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ABSTRACT 
Recent natural disasters have highlighted the need for increased planning for disruptive events. 

Forecasting damage and time that a system will be inoperable is important for disruption 

planning. The resilience of critical infrastructure systems, or their ability to recover quickly from 

a disruption, can mitigate adverse consequences of the disruption. This paper quantifies the 

resilience of a critical infrastructure sector through the Dynamic Inoperability Input-Output 

Model (DIIM). The DIIM, which describes how inoperability propagates through a set of 

interdependent industry and infrastructure sectors following a disruptive event, includes a 

resilience parameter that has not yet been adequately assessed. This paper provides a data-driven 

approach to derive the resilience parameter through regression models. Data may contain 

different disruption scenarios, and regression models can incorporate these scenarios through the 

use of categorical or dummy variables. A mixed effects model offers an alternate approach of 

accounting for these scenarios, and these models estimate parameters based on the combination 

of all scenarios (fixed effects) and an individual scenario (random effects). These regression 

models are illustrated with electric power outage data and a regional disruption that uses the 

DIIM to model production losses in Oklahoma following an electric power outage. 
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INTRODUCTION 
Recent natural disasters, including the 2011 earthquake and tsunami in Japan, the 2010 

earthquake in Haiti, and the 2005 hurricanes in the U.S. Gulf of Mexico, highlight the need for 

planning and preparation for disruptive events. While protection and prevention activities can 

mitigate the impact of disruptive events, governments and industries can never be certain of 

protecting against everything, especially events like the natural disasters. Preparedness efforts 

also require planning for response and recovery.  

 

We define resilience as the ability of a system—be it a firm, industry, or critical infrastructure—

to bounce back from a disruption. Differing views on the definition of resilience describe it as 

the post-event outcome of pre-event preparedness planning (Haimes et al. 2008) and as the 

“inherent and adaptive” ability to avoid potential losses (Rose 2004). The quantitative approach 

described in this paper follows the former definition, and we suggest that risk management 

planning can enhance recovery.  

 

A number of modeling approaches have been proposed to measure resilience. Bruneau et al. 

(2003) quantify resilience by measuring the expected loss due to an earthquake over time. Zobel 

(2011) builds on this resilience metric by relating recovery time to the initial impact and 

analyzing how preparedness efforts might need to trade off reducing the initial impact with 

reducing recovery time. Other approaches to quantifying resilience include comparing the 

estimated loss in economic output with the maximum predicted loss in output (Rose 2007), 

developing an influence or decision diagram that incorporates pre-disruption and post-disruption 

decisions (McDaniels et al. 2008), calculating the ability of a node to remain connected to a 

degraded network (Dueñas-Osorio et al. 2004), and combining the ability of a network to provide 

service with the time to restore service when failure occurs (Whitson and Ramirez-Marquez 

2009). 

 

This work takes a different approach to calculating resilience by focusing on a data-driven 

quantification of the resilience coefficient from the Dynamic Inoperability Input-Output Model 

(DIIM) (Lian and Haimes 2006). The DIIM evaluates the initial impact of a disruptive event, the 

propagation of that adverse impact to several interdependent industries and infrastructure 

systems, and the ultimate recovery of the entire interconnected system. The DIIM requires a 

resilience coefficient for each industry or infrastructure system in the economy, and this 

resilience coefficient describes each industry’s ability to recover from a disruption. Despite a 

number of applications, the DIIM’s resilience coefficient has not been estimated either by 

modeling observational or empirical data.  

 

Data-driven regression models can quantify the resilience coefficient for an individual industry 

or infrastructure system. Regression is a popular and successful method to quantify relationships 

among continuous variables, and the form of the DIIM lends itself to a regression model. An 

industry’s resilience may also depend on specific disruptive events, and regression models based 

on the DIIM can be expanded to account for different events. In this paper, a disruptive event 

like an electric power outage leads to inoperability in one or more industries or infrastructure 

systems, and several scenarios (e.g., winter storm, fire) can initiate the disruptive event. We 

focus our regression analyses on these different scenarios. 
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The paper begins by describing the foundational background to the DIIM and its resilience 

coefficient in Section 2. Section 3 details the regression models, which include a simple linear 

formula and two methods of accounting for different disruption scenarios: (i) categorical 

variables and (ii) a mixed effects model. Section 4 illustrates the regression approach with a data-

driven case study dealing with electric power outages. Concluding remarks appear in Section 5. 

 

DYNAMIC INOPERABILITY INPUT-OUTPUT MODEL AND ITS FOUNDATIONS 
Several schema have been proposed for modeling interdependent industry and infrastructure 

sectors, including system dynamics models (Min et al. 2007), agent-based models (Bagheri and 

Ghorbani 2007), and network models (Dueñas-Osorio et al. 2007). Our risk-based 

interdependency modeling approach, whose methodological background is provided in this 

section, is an extension of the economic input-output model (Leontief 1936). 

 

The Input-Output Model and Measuring Inoperability 
The economic input-output model describes the flow of commodities among interconnected 

sectors of an economy [Leontief 1936]. The linear form of the input-output model is       , 
which tracks the total production output of a set of n sectors or industries as a function of 

intermediate use by other sectors (Ax) and final consumer demand (c). Total output and final 

demand are both measured in dollars, and the n x n matrix A quantifies the proportional 

requirements from other sectors to produce sector i’s output, for i = 1,…, n. Annually, the U.S. 

Census Bureau and the Bureau of Economic Analysis (BEA) undertake a significant data 

collection effort to collect commodity flow information, which is used to populate the A matrix. 

Miller and Blair (2009) provide a good overview of input-output economics. 

 

The Inoperability Input-Output Model (IIM) uses the Leontief input-output framework and 

commodity flow data to measure the interdependent effects from a disruption (Santos and 

Haimes 2004; Santos 2006). A decreased functional capability, or inoperability, in an 

infrastructure can propagate to a number of other physically and logically interconnected 

infrastructure or industry sectors. Eq. (1) presents the IIM. Vectors are of length n and matrices 

of size n x n, where n is the number industry or sectors in the economy. 

 

           [    ]     (1) 

 

The vector q represents the inoperability vector. Each element measures the extent to which (in 

proportional form) a sector is not productive, and    (    ̂ )   ⁄ , where    is the production 

of sector i under normal circumstances and  ̂  is the reduced level of production due to a 

disruption. 

 

In a physical sense, q represents the extent to which a sector is not functioning relative to its 

intended output. Inoperability is analogous to “unreliability” in the reliability engineering 

literature (Modarres et al. 2010), and can be linked with physical and economic 

interdependencies (Santos et al. 2007). The driver of inoperability is the demand perturbation 

vector expressed by   , and   
  (    ̂ )   ⁄ , where    is the final demand for sector i under 

normal circumstances and  ̂  is reduced demand. The matrix    is the normalized 

interdependency matrix and describes the degree of interdependence among industry and 

infrastructure sectors. An element of    indicates the proportion of additional inoperability that 
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the column sector contributes to the row sector.  Like the A matrix in the traditional input-output 

model, the    matrix is derived from the BEA commodity flow data, and 

   [    ( )]   [    ( )]. Ultimately, the IIM provides an accounting for how a disruption 

that adversely impacts sector i can lead to inoperable conditions in other industry and 

infrastructure sectors. 

 

Dynamic Inoperability Input-Output Model 
The DIIM extends the IIM to model how inoperability propagates and dissipates over time (Lian 

and Haimes 2006). The original continuous-time DIIM, inspired by the Leontief (1970) dynamic 

input-output model is found in Eq. (2).  Eq. (3) provides the discrete-time form.   

 

 ̇( )   [   ( )    ( )   ( )] (2) 

 

 (   )   ( )   [   ( )    ( )   ( )] (3) 

 

Definitions of q(t),   , and   ( ) are the same as those for their counterparts in the IIM, except 

that q(t) and   ( ) describe those values at a specific time t.  K is a diagonal matrix of resilience 

coefficients k1,..., kn and quantifies the ability of industry i to recover from a disruption. Greater 

ki values correspond to quicker recoveries by an industry. MacKenzie et al. (2011) offers a 

slightly different interpretation, where K describes how quickly the economy reaches 

equilibrium as determined by Eq. (1), and such an interpretation works especially well for a 

production environment. 

 

The IIM and DIIM have been successfully applied to describe a number of risk-based 

applications, including multimodal transportation disruptions (Pant et al. 2011; MacKenzie et al. 

2011), workforce losses (Barker and Santos 2010a; Orsi and Santos 2010), inventory 

management (Barker and Santos 2010b), and supply shortages (Xu et al. 2011). Barker and 

Haimes (2009) explore the impact of uncertainty in some of the DIIM’s parameters.  

 

Analyses using this model often assume that   ( )   , which means that the disruption did not 

perturb final demand. In this case, inoperability results exclusively from the initial impacts. 

Under this assumption, an exponential model, as shown in Eq. (4), serves as a closed-form 

solution to the dynamic system of Eq. (2). In this exponential form, I is the identity matrix and 

q(0) is the initial inoperability caused by the disruption at time t = 0. 

 

 ( )   ( )   (   
 ) 

 
(4) 

 

The scalar form of Eq. (4) is provided in Eq. (5) for a single industry i. The diagonal entry of   , 
   
 , measures the dependency of an industry on itself.   

 

  ( )    ( ) 
   (     

 ) 
 

(5) 

 

If the initial inoperability qi(0) and the final desired inoperability qi(Ti) at recovery time Ti are 

known for a disruption, we can rearrange Eq. (5) and solve for the resilience coefficient ki.  
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  [  ( )   (  )⁄ ]

  
(

 

     
 ) (6) 

 

As Eq. (6) suggests, an accurate estimate of the resilience coefficient matrix K for all n sectors 

requires knowledge about or data describing the initial inoperability, the final desired 

inoperability, and recovery time for each sector or industry. If these values are known, the DIIM 

can serve as a useful risk management tool to help policy makers quantify the economic 

consequences of potential disruptions. Assessing values for these parameters, especially Ti, poses 

a challenge, as the time to recover from a disruption is usually unknown. For example, state 

emergency managers may be interested in understanding the state-wide economic impacts of an 

extended power outage due to a natural disaster, but without a good estimate of either the time it 

takes to recover or the resilience coefficient, the DIIM may not provide accurate results.  

 

Historical data describing disruptions for an individual industry i can help modelers overcome 

this challenge. As the next section demonstrates, Eq. (6) can be rearranged so that the model is 

linear in    [  ( )] and Ti. Data on the initial inoperability   ( ) and the time until recovery Ti 

for specific disruptions can be incorporated into linear regression models in order to provide an 

estimation of the resilience coefficient ki for a single industry. The next section describes the 

regression models and how the results can be used to estimate ki. 

 

QUANTIFYING THE RESILIENCE COEFFICIENT 
The models in this section rely on m observations, where each observation consists of Ti and the 

initial inoperability   ( ). Regression analysis on these m observations allow us to estimate two 

parameters from Eq. (5):   (     
 ), where    

  is known from the BEA data, and qi(Ti), where Ti 

is the known time it takes for sector i to recover to a desired level from a disruption. Full 

recovery implies that qi(Ti) = 0, meaning that Ti = ∞ in accordance with the exponential model. 

Because this is impossible in reality, we expect our regression results to return estimates of qi(Ti) 

that are close to 0, or on the order of 0.01. 

 

Simple Linear Regression Models 
Different linear regression models can be used to estimate the two parameters. We first rearrange 

Eq. (6) in two different ways, shown in Eq. (7) and (8). In Eq. (7),     (     
 )  ⁄   [  (  )] 

is the intercept term and    (     
 )⁄  is the slope term.  In Eq. (8),   [  (  )] and   (     

 ) 
are the intercept and slope terms, respectively. 

 

    
 

  (     
 )
  [  (  )]  

 

  (     
 )
  [  ( )] (7) 

 

  [  ( )]    [  (  )]    (     
 )   (8) 

 

Eq. (7) is perhaps more intuitive and reflects the natural cause and effect of a disruption, where a 

disruption causes an initial inoperability qi(0), and the time until recovery Ti depends on that 

initial inoperability. 

 

Eq. (8), however, has some benefits that the Eq. (7) does not. First, the intercept and slope in Eq. 

(8) have no common terms, whereas Eq. (7) has a correlation between the intercept and slope 
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because both contain    (     
 )⁄  terms. Assuming the slope and intercept are independent of 

each other will be important in the mixed effects model. Second, performing linear regression on 

Eq. (7) with our example data results in a statistically significant lack of fit for repeated 

observations of the independent variable,   [  ( )]. A statistically significant lack of fit for 

repeated observations indicates that the regression model should not be used (Draper and Smith 

1998). The lack of fit is not statistically significant when the independent variable is Ti as in Eq. 

(8). Finally, ki does not appear in a denominator in Eq. (7) as it does in Eq. (8), making it easy to 

calculate a point estimate, variance, and confidence interval for ki after performing regression on 

Eq. (7).  

 

Scenario-Specific Regression Models 
A dataset may be divided into different categories, such as different disruption scenarios (e.g., 

natural events such as a tornado, earthquake, or hurricane), which may affect both the time and 

the initial inoperability. The parameters qi(0) and Ti may vary from scenario to scenario because 

different infrastructure degradations can result from different disruptive scenarios and result in 

different trajectories of recovery. The resilience of an industry or infrastructure system can be 

viewed as specific to a particular scenario, and ki may most appropriately be calculated for a 

specific scenario. Dummy variables can be created to account for these categories. For a model 

with p categories, we create an m x (p – 1) matrix Z. The columns of Z in Eq. (9) correspond to 

the scenario categories, where the element (r,s) is 1 if the rth observation belongs to scenario 

category s and 0 otherwise. ß is a regression vector of length (p – 1). 

 

  [  ( )]    [  (  )]    (     
 )      (9) 

 

Eq. (9) generates a different intercept term for each scenario category, but the slope remains the 

same for each category. Adding an interaction term between the time and dummy variables, as 

shown in Eq. (10), establishes a model where the slope changes for each category (Faraway 

2006). Vector λ is of length (p – 1) and T is a m x m diagonal matrix and the diagonal entries are 

the entries in the vector Ti. 

 

  [  ( )]    [  (  )]    (     
 )          (10) 

 

Mixed Effects Model 
The final model we deploy is a mixed effects model. Such a model is useful when the data have 

clusters or categories and where variation in the model comes from two sources: within clusters 

and between clusters (Demidenko 2004). In the data used to estimate the resilience coefficient, 

different disruption scenarios can serve as clusters, and the mixed effects model can be viewed as 

an alternative to adding dummy variables. As a hierarchical or multi-level model, the mixed 

effects model assumes each cluster of data derives from an underlying distribution as opposed to 

separating the data like a linear model with dummy variables. The slope parameter   (     
 ) in 

the mixed effects model is the average or most likely estimate of all scenarios, but an individual 

scenario also has a random parameter that can be added to the average slope for that scenario.  

 

Eq. (11) shows the mixed effects model where the superscript j = 1,…, p refers to the scenario 

category.  ̃  is an m
j
 x 2 matrix, where the first column is a column of ones and the second 
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column is   
 
, and m

j
 represents the number of data points in scenario category j. Vector b

j
 is a 

random vector of length 2. 

 

  [  
 ( )]    [  (  

 
)]    (     

 )  
 
  ̃    (11) 

 

The model assumes that for each scenario category j, b
j
 ~ N(0, σ2

D). D is a 2 x 2 matrix, whose 

diagonal entries describe the variance of each component of the b
j
 vector. We assume that the 

components of b
j
 are uncorrelated, so the off-diagonal entries of D are zero. Such an assumption 

explains the importance behind selecting a linear model where the intercept and slope are not 

correlated. The parameter σ2
 is the variance of the errors (i.e., the mean-squared error term). The 

overall variance of the mixed effects models is usually less than the variance of an ordinary least-

squares model (Demidenko 2004). 

 

Several methods exist to solve for the parameters in the mixed effects model. One method is 

maximizing the likelihood to solve for   [  (  
 
)],   (     

 ), and σ2
 and using those 

parameters with the least squares approach to solve for b
j
 (Demidenko 2004). Under this model, 

each scenario generates its own intercept and slope. The intercept for category j is   [  (  
 
)] 

plus the first component of b
j
, and the slope for category j is   (     

 ) plus the second 

component of b
j
. 

 

Several types of tests can be used to analyze the statistical significance of a mixed effects model 

and its parameters (Khuri et al. 1998). We conduct a relatively simple test where the null 

hypothesis is D = 0 (Demidenko 2004). If the null hypothesis is true, bj = 0 and the random 

effects parameters do not contribute significantly to the model.  

  

ILLUSTRATIVE EXAMPLE: ELECTRIC POWER OUTAGE AND RECOVERY 
The regression models described here to isolate a measure of infrastructure resilience are 

illustrated with a case study of electric power outages in the United States. Because of their 

importance to the economy and the availability of data, power outages have been frequently 

examined in the risk analysis and reliability literature (Liu et al. 2005, 2008; Han et al. 2009 

Dueñas-Osorio and Vemurua 2009; Guikema et al. 2010). The analysis presented here differs 

from these previous studies because of our interest in modeling the resilience and recovery from 

a power outage. 

 

The set of data used describes power outages in the United States from January 2002 to June 

2009 (U.S. Energy Information Administration 2003, 2004, 2005, 2006, 2007, 2008, 2009a, b). 

The publicly available data fields include: the time and date of a power outage, the power 

company that suffers the outage, the state or states affected by the power outage, the number of 

customers who lost power, the type or cause of disturbance, the loss in megawatts, and the date 

and time that power was restored.  

 

We calculate qi(0) as the number of customers without power divided by the total number of 

retail customers in the affected state(s) (U.S. Energy Information Administration 2009c). 

Although a more accurate calculation of qi(0) may be to use the total number of customers 

serviced by the power company in the denominator, that information is not easily attainable. Our 
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approximation of qi(0) can be problematic for larger states. An event may cause large a power 

outage in a specific city or region, and it may take several days or even weeks to restore power. 

However, in a large state with tens of millions of retail customers, the denominator is so large 

that the estimate of qi(0) is still rather small. 

 

Alternatively, the total number of residents in the county or counties could serve as the 

denominator for qi(0). However, the data does not always reveal the impacted counties for an 

outage. Some outages record specific counties, other outages list the city (e.g., Chicago), other 

outages record a portion of the state (e.g., northern Illinois), and some outages record only the 

state. In order to remain consistent across the data, we choose the number of retail customers in 

the impacted state as the denominator for qi(0). While this choice increases the size of the 

dataset, the ability to model localized outages is lost. 

 

A single event can cause multiple outages in the database, such as outages in 2005 due to 

Hurricane Katrina. If the same event causes several outages, the numerator in qi(0) is the sum of 

all customers without power across the multiple companies impacted by the same event. The 

denominator is the total number of customers in the affected state(s). The time of the outage is 

assumed to be the longest that any of these power companies took to restore power. After this 

consolidation, the dataset consists of 368 observations. 

 

The resilience parameter    is industry specific and can potentially be different for each industry 

in the economy. Data on the duration of electric power outages provide an estimate of    for the 

utilities industry, which is the North American industry classification that encompasses the 

electric power sector. Estimating the resilience parameters for other industries, like agriculture, 

manufacturing, or oil and gas, requires data on the severity and length of disruptions in those 

specific industries. The parameter    
  is on the order of 10

-4
 for the utilities industry in the United 

States (BEA 2010a, b). Thus, the estimate of the resilience parameter    for the utilities industry 

is equal to the slope estimate   (     
 ) as calculated from the regression models using the data 

on electric power outages. 

 

Previous IIM explorations of electric power outages include those caused by a hypothesized 

high-altitude electromagnetic pulse scenario (Haimes et al. 2005) and the 2003 blackout in the 

Northeast United States (Anderson et al. 2007).  

 

Results of Simple Linear Regression Models 
The simple linear regression model in Eq. (8) was applied to the electric power outage data, and 

Table 1 provides the point estimate and 95% confidence intervals of the two regression 

parameters. Fig. 1 depicts the 368 observations in the outage dataset, along with the linear 

model. Although the regression model is significant, the R
2
 term is only 0.0757. 

 

Table 1. Simple Linear Regression Results with 368 Data Points 

Regression parameter Point estimate Confidence interval 

  [  (  )] -4.53 [-4.82, -4.24] 

  (     
 ) 0.00810 [0.00519, 0.0110] 
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Fig. 1 Simple linear regression results with 368 recorded electrical outages 

Checking the assumption of normally distributed error terms reveals that the residuals do not 

appear to follow a normal distribution (Fig. 2). In order to help correct the non-Gaussian 

distribution of the residuals and to improve the model’s overall fit, we calculate Cook’s statistic 

for each data point to check for outliers. Cook (1977) proposes a measure that calculates the 

influence of each data point based on the squared difference between the predicted values with 

all data points and the predicted values with all data points except for one (see Draper and Smith 

1998). 

 

According to Cook’s statistic, the most influential data point corresponds to Ti = 561 and qi(0) = 

0.008. This data point represents a wildfire in San Diego in 2003 (see Fig. 1). The fire burned 

through over 200,000 acres. According to the database of outages (U.S. Energy Information 

Administration 2004) over 100,000 customers were without power, and power was not fully 

restored until three weeks later. Because California has over 13 million electric customers, qi(0) 

for this event is still very small. Cook’s statistic for this data point is 0.30, and Cook’s statistic 

for the second-most influential data point is 0.05. Because this data point has a large influence on 

the model relative to rest of the data, excluding this data point from the analysis on the grounds 

that it is an extreme outlier seems reasonable. Based on Cook’s statistic, no other data point 

sufficiently influences the model to warrant exclusion. 

 

Most of points that cause the overly broad tail on the left-hand side of the residual plot in Fig. 2 

represent very small outages. The power companies quickly restored power after these outages. 

It is unlikely the DIIM would be deployed to analyze small outages like these because the 

outages would not impact the economy. From Fig. 1, power outages corresponding to 

  [  ( )]     are separate from power outages corresponding to   [  ( )]    . The longest 

duration of a power outage corresponding to   [  ( )]     is one day, which is a relatively 
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short time. Conversely, a few power outages corresponding to       [  ( )]      lasted 

several days, and using a threshold for exclusion much greater than   [  ( )]     appears 

unwise. Removing data points where   [  ( )]     (equivalent to   ( )         ) 

eliminates relatively minor power outages and preserves all outages that lasted more than one 

day.  

 

Fig. 2 Normal probability plot of residuals with 368 recorded electrical outages 

With the removal of the San Diego fire data point and the data points describing small outages, 

the total number of observations is 352. With this revised dataset, we calculate the point 

estimates of the intercept and slope with 95% confidence intervals using ordinary least squares 

regression, as given in Table 2. 

 

Table 2. Simple Linear Regression Results with 352 Data Points 

Regression parameter Point estimate Confidence interval 

  [  (  )] -3.98 [-4.12, -3.83] 

  (     
 ) 0.00586 [0.00441, 0.00732] 

 

With the removal of these data points, the intercept is closer to zero and the slope decreases. The 

estimate of the variance of errors is also greatly reduced (from 5.36 to 1.18), which results in 

tighter confidence intervals for the slope and intercept. For this revised model R
2
 = 0.153. 

Although an improvement over the previous model, the small R
2
 value demonstrates that this 

model still fails to explain most of the variation about the mean of the dependent variable, 

  [  ( )].  
  

We check the normality assumption of the residuals for this reduced dataset by visually 

examining a normality plot (Fig. 3) and conducting the Kolmogorov-Smirnov test (Law 2008). 
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Because the test does not reject the null hypothesis that the residuals follow a normal 

distribution, assuming that the residuals for this smaller dataset are normally distributed is 

appropriate. 

 

 

Fig. 3 Normal probability plot of residuals with 352 recorded electrical outages 

Results of Scenario-Specific Regression Models 

The cause of a power outage may impact the parameter estimates, and the Department of Energy 

lists approximately 100 different types or causes of outages in the dataset. We logically group 

these causes into six different scenarios: winter storm, hurricanes, equipment malfunction, 

voltage reduction (which usually means that demand exceeds supply), thunderstorm and tornado, 

and fire. Earthquake is another scenario, but the dataset only includes two earthquakes. 

Tornadoes are categorized with thunderstorms because the dataset only includes three tornadoes. 

 

We assign five dummy variables as described in Eq. (9) to account for the six different scenarios. 

The intercept is initially the only term that changes for the different scenarios. Ordinary least 

squares regression is performed on the modified dataset where we remove the 16 data points as 

discussed earlier as well as the two earthquake-induced outages and another data point for which 

no cause was given. Point estimates with 95% confidence intervals are displayed in Table 3. 

 

Using a partial F-test (Draper and Smith 1998), the dummy variable model is significant at the 

0.05 level but not at the 0.01 level. The R
2
 term improves slightly to 0.191. 
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Table 3. Linear Regression Results with Dummy Variables for Intercepts 

Scenario Regression parameter Point estimate Confidence interval 

Winter storm   [  
 (  

 )] -3.68 [-4.02, -3.34] 

Hurricanes   [  
 (  

 )] -3.59 [-4.07, -3.12] 

Equipment malfunction   [  
 (  

 )] -4.55 [-4.94, -4.16] 

Voltage reduction   [  
 (  

 )] -3.87 [-4.16, -3.59] 

Thunderstorm and 

tornado 
  [  

 (  
 )] -3.97 [-4.15, -3.79] 

Fire   [  
 (  

 )] -3.96 [-4.65, -3.27] 

All outages   (     
 ) 0.00483 [0.00318, 0.00648] 

 

When dummy variables are included, the slope parameter is less than the slope from the simple 

regression model with n = 352 data points, but the 95% confidence interval widens. The 

intercepts for the different scenarios have point estimates ranging from -3.5 to -4.6. The 

equipment malfunction scenario generates an intercept term that differs at the 0.05 significance 

level from the other scenarios except for the fire scenario. All other intercepts are not 

significantly different from each other. Based on this set of data, we cannot conclude definitively 

that the true value of   (  )  changes according to the scenario. 

 

Because the slope parameter directly determines the resilience coefficient ki, understanding if the 

scenario impacts the slope is more interesting than knowing its effect on the intercept. An 

interaction term between the dummy variables and time until recovery as described in Eq. (10) is 

added to the regression model, and Table 4 displays the results. We use the reduced dataset (n = 

349).  

 

Table 4. Linear Regression Results with Dummy Variables for Intercepts and Slopes 

Scenario 
  [  

 
(  

 
)]   

 
(     

  
) 

Point 

estimate 
Conf interval 

Point 

estimate 
Conf interval 

Winter storm -3.45 [-3.93, -2.97] 0.00274 [-0.000761, 0.00625] 

Hurricanes -3.83 [-4.44, -3.22] 0.00642 [0.00331, 0.00952] 

Equipment malfunction -4.40 [-4.85, -3.96] -0.0106 [-0.0328, 0.0117] 

Voltage reduction -3.77 [-4.08, -3.47] -0.00723 [-0.0202, 0.00579] 

Thunderstorm and 

tornado 
-4.00 [-4.20, -3.80] 0.00545 [0.00307, 0.00782] 

Fire -3.45 [-4.67, -2.23] -0.147 [-0.446, 0.151] 

 

The results of this model raise questions of its validity and usefulness. The R
2
 value only 

increases by 0.02 from the R
2
 value of the model with a dummy variable for the intercept only. 

The partial F-test (Draper and Smith 1998) reveals that the model with a dummy variable for the 

intercept and slope model does not offer a statistically significant improvement over the model 

with a dummy variable for the intercept only.  

 

Additionally, three scenarios (equipment malfunction, voltage reduction, and fire) generate 

negative slopes, which imply that inoperability worsens after the incident or that the power 

company has negative resilience. Negative slopes are unrealistic for the purpose of estimating ki. 
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Because this model does not statistically improve over the previous model and it generates 

negative slope parameters for half of the scenarios, we conclude this model is not accurate 

enough to estimate the resilience parameter and exclude it from further analysis. 

 

Results of Mixed Effects Model 
Creating a hierarchical model like a mixed effects model can address the problem of negative 

slope estimates that is created by adding dummy variables for the slope parameter. The dummy 

variable model estimates the slope and intercept for a scenario based only on the data for that 

scenario, but the mixed effects model estimates the slope and intercept parameter for a scenario 

from the data for all scenarios (fixed effects) as well as the data for an individual scenario 

(random effects).  

 

Building the mixed effects model as given in Eq. (11) with the reduced dataset (n = 349) reveals 

that the random effects parameters are insignificant (i.e., the null hypothesis that the random 

effect covariance matrix D = 0 cannot be rejected). A mixed effects model on the full dataset 

except for the earthquake-induced data and the data point whose cause is unknown (n = 365) 

reveals that the variance of the random effect corresponding to the slope term is approximately 

zero, but the variance corresponding to the random effect of the intercept term is 1.19. Table 5 

shows the point estimate and 95% confidence intervals of the two regression parameters from the 

mixed effects model.  

 

Table 5. Mixed Effects Regression Results with 365 Data Points 

Regression parameter Point estimate Confidence interval 

  [  (  )] -4.67 [-5.58, -3.77] 

  (     
 ) 0.00500 [0.00197, 0.00808] 

 

As described in Demidenko (2004), a test statistic that follows the F distribution compares the 

sum of squares of the mixed effects model with that of the ordinary least squares regression. The 

p-value of the test statistic for this model is 8.15 x 10
-11

, and the mixed effects model improves 

upon the simple linear regression model with 365 data points. 

  

Because the variance for the slope parameter   (     
 ) is zero, it does not vary for different 

scenarios. Although the scenario or cause of a specific outage likely impacts a utility company’s 

ability to restore electricity, this model’s result suggests that knowing the scenario does not 

change our estimate of the resilience coefficient. The variance of the random effects parameter 

for   [  (  )] indicates that the intercept for each scenario follows a normal distribution where 

the mean is the point estimate of the fixed effects parameter (-4.67) and the variance is 1.19. 

 

Comparison of Results 
This regression study was motivated by a desire to quantify the resilience parameter ki that 

appears in the DIIM. Comparing the estimates of the slope parameter   (     
 ) generated by 

the different linear regression models can help us determine the best estimate for the resilience 

parameter. Out-of-sample validation also compares the different methods. We perform a 10-fold 

cross validation on each regression model in which we randomly divide the dataset into 10 equal 

subsets, calculate the best estimates for the two regression parameters based on 90% of the data, 

and test each model on the remaining 10%. We repeat this process 10 times and use a different 
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testing set for each run. The root-mean-square error (RMSE) and the mean absolute error (MAE) 

serve as performance metrics, as shown in Table 6.   

 

Table 6. Comparison of Regression Results 

Model 

  (     
 ) 

Performance 

metrics 

Expected amt of 

time (hours) to 

recover from 

  ( )      

Point 

estimate 
Confidence interval RMSE MAE 

Simple linear (n = 

368) 
0.00810 [0.00519, 0.0110] 2.17 1.29 275 

Simple linear (n = 

352) 
0.00586 [0.00441, 0.00732] 2.19 1.22 286 

Dummy variable 

for intercept only 
0.00483 [0.00318, 0.00648] 2.16 1.21 347

*
 

Mixed effects (n 

= 365) 
0.00500 [0.00197, 0.00808] 2.10 1.30 451 

*
 Because the intercept term is different for each dummy variable, the intercept parameter from the simple linear 

model (n = 352) is used to calculate time to recovery.
 

 

The performance metrics are similar for the four models. The simple linear (n = 352) and 

dummy variable models have the smallest MAE, but the RMSE for these two models is greater 

than the RMSE for the mixed effects model. Because these two models remove the extremely 

small   ( )  values when estimating the slope and intercept parameters, their estimates of 

  [  ( )] are inaccurate when these small   ( )  values appear in a testing set. The RMSE 

highlights this inaccuracy. Because the MAE does not square the error, the linear model with the 

reduced dataset and the dummy variable model perform better according to MAE.  

 

Table 6 also displays the expected number of hours it would take for electricity to be restored 

when the initial inoperability   ( )      and given the point estimates of the parameters of each 

model. Because    
  is very close to zero for the utilities industry,      (     

 ) for this 

industry. 

 

The expected recovery time when   ( )      ranges from 275 hours (11.5 days) to 451 hours 

(18.8 days). The expected recovery time can vary by a week depending on the model. This 

difference in recovery time is due to the slope as well as the intercept   [  (  )]. Because the 

mixed effects model includes additional data points for which the initial inoperability   ( ) is 

extremely small, this model’s intercept is less than the intercept than the models with 352 data 

points, and the model estimates a longer recovery time. Because 

     (  [  ( )]    [  (  )]) (     
 )⁄ , the resilience coefficient and the recovery time are 

inversely proportional where (  [  ( )]    [  (  )]) (     
 )⁄  serves as the constant of 

proportionality. Multiplying    by a positive real number   reduces the expected number of 

hours until electric power is restored by the factor    . This demonstrates the sensitivity of the 

recovery time to the model’s estimate of the resilience parameter. 

 

Three models generate slopes between 0.00483 and 0.00586, and perhaps the best estimate is 

0.00483 (from the linear model with the dummy variable for the intercept parameter). The 
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model’s R
2
 term of 0.191 is greater than those of the simple linear models, and the confidence 

interval is narrower than the mixed effects model. It also performs the best according to the 

MAE.  

 

Case Study: Power Outage in Oklahoma 
To illustrate the usefulness of this resilience parameter calculation, we model an electric outage 

due to a winter ice storm that occurred in the state of Oklahoma in December 2007. According to 

the Oklahoma Department of Emergency Management (ODEM) [2008], 634,749 customers or 

33.5% of the state’s retail customers lost power. Fig. 4 depicts the DIIM’s estimate of 

inoperability in the utilities industry in Oklahoma and the fraction of Oklahoma customers 

without power that ODEM published at least daily and sometimes twice per day. The DIIM uses 

the slope estimate,   (     
 )         , and confidence interval, [0.00318, 0.00648], from 

the regression model with dummy variables as the resilience parameter. 

 

 

Fig. 4 Comparison of time to recovery between model estimate and historical data 

from 2007 winter storm in Oklahoma 

Although the winter storm occurred on December 9, the peak number of customers without 

power was not reported until 48 hours later on December 11. The electric power companies 

seemed to arrive at an accurate count of the number of customers without power two days after 

the disruption occurred. In Fig. 4, the utilities industry’s inoperability based on the historical data 

is 0.335 at time T = 48 hours. Because many of these customers likely suffered power loss when 

the winter storm struck Oklahoma on December 9, the model starts with an initial inoperability 

of 0.335 at T = 0. 

 

The model overestimates the actual recovery time. The utilities industry achieved an 

inoperability equal to 0.017 in 244 hours (or 10.2 days), but the model predicts an inoperability 
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of 0.104 at that same time. Several reasons could explain the discrepancy between the model and 

the data. First, according to an Oklahoma utility company, the 2007 ice storm caused more 

power outages than any other storm in the state’s history (Money and Bisbee 2007). Companies 

brought in employees from around the United States to restore power. This attention, combined 

with the fact that the storm was fairly localized to Oklahoma and did not impact surrounding 

states, may have enabled the utility companies to restore power more quickly than the model 

predicts. Second, 77% of the outages were concentrated in Oklahoma’s two metropolitan areas, 

Oklahoma City and Tulsa. Restoring power in these two cities may have been easier than if the 

power outages had predominately occurred in rural areas. 

 

The difference between the model’s prediction and the data demonstrates the challenge of using 

a single number to model the recovery trajectory of a specific disruption. The trajectory of the 

actual recovery shows perhaps three different rates. Very little or no recovery may have occurred 

from T = 0 to T = 48 hours, but inoperability decreased rapidly from 0.335 at T = 48 hours to 

0.108 at T = 129 hours. The rate of recovery slowed from T = 129 hours to T = 223 hours, and 

inoperability decreased to 0.033. The third recovery rate occurred while the remaining outages 

were repaired from T = 223 to T = 291 hours. A model that incorporates one resilience parameter 

for an industry cannot accurately capture the different rates of recovery.  

 

These three different recovery rates echo the process of restoring electric power after an 

interruption, which often follows three phases (Clay Electric Cooperative 2007; Puget Sound 

Energy 2010). First, a utility company assesses the damage, which is usually accomplished 

within the first couple of days following the outage. In the 2007 winter storm, the first phase 

lasted 48 hours, which is the time when the peak number of customers without power was 

recorded. During the second phase, recovery occurs at a predictable rate until roughly 80% of 

power is restored, and phase three is more unpredictable as the utility company often repairs and 

replaces equipment for specific and localized populations. A piecewise treatment of the 

regression approaches to isolate the second and third phases is considered an interesting 

exploration of future work. 

 

Given that our primary motivation behind modeling industry resilience is to quantify the 

economic impacts of disruptions, we use the estimate of resilience within the DIIM to calculate 

inoperability in all industries across the state of Oklahoma due to a disruption like the 2007 

winter storm. BEA data (2010a, b) enables us to estimate    for the state of Oklahoma as 

described in Section 2. The model includes 20 industries or economic sectors. 

 

We assume the initial impact of the power outage is equivalent across all industries, and the 

initial inoperability is the fraction of customers without power:   ( )        for all i. The slope 

parameter from the regression model,   (     
 )         , determines the resilience 

parameter for the utilities industry,    . Because     
            for the utilities industry, 

          . The previous modeling exercise provides an estimate for a single industry, 

utilities, but the DIIM requires resilience parameters for all 20 sectors. The other 19 industries 

suffer a power outage, but we assume that their facilities are not physically impacted. We assign 

a value of      for all     to represent a quick recovery for the non-utility industries.  
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Fig. 5 shows the recovery for these 20 industries as estimated by the DIIM with the above values 

for resilience and initial inoperability. The total output lost due to this power outage is $104 

million, with $27.5 million of these losses occurring during the first 24 hours of the power 

outage. Each of the 19 non-utilities industries achieves an inoperability of less than 0.02 within 

10 hours of the disruption. Two industries—mining, oil, and gas and transportation and 

warehousing—recover more slowly than the other industries because inoperability in utilities has 

the greatest interdependent impact on these industries. As determined by   , inoperability in 

mining, oil, and gas equals 5.2% of inoperability in utilities, and inoperability in transportation 

and warehousing equals 3.4%. The inoperability in each of the remaining industries equals less 

than 1% of inoperability in the utilities industry.  

 

 

Fig. 5 Inoperability due to power outage in Oklahoma City with k3 = 0.00483 

If   (     
 )         , the lost output in Oklahoma totals $148 million. If the upper bound on 

the slope parameter is used, i.e.,   (     
 )         , lost output drops to $82 million. The 

point estimate and bounds of the resilience coefficient form three different recovery scenarios 

although even the best-case scenario likely overestimates the output losses compared to the 

actual recovery data from the 2007 winter storm. 

 

Table 7 depicts the lost output for each industry in Oklahoma for these three model-based 

recovery scenarios. The resilience parameter directly impacts the ability of the utilities industry 

to recover, and thus, the output loss in this industry is most sensitive to this parameter. Because 

the mining, oil, and gas industry is heavily impacted by the utilities industry, the lost output in 

this industry exceeds all other industries except for utilities. Manufacturing experiences a large 

output loss because this industry produces the most, and an initial inoperability of 0.335 results 

in millions of dollars of lost output for this industry.  
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Table 7. Lost Output per Industry 

i Industry 
Lost output (millions of dollars) 

    0.00318 0.00483 0.00648 

 All industries 148.40 104.04 82.28 

  1 Agriculture, forestry, and fishing 1.06 0.88 0.80 

  2 Mining, oil, and gas 28.03 19.22 14.90 

  3 Utilities 77.27 50.95 38.03 

  4 Construction 1.97 1.47 1.23 

  5 Manufacturing 15.68 12.18 10.46 

  6 Wholesale trade 1.96 1.57 1.37 

  7 Retail trade 0.89 0.79 0.74 

  8 Transportation and warehousing 6.24 4.38 3.46 

  9 Information 1.18 0.96 0.86 

  10 Finance and insurance 1.85 1.50 1.33 

  11 Real estate 2.64 2.15 1.90 

  12 Professional, scientific, and technical 

services 
2.67 2.03 1.71 

  13 Company management 0.74 0.56 0.47 

  14 Administration and waste management 1.60 1.27 1.11 

  15 Educational services 0.07 0.06 0.06 

  16 Health care 0.63 0.62 0.62 

  17 Arts, entertainment, and recreation 0.12 0.10 0.10 

  18 Accommodation and food services 0.73 0.59 0.52 

  19 Other services, except public administration 0.53 0.46 0.42 

  20 Federal, state, and local government 2.55 2.31 2.19 

 

Table 8 summarizes the key insights of applying the regression models to quantify resilience in 

the electric power sector. Removing outliers, removing very small power outages, and 

introducing variables to model specific scenarios improve the model’s accuracy. Despite these 

additions and subtractions, the model fails to capture much of the variation in the data, a point to 

which we will return in the conclusion. With our estimate of the resilience coefficient, the DIIM 

predicts that a power outage in the state of Oklahoma would cost the state about a hundred 

million dollars in lost output. Utilities; mining, oil, and gas; manufacturing; and transportation 

and warehousing would experience the greatest impact.  

 

CONCLUSION 
The DIIM quantifies the economic losses due to the onset and propagation of a disruption, but 

one obstacle to its use has been estimating the resilience parameter that dictates the trajectory of 

sector recovery. This paper deployed a variety of data-driven regression models to address that 

obstacle and applied the models to different electric power disruption scenarios. We began with a 

simple regression model and attempted to achieve a better fit by eliminating irrelevant points, 

adding scenario-specific dummy variables and interaction terms, and testing for random effects 

through a mixed effects model.  
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Table 8. Key Insights of Applying Regression Models to Electric Power Outage Data 

Modeling approach Key insights 

Simple linear regression  Model accuracy increases after removal of outliers and 

extremely small disruptions  

Scenario-specific regression using 

dummy variables 
 Including scenarios for the intercept decreases error and 

increases adjusted R
2
 value 

 Model that includes scenarios for slope parameter 

generates unrealistic results (negative slopes)  

Scenario-specific regression using 

mixed effects model 
 Slope parameter   (     

 ) has no random effects, 

which implies that the value of the resilience coefficient 

ki is not impacted by the type of scenario 

Case study of winter storm in 

Oklahoma 
 Model predicts a conservative time to recovery of 

utilities industry 

 Output losses from a severe winter storm in Oklahoma 

would total about $100 million 

 

The dummy variables and the mixed effects model each incorporate individual scenario 

disruptions and measure the extent to which the industry resilience parameter changes for 

different scenarios. Both the intercept and slope describe the relationship between the initial 

impact and recovery time, often referred to as robustness and rapidity in the resilience literature 

(Bruneau et al. 2003; Zobel 2011). The intercept changes when the model includes different 

power outage scenarios, and we conclude that the power outage scenario impacts the relationship 

between the initial impact and recovery time. Because the slope term represents the industry 

resilience coefficient and remains constant for different scenarios, our estimate of ki for the 

utilities industry is not scenario specific. Developing models that account for other aspects of 

recovery, such as the length of time to evaluate the cause of an outage, geographical and regional 

differences, and urban-versus-rural power outages could help increase the accuracy of the overall 

model and may produce resilience coefficients that are scenario specific. 

 

The models generally produce statistically significant results although the R
2
 terms are very 

small. The variation in the dataset leads to some difficulty in developing a general regression 

model describing recovery. Similarly, issues could arise from the DIIM’s assumption of 

exponential recovery, and different DIIM extensions could relax this assumption. Further, our 

estimate of inoperability as a function of the total number of retail customers in a state could be 

flawed. We would prefer to estimate inoperability as a fraction of the total number of customers 

serviced by a power company if that data were available. Extracting the observations that give a 

specific location for the power outage, like a city or region, would enable inoperability to be 

based on the number of customers in that location. Such an extraction would result in a smaller 

database, and the results may not be more accurate than those we have already presented. 

 

Perhaps any deterministic model would have difficulty in capturing the large variation that exists 

in the data. Probabilistic models could be deployed to model the recovery time. One approach 

would be to ignore the initial impact and fit a probability distribution to the observed recovery 

times by matching moments. Such a procedure should result in a probability distribution for the 

resilience coefficient although resilience would no longer be a function of the initial impact. 

Another approach is a hierarchical Bayes model (Gelman et al. 2004), which would assume that 
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recovery time follows a distribution (e.g., normal, exponential). One or more parameters of that 

distribution would follow another distribution that could be determined in part by the initial 

inoperability and scenario. 

 

The case study of the winter storm in Oklahoma suggests another approach. Rather than using 

the initial impact and recovery time from a few hundred separate disruptions to estimate 

resilience, the resilience coefficient can be calculated from a single disruption where 

inoperability is recorded at multiple points in time during the same disruption. Performing 

regression on the data from the 2007 winter storm in Oklahoma produces an estimate of ki = 

0.015, which is an order of magnitude greater than the estimates based on final recovery times 

for hundreds of separate disruptions. Because this resilience estimate is based on a single 

disruption, using this value in the DIIM requires testing its applicability to other power outages. 

This resilience estimate does not account for the 48 hours that elapsed between the storm’s 

arrival and the time when peak inoperability was recorded.  

 

To our knowledge, this paper represents the first time the resilience coefficient in the DIIM has 

been empirically assessed. Future work can apply these regression models to data describing past 

disruptions in other sectors and infrastructure systems to quantify their resilience. Potential 

sectors include transportation, manufacturing, and service sectors like banking and finance. Such 

modeling efforts can provide greater clarity and information on the resilience coefficient matrix 

K in the DIIM, enabling the DIIM to produce more accurate and meaningful results. 

 

Even if the DIIM is not used as an economic model, the slope parameter in the regression models 

can represent the rate of recovery of an infrastructure system for an exponential model (Reed et 

al. 2009). Models that simulate the failure and restoration of complex systems can use these 

estimates to generate realistic scenarios (Luna et al. 2011). Understanding and predicting the rate 

of recovery of disabled or inoperable infrastructure and economic sectors can help decision 

makers examine the tradeoffs between the cost of protection and the consequences of different 

disruptions (Tsang et al. 2002). For example, preparedness strategies addressing system 

hardening could alter the value of   ( ), prepositioned recovery supplies could reduce Ti, and 

inventory and storage activities could affect   
 ( ). Because resilience is a function of these 

variables in the DIIM, we can quantify the impact of these preparedness strategies or decisions 

on the value of ki. Modeling efforts like the one presented in this paper can lead to better risk 

management strategies and help policy makers prioritize among potential disruptions. 
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