currently
used by the Bureau of Economic Analysis. We use 20 % because it falls between these bounds.
14 Also, because of this integration, note that the intercept in (4) may be different from the intercept in (2).
15 More general demand functions such as translog demand or the almost ideal demand system imply
much more complicated indirect utility functions that could not be estimated. Also, note that no-vehicle
households have zero marginal prices, so they have constant miles traveled (conditioned on observed socio-
demographic variables and total income). Thus, no continuous demand equations are needed for these
households.
16 Thus, a change in pi must have the same effect on Wear that it has on miles. We tried other models,
including one where indirect utility has separate terms exp(αi

p pi ) and exp(αq qi ), so that pi would have
no effect on Wear, and qi would have no effect on VMT. That model would not converge, and anyway it is
restrictive by assuming no cross-price effects. We also tried models with more coefficients, to relax these
restrictions, and we tried many starting points, but only the model in (4) and (5a, 5b) could be estimated
simultaneously for discrete and continuous choices (especially for two-vehicle bundles considered below).
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Vehicle choices, miles driven, and pollution policies 11

1.2 Two-vehicle households

So far, the model above considers only one vehicle, but many households have two
vehicles and thus two continuous choices of miles and two continuous choices of
Wear. We have the observed VMT and Wear for each vehicle, so we can incorporate
all four continuous choices.17 The direct utility for a two-vehicle household choosing
bundle i is U (VMTi1, VMTi2, Weari1, Weari2, ci ). The budget constraint is given by:

pg

MPGi1
VMTi1+ pg

MPGi2
VMTi2 − qi1 (Weari1) − qi2 (Weari2) + ci = y − ri ,

(6)

where qi j are reimbursement prices for Wear in the two vehicles of bundle i( j = 1, 2).
Also, pi j ≡ pg/M P ≡ Gi j is the price per mile using the j th car of bundle i . We
consider the indirect utility function as follows:

Vi = 1

β
exp

(
−αi

0 + βy − β1ki − x ′γ − η
)

− 1

αi
p1

exp
(
αi

p1 pi1

+ αi
p2 pi2 − αq1qi1 − αq2qi2

)
+ εi (7)

The indirect utility in (7) is similar to (4) except for two extra terms related to the
second vehicle’s gasoline price pi2 and reimbursement price qi2. By Roy’s identity,
given that the household has chosen bundle i in (7), the four continuous demands are:

ln(VMTi1) = αi
V 1 + αi

p1 pi1 + αi
p2 pi2 − αq1qi1 − αq2qi2 − βy + β1ki + x ′γ + η

(8a)

ln(VMTi2) = αi
V 2 + ln(αi

p2/α
i
p1) + αi

p1 pi1 + αi
p2 pi2

−αq1qi1 − αq2qi2 − βy + β1ki + x ′γ + η (8b)

ln(Weari1) = αi
W 1 + ln(αq1/α

i
p1) + αi

p1 pi1 + αi
p2 pi2

−αq1qi1 − αq2qi2 − βy + β1ki + x ′γ + η (8c)

ln(Weari2) = αi
W 2 + ln(αq2/α

i
p1) + αi

p1 pi1 + αi
p2 pi2

−αq1qi1 − αq2qi2 − βy + β1ki + x ′γ + η (8d)

These demands generalize those of a one-vehicle household in (5a, 5b) by including
terms for pi2 and qi2 (and so we refer to (8a–8d) for “all” demands). The demand
for VMTi2 is symmetric to VMTi1 in explanatory variables, but it is non-linear in
parameters of both pi1 and pi2. The demands for Weari j ( j = 1, 2) are similarly
defined.

17 Another interesting question is about each household member’s choice of miles driven (in either car),
but we have no such data. As described below, we have only data on miles driven in each vehicle.
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12 Y. Feng et al.

1.3 A procedure to estimate discrete and continuous demands simultaneously

Note that the same parameters appear in both discrete and continuous choice functions,
yet previous literature has estimated these choice models separately. Often the esti-
mates for the same parameters are different not only in magnitude but also in sign.
In this sub-section, we propose a procedure for simultaneous estimation of bun-
dle choice, vehicle age, and miles driven. We start with separate discussion of car
choice and miles driven, and then how we combine them in a single estimation
procedure.

Following McFadden’s random utility hypothesis, vehicle bundle i is chosen if and
only if: Vi ≥ V j for all j �= i. The unconditional expected share for bundle i then
is:

Si =
∫

Pr(Vi > Vj , ∀ j �= i |η) f (η)dη (9)

where Si is the share choosing bundle i , and f (η) is the probability density function of
the agent-specific error η. We are now in a position to describe the importance of η. On
the one hand, individual heterogeneity represented by η could directly affect the choice
of bundle. On the other hand, observed demands for VMT and Wear are conditional on
that choice. Since the choice of vehicle bundle is endogenous, the estimated demands
for VMT and Wear could be biased if the influence of η in (9) is ignored. In the
model of Dubin and McFadden (1984), the error term η can be cancelled out from the
inequality {Vi > Vj ,∀ j �= i}, which simplifies the calculation of probabilities (that
is, the integration over η in Eq. (9) is not necessary). In such a model, η appears only
in the continuous demands, so this individual heterogeneity does not affect the choice
of vehicle bundle directly. They can estimate the discrete model with error εi for each
bundle, and then, given predicted bundle shares, they estimate the continuous choices
with errors η.

Yet, our purpose here is to retain individual-specific heterogeneity η and its effect
on bundle choice. Thus, the evaluation of probabilities in our model involves integra-
tion over all error components (ε, η), where ε = (ε1, ε2, . . ., εJ ), and where J is the
number of possible vehicle bundles. In our model, the εi are assumed to be distributed
with a generalized extreme value (GEV) distribution, and η follows an unknown dis-
tribution with a zero mean across individuals. Conditional on η, we integrate over the
GEV distribution to obtain conditional choice probabilities as a general nested logit
model:

Pr (Vni > Vlm,∀m �= i,∀n, l |η ) =
exp(Vi/λn)

(∑
j∈Bk

exp
(
Vj/λn

))λn−1

∑K
l=1

(∑
j∈Bl

exp
(
Vj/λl

))λl

(10)

where n and l represent nests, i is an alternative within nest n, m is an alternative within
nest l, K is the total number of nests, and Bl(l = 1, . . . , K ) represents a nested subset
of alternatives. Our nesting structure is illustrated in Fig. 1.

123



Vehicle choices, miles driven, and pollution policies 13

We also integrate over the distribution of η to obtain unconditional probabilities.
The literature offers no guidance on the distribution of the η.18 To reduce the numerical
difficulty in estimation, we let η be uniformly distributed in the interval [−ξ, ξ ]. We
search for the ξ that yields a likelihood function with the largest value.19

As pointed out by Dubin and McFadden (1984), the random error η does not have a
zero mean conditional on each chosen bundle, due to the endogeneity of bundle choice.
This can be seen clearly if we rewrite equations (8a–8d) into a more convenient form
for estimation (using just equation 8a, as an example):

ln(VMTi1) =
∑

j

α
j
V 1di j +

∑
j

α
j
p1 p j1di j +

∑
j

α
j
p2 p j2di j − αq1

∑
j

q j1di j

−αq2

∑
j

q j2di j − βy + β1

∑
j

k j di j + x ′γ + η (11a)

where di j is a choice indicator variable equal to one when i = j , and where equa-
tions (11b-d) (not shown here) are analogous. The random error η is correlated with
the choice indicators di j . Dubin and McFadden (1984) suggest sequential estimation
to solve this endogeneity problem (a procedure later adopted by Goldberg (1998)
and West (2004)). First, the discrete choice model is estimated and the predicted
probabilities are calculated. They then suggest three alternative methods that yield
consistent estimates of parameters for continuous demands: the instrumental variable
method (IV), the reduced form method (RF), and the conditional expectation correc-
tion method (CE). They derive the correction terms in terms of probabilities for the CE
method based on the assumption of an i.i.d. extreme value distribution of εi . However,
since we assume a GEV distribution of εi , these correction terms cannot be used in our
model. We want a method that can be used both for sequential estimation and for our
simultaneous estimation, in order to compare them, and so we employ the RF method.
Taking expectation of (11a) over η, we have:

ln(VMTn1) =
∑

j

α
j
V 1Snj +

∑
j

α
j
p1 p j1Snj +

∑
j

α
j
p2 p j2Snj − αq1

∑
j

q j1Snj

−αq2

∑
j

q j2Snj − βy + β1

∑
j

k j Snj + x ′γ + un1, (12a)

where Snj is the probability of individual n choosing vehicle bundle j from (9), un1 is
an additional error to represent the difference between observed VMT and predicted
VMT, and where (12b-d) are analogous (not shown here). The sequential RF method
applies least squares to (12a-d), except that the shares Snj are replaced by estimated
shares Ŝn j from the discrete choice model. In contrast, we estimate (9) and (12a-d)
simultaneously.

18 Dubin and McFadden (1984) assume η has a particular form of mean and variance, in order to derive
an explicit conditional expectation.
19 This search yields ξ equal to 0.65. Since the estimation of the logit model requires integration over the
individual heterogeneity term η, our model is a mixed logit model (McFadden and Train 2000).
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14 Y. Feng et al.

Since the same parameters appear in both discrete and continuous choice functions,
we propose a joint estimation method to capture this simultaneity. In particular, we
obtain a set of parameters that maximize the following objective function:

F(�| y, p1, p2, q1, q2, k, x) = −
∑

n
(ln(VMT1) − f1)2 −

∑
n

(ln(VMT2) − f2)2

−
∑

n
(ln(Wear1)−g1)2−

∑
n

(ln(Wear2)−g2)2+
∑

n
ln L ,

(13)

where f1, f2, g1, and g2 represent the right hand sides (without the random error un1)

of the four Eqs. (12a-d), ln L is the log likelihood function of the nested logit, and �

represents the set of parameters to be estimated by maximizing Eq. (13).
As is consistent with Dubin and McFadden (1984) and other papers in this litera-

ture, the maintained hypotheses are that the utility functional form is correct and that
consumers maximize it. Under these hypotheses, our procedure produces consistent
estimates of parameters. The reasoning is as follows: if the components of (13) were
maximized separately, and if some single set of parameters were the solution to all
those separate maximizations, then this set of parameters would also maximize the
combined objective function. To compare the results, we estimate our model by both
the sequential method and the simultaneous estimation method.

1.4 Elasticities

Once we obtain the parameter estimates, we are ready to calculate elasticities. To
see the marginal effects of prices on indirect utility, and therefore on bundle choice,
we use Eq. (7) to obtain explicit formulas for those derivatives. First, define exp
(·) ≡ exp(αi

p1 pi1 + αi
p2 pi2 − αq1qi1 − αq2qi2). Then:

∂Vi

∂pi1
= − exp(·), ∂Vi

∂pi2
= −αi

p2

αi
p1

exp(·) (14a)

∂Vi

∂qi1
= αq1

αi
p1

exp(·), ∂Vi

∂qi2
= αq2

αi
p1

exp(·) (14b)

and the marginal effects of income or capital cost on utility take similar forms:

∂Vi

∂y
= exp(−αi

0 + βy − β1ki − x ′γ − η) (15a)

∂Vi

∂ki
= −β1

β
exp(−αi

0 + βy − β1ki − x ′γ − η) (15b)

Then we derive the elasticity of choice i with respect to a change in variable z j

(where z j may be any of the price variables, income y, or capital cost k j ):
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∂Si

∂z j
· z j

Si
= ∂Si

∂Vj
· ∂Vj

∂z j
· z j

Si
(16)

Since these formulas involve the unconditional probability of vehicle bundle i ,
calculating each bundle elasticity requires integration over η. In contrast, calculations
of VMT elasticites do not involve integration over η. For bundle i (i = 1, …, 5), the
own- and cross-price elasticities of VMT demand are calculated by:

ei
V 1p1 = ∂ ln (VMTi1)

∂ ln pi1
= αi

p1 pi1 = ei
V 2p1,

ei
V 2p2 = ∂ ln (VMTi2)

∂ ln pi2
= αi

p2 pi2 = ei
V 1p2 (17)

The elasticities of demand for Wear with respect to its price have a similar form:

ei
W 1q1 = ∂ ln (Weari1)

∂ ln qi1
= −αq1qi1 = ei

W 2q1,

ei
W 2q2 = ∂ ln (Weari2)

∂ ln qi2
= −αq2qi2 = ei

W 1q2 (18)

We can also calculate the income elasticity, given by:

ei
V y = ∂ ln(VMTi1)

∂ ln y
= ∂ ln(VMTi2)

∂ ln y
= −βy (19)

and the total capital cost elasticity, given by:

ei
V k = ∂ ln(VMTi1)

∂ ln ki
= ∂ ln(VMTi2)

∂ ln ki
= β1ki . (20)

In Eqs. (16–20), elasticities are typically evaluated at each bundle’s mean values of y
and k, the bundle average of gas prices per mile (p1 and p2) and the bundle average
of reimbursement prices (q1 and q2).

2 Data and summary statistics

In order to analyze household choice of vehicles, miles driven, and vehicle Wear, we
need micro-data on household characteristics, household income or expenditures, and
detailed information about household-owned vehicles such as the number of vehicles,
miles driven in each, and vehicle characteristics (including miles per gallon, MPG,
and emissions per mile, EPM). No single data set contains all such information.

The Consumer Expenditure Survey (CEX) provides data on household income,
characteristics, and household-owned vehicles.20 For each household, we aggregate

20 The CEX data are collected by the Bureau of Labor Statistics of the U.S. Department of Labor through
quarterly interviews of selected households throughout the U.S. Each household is interviewed over five
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expenditures over four quarters, taking demographic data and vehicle information
from their last quarter in the survey. We use the CEX from 1996–2000, supplemented
with the corresponding OVB file (Owned Vehicles Part B Detailed questions). This
OVB file includes data on each vehicle type, make, year, number of cylinders, purchase
expenses and financing, time since purchase, mileage, gasoline expenditure, and other
information. We keep only households that satisfy several criteria. First, expenditures
must be reported consecutively for four quarters of 1996–2000. Second, the household
must possess the same number of vehicles during these four quarters. Third, we remove
households that own more than two vehicles.21 We also remove households that have
vehicles other than automobiles or SUV’s (defined to include light trucks or vans).
Finally, we are left with 9,027 households, of which 2,077 own no vehicles, 4,211 own
one vehicle, and 2,739 own two vehicles. We use yearly total expenditure as a proxy
for yearly income of each household. Table 7 in Appendix defines all the variables
used in estimations.

Summary statistics are shown in Table 1 for major household characteristics by vehi-
cle bundle. This table shows significant variations in household characteristics across
the number of vehicles and bundles. For example, larger households especially with
more kids have more vehicles and prefer SUVs. Wealthier households (as measured
by total yearly expenditures) possess more vehicles. Households with more workers
or income earners have more vehicles. Households with male heads are inclined to
have SUVs.

Next, fuel price data are obtained from the ACCRA cost-of-living index for 1996–
2000. This index compiles quarterly data for approximately 300 cities in the United
States. It also lists average gasoline price for each city for each survey quarter. Since
the CEX reports region and state of residence instead of city for each household, we
average the city gas prices to obtain a state price for each calendar quarter. For those
states reported in the CEX, but not reported in the ACCRA index, we use the average
region price as a substitute. Then we assign a gas price to each CEX household based
on the state of residence, CEX quarter, and year.

Some of the variables in our model require calculations or additional sources of
data. We now describe these extra calculations.

(1) Wear: The vehicle’s age is derived by taking the year of the survey minus the year
the vehicle was made. We then assume 20 % annual depreciation, and calculate
Wear as the percentage of the vehicle’s value that has wasted away (given all the
vehicle characteristics unchanged except vehicle age). Wear ranges from zero for
a new car, to Wear = 1 for a very old car. Specifically, Wear = 1 – (1 – 0.2)age.

(2) Capital value of the vehicle: The vehicle’s year of purchase and reported purchase
price (pp) are available in the OVB file, but we want an estimate of current market

Footnote 20 continued
consecutive quarters. Each quarter, 20 % of households complete their last interview and are replaced by
new households. For CEX data, see http://elsa.berkeley.edu or http://www.icpsr.umich.edu/.
21 In the CEX of 1996–2000, 18.4 % of households own more than two vehicles. Some of these households
may be wealthy or may include teenagers with their own vehicle, so selection bias is a potential problem.
But a two-person household with a third car may not drive it very much. Also, some households may have
a third vehicle for business, whereas our model of household choice assumes utility maximization.
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Table 1 Summary of household statistics by vehicle bundle

Characteristics Number of Vehicles

1 2 0

#1 Car #2 SUV #3 Car, Car #4 Car, SUV #5 SUV, SUV #6 none

Number (#) of households (hh) 3,469 742 1,181 1,305 253 2,077

MPG of first vehicle 21.37 16.76 21.88 21.51 17.04 –

MPG of second vehicle – – 21.55 16.53 16.50 –

Average hh size 1.92 2.30 2.65 2.94 3.44 1.98

Percentage (%) of hh with kids 23.87 33.56 33.62 43.98 62.45 26.05

Average # of kids per hh 0.44 0.73 0.56 0.89 1.42 0.55

Average hh # over 15 years old 1.52 1.63 2.13 2.12 2.13 1.48

Average hh # of workers 0.85 1.08 1.43 1.49 1.58 0.70

% of hh with male heads 40.10 63.07 65.54 71.80 77.47 33.22

Average age of head 55.24 48.22 51.84 49.45 45.24 55.66

% of hh with white heads 82.07 87.60 83.32 89.04 92.89 67.89

% with head’s education
more than high school

52.15 52.29 66.05 57.01 57.31 34.33

% in area with population
over 4 million

28.37 19.41 30.48 22.68 18.58 38.61

Total expenditures 22,754 24,574 35,472 33,812 34,246 17,795

Gasoline expenditures 648 920 1,103 1,279 1,398 –

value (cmv). We calculate the number of “years since purchase” (ysp), and we
subtract depreciation for each year, again using 20 % as the annual rate of depre-
ciation. The formula is cmv = pp ×(1–0.2)ysp. We then estimate a simple hedonic
price regression:

cmv = a0 + a1cyl + a2im + b0(1 − Wear)

+b1(Wear × cyl) + b2(Wear × im) (21)

where a0 through a2, and b0 through b2 are parameters. The variable cyl denotes
the number of cylinders, while im is a dummy variable indicating if the vehicle is
imported. Wear is included in the regression to capture the effects of vehicle age on
market value. Using a sub-sample of the CEX that has all necessary variables, we
run separate regressions for cars and SUV’s and report the results in Table 8 of the
Appendix.22 Then, for the value of each brand new “concept” vehicle (with Wear =
0), we use:

k̂ = â0 + â1cyl + â2im + b̂0. (22)

where â0 through â2 and b̂0 are estimates of parameters in (21).

22 Some estimates in Table 8 Appendix have large standard errors, implying large confidence intervals,
but these are the best estimates possible, given data availability.
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(3) The price of Wear: First, we calculate the extra amount paid for a car with no wear
on it (Wear = 0) compared to a very old car with the same characteristics (Wear

= 1). From (21), that difference is
(

b̂0 − b̂1cyl − b̂2im
)

. Then, q is the annual

reimbursement price of Wear, that is, the amount saved during a year by an owner
who accepts one whole unit of Wear (an old car instead of a new car). Since a
very old car does not depreciate any further, the amount saved is the depreciation
during the year from holding a new car. Again assuming 20 % depreciation, we

have: q = 0.2
(

b̂0 − b̂1cyl − b̂2im
)

.

(4) Fuel Efficiency: The EPA reports miles per gallon (MPG) of new vehicles, but
we need it for vehicles of all ages. The CEX does not contain this information,
so we estimate MPG using data of the California Air Resources Board (Califor-
nia Air Resources Board 1997; California Air Resources Board 2000).23 Their
first sub-sample is “series 13”, from November 1995 to March 1997, in which
the CARB tested a total of 345 cars, light-duty trucks, and medium-duty vans.
The second sub-sample is “series 14”, from November 1997 to August 1999,
which includes 332 vehicles (but which reports only 327 vehicles). In total, we
use 672 vehicles. We regress MPG against vehicle characteristics in the CARB
and then use those estimated coefficients to predict MPG for each vehicle in the
CEX. The estimation results are shown in Table 2, where a 4-cylinder SUV is
the omitted category. This table shows that fuel efficiency decreases with vehi-
cle age and engine size, both for cars and for SUV’s. Given the same vehicle
age and engine size, MPG is higher for cars than for SUV’s. This table will
be important later for discussion of the effects of policies on gasoline use and
emissions.

(5) Emissions per mile (EPM): For the same sample of 672 used vehicles, the CARB
tests for several pollutants. Following Fullerton and West (2010), we weight each
pollutant by estimates of its damages, with the highest weight on nitrous oxides
(NOX , 0.495), followed by hydrocarbons (HC, 0.405), and carbon monoxide
(CO, 0.10). Results appear in Table 2. Cars pollute less than SUV’s because they
were produced under stricter standards. Older vehicles pollute more, both because
newer vintages faced stricter standards and because pollution control equipment
deteriorates over time.24

(6) Vehicle Miles Traveled (VMT): The OVB file provides cumulative miles on each
vehicle, but we need yearly miles driven. Odometer data are imperfect. Some later
odometer readings are less than the earlier ones, and many readings are missing.
For a one-car household, we take observed annual expenditure on gasoline, divide
by the price per gallon to get number of gallons, and then multiply by MPG to get
miles. For a two-vehicle household, we only know the total gasoline expenditure,

23 For MPG of new cars, http://www.fueleconomy.gov/feg/index.htm is a website of the US Environmental
Protection Agency (EPA) and the Department of Energy. The EPA also provides the historical fuel economy
of new vehicles at http://www.epa.gov/otaq/mpg.htm or at http://www.epa.gov/otaq/tcldata.htm.
24 For vehicles in our sample, the calculated EPM is 1.89 g/mile for the average car and 3.56 for the average
SUV. It also increases to 6.94 g/mile for a very old vehicle (with Wear =1).
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Table 2 Estimation of miles per
gallon (MPG) and emissions per
mile (EPM)

Independent Dependent variable
variable

MPG EPM

Coefficient Standard
error

Coefficient Standard
error

Constant 24.021 0.496 −0.597 0.663

cyl6 −4.395 0.483 1.103 0.645

cyl8 −7.948 0.581 3.548 0.777

Age −0.419 0.049 0.285 0.065

Age2 0.006 0.002 0.003 0.002

Car 4.262 0.410 −0.589 0.548

cyl6 × car −1.439 0.560 −0.661 0.749

cyl8 × car −1.149 0.655 −2.819 0.875

R2 0.7598 0.4095

F value 299.997 65.775

# of obs. 672 672

so we need to allocate it between the two vehicles. For this allocation we use the
difference in odometer readings.25

(7) Vehicle bundles: As listed in Table 1, vehicle choices are classified into six cate-
gories according to the number and type of vehicles. For bundle 4, with one car
and one SUV, the car is always identified as the first vehicle. For bundles 3 and
5, the first vehicle is identified as the one with higher yearly VMT. If two vehi-
cles have the same yearly VMT, the identification is random. If VMT is missing,
then the vehicle with an earlier purchase year is taken as the first vehicle. If the
purchase year and miles-driven are both missing, the identification is random.

3 Estimation results

The model described in Sect. 1 is estimated by both the sequential and the simultaneous
estimation methods. The mean values of key variables are reported by bundle in Table 3.
We average the values within each bundle for each bundle-specific variable except
gas price per mile. Gas price per mile is calculated by dividing gas price per gallon
by a bundle-specific MPG listed in Table 1. Thus, gas prices per mile vary both
within and between bundles. The presence of collinearity between the fixed effects αi

0
(i = 1, . . ., 6) and the bundle-specific variables such as ki (i = 1, . . ., 5) forces us to
normalize the fixed effect of bundle one (α1

0) to zero. To facilitate the estimation, we

25 If the difference in odometer readings is positive for both vehicles, then we divide it by MPG to obtain an
estimate of each vehicle’s gas consumption. Each gasoline amount divided by their sum gives shares, used
to allocate the observed total gas consumption. Each vehicle’s gallons divided by MPG yields VMT. If the
difference in odometer readings is positive only for one vehicle, we use this figure as VMT1 and calculate
gasoline used in this vehicle. Then total gasoline minus gas used in this vehicle is residual gas, allocated to
the other vehicle. Dividing this residual gas by MPG yields VMT2. If the difference in odometer readings
is positive for neither vehicle, then we do imputations based on households with similar characteristics.
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Table 3 Mean values of key variables involved in estimation

Variable Bundle

1 (Car) 2 (SUV) 3 (C, C) 4 (C, S) 5 (S, S) 6 (none)

% of households 38.43 8.22 13.08 14.46 2.80 23.01
VMT1 11,799 12,977 15,283 10,513 16,151 –
VMT2 – – 5,554 10,771 5,358 –
Price of gas 1 (p1) 0.058 0.074 0.056 0.057 0.072 –
Price of gas 2 (p2) – – 0.057 0.075 0.075 –
Vintage1 8.62 8.24 7.63 7.89 6.87 –
Vintage2 – – 9.02 8.50 8.78 –
Wear1 0.76 0.73 0.72 0.73 0.68 –
Wear2 – – 0.77 0.73 0.75 –
Price of Wear1(q1) 15,572 18,010 15,363 15,686 18,052 –
Price of Wear2(q2) – – 15,301 18,133 18,105 –
Expenditure (y) 22,754 24,574 35,472 33,812 34,246 17,795
Capital cost (k) 17,224 20,187 34,157 37,684 40,551 –
Capital cost 1 17,224 20,187 17,125 17,337 20,232 –
Capital cost 2 – – 17,032 20,348 20,319 –

also normalize y in units of 10,000 dollars, ki in units of 1,000, and q1 and q2 in units
of 100 dollars. Accordingly, we multiply Wear1 and Wear2 by 100 to keep the total
amount of reimbursement unchanged in the budget constraint.

Notice that bundle 3 and bundle 5 each contains two vehicles of the same type,
while bundle 4 consists of one car and one SUV. When the retail gas price increases,
all gas prices per mile are affected in bundle-specific ways because MPG depends
both on vehicle age and type (car or SUV). As revealed by Table 1, MPG is more
type-specific than bundle-specific. Thus, we expect that the gas price parameters of
car bundles 1 and 3 are quite close to one another, as are those of SUV bundles 2
and 5. For a household with one car and one SUV, however, we wish to allow more
substitution. In our estimation, we assign one parameter αC1 to the gas price of the
only car in bundle 1 and first car in bundle 3 (and αC2 to the second car). We assign
one parameter αS1 to the only SUV in bundle 2 and first SUV of bundle 5 (and αS2 to
the second SUV). Then we assign two gas price parameters to bundle 4: α4

p1(= α4
C AR)

for the car and α4
p2(= α4

SU V ) for the SUV.
Results from the sequential estimation are discussed first. We follow the procedure

suggested by Dubin and McFadden (1984), but at the first stage we estimate a nested
logit structure instead of a multinomial logit model. The traditional ML method is
employed. The RF method is adopted at the second stage because the correction terms
derived by Dubin and McFadden are inappropriate for the GEV error structure. In
the second stage we estimate four continuous demand equations jointly (only two
equations for the one-vehicle bundles), using an objective function similar to Eq. (13)
except that the last term is removed. We constrain parameters to be constant across
bundles except those for gas prices and constant terms. The estimation results are
reported in the first two columns of Table 4, under “sequential estimation”.

For the discrete choice model in the first column of Table 4, the estimates of αC1
and αS1 are significant at the 1% level, while those of αC2 and αS2 are not statistically
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Table 4 Estimation results

Parameters Sequential estimation Simultaneous estimation

Nested logit Continuous demands

p11, p31(αC1) −0.246** (0.025) −0.460** (0.070) −0.433** (0.073)

p32(αC2) −0.045 (0.033) −0.238* (0.143) −0.045** (0.008)

p21, p51(αS1) −0.237** (0.028) −0.927** (0.054) −0.526** (0.105)

p52(αS2) −0.011 (0.049) −0.453 (0.380) −0.013 (0.080)

p41 (α4
C AR) −0.240** (0.024) −0.374** (0.143) −0.399** (0.062)

p42 (α4
SU V ) −0.084** (0.022) −1.331 (1.582) −0.662** (0.103)

q1(αq1) −0.012** (0.003) −0.370E−03 (0.002) −0.004** (0.001)

q2(αq2) 0.010** (0.001) −0.010** (0.002) −0.219E−36 (0.936E−36)

y(β) −1.408** (0.086) 1.134** (0.134E−03) −0.420** (0.001)

k(β1) −0.671** (0.108) −0.456** (0.034) −0.405** (0.023)

Choice specific

Constant 2 (α2
0) −1.403** (0.278) 0.645** (0.035)

Constant 3 (α3
0) 4.219** (0.516) 1.860 ** (0.031)

Constant 4 (α4
0) 5.057** (0.650) 2.063** (0.051)

Constant 5 (α5
0) 2.401** (0.685) 2.320** (0.062)

Constant 6 (α6
0) −2.045** (0.383) −0.948** (0.132)

Demand-specific

Constant 1 (αV 1) 9.578** (0.179) 0.302** (0.087)

Constant 2 (αV 2) 7.361** (0.187) 0.805** (0.088)
Constant 3 (αW 1) 9.346* (5.007) 2.580** (0.298)

Constant 4 (αW 2) 5.147** (0.176) 5.114** (1.259)

Famsize 0.332 (0.542) 0.072** (0.002) 0.058** (0.001)

Earnr 0.270** (0.067) 0.067** (0.001) 0.032** (0.183E−03)

Kids 0.510 (0.527) 0.081** (0.002) −0.031** (0.001)

Drivers 0.190 (0.535) 0.060** (0.001) −0.041** (0.001)

Metro −0.552** (0.123) −0.012** (0.002) 0.012** (0.474E−03)

Pop4 −0.340** (0.085) −0.013** (0.001) 0.012** (0.290E−03)

Urban −0.441** (0.161) −0.058** (0.002) 0.105** (0.001)

Age 0.046** (0.003) −0.007** (0.290E−04) 0.004** (0.128E−04)

White 0.056 (0.091) 0.136** (0.001) 0.097** (0.386E−03)

Male 0.057 (0.085) 0.109** (0.001) 0.004** (0.240E−03)

Educ 0.020 (0.072) 0.058** (0.001) 0.036** (0.263E−03)

Northwest 0.244 (0.179) 0.042** (0.001) 0.046** (0.386E−03)

Midwest 0.401** (0.173) 0.064** (0.001) 0.059** (0.380E−03)

South −0.726** (0.121) −0.150** (0.001) 0.072** (0.374E−03)

λ1 0.814** (0.053) 0.138** (0.006)

λ2 0.066** (0.003) 0.103** (0.005)

Log Likelihood −28, 917.8 −786, 857 −0.310E+07

* 0.10 significance level; ** 0.05 significance level
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significant. The estimates of α4
p1(= α4

C AR) and α4
p2(= α4

SU V ) are both significant at
the 0.01 level. All of them are negative as expected. The Wear coefficients αq1 and αq2
are also different from zero at the 0.01 level. The parameter λn(n = 1, 2) measures
the degree of independence of the errors of alternatives in nest n. In our model, the
estimates of λ1 and λ2 are 0.814 and 0.066, respectively, both significant at the 0.01
level.26

Since all the estimates of αp1 and αp2 are negative, Eq. (14a, 14b) indicate that the
marginal effects of gas prices per mile are negative. As consistent with expectation,
an increase in gas price reduces household utility. Since the coefficient on the reim-
bursement price q1 is negative, the marginal effect on utility is positive as expected. A
higher reimbursement price means more money back to the household for accepting a
given vehicle age or level of Wear. However, the coefficient on q2 has unexpected sign.
Since estimates of β and β1 are both negative and significant, Eq. (15a, 15b) indicate
that the marginal effect of capital cost is negative while that of income is positive.

We then use those discrete choices from the first column to estimate the continuous
demands shown in the second column. A glance down the second column indicates that
most of estimated coefficients are quite different from the corresponding estimates in
the first column. Yet the parameters in the second column are the same parameters as in
the first column, even from the same model, as the continuous demands are supposed
to be consistent with a particular indirect utility function. For example, the estimated
coefficient on income is −1.408 in the first column and +1.134 in the second column.
Both have small errors, and so they are significantly different from each other, even
though they are the same parameter of the same model. Many price coefficients also
differ significantly in magnitude (and the two estimates of αq2 differ in sign).

Next, the model is estimated by the simultaneous estimation procedure proposed in
Section I.C. The point of this procedure is to capture household-specific heterogeneity
in both discrete and continuous choices. The two types of choices are connected by the
same parameters and the same random error term η appearing in both.27 In contrast,
in the sequential procedure, the bundle choice affects continuous demands (and not
vice versa). The simultaneous estimates are reported in the last column of Table 4.

All ten estimates of coefficients on key variables have the expected signs, and all but
two are significantly different from zero. Yet, for many parameters, the estimate differs
from both estimates obtained by sequential estimation. For example, the capital cost
coefficient (β1) from the simultaneous model (–0.405) is smaller in magnitude than
either that of the logit model (–0.671) or the continuous demand model (–0.456). The
estimates of coefficients on demographic variables vary with the estimation method,
not only in magnitude but also in sign. For most price variables, however, the estimate
from the simultaneous model is between the two estimates from sequential estimation,
which suggests that the simultaneous model might provide more “reasonable” coeffi-

26 If λn ∀n are within the range of zero to one, then “the model is consistent with utility maximization
for all possible values of the explanatory variables” (Train 2003, p.85). Since our λ are significantly less
than one, the errors within each nest are correlated, evidence in favor of nesting rather than MNL.
27 The standard deviation for x’γ is about 0.086 within a bundle, and for βy is about 0.78 within a bundle,
so the finding that η has a range (−0.65,0.65) reflects a significant amount of individual heterogeneity.
Therefore, introducing individual heterogeneity is expected to make a difference in parameter estimates.
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Table 5 Elasticities of discrete choices for each variable

Variable Bundle

#1 Car #2 SUV #3 Car, Car #4 Car, SUV #5 SUV, SUV #6 none

Sequentiala

p 0.015 −0.106 0.006 −0.177E−03 0.034 –

q −0.207 3.618 −0.116 −0.033 −6.077 –

qcar 1.530 −6.318 0.139 0.127 −3.470 –

qsuv −1.737 9.937 −0.255 −0.160 −2.603 –

y −0.106 0.591 −0.042 −0.006 −0.011 −0.006

k 0.086 −0.427 0.061 0.008 −0.303 –

kcar −0.008 0.127 0.056 −0.944 4.336 –

ksuv 0.110 −0.413 0.134 −1.099 4.703 –

Simultaneousb

p 0.009 −0.073 0.695 −0.793 0.020 –

q 0.025 0.193 0.066 0.283 −0.001 –

qcar 0.177 −0.966 0.151 0.352 −0.147 –

qsuv −0.153 1.159 −0.085 −0.069 0.146 –

y 0.341 −1.203 −0.818 0.634 0.010 −0.074

k −0.321 0.390 1.655 −6.319 −0.377 –

kcar −1.229 7.315 −13.021 7.345 1.263 –

ksuv 0.908 −6.925 14.676 −13.665 −1.640 –
a Calculation based on estimates in column 1 of Table 4
b Calculation based on estimates in column 3 of Table 4

cients. These coefficients cannot really be compared directly, however, and so we turn
to elasticities.

4 Elasticity comparisons

Bundle choice elasticities are presented in Table 5. Each entry in the table is not an
elasticity with respect to each price in the model, as it might be difficult to interpret
an elasticity such as the change in the probability of holding bundle 3 (two cars) for
a change in the price p1 for gas in the first car only. Instead, we calculate the effect
on all choices for a change in the price of gasoline. Also, given vehicle age, a higher
reimbursement price q for Wear of a particular bundle means more money back to
the household and thus higher probability of choosing that bundle. Again, however,
it is difficult to interpret a change in the price q1 for the first car with no change in
q2 for the household’s second car. Instead, we show effects of a change in q for all
vehicles (or for all of one type). Rather than raising q, however, policymakers can
reduce emissions by taxing old vehicles or subsidizing new vehicles (i.e. reducing q).
Table 2 above shows that emissions per mile (EPM) are higher for SUV’s than for
cars, and rise with either type of vehicle’s age.
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The upper panel of Table 5 shows elasticities from the sequentially-estimated model,
where gas prices have little effect on any bundle choice, and no effect on bundles for
two cars or one car and one SUV. Also, a tax on age that reduces q has large effects
that are sometimes the wrong sign (encouraging the purchase of two SUV’s).

We therefore focus more on simultaneously estimated elasticities. In the lower part
of Table 5, the first row shows that a 1 % increase in the price of gas would decrease
most the probability of holding bundle 4 with a car and an SUV (by 0.793 %) while
increasing the share holding bundle 3 with two cars (by 0.695 %). In other words, these
households sell the SUV for a second car instead. This change is driven by the high
price of driving an SUV with low fuel efficiency.28

The second row of the lower panel shows that a 1 % tax on Wear (lower q for all
vehicles) would decrease the probabilities of holding all bundles except bundle 5 (SUV,
SUV). In the next row, a tax on the age of cars would decrease the reimbursement for
wear on cars, qcar , and switch households out of cars and into bundle 2 with an SUV
and bundle 5 with two SUV’s. Conversely, a tax on the age of SUV’s that lowers qsuv

would induce a switch out of bundles with just SUV’s, and into bundles with cars. This
tax might actually cut emissions in two ways: by inducing a switch from SUV’s to
cars (Table 5), and by inducing a switch from older SUV’s to newer SUV’s (Table 6).

The choice elasticities with respect to y indicate that households with more income
switch from holding no car (bundle 6) to one car (bundle 1), and those with a single
SUV (bundle 2) seem to add a car (bundle 4). Additional income reduces the share
with two cars (bundle 3). These results are inconsistent with the discrete-choice model
in the upper panel, where the only bundle with a positive income elasticity is bundle
2 with one SUV.

We next look at an increase in capital cost in the lower panel of Table 5. Since this
change effectively reduces available income, we see that each capital cost elasticity
has the opposite sign as that bundle’s income elasticity. With higher capital costs,
households seem to shift primarily out of two-vehicle bundles with at least one SUV
(4 and 5) into bundles with two cars (bundle 3) or only one SUV (bundle 2). While
it does not make sense to increase the capital cost only for the first car of a two-car
household, it might make sense to increase the capital cost only of cars relative to
SUV’s or vice versa (to represent a vehicle-type tax). The next row of Table 5 shows
that if the increase in capital cost pertains only to cars, then it decreases the shares of
the two bundles that have only cars. If it pertains only to SUV’s, however, then it has
large effects that decrease the shares of all three bundles with SUV’s. Such a policy
could clearly reduce emissions (given the EPM in Table 2). The 1 % higher cost of an
SUV means 13.7% less of bundle 4, which seems too large, but it means that the share
falls two percentage points (from 14.5 % of all households in Table 3 to 12.5 % of all
households).

Table 6 shows demand elasticities for continuous choices like Wear and vehicle
miles traveled (VMT). These are “short run” elasticities, in the sense that car choices

28 This reasoning is confirmed by the choice elasticities with respect to p1 and p2 separately. For bundle
4, a 1 % higher price per mile in the car reduces the probability of choosing that bundle by 0.37 %, while a
1 % higher price per mile in the SUV (p2) reduces the probability of choosing that bundle by 0.81 %. Thus,
the gas consumption of the SUV has twice as much impact as that of the car.
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Table 6 Short-run elasticities of continuous demands

Variable Bundle Total

#1 Car #2 SUV #3 Car, Car #4 Car, SUV #5 SUV, SUV Emissionsc

Sequentiala

p −0.026 −0.066 −0.038 −0.117 −0.098 −0.211

q 0.012 0.013 0.306 0.360 0.362 0.631

qcar 0.012 – 0.306 0.012 – 0.368

qsuv – 0.013 – 0.349 0.362 0.263

y −2.581 −2.788 −4.024 −3.836 −3.885 −11.472

k −1.570 −1.840 −3.113 −3.434 −3.695 −8.746

Simultaneousb

p −0.024 −0.037 −0.026 −0.070 −0.038 −0.136

q 0.122 0.141 0.120 0.123 0.141 0.434

qcar 0.122 – 0.120 0.123 – 0.293

qsuv – 0.141 – 7.933E−36 0.141 0.141

y 0.956 1.032 1.490 1.420 1.438 4.246

k −1.397 −1.637 −2.770 −3.056 −3.288 −7.783

Each entry is the elasticity of VMT or Wear, in the first or second vehicle, with respect to each variable
a Calculation based on estimates in column 2 of Table 4
b Calculation based on estimates in column 3 of Table 4
c The last column is the percent change in total emissions, E = ∑

EPM× miles, adding over all vehicles
in all bundles, for a one percent change in each variable

are fixed, and only continuous choices like driving distances may change (Goldberg
1998).29 In the top panel, the sequential model uses predictions of discrete choices
from Table 5 to estimate continuous demands in Table 6. Most of the results from
the sequential procedure have the correct signs, except in the fifth row where a small
increase in income (y) reduces the demand for miles driven (for every vehicle bundle
combination).

Again, we focus primarily on simultaneously estimated elasticities in the bottom
panel. In the first row, all elasticities for VMT1 with respect to gasoline price are
negative, as expected, for all bundles. The next row of Table 6 shows the effects of a
1 % increase in the reimbursement price, q, on Wear. These elasticities are all positive,
as expected: households choose older vehicles when they get higher reimbursement for
holding an old vehicle. Conversely, a tax on vehicle age that reduces q by 10 % would
reduce desired Wear by about 1.2–1.4 % (assuming the desired cars were available).30

The table also shows similar effects of changing q just for cars, or just for SUV’s.

29 Panel data would be required to distinguish the effects of lags from contemporaneous price changes.
30 In Table 3, the average Wear of 0.75 corresponds to 6.2 years of age, so a 1.2 % decrease in Wear means
a decrease of about one month of age. In the sequential model, the same 10 % lower q affects desired age
of one-vehicle bundles by one-tenth as much, and desired ages of two-vehicle bundles by three times as
much.
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Next, consider income and capital cost elasticities. Due to symmetric specification
of demand functions, a 1 % change in y or k has the same effect on both VMT and
Wear (whether for the first vehicle or the second). In the simultaneous model, income
elasticities are positive as expected. One percent more income would increase driving
distances by about 1–1.5 % for all bundles. The capital cost elasticities are negative as
expected.31

Finally, the last column in Table 6 reports the percentage change in total emissions
when each variable increases by 1 %. In the simultaneous model, for example, a 1 %
increase in all gasoline prices would reduce total emissions by 0.136 %, while a tax
on age that reduces q by 1 % would reduce total emissions by 0.434 %.32 The largest
elasticities are from income and capital cost: 1 % higher income raises total emissions
as expected, by 4.246 % (but in the sequential model would reduce emissions by
11.47 %) A 1 % increase in capital cost reduces total emissions by about 8 % in either
model.

In the simultaneously estimated model, the coefficients are affected by all discrete
and continuous choices. The model imposes more constraints on the estimates. Thus,
if those constrained estimates are plugged into the likelihood function for either part
of the sequential procedure, then the likelihood is not as high as for that portion
of the sequential procedure. However, the sequentially estimated model yields two
sets of estimates for the same parameters. The finding that these estimates are not
consistent with each other raises questions about whether the behavioral model is
correctly specified.

5 Conclusion

This paper focuses on incentive effects of price changes that might be associated with
policies to reduce vehicle emissions. We provide a model of household behavior that
incorporates both the discrete choice of vehicle type, with different fuel efficiencies
and emission rates, and continuous demands for miles driven. Because emission rates
depend directly on vehicle age, we also model vehicle age as a continuous choice.
To model the effect of prices on the choice of vehicle age, we establish a choice of
“concept vehicle” that is separate from the choice of “Wear”. Using hedonic price
regressions, we quantify the price of Wear. Then, after the discrete choice among
concept vehicles, both VMT and Wear become continuous variables that enter utility.

Yearly household data are obtained from the CEX of 1996–2000, supplemented
with fuel efficiency estimates from the CARB, and gas prices from the ACCRA cost

31 The specific form for utility in Eq. (4) means a specific form for demands in Eq. (5a, 5b), where ln(VMT)
and ln(Wear) both depend on αi

p pi − −αq qi . In other words, the parameter that determines the important

effect of gas price on miles (αi
p) also necessarily drives the less-important effect of the gas price on choice

of Wear. Similarly, the own-price effect of q on Wear also drives the cross-price effect of q on VMT. We
note this fact, but we do not mean to emphasize these cross-price elasticities.
32 These are also short run elasticities, with no change in the number or type of vehicles. Notice that
the percentage change in emissions from a change in p is more than twice the change in driving distance,
because the higher p also reduces demand for Wear (which also reduces emissions). The change in q also
affects both VMT and Wear in the same direction, enlarging the effect on emissions.
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of living indexes. First, like many others, we follow the sequential procedure sug-
gested by Dubin and McFadden (1984). This procedure generates two different sets
of estimates for the same set of parameters, which we argue is inconsistent with main-
tained hypotheses about the utility function and utility maximization. We then propose
and implement a simultaneous method for consistent estimation of both discrete and
continuous choices in one step. Results from the simultaneous estimation differ signif-
icantly both in signs and magnitude from both sets of estimates obtained by sequential
estimation.

In general, we find that short run price elasticities for continuous variables like
VMT are smaller than long-run elasticities for discrete choices. Thus, for example,
a tax on age of SUV’s might cut emissions both by inducing a switch from SUV’s
to cars and by inducing a switch from older SUV’s to newer SUV’s. We emphasize,
however, that more work is needed, perhaps using the simultaneous method proposed
in this paper.
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6 Appendix

See Tables 7 and 8.

Table 7 Variable definitions

Variable Definition

y Household’s yearly expenditure

k Total capital cost of a vehicle bundle

p1 Gas price per mile of the first vehicle

p2 Gas price per mile of the second vehicle

q1 Unit price of Wear of the first vehicle

q2 Unit price of Wear of the second vehicle

VMT1 Miles driven in the first vehicle

VMT2 Miles driven in the second vehicle

Wear1 Continuous variable to measure the wear of the first vehicle

Wear2 Continuous variable to measure the wear of the second vehicle

Famsize Number of members in a household

Earnr Number of income earners in a household

Kids Number of children less than 18 in a household

Drivers Number of household members 16 years old and over

Metro =1 if household resides inside a Metropolitan Statistical Area (or else zero)

Pop4 =1 if the household lives in area with population > 4 million (or else zero)

Urban =1 if the household lives in an urban area (or else zero)
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Table 7 continued

Variable Definition

Age Age of household head

White =1 if the household head is white, and zero otherwise (or else zero)

Male =1 if the head is male, zero otherwise (or else zero)

Educ =1 if the head has education higher than high school (or else zero)

Northwest =1if in the Northwest (or else zero)

Midwest =1 if in the Midwest (or else zero)

South =1 if in the South (or else zero)

West =1 if in the West (or else zero)

Table 8 Hedonic price
regressions

Dependent
variable: cmv

Cars SUVs

Coefficient Standard
error

Coefficient Standard
error

Constant (a0) 1,444.64 1,806.08 −1,220.52 2,702.42

cyl (a1) 3,150.55 288.44 1,993.56 411.23

Import (a2) 2,371.11 894.32 1,417.36 1,584.27

1-Wear (b0) −2,179.03 3,272.66 8,973.32 4,996.71

Wear × cyl (b1) −3,184.92 546.49 −1,459.66 763.85

Wear × import (b2) −998.07 1,719.28 −658.35 2,800.80

R2 0.4880 0.5147

F-value 150.004 106.900

# of obs. 793 510
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