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Global climate changes, driven by increased
concentrations of greenhouse gases such as
carbon dioxide, are having widespread impacts
on biotic systems, including both direct and
indirect effects on human health (Epstein
1999; Patz et al. 2005). One of the most dra-
matic effects of climate change seen thus far is
on the timing of reproductive processes in
plants (Fitter and Fitter 2002), including
wind-pollinated types, many of which have
highly allergenic pollen (Clot 2003; van Vliet
et al. 2002). Hence, predicted increases in
CO2, coupled with further changes in climate,
could have important implications for individ-
uals with allergies and asthma.

Many regions are currently experiencing
warming effects associated with global climate
change, including longer growing seasons and
earlier arrival of spring (Intergovernmental
Panel on Climate Change 2001; Karl and
Trenberth 2003; Menzel 2000). These
changes have already greatly affected plant
and animal populations by significantly influ-
encing interannual population dynamics and
phenology (Loeuille and Ghil 2004; Root
et al. 2003). Analysis of temporal events since
the 1950s, across a wide array of plant and
animal species, indicates that spring phenol-
ogy in northern temperate zones is advancing

about 5 days each decade (Root et al. 2003).
The trend toward earlier spring onset is par-
ticularly evident in early spring flowering of
wind-pollinated tree species, for which repro-
ductive development and bud burst in spring
are highly temperature sensitive (Clot 2003;
van Vliet et al. 2002). However, early spring
onset may also affect temperature-dependent
processes occurring over the entire growing
season, not just those in early spring. For
example, an early spring could also influence
developmental and reproductive processes in
later flowering plants.

Although atmospheric CO2 has no appar-
ent direct effect on human health, it does have
well-known direct effects on plants. Plants
grow larger, use water more effectively, and
reach maturity faster when grown in elevated
CO2 (Bazzaz 1990; Drake et al. 1997). In
addition, several recent studies suggest that
plants can also have an enhanced reproductive
effort (Jablonski et al. 2002; LaDeau and
Clark 2001; Stiling et al. 2004). These effects
are generally thought to be beneficial in agri-
culture (Southworth et al. 2002); however,
some studies suggest this enhanced reproduc-
tive effort can also lead to an increase in pollen
production (Wayne et al. 2002; Ziska and
Caulfield 2000). Therefore, global warming is

a public health concern because it has the
potential to alter the timing and abundance of
aeroallergens (Beggs 2004), which could result
in increased symptoms in those with allergic
rhinitis or asthma.

An underappreciated but important con-
sideration is the interactive effects of CO2
with other known or predicted changes in cli-
mate and their impact on biotic systems. For
example, CO2 may be driving the warming
that results in earlier springs, but plants will
experience both effects at the same time (i.e.,
higher CO2 and a longer growing season).
Hence, it is important to study how climate
variables will interact to drive plant responses.

In this study, we sought to increase our
understanding of the potential response of
common ragweed (Ambrosia artemisiifolia L.),
a late-season flowering allergenic plant, to
springtime climate variability and examine
interactive effects of increased CO2. We per-
formed a controlled environment study with
simulated changes in the timing of spring, at
both ambient and future predicted CO2 levels,
to test whether variability in the onset of
spring alters the rate and magnitude of rag-
weed development, flowering phenology, and
seasonal pollen production and whether atmos-
pheric CO2 concentrations directly alter rag-
weed development and productivity and
influence plant responses to climatic variability.

Materials and Methods

Common ragweed (A. artemisiifolia) is a C3
plant (a plant that uses a 3 carbon compound
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Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread
effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of
the growing season. We designed the present study to examine the interactive effects of timing of
dormancy release of seeds with low and high atmospheric CO2 on biomass, reproduction, and phe-
nology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We
released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-con-
trolled glasshouses at either ambient or 700-ppm CO2 concentrations, placing open-top bags over
inflorescences to capture pollen. Measurements of plant height and weight; inflorescence number,
weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant
pollen productivity was estimated from an allometric-based model. Timing and CO2 interacted to
influence pollen production. At ambient CO2 levels, the earlier cohort acquired a greater biomass, a
higher average weight per inflorescence, and a larger number of inflorescences; flowered earlier; and
had 54.8% greater pollen production than did the latest cohort. At high CO2 levels, plants showed
greater biomass and reproductive effort compared with those in ambient CO2 but only for later
cohorts. In the early cohort, pollen production was similar under ambient and high CO2, but in the
middle and late cohorts, high CO2 increased pollen production by 32% and 55%, respectively, com-
pared with ambient CO2 levels. Overall, ragweed pollen production can be expected to increase sig-
nificantly under predicted future climate conditions. Key words: allergenic pollen, Ambrosia
artemisiifolia, climate change, climate variability, elevated CO2, global warming, ragweed, spring-
time warming. Environ Health Perspect 114:865–869 (2006). doi:10.1289/ehp.8549 available via
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for CO2 fixation during photosynthesis which
should thrive in enriched CO2 atmospheres)
common to roadsides and disturbed habitats
throughout most of the United States and
Canada (Bassett and Crompton 1975). It is
monoecious, with separate male and female
flowers borne on the same plant on distinct
axillary branches, allowing for independent
control of allocation to sexes (Payne 1963).

Seeds of A. artemisiifolia collected from
wild populations in Woodstock, Illinois, were
vernalized by sowing seeds in six growth con-
tainers containing compost (Pro-Mix, Red
Hill, PA) and storing in a refrigerator at 4°C
until ready for germination. Two trays at a
time were transferred from cold conditions to
the glasshouses at three 15-day intervals, creat-
ing three temporal cohorts that would simulate
variability in the onset of the growing season
and would include anticipated advances of
spring several decades into the future. One
tray from each cohort was placed in 380 ppm
(ambient) and the other at 700 ppm (ele-
vated) CO2 concentration. From each pair of
trays, seedlings were chosen that all germi-
nated on the same day; the germination dates
(23 May 2002, 7 June 2002, and 22 June
2002) were also at 15-day intervals. The
middle cohort approximates the germination
date of plants in the Boston area (Rogers C,
personal observation).

Approximately 15 days after their germi-
nation, we transplanted 24 seedlings from
each tray into 6-dry-quart–capacity growth
containers (22.23 cm diameter × 21.59 cm
deep). Soil in each container was composed of
a 4:1 mix of Pro-Mix compost and washed
sand (Quickrete Co., Atlanta, GA). The soil
mixture was amended with slow-release
14:14:14 nitrogen:phosphorous:potassium
fertilizer (Osmocote; Scott’s, Marysville,
OH), and plants were watered daily.

The glasshouses consist of six modules
structured as three blocks, each block having
two modules of differing CO2 concentrations
(380 and 700 ppm). Containers were arranged

in the modules according to their CO2 and
temporal cohort (i.e., eight plants in each of
three temporal cohorts, in each of three
glasshouse modules, at both low and high
CO2, for a total of 144 plants). Day/night
temperatures were maintained at 26/21°C.
Ambient glasshouse light levels were approxi-
mately 70% of full sun, supplemented with 6
hr of light daily (1000 to 1600 hr) from over-
head metal halide lamps, thus allowing plants
to experience natural variation in day length.
Temperature, CO2, and light were computer-
controlled for all modules, and we used corn
plants (Zea mays) to help maintain a constant
CO2 concentration in the low-CO2 modules.
In each module, temporal cohorts of ragweed
plants were separated, and the positions of the
containers within each treatment were ran-
domized at intervals to minimize edge effects.
Cohorts were grown at a foliar density of
approximately nine plants per square meter.
We recorded measurements of flower phenol-
ogy and date of first pollen release for each
ragweed plant throughout the experiment.

We chose five male floral spikes at ran-
dom from each plant in the first two cohorts
and three from each plant in the third cohort
at each CO2 level and placed a 5 cm × 25 cm
polyethylene bag over each selected spike,
similar to the procedure described in Ziska
and Caulfield (2000). On one side of the bag
near the bottom, we cut a small slit and
placed the spike inside. The slit was then
taped shut and the bag left to collect pollen
shed by the spike, with the tops of the bags
left open for ventilation. After pollen produc-
tion had stopped, we measured the length of
the bagged flower spikes, cut each at the base,
and stored the spike in the collection bag at
–20° C until ready for evaluation. Bags in
which water accumulated due to watering or
heavy condensation were discarded, leaving
477 individual inflorescences.

After senescence, we harvested plants over
3 days from 16 through 18 September. Plant
height and number of inflorescences were

recorded, the plants were cut at the base, and
all flower spikes were removed and placed in
bags separate from the vegetative material.
We measured the length of each floral spike
on each plant. Roots were washed clean of
dirt and also placed in separate bags. All plant
material was dried at 70°C for 48 hr, and we
recorded separate dry weight measurements
for all roots, flowers, and vegetative material.

For each bagged flower spike, pollen was
recovered by twice repeated 30-sec vortexing
in a wash solution (distilled water with 0.02%
Tween 20) in 15 mL Falcon tubes, followed
by 5-min centrifugation (2,500 rpm; relative
centrifugal force = 600). Pollen recoveries
from the spike and pollen rinsed from the
polyethylene bag were combined in a total
volume of 2.0 mL wash solution. We deter-
mined the number of pollen grains per spike
by calculating the pollen concentration in the
wash suspension from microscopic counts
using a glass hemacytometer (Hausser
Scientific, Horsham, PA).

For each inflorescence, we estimated
pollen production pij from an allometric
model based on log inflorescence length, time
of dormancy release, CO2 concentration,
total number of inflorescences, total weight of
inflorescences, and days to anthesis:

Log(pij) = µ + tr + lj + (tl)jr + cq + ni

+ (cn)iq + wi + ai + (al)ij , [1]

where µ is a constant and j indexes each
inflorescence of log length lj on plant i with
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Table 1. Regression coefficients for the model estimating whole-plant pollen productivity of A. artemisiifolia.

Parameter Symbol Group Coefficient SE t-Value p-Value

Intercept µ 3.47 1.63 2.13 0.0340
Log inflorescence length lj 5.48 0.652 8.40 < 0.0001
Time of dormancy release tr Early 0.00 — — —

Middle 1.63 0.370 4.41 < 0.0001
Late 2.37 0.505 4.68 < 0.0001

Log inflorescence length × time of release (tl)jr Early 0.00 — — —
Middle –0.665 0.151 –4.40 < 0.0001

Late –0.837 0.198 –4.24 < 0.0001
No. of inflorescences ni –0.00503 0.000851 –5.91 < 0.0001
CO2 concentration cq 380 ppm 0.00 — — —

700 ppm –0.448 0.153 –2.93 0.0036
No. of inflorescences × CO2 (cn)iq 380 ppm 0.00 — — —

700 ppm 0.00297 0.00106 2.79 0.0055
Weight of inflorescences wi 0.0509 0.0157 3.24 0.0013
Days to anthesis ai 0.119 0.0207 5.73 < 0.0001
Log inflorescence length × days to anthesis (al)ij –0.0518 0.00840 –6.17 < 0.0001

Table 2. Effects of time of release, CO2 concentra-
tion, and the interaction of time and CO2 modeled
on measures of biomass, reproduction, phenology,
and pollen production.

Response Term F-valuea p-Value

Pollen count Time 8.49 0.0003
(estimated) CO2 2.54 0.2519

Time × CO2 4.39 0.0143
Inflorescence Time 2.91 0.0579

number CO2 13.12 0.0685
Time × CO2 3.58 0.0306

Inflorescence Time 40.24 < 0.0001
weight CO2 3.61 0.1979

Time × CO2 8.66 0.0003
Aboveground Time 42.78 < 0.0001

biomass CO2 5.06 0.1534
Time × CO2 4.13 0.0181

Plant height Time 23.80 < 0.0001
CO2 0.07 0.8125

Time × CO2 2.97 0.0546
Days to Time 62.40 < 0.0001

anthesis CO2 1.63 0.3299
Time × CO2 1.25 0.2890

Anthesis date Time 49.42 < 0.0001
CO2 1.63 0.3299

Time × CO2 1.25 0.2890
aFor the F-statistic, numerator degrees of freedom: time =
2, CO2 = 1, time × CO2 = 2; denominator degrees of free-
dom: time = 134, CO2 = 2, time × CO2 = 134 (except for plant
height, where denominator degrees of freedom for time
and time × CO2 are 133).



number of inflorescences ni, total inflores-
cence weight wi, and days to anthesis ai, dor-
mancy release at time tr, and grown under
CO2 concentration cq. Additional interaction
terms did not improve model prediction. We
estimated whole-plant pollen production, pi,
as the sum of pollen production over all inflo-
rescences on each plant.

We used a two-way factorial design with
time of dormancy release crossed with CO2
treatment and CO2 nested within glasshouse
wing to assess the responses to the timing of
dormancy release and CO2, and we modeled
estimated pollen count, inflorescence number,
inflorescence weight, aboveground biomass,
plant height, days to anthesis, and date of
anthesis. Time was included as a fixed term.
Glasshouse wing and CO2 within wing were
included as random terms to permit broad
inference. We included the time × CO2 inter-
action as a fixed term because plants were
individually randomized.

Results

The impact of variability in the onset of
spring under scenarios of ambient and ele-
vated CO2 was assessed through several bio-
mass (plant height, aboveground biomass),
phenological (days to anthesis, anthesis date),
and reproductive measures (number of
inflorescences, inflorescence length, total
weight of inflorescences, pollen production).

The model estimating whole-plant pollen
production explained 62% of the variation in
measured pollen counts from 477 inflores-
cences collected from 141 of 144 individual
plants. Pollen production per inflorescence
was most strongly associated with inflores-
cence length, number of inflorescences per
plant, and days to anthesis (Table 1). The
negative association between inflorescence
number and pollen production suggests a
tradeoff, with some plants producing fewer
pollen-rich inflorescences and others produc-
ing more inflorescences each producing less
pollen per unit length.

We examined the interaction of time of
dormancy release and CO2 concentration,
and the results are presented in Table 2.
Significant time × CO2 interaction terms
were found in each of estimated pollen count,
inflorescence number, inflorescence weight,
aboveground biomass, and plant height (mar-
ginally). CO2 treatment did not significantly
affect days to anthesis or anthesis date.

We calculated least-square means for each
level of time and CO2 along with 95% confi-
dence limits for the measures of biomass,
reproductive effort, phenology, and pollen pro-
ductivity. Plants in early spring cohorts had
significantly greater aboveground biomass and
height than did the late cohort, as shown in
Figure 1, with the greatest difference between
early and late cohorts. Little additional gain in

biomass or height was achieved between middle
and early cohorts under either CO2 condition,
perhaps indicating that near-maximal growth
occurred in the longer growing seasons.
However, in cohorts released from dormancy
later, plants grown in elevated CO2 acquired
significantly greater height and weight.
Hence, elevated CO2 appears to have a
greater impact on increasing biomass when
plants are younger and/or smaller.

Earlier release from dormancy also
increased reproductive effort measured by the
number of inflorescences and inflorescence
weight (Figure 2). There was a continuous
trend toward a greater number of, and heavier,
inflorescences in the middle and early cohorts
at ambient CO2 levels. In the early cohort,
there was no difference in reproductive effort
for plants grown at ambient versus high CO2.
Interestingly, at high CO2, plants from the

middle cohort had the highest number and
heaviest inflorescences. At high CO2, inflores-
cences were significantly heavier and more
abundant in both the middle and later cohorts
than at ambient CO2 levels.

We also examined the influence of grow-
ing season length and CO2 on phenological
responses of days to anthesis and anthesis date
(Figure 3). Photoperiodic control of flower
initiation is well documented in A. artemisii-
folia and is similar to many other late-
summer–flowering plants. Therefore, little
difference in the number of days to flowering
(anthesis) and anthesis date was expected.
Logically, plants released from dormancy ear-
lier had a longer time until flowering.
However, surprisingly, the anthesis date (date
on which first pollen release was recorded)
differed among the three cohorts. There was a
consistent trend toward a later date of first
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Figure 1. End-of-season biomass measures of A. artemisiifolia: aboveground biomass (A) and plant height
(B) for three springtime dormancy release cohorts at two CO2 concentrations (380 ppm and 700 ppm). Error
bars indicate 95% confidence intervals.
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Figure 2. End-of-season reproductive measures of A. artemisiifolia: number of inflorescences (A) and inflo-
rescence weight (B) for three springtime dormancy release cohorts at two CO2 concentrations (380 ppm
and 700 ppm). Error bars indicate 95% confidence intervals.
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Figure 3. Phenology measures of A. artemisiifolia: number of days to anthesis (A) and anthesis date (B) for
three springtime dormancy release cohorts at two CO2 concentrations (380 ppm and 700 ppm). Error bars
indicate 95% confidence intervals.
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anthesis in the later cohorts. Therefore,
although flower initiation is reportedly under
photoperiodic control (Lewis et al. 1991),
anthesis apparently is not. There was no effect
of CO2 on the number of days until anthesis
or anthesis date for any cohort.

Finally, at ambient CO2 levels, estimates
of whole-plant pollen production, based on
parameters outlined in the model above, were
higher in earlier cohorts (Figure 4). At ambi-
ent CO2 levels, the simulated early spring
cohort produced 54.8% more pollen com-
pared with plants released from dormancy
late. High CO2 did not further increase
pollen production relative to ambient CO2 in
the early cohort, but increased pollen produc-
tion was observed in the middle (32.0%
increase, p = 0.0506) and late (55.0%
increase, p = 0.0240) cohorts.

Discussion

This study is the first to assess the potential
impact of earlier arrival of spring, and the
interaction with CO2, as expected with global
warming and increased climate variability, on
pollen productivity in allergenic plants. Based
on the current rate of phenological advances
(5 days/decade) (Root et al. 2003), the degree
of advancement used in this study is similar
to what might be expected three to six
decades in the future. Our simulated effect of
earlier spring dormancy release allowed rag-
weed plants to accumulate more resources
through the season, thereby increasing bio-
mass and reproductive effort. Plants in ambi-
ent CO2 released from dormancy earlier had
increased height and weight, more and heav-
ier inflorescences, and 54.8% higher pollen
production compared with those released 30
days later. Increased temperatures, which
would accompany earlier spring and elevated
CO2 under future climate regimes, although
not studied in these experiments, might also
affect pollen production.

Because increasing atmospheric CO2 is
assured for the next several decades, and it is
unknown how CO2 might interact with cli-
matic variables to influence plant responses,
we also determined the additional interactive

effects of elevated CO2 with variations in the
onset of spring. We found that there was no
additional advantage to plants in the earliest
cohort grown under high CO2. However, the
number and weight of inflorescences were sig-
nificantly greater at high CO2 relative to
ambient levels for plants in both the middle
and late cohorts. Increased biomass and
pollen production was also significantly
higher in the late cohort at high CO2 levels.
Hence, the reproductive disadvantage of a
shorter growing season could be ameliorated
when plants are grown in elevated CO2.

It is a well-known phenomenon of cham-
ber studies that the advantage of elevated
CO2 is greatest early in plant development
but diminishes over time (Drake et al. 1997).
In essence, plants exhibit acclimation to ele-
vated CO2 with age (Long et al. 2004) or per-
haps as a result of resource depletion due to
the confines of growth within pots (Drake
et al. 1997). We found the least difference in
productivity between plants in ambient and
elevated CO2 for the earliest cohort. Early-
cohort plants in elevated CO2 may have had
an early advantage but then acclimated over
time, and/or the longer growing season may
have been sufficient for ambient-CO2 plants
to make up the early difference. In contrast,
in the latest cohort with the shortest growing
season—and hence the least amount of time
for ambient-CO2 plants to make up the early
difference in productivity—elevated-CO2
plants had significantly greater biomass, num-
ber and weight of inflorescences, and pollen
production relative to ambient-CO2 plants.
These results highlight the importance of
examining the interactive effects of CO2 with
other climate variables in order to understand
the implications of climate change.

The climate variability that stems from
global warming is a significant concern. Our
results show that variability in the onset of
spring elicits a strong increase in pollen produc-
tion in early seasons at ambient CO2 concen-
trations. However, in elevated CO2, although
pollen productivity is enhanced, it is less sensi-
tive to variability in season onset. Hence, in
future climates with elevated CO2, we predict
pollen production will be just as robust in years
with late springs as in years with early springs.
Overall, pollen production in ragweed can be
expected to increase significantly under pre-
dicted future climate conditions.

Our results are consistent with the find-
ings of other greenhouse and chamber studies
on ragweed that have shown a 60–90%
increase in pollen productivity with elevated
CO2 (700 or 600 ppm) compared with cur-
rent ambient levels (Wayne et al. 2002; Ziska
and Caulfield 2000). Of course, the ability to
generalize results of closed environment
experiments to natural field populations is an
important issue; however, A. artemisiifolia

also appears to be a strong competitor in
mixed populations in elevated CO2 (Bazzaz
and Garbutt 1988). In addition, similar
results on pollen productivity have been
found in field studies. In cities, because of
proximity to industrial and vehicular sources,
atmospheric CO2 concentrations and temper-
atures are much higher than in the surround-
ing rural areas (Idso et al. 2002). Using a
naturally occurring gradient in Baltimore,
where temperature and CO2 are elevated by
1.8–2.0°C and 30% (to ~500 ppm), respec-
tively, compared with outlying areas, Ziska
et al. (2003) found that in experimental rag-
weed plots, plants increased biomass and
pollen production with the degree of urban-
ization. This brings to light two facts: Plants
in the field are responding similarly to effects
modeled in glasshouse experiments, and
urban plants are currently experiencing
changed atmospheric conditions that are
altering their pollen productivity now, not
decades into the future.

Both allergies and asthma have been
increasing worldwide in recent decades, signif-
icantly above that expected from better diag-
nosing or increased reporting (von Mutius
1998). Although the trend may be showing
early signs of leveling off (Hertzen and
Haahtela 2005; Lawson and Senthilselvan
2005), there still is a much greater proportion
of the population that is vulnerable to allergen
exposure than ever before. Ragweed pollen
allergens are some of the most potent in
North America, and roughly 10% of the
population is sensitized (Gergen et al. 1987).
Diesel particles from truck and vehicle exhaust
have been shown to act synergistically with
pollen allergens to exacerbate disease (Hauser
et al. 2003) and are now thought to be an
important factor in the recent rise in allergic
disease (Riedl and Diaz-Sanchez 2005).
Hence, an important question is whether
greater ragweed pollen production (with or
without diesel particle coexposure) will lead to
an increase in the frequency or severity of
asthma and allergy symptoms, or to new sensi-
tizations and a further increase in development
of allergic disease.

Conclusion

The effects of global warming are complex,
but studies of their impact on biotic commu-
nities clearly point toward secondary effects
that could be detrimental to human health.
Our study of A. artemisiifolia under condi-
tions that simulate future levels of atmos-
pheric CO2 and increased temperatures shows
that one effect—increased production of
allergenic pollen—could strongly affect the
significant proportion of the population with
pollen allergies as climate change progresses.
Because the results of this study suggest that,
under future conditions of global warming
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Figure 4. Pollen production in A. artemisiifolia for
three springtime dormancy release cohorts grown
at two CO2 concentrations (380 ppm and 700 ppm).
Error bars indicate 95% confidence intervals.
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and elevated CO2, pollen seasons will be
more intense and could start earlier than
expected, pollen forecasting and pollen avoid-
ance strategies for sensitized individuals will
be particularly important. Finally, we empha-
size the importance of studying interactions
between multiple predicted climate change
parameters, in this case, the interactive effects
of elevated CO2 and variability in the onset of
spring. Our study suggests that under future
predicted greenhouse gas emissions and asso-
ciated climate conditions, either an early
spring onset or variability in spring onset
along with elevated CO2, there will be an
overall increase in ragweed pollen production.
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