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Abstract 

Finite sets are one of the most fundamental mathematical structures. In the absence of the axiom of choice there are many 
different inequivalent definitions of finite even in classical logic. When we allow incomplete existence as in fuzzy sets the 
situation gets even more complicated. This paper gives nine distinct definitions of finite in a fuzzy context together with 
examples showing how the properties of the underlying lattice of truth values impact the meanings of finite. © 2001 Elsevier 
Science B.V. All rights reserved. 

One of our most fundamental mathematical notions is that of finite set. When I told my colleague Narendra 
Jaggi, a physicist, the title of the talk this paper is based on his reaction was to say "Trust a mathematician to 
make the obvious difficult." In some sense that is the problem with finiteness: we are so used to working with 
finite collections of things in everyday life that the problem seems to be with what infinite means rather than with 
what finite means. But everyday life gives us a strong intuition about what finite means, not a rigorous definition 
we can use to provide a foundation for combinatorial mathematics and arithmetic. Difficulties with finiteness 
definitions in set theory have been known since the early twentieth century. Tarski's paper [14] gives the 
classical treatment of several of the variants treated here in the fuzzy case. Rubin's paper [ 10] gives an easily 
accessible modern exposition of the equivalence of many notions of finite, updating Tarski's paper. Jech's 
bookon the axiom of choice [6] shows how in the absence of the axiom of choice different definitions are 
inequivalent. 

Combinatorics is the branch of mathematics which deals with finite sets. Its main aim is to talk about how 
finite sets can be structured to make it possible to count their elements. There are three main principles of 
counting which form the basis for a starting place on what finiteness should mean: 
1. If A n B = 0 then A U BA + IB I : disjoint cases lead to addition. 
2. IA xB ALB: successive choices multiply. 
3. If all equivalence classes for an equivalence relation N on A have the same number of elements m then IA/ 

A~/m: a systematic over count can be corrected by division. 
This tells us to expect that the class of finite sets should be closed under the operations of 

1. Disjoint union (coproduct in the categorical setting). 
2. Cartesian product (product in the categorical setting). 

Fuzzy Sets and Systems 161 (2010) 1162-1174 
Elsevier www.elsevier.com/locate/fss 

 
When Does a Category Built on a Lattice with a 
Monoidal Structure have a Monoidal Structure? 
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3. Formation of at least some speci1ed kinds of
quotients.
Quotients in fuzzy sets can be particularly biz-

zare. One reasonable kind of quotient would
be an epimorphism with the 1nal structure on
its target; that is, f :A→B is epimorphic and
�(b)=

∨{�(a) |f(a)= b}.

Example. Let L be the lattice obtained by taking
one chain of length n (say cn;1¡cn;2¡ · · ·¡cn;n)
for each positive n∈N and then putting a new top
� above all the chains and a new bottom ⊥ below
them. Notice that this lattice satis1es both the as-
cending and the descending chain condition and that
for any h∈L with h �=⊥ the upset from h given
by {k | k¿h} is 1nite. Let A be the fuzzy set with
carrier {(m; n) | 0¡m6n∈N} and �(m; n)= cn;m.
Let f :A→N+ have f(m; n)=m. The 1nal struc-
ture induced on N+ then has all elements sent to �.
Note that f is an epimorphism. Note that each of
the sets {a∈A | �(a)= h} is 1nite and for h¿⊥ the
sets {a∈A | �(a)¿h} are also 1nite. For many of our
later de1nitions the fuzzy set (A; �) will be 1nite, but
(N+;�) will never be.

In combinatorics, we also count subsets by consid-
ering their characteristic functions, leading us to ex-
pect that the power set of a 1nite set should be 1nite.
In fuzzy sets that is unlikely to be true since it is easy
to give examples where the terminal object (the ana-
log of a one point set) has an in1nite number of sub-
objects.
Because the unbalanced subobject weak representer

(L; idL)�−→ (L;�)

is so important, we will check for each de1nition of
1niteness whether or not the generic unbalanced sub-
object (L; idL) is 1nite.
The object of this paper is to look at a variety of

de1nitions of 1nite for fuzzy sets, look at examples to
show how far the de1nitions get from matching our
intuition, and establishing which of the combinatorial
properties follow for each de1nition. Assuming the
axiom of choice in a two-valued universe, all of the
de1nitions we consider are known to be equivalent.
Without the axiom of choice the equivalence breaks
down.

Throughout this paper, we will be working in
the Goguen category Set(L). A detailed study of
its properties can be found in [12]. The objects are
pairs (A; �) where A is a set and � :A→L. Mor-
phisms f : (A; �)→ (B; �) are functions f :A→B
with �(f(a))¿�(a). A morphism is a monomorphism
if the underlying set function is a monomorphism
and similarly for epimorphisms. Since we can have
di"erent degrees of membership on the same set, it
is quite possible for a morphism to be both epic and
monic without being an isomorphism. In particular if
(L; ∗) is a complete lattice-ordered semigroup then
Set(L) is Cartesian closed (using a product based on
∧), monoidal closed (using a tensor based on ∗), and
has weak representation of unbalanced subobjects
(fuzzy sets

(A; �′)�−→ (A; �)

with the same underlying set, but a potentially smaller
degree of membership). The lattice of unbalanced sub-
objects of (A; �) is written asU(A; �); it is represented
internally by the powerobject P(A; �) which consists
of the (crisp) set of all unbalanced subobjects of (A; �).
We assume that negation comes from the residuation
of ∗ rather than from an order reversing involution and
a DeMorgan system.
Di"erent de1nitions of 1niteness require di"erent

amounts of structure onL to give the structures needed
in Set(L). For each de1nition, the minimum structure
needed on L will be given.

1. Natural numbers and cardinal �niteness

While the fuzzy real line and the fuzzy unit interval
have long histories in the literature of fuzzy sets, there
is little written about fuzzy natural numbers. Indeed,
the usual practice is to make the natural numbers crisp.
Following the usual practice in mathematical logic,

I will use the natural numbers as those which are
thought of as counting the number of elements in clas-
sical 1nite sets, thus starting at 0 (the number of ele-
ments in the empty set) rather than at 1:

N = {0; 1; 2; 3; : : :}:
If L is a partially ordered set with top element �

then we will think of (N;�) as the natural numbers in
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Set(L). Using this we can say what cardinal 1niteness
means:

De�nition 1. A1nite cardinal [n] is {x | x∈N; x¡n}.
Thus,

[0] = ∅;
[1] = {0};
...

...

[n] = {0; 1; 2; : : : ; n− 1}:

So [n] has exactly n elements.
As the 1rst step towards de1ning 1nite in a fuzzy

setting, we can take the strong form.

De�nition 2. A fuzzy set (S; �) is cardinal 1nite if it
is isomorphic to [n] for some n∈N.

Here isomorphism asks for a map in Set(L) which
has an inverse in Set(L). Since Set(L) is not a bal-
anced category this is not the same as asking for a
function which is both monic and epic, since those
functions are allowed to increase the degree of mem-
bership in fuzzy sets, while isomorphisms must pre-
serve the degree of membership exactly.

Proposition 1. Cardinal &nite fuzzy sets are crisp
sets with &nite underlying set. The class of cardinal
&nite fuzzy sets is closed under coproducts; products;
and quotients; but not under unbalanced subobjects.

Proof. Because isomorphisms must preserve degree
of membership exactly, the cardinal 1nite fuzzy sets
are just crisp 1nite sets. If L is a lattice, then the
class of crisp 1nite sets is closed under coproducts
and products, but it is not closed under formation of
fuzzy subsets (unbalanced subobjects in Set(L)) or
fuzzy power object formation. Epimorphic images of
crisp sets are again crisp, so quotients of cardinal 1nite
fuzzy sets will again be cardinal 1nite.

The cardinality of a cardinal 1nite set is a crisp
natural number, the number of elements in its carrier.
Cardinal 1niteness captures none of the fuzziness

of the category Set(L), and thus is not a very good
candidate for what 1nite should mean in a fuzzy con-
text. An improvement comes from requiring a mor-

phism which is both epic and monic rather than an iso-
morphism:

De�nition 3. A fuzzy set (S; �) is weakly cardinal 1-
nite if there is a monic and epic map from (S; �) to
[n] for some n∈N.

What this does is close the class of cardinal 1nite
fuzzy sets under formation of unbalanced subobjects.
A fuzzy set (S; �) will then be weakly cardinal 1nite
precisely when S is a (cardinal) 1nite set.

Proposition 2. The class of weakly cardinal &nite
fuzzy sets is closed under coproducts; products; un-
balanced subobjects; and quotients. In general; if L is
in&nite; it will not be closed under unbalanced power
object formation; since L is recovered as the power
object of the terminal object ({∗};�) and the termi-
nal object is clearly cardinal &nite.

The cardinality of a weakly cardinal 1nite set would
be given by a function from L to [|S|] taking each
h∈L to the number of elements of S with membership
at least h. Any non-increasing function from L to a
1nite cardinal [n] can appear as cardinality of a weakly
cardinal 1nite set, so such functions can be identi1ed
as fuzzy natural numbers for this class of 1nite objects.

2. Dedekind �niteness

Dedekind [4] gave a de1nition of simply in&nite
sets as ones for which a one-to-one function � : S → S
could be found which missed a point p in S. He then
constructed a sequence of distinct elements of S by
letting a0 =p and an+1 =�(an). A set S then becomes
1nite if there are no one-to-one functions (monomor-
phisms) from S to a proper subset of S.
There are (at least) two ways to state this positively:

De�nition 4. A fuzzy set (S; �) is strongly Dedekind
1nite if every monomorphism m : (S; �)→ (S; �) is in
fact an isomorphism.

De�nition 5. A fuzzy set (S; �) is Dedekind 1nite
if every monomorphism m : (S; �)→ (S; �) is also an
epimorphism.
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Notice that strong Dedekind 1niteness implies
Dedekind 1niteness.

Example. A Dedekind 1nite set can have in1nite sup-
port: In Set([0; 1]) consider the fuzzy set (A; �) with
A= {(1=2n) | n∈N} and �(a)= a. A monomorphism
m from (A; �) to itself must map each 1=2n to an
element 1=2m with m6n in order to be a map in
Set([0; 1]). Since there is no larger value to go to, 1
must be 1xed. Thus 1

2 must also be 1xed since the only
places it can go are 1 and 1

2 and 1 has already been
used. An induction argument will show that each 1=2n

must be 1xed by m since if we de1ne them in order
there is only one choice at each step. Thus, the only
monomorphism from (A; �) to itself in Set([0; 1]) is
the identity. Thus, (A; �) is strongly Dedekind 1nite.
This tells us that fuzziness can impose restrictions on
the monic endomorphisms not present at the Set level.

Proposition 3. If any level set Sh= {s∈ S | �(s)= h}
is in&nite then (S; �) is not Dedekind &nite.

Proof. Let s1; s2; : : : be an in1nite sequence of ele-
ments of S with �(si)= h. De1ne a map f : (S; �)→
(S; �) as 1xing all elements not in the sequence and by
taking f(si)= si+1. This is monic, but not epic. Thus,
(S; �) is neither strongly Dedekind 1nite nor Dedekind
1nite.

Proposition 4. If L satis&es an ascending chain con-
dition every ascending chain h16h26 · · · has a max-
imum element and every level set Sh of (S; �) is &nite;
then (S; �) is Dedekind &nite.

Proof. Suppose that (S; �) is not Dedekind 1nite.
Then there is a monomorphism m : (S; �)→ (S; �)
which is not epic. Let s be such that no t ∈ S
has m(t)= s and look at the sequence of distinct
values s; m(s); m(m(s)); : : : mn(s) : : : : The sequence
�(s); �(m(s)); : : : �(mn(s)); : : : is an ascending se-
quence in L and thus must have a maximum
element h. Thus, for some k all of the mn(s) for n¿k
have �(mn(s))= h. This tells us that Sh is in1nite.

Example. The example given earlier for the pathol-
ogy of quotients was built on a lattice which satis-
1es the ascending chain condition and had each Ah

1nite, so (A; �) is Dedekind 1nite. The quotient map

f : (A; �)→ (N+;�) gives a quotient which is not
Dedekind 1nite.

Example. Without the ascending chain condition 1-
nite level sets will not su<ce: For L= [0, 1] the fuzzy
set (L; idL), the generic unbalanced subobject, has
every level set having a unique element. However,
the function

s : [0; 1]→ [0; 1];

h �→
√
h

is an endomorphism increasing degree of membership
which is both monic and epic, but is not an isomor-
phism so (L; idL) is not strongly Dedekind 1nite. The
function

f : [0; 1]→ [0; 1];

x �→ 1
2x +

1
2

is a monic endomorphism increasing degree of mem-
bership which is not epic, so (L; idL) is not Dedekind
1nite either.

Closure properties for Dedekind 1nite objects can
be bad as the following examples illustrate:

Example. Suppose L is the chain of elements of [0, 1]
either of the form 1=2n for n∈N or of the form 1

2 +
1=2n+1 or 0. Then L satis1es the ascending chain con-
dition, so if we take the fuzzy set (A; �) with one dis-
tinct element of each degree of membership we will
get a Dedekind 1nite fuzzy set. We can de1ne a lattice-
ordered semigroup structure by de1ning

a ∗ b =




b if a = 1;
a if b = 1;
1
2 if both 1

26a¡ 1 and 1
26b¡ 1;

0 otherwise:

Using this structure the fuzzy set (A; �) ⊗ (A; �) is
not Dedekind 1nite since it has an in1nite number of
elements at the 1

2 level.

Example. A similar problem with products arises in
fuzzy sets with values in the (non-distributive) lattice
with a top, then an in1nite number of mutually in-
comparable levels, then a middle value (say 1

2 ) and
then the bottom. This also satis1es an ascending chain
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condition, so if we take a single distinct element at
each level of membership we will get a Dedekind 1-
nite object (B; �) for which (B; �)× (B; �) has an in-
1nite number of elements at level of membership 1

2
and thus is not Dedekind 1nite.

Dedekind 1niteness was studied in a topos setting in
[11]. In that paper the notion of equi1bered quotient is
used. An equi1bered quotientf : (A; �)→ (B; �) is one
for which every monic map m : (B; �)→ (B; �) lifts to
a monic m̂ : (A; �)→ (A; �). Any equi1bered quotient
of a Dedekind 1nite object is again Dedekind 1nite.

3. Kuratowski �niteness

Kuratowski observed that 1niteness could be de-
termined by looking at the semilattice structure of
the powerset. Here, we need for L to be at least an
∨-semilattice. In which case the unbalanced sub-
objects of a fuzzy set (S; �) will also form an
∨-semilattice U(S; �), so we can ask about the ∨-
semilattice generated by the singletons.

De�nition 6. The smallest ∨-semilattice of U(S; �)
containing the singletons is called K(S; �). If K(S; �)
has (S; �) as a member, then we call (S; �) Kuratowski
1nite.

This notion of 1niteness is shown to be equivalent
to several other formulations in [9] for objects in a
topos.
Kuratowski 1nite fuzzy sets are built using pairwise

max from singletons. Singletons in (S; �) are fuzzy
subsets of the form (S; �s) where

�s(x) =
{

�(s) if x = s;
⊥ otherwise:

The smallest ∨-semilattice of U(S; �) containing the
singletons, K(S; �), consists of fuzzy subsets (S; �′)
where �′(x)=⊥ for all but a 1nite number of el-
ements of S and where it is not ⊥; �′(x)= �(x).
Asking that (S; �) be in K(S; �) is precisely
asking for the support of (S; �) to be 1nite.
Kuratowski and weak cardinal 1niteness almost
coincide in fuzzy sets: while a weak cardinal
1nite fuzzy set must have a 1nite underlying set, a
Kuratowski 1nite fuzzy set could have an in1nite

number of elements with degree of membership
⊥. This characterization tells us that the class of
Kuratowski 1nite objects will be closed under prod-
ucts, sums, tensor product, unbalanced subobjects,
and quotients.
In topos theory, the decidable Kuratowski 1nite ob-

jects are the ones usually taken as most desirable.
Here, decidable means that the diagonal X →X ×X
is complemented. See [7] and [1] for details. Since for
most notions of negation the only fuzzy sets which are
decidable are crisp, this notion is not useful in a fuzzy
context.
Bornological spaces have been studied in several

works by Hogbe-Nlend [5]. A bornology on a set S
has the same closure properties as the generalize set
of bounded subsets of S.

De�nition 7. A bornology on a set S is a collection
B of subsets such that
1.

⋃
B= S.

2. If S ′ ∈B and S ′′ ∈B then S ′ ∪ S ′′ ∈B.
3. If S ′ ∈B and S ′′ ⊂ S ′ then S ′′ ∈B.

Any set has a trivial bornology, the powerset itself.
In an in1nite set, the set of 1nite subsets will be a
bornology. In R, we could use the set of bounded
subsets.

De�nition 8. A set is bornologically 1nite if it admits
only one bornology.

In Sets, bornological 1niteness and Kuratowski
1niteness are essentially the same since any one
point subset must be bounded if the union of all the
bounded subsets of S is to be all of S. Having the
bornology closed under pairwise unions then forces
the Kuratowski 1nite subsets to be bounded. This is
the only bornology if it contains S as a bounded set.
In Set(L) this is no longer the case as the following

example shows:

Example. Let L be the unit interval [0; 1] with the
usual order as lattice structure. Then there is a non-
trivial bornology on ({?}; 1) given by the collection
of fuzzy subsets ({?}; h) with h¡1. This is closed
under pairwise ∨ and has

∨
h¡1 ({?}; h)= ({?}; 1)

because 1 is the supremum of the numbers less than 1.
A similar construction of a non-trivial bornology can
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be made whenever L has an element which is the
supremum of elements strictly smaller than itself.
Thus, in the category of fuzzy sets on such a lattice
the terminal object is not Bornologically 1nite.

4. Order-related forms of �niteness

Existence of certain kinds of orderings also charac-
terizes 1nite sets:

De�nition 9. A set S is StRackel 1nite if it can be dou-
bly well ordered; i.e. there is an order relation 6 on
S such that if S ′ is a non-empty subset of S, then S ′

has both a greatest and a least element with respect to
the order 6.

This de1nition was used by Brook [3] in topoi.
This de1nition is di<cult to use in fuzzy sets be-

cause there are multiple possible meanings for “non-
empty” and “element”.

De�nition 10. The degree of non-emptiness of a
fuzzy set (A; �) is

n(�) =
∨
a∈A

�(a):

To de1ne well ordering in a fuzzy context we will
need to internalize “if A′ is non-empty then it has a
least element” by saying that the extent to which A′ is
non-empty implies the extent to which it has a least
element. Thus if there is an element with degree of
membership h¿⊥ then there must be an element with
degree of membership at least h which is smaller than
all other elements of degree of membership at least h.
The elements of degree ⊥ are ignored.
Having a double well ordering then asks that for

every fuzzy subset (A; �′) and element a∈A with
�′(a)¿⊥, the set {t | �′(t)¿�′(a)} has both a small-
est and a largest element. This happens precisely when
each of the sets {a∈A | �(a)¿h} for h¿⊥ is 1nite.

Proposition 5. A fuzzy set (A; �) is St;ackel &-
nite if and only if each of the sets (the h-cuts)
Ah= {a∈A | �(a)¿h} for h¿⊥ is &nite.

Corollary 6. The generic unbalanced subobject
(L; idL) is St;ackel &nite if and only if L has each set
of the form {h′¿h} &nite for h¿⊥.

Corollary 7. The St;ackel &nite fuzzy sets are closed
under disjoint sum; tensor product; and product.

Proof. This follows from inequalities on h-cuts:

(A+ B)h = Ah + Bh;

(A⊗ B)h ⊆Ah × Bh;

(A× B)h ⊆Ah × Bh:

The latter two follow since if h6h1 ∗ h2 then h6h1
and h6h2. This tells us that the h-cuts of the sum and
product will be 1nite if the h-cuts of the original fuzzy
sets were.

Example. The example given earlier for the pathol-
ogy of quotients had each Ah 1nite for h¿⊥,
so (A; �) is StRackel 1nite. The quotient map
f : (A; �)→ (N+;�) gives a quotient which is not
StRackel 1nite.

Example. Suppose L is the chain in [0; 1] consisting
of 1; 0, and all the points of the form 1=2n. This satis1es
an ascending chain condition. Suppose that (S; �) has
one element with degree of membership 1=2n for each
n and an in1nite number of elements with degree of
membership 0. Then (S; �) is StRackel 1nite, but it is
neither Dedekind 1nite nor Kuratowski 1nite.

Example. A Dedekind 1nite fuzzy set need not be
StRackel 1nite. Let L be the ordinal number ! ·! with
the reverse order. Then L satis1es the ascending chain
condition. Thus, (L; idL) is Dedekind 1nite. It has,
however, Lh in1nite for h¿!, so it is not StRackel
1nite.

5. Tarski’s de�nitions

De�nition 11. A set S is Tarski 1nite if every non-
empty family F of subsets of S has an irreducible
element; that is, an element A∈F such that if A′ ∈F
and A′ ⊆A then A′=A.

Example. For fuzzy sets on [0; 1] even the terminal
object (?; 1) is not Tarski 1nite: Let Ak be the fuzzy
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set on one element with membership level 1=2k . Then
the chain

(?; 1)⊃A1⊃A2⊃A3⊃ · · ·
has no irreducible element.

Tarski shows that for sets this is equivalent to what
Jech calls T-1nite:

De�nition 12 (Jech [6]). S is T-1nite if every non-
empty monotone subset A⊆P(S) has a ⊆-maximal
element.

Example. For fuzzy sets on [0, 1] even the terminal
object (?; 1) is not T-1nite: Let Ak be the fuzzy set
on one element with membership level 1 − 1=2k for
k¿1. Then the chain

A1⊂A2⊂A3⊂ · · ·
has no maximal element.

It is easy to construct examples to demonstrate that
T-1niteness and Tarski 1niteness are distinct in fuzzy
sets: to make the terminal object T-1nite it is neces-
sary and su<cient for L to satisfy an ascending chain
condition; to make it Tarski 1nite what is needed is a
descending chain condition.
Since these notions of 1niteness depend so heavily

on the 1niteness conditions satis1ed by L they tend
to confound the properties of L with the properties of
objects in Set(L).
If L is 1nite, then T-1nite fuzzy sets and Tarski

1nite fuzzy sets are those with every level set Sh 1nite,
coinciding in this situation with the weakly cardinal
1nite fuzzy sets.
If L satis1es an ascending chain condition, then

T-1niteness and Dedekind 1niteness agree.
If L satis1es a descending chain condition, then a

fuzzy set (S; �) will be Tarski 1nite if and only if each
Sh is 1nite. Such fuzzy sets need not satisfy any of the
other 1niteness conditions.

6. Ultra�niteness

In order to talk about 1lters, we will ask that (L; ∗)
be a complete lattice ordered semigroup. The follow-

ing de1nition is from [13]. Recall that P(A; �) is the
crisp set of unbalanced subobjects of (A; �).

De�nition 13. A 1lter on (A; �) is a function � :
P(A; �)→L such that
1. � preserves order: if �′¿�′′ then �(�′)¿�(�′′).
2. � respects ∗: �(�′ ∗ �′′)¿�(�′) ∗ �(�′′).
3. A fuzzy set can only be in a 1lter to its degree

of non-emptiness: �(�′)6n(�′). This makes our
1lters proper.

For 1lter-based de1nitions of 1nite we also need to
know what principle 1lters are and what an ultra1lter
is. Note that the non-emptiness condition cannot be
strengthened if we want the principle 1lter to be a
1lter:

De�nition 14. The principle 1lter �a has �a(�′)=
�′(a).

In the absence of an order reversing involution giv-
ing a complement, the notion of ultra1lter is given by
a maximality condition on covering pairs. In [2, p. 60]
this is given as an equivalent to the de1nition as a
maximal 1lter and in [8] it is used to de1ne ultra1lters
on lattices.

De�nition 15. A 1lter � is an ultra1lter if it satis1es
the additional condition �(�′ ∨ �′′)=�(�′) ∨ �(�′′).

Notice that we always have �(�′ ∨ �′′)¿�(�′) ∨
�(�′′) by the order-preserving property. Thus, the
ultra1lter condition can be thought of either as requir-
ing that the �(�′) and �(�′′) be large or requiring that
�(�′ ∨ �′′) be small.
If L has a weak form of complements so that for

any h¿k ∈L there is a k ′ ∈L with h= k∨k ′, then this
condition is the same as asking that for any unbalanced
subobject of (A; �) either the subobject or its weak
complement is in the 1lter. Most lattices used for fuzzy
sets do not have this kind of weak complement, so the
description in terms of covering pairs is preferable to
a description using complements.
With this de1nition every principle 1lter is in fact

an ultra1lter. The following example, however, shows
that principle 1lters need not be maximal (and thus,
that ultra1lters using this de1nition need not be max-
imal either!)
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Example. Let L be the chain 0¡0:5¡1 using ∗=∧
and consider 1lters on the fuzzy set (L; idL). The
powerobject of (L; idL) has six elements, so we can
give all 1lters explicitly using a table, saving a little
space by noting that 0 always goes to 0:

(
1 0:5
1 0:5

) (
1 0:5
0:5 0:5

) (
1 0:5
0 0:5

) (
1 0:5
1 0

) (
1 0:5
0:5 0

) (
1 0:5
0 0

)
 1 1 0.5 0.5 0 0 0
�1 1 0.5 0 1 0.5 0
 2 1 0.5 0 0.5 0.5 0
 3 1 0.5 0 0.5 0 0
 4 1 0.5 0 0 0 0
 5 1 0 0 0 0 0
 6 1 0 0 1 0 0
 7 1 0 0 0.5 0 0
�0:5 0.5 0.5 0.5 0 0 0
 8 0.5 0.5 0 0.5 0.5 0
 9 0.5 0.5 0 0.5 0 0
 10 0.5 0.5 0 0 0 0
 11 0.5 0 0 0.5 0 0
 12 0.5 0 0 0 0 0
�0 0 0 0 0 0 0

These form a partially ordered set with Hasse dia-
gram (here the ultra1lters are circled).

Notice that this example shows that ultra1lters using
this de1nition need not be maximal; maximal 1lters
need not be ultra1lters, and neither maximal 1lters nor
ultra1lters need to be principle.

Part of the di<culty in this example came from the
existence of elements with partial membership. To tie
ultra1lters in our sense in with usual ultra1lters we
should consider sets which are, if not crisp, then as
crisp as they can be:

De�nition 16. A fuzzy set (A; �) is h-crisp if � as-
sumes only the values h and ⊥. Each h-crisp fuzzy
subset corresponds to a subset A′ ⊆A consisting of the
elements sent to h.

Proposition 8. If  is a fuzzy ultra&lter on the
fuzzy set (A; h); then the h-crisp fuzzy subsets of
A which have  (�)= h induce an ultra&lter on A
in Sets.

Proof. The fuzzy 1lter conditions give us a family of
subsets closed under superset and intersection, hence
a 1lter. The ultra1lter condition makes it a prime 1lter
in Sets. Assuming the axiom of choice in Sets this is
su<cient to get an ultra1lter.

In Sets any in1nite set S has an ultra1lter re1ning
the 1lterbase of the subsets of S which have 1nite
complements. This ultra1lter is not principle. In 1nite
sets, however, the only ultra1lters are the principle
ones, leading to the following de1nition:

De�nition 17. A fuzzy set (A; �) is ultra1nite if every
ultra1lter on (A; �) is principle.

Compactness can be de1ned in terms of the con-
vergence of ultra1lters as in Bourbaki. A topological
structure on a fuzzy set (A; �) will give rise to a neigh-
borhood 1lter on each a∈A which is contained in the
principle 1lter on a. A 1lter converges to a if it con-
tains the neighborhood 1lter of a. A space is compact
if every ultra1lter converges. In a fuzzy setting these
ideas need fully fuzzy topology as in [13].

Proposition 9. A fuzzy set is ultra&nite if and only
if every topology on it is compact.

Proof. Saying that every ultra1lter is principle is pre-
cisely the same as saying that the discrete topology
on (A; �) is compact, so the only if part is clear. Since
neighborhood 1lters are always contained in principle
1lters, if we know every ultra1lter is principle, then
we will know that every ultra1lter converges.

In topos theory, this de1nition was considered by
Volger [15] and is rejected by Johnstone [7] because
the subobject representer in a topos is always ultra-
1nite.
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7. Summary of relationships between the de�nitions

Theorem 10. For fuzzy sets with truth values in a
lattice L
1: Cardinal &nite implies Weak cardinal &nite.
2: Weak cardinal &nite implies Kuratowski &nite

and both forms of Dedekind &nite.
3: Kuratowski &nite implies St;ackel &nite.
4: Bornological &nite implies Kuratowski &nite with

the reverse implication holding only if no element
of L is the supremum of strictly smaller elements.

In general; none of these implications are reversible
and there is no relationship between Dedekind &nite
and St;ackel &nite. Tarski &niteness and T-&niteness
are acceptable only if L satis&es appropriate chain
conditions.

8. Summary of the closure properties

Because the sum in Set(L) is computed as a disjoint
union, nearly all of the structures needed in de1ning
1niteness are well behaved with respect to sums. In
particular, the level sets of a sum are given by the
disjoint union of the level sets of the pieces and the
h-cut of (A; �) + (B; �) is the product of the h-cut of
(A; �) with the h-cut of (B; �) so 1niteness conditions
on level sets or h-cuts will be preserved. Similarly,
chain conditions on the subobjects of a sum will fol-
low from chain conditions on the subobjects of the
summands.

Finiteness Closed under Structures 1nite
notion

× ⊗ + Unbalanced Quotients (L; idL) Terminal
subobject

Cardinal Y Y Y N Y N Y
Weak cardinal Y Y Y Y Y N Y
Dedekind N N Y N N N
Kuratowski Y Y Y Y Y N Y
StRackel Y Y Y Y N N Y
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