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Preface to 2nd Edition

Our motivation for producing a second edition of this report is primarily to provide a proper 
conclusion to the experiment in developing a prediction-enabled component technology 
(PECT) for substation automation systems. The first edition ended the story prematurely—it 
reported a PECT that satisfied requirements on the reliability of predictions, but which none-
theless exhibited a sufficient level of random error to leave us unsatisfied with the result, both 
in terms of the PECT itself, and in the methods used to specify and document the PECT.

The major revisions found in this new edition are limited to Appendices A and B, which docu-
ment the λABA reasoning framework and its empirical validation, respectively. The authors 
have resisted, wherever possible, revising this report to reflect the most recent developments 
in our approach to PECT building. This is explained by our preference for an editorial process 
that has a good chance of terminating. Nonetheless, where practical, we indicate more recent 
thinking in footnotes.
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Executive Summary

Background

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Software 
Engineering Institute (SEISM)1 is developing methods and technologies for predictable assem-
bly. A software development activity that builds systems from components is predictable if the 
runtime behavior of an assembly of components can be predicted from known properties of 
components and their patterns of interactions (connections), and if these predictions can be 
objectively validated. A component is certifiable if these known properties can be obtained or 
validated by independent third parties.

The SEI’s approach to predictable assembly2 is through prediction-enabled component tech-
nology (PECT). At the highest level, PECT is a scheme for systematic and repeatable integra-
tion of software component technology, software architecture technology, and design analysis 
and verification technology. This scheme is not simply technological; it also includes the pro-
cesses needed to design and validate the predictive powers of a PECT. A PECT, then, is a 
packaging of engineering methods and a supporting technical infrastructure that, together, 
enable predictable assembly from certifiable components.

PACC became an SEI initiative on October 1, 2002. Prior to that, from 1999-2001, PACC was 
considered an exploratory research project. The objective of such a project at the SEI is to 
develop an understanding of a problem area and proposed solutions for it. During the third 
year of exploratory research (2001-2002), the SEI—in partnership with an industrial sponsor, 
the ABB Ltd. Corporate Research Center (ABB/CRC)—undertook the prototyping effort 
described in this report. 

Objective

The objective of this prototyping effort was not to develop a PECT solution for a particular 
design problem per se, but rather to explore as many aspects of PECT as was practical within a 
limited time frame. Our primary concerns were methodological and practical: could we define 
a process for developing, and validating PECTs? Would the process be practical? What are the 
risks to transitioning PECT to practice? What are the technical limits of PECT, and how might 

1. SEI is a service mark of Carnegie Mellon University.

2. In this report, the term predictable assembly means predictable assembly from certifiable components.
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they be overcome? On more than one occasion, our prototyping effort was diverted to explore 
these and similar questions.

Approach

To focus and ground our research, we selected as a prototype problem the substation automa-
tion system (SAS), an application area in the domain of power generation, transmission, and 
management. This problem area was chosen because it is well bounded, well defined, and rep-
resentative of the broader class of critical infrastructure systems. The SEI defined three model 
problems in the predictable assembly of SAS: the assembly of an operator station, a primary 
equipment controller, and an integrated operator/controller. The nominal objective of the pro-
totype was to develop three PECTs, one for each model problem.

Results of This Work

This report describes the results of an experimental application of PECT to SAS, focusing on 
the primary equipment PECT, the SAS switch controller. A low-power, high-speed switch was 
developed by the SEI to simulate primary equipment. Controller assemblies were developed in 
accordance with the International Electrotechnical Commission (IEC) 61850 standard for sub-
station controllers, and laboratory scenarios were developed for external switch control and 
over-current protection. A family of latency models and their interpretations (λ*) were devel-
oped to predict point-to-point, intra-assembly (intra-controller) latency. One member of this 
family, average case latency with blocking and asynchrony (λABA), was empirically validated.

Primary results. The primary results of this work were methodological. We developed an 
overall process model for the design, development, and validation of PECTs. We studied two 
key processes in depth: co-refinement and empirical validation. Technically, co-refinement is 
the process of defining an interpretation from component model to analysis model. Intuitively, 
it is a negotiation that results in a component model that is expressive enough to span an 
intended application area, but restrictive enough to ensure that analysis is tractable. Techni-
cally, empirical validation defines measurement procedures for obtaining component mea-
sures and assembly measures, and for designing the experiments to compare the predicted and 
observed assembly measures. Intuitively, it is a means of attaching meaningful statistical 
labels to components and the predictive powers of PECT analysis.

Secondary results. The secondary results of this work were technological. We developed a 
measurement and validation infrastructure and gained valuable experience in the construction 
of a laboratory environment for empirical validation. More significantly, we specified an ana-
lytically extensible component model. This model defines the basics of component interface 
and connection topology (assembly), and is extended by formal interpretations to one or more 
analysis models. An analysis model supports compositional reasoning about assembly proper-
ties PA and defines the component properties PC required to predict PA. Each interpretation 
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may impose additional constraints on components and their topologies. In return, each analy-
sis model guarantees that assemblies of components satisfying these constraints will be ana-
lyzable, and hence be predictable by construction, with respect to PA.

Although the work emphasized empirical predictability, formal approaches to predictability 
were also explored. Specifically, safety conditions for the prototype (hardware) switch and 
IEC 61850 (software) controller dealing with the over-current protection components were 
expressed in branching time temporal logic. State machines for these components were devel-
oped, and the safety and liveness conditions were verified using the SMV model checker.3 

Tertiary results. The tertiary results of this work were the PECTs themselves. A PECT was 
developed for the operator interface and controller. The operator PECT was developed on the 
Microsoft .NET environment. Latency predictions for operator interfaces were accurate (< 3% 
magnitude of relative error [MRE]) but not technically demanding. More interesting was the 
controller PECT, which was substantially more complex and demanding. Controller assem-
blies introduced threading, contention, priority-based scheduling, and periodicity not encoun-
tered in the operator PECT. 

The original normative requirement for controller latency prediction was a 90% confidence 
interval that 80% of predictions would not exceed an upper bound 5% MRE. This norm was 
arbitrary and not particularly demanding. Nevertheless, the results were encouraging. λABA 
predictions match observations (expressed as an MRE) to within 0.5% for 80% of all predic-
tions, with greater than 99% confidence that 0.5% is indeed the upper bound. 

Although the requirements imposed on the property theory (λABA) were relatively lax, and 
although the property theory itself was significantly restricted, the PECT exhibited many inter-
dependencies among component technology, components, property theories, property-theory-
imposed well-formedness rules, and use scenarios. Several inconsistencies in the PECT itself 
were discovered during the empirical validation presented in the first edition of this report. 
This, in turn, prompted improvements in the way PECTs are specified and documented, and to 
the revalidation of λABA reported in this edition.

Next Steps

The results of the exploratory prototype are encouraging. However, as expected, there are 
aspects of PECT that require further elaboration, and some that have yet to be explored. This 
report identifies two areas requiring attention. 

3. SMV is a symbolic model-checking tool developed at Carnegie Mellon University. For more information about it, see 
<http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.ps>.
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First, a technology infrastructure for specifying and deploying components and their assem-
blies must be constructed; the substation automation prototypes relied on manual processes for 
much of this. We developed a substantial suite of tools to support empirical validation, but 
greater automation is still required to generate the massive data sets required to adequately 
validate even moderately complex analysis models.

Second, the methods and technologies needed to support independent (third-party) measure-
ment and certification of components and PECTs must be established; the substation automa-
tion prototypes relied on in situ measurements. Means must be established for acquiring 
measurements in third-party environments, establishing and maintaining trust in assertions 
about those measurements, and extrapolating those assertions to different, possibly heteroge-
neous development and deployment environments.
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Abstract

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Software 
Engineering Institute (SEISM) is developing methods and technologies for predictable assem-
bly. A software development activity that builds systems from components is predictable if the 
runtime behavior of an assembly of components can be predicted from known properties of 
components and their patterns of interactions (connections), and if these predictions can be 
objectively validated. A component is certifiable if these known properties can be obtained or 
validated by independent third parties. The SEI’s technical approach to PACC rests on predic-
tion-enabled component technology (PECT). At the highest level, PECT is a scheme for sys-
tematic and repeatable integration of software component technology, software architecture 
technology, and design analysis and verification technology. This report describes the results 
of an exploratory PECT prototype for substation automation, an application area in the domain 
of power generation, transmission, and management. This report focuses primarily on the 
methodological aspects of PECT; the prototype itself was only a means to expose and illustrate 
the PECT method.
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1 Introduction

The Predictable Assembly from Certifiable Components (PACC)4 Initiative at the Software 
Engineering Institute (SEISM)5 is developing methods and technologies for predictable assem-
bly. A software development activity that builds systems from components is predictable if the 
runtime behavior of an assembly of components can be predicted from known properties of 
components and their patterns of interactions (connections), and if these predictions can be 
objectively validated. A component is certifiable if these known properties can be obtained or 
validated by independent third parties.

The SEI is not alone in pursuing the objectives of PACC, although academic and commercial 
terminology may obscure this fact for those not deeply familiar with the subject. The SEI tech-
nical approach to PACC rests on prediction-enabled component technology (PECT). At the 
highest level, PECT is a scheme for systematic and repeatable integration of software compo-
nent technology, software architecture technology, and design analysis and verification tech-
nology. The results of this integration are engineering methods and a supporting technical 
infrastructure that, together, enable predictable assembly from certifiable components.6

This report describes an exploratory prototype of PECT. We emphasize the word exploratory, 
since the objective of the work was to touch on as many methodological and technological 
aspects of PECT as possible, using the broad constraints imposed by an industrially significant 
problem area as a guide. We selected the problem area of substation automation, an application 
area in the domain of power generation, transmission, and management, because it is well 
bounded, well defined, and representative of the broader class of critical infrastructure sys-
tems.

4. For more information on this initiative, see <http://www.sei.cmu.edu/pacc>.

5. SEI is a service mark of Carnegie Mellon University.

6. We will henceforth use the term predictable assembly to mean predictable assembly from certifiable components.
CMU/SEI-2002-TR-031 1



1.1 Background
In 2000, the SEI initiated a feasibility study in predictable assembly. The study was under-
taken to

• identify the fundamental science and engineering challenges posed by predictable assem-
bly and software component certification

• determine if the need to address these challenges was widespread and of economic or stra-
tegic interest to the U.S. Department of Defense (DoD) and to the software industry as a 
whole

• ascertain whether technological and methodological elements to address these challenges 
existed, or could be created with reasonable probability and effort

In 2001, the SEI formed a collaboration with the ABB Ltd. Corporate Research Center (ABB/
CRC). This collaboration was established to undertake a two-year feasibility study of predict-
able assembly in an industrial setting. The application area was in power generation and trans-
mission systems, specifically, substation automation systems (SASs). Typically, an SAS is 
implemented as a distributed system composed of 20 to 100 computing elements (personal 
computers and/or other electronic computing devices) executing a mix of soft- and hard-real-
time applications. An SAS is characterized by stringent performance and reliability require-
ments.

1.2 Approach
The SEI/ABB joint feasibility study was intended to address two broad feasibility questions: 

1. Can a practical technology infrastructure be developed to automate significant aspects of 
predictable assembly?

2. Can an engineering method be developed as a basis for the systematic improvement of an 
industry-wide capability in predictable assembly?

To conduct this feasibility exploration, the SEI and ABB defined a series of model problems. 
Briefly, a model problem is a simplification of a more complex one such that a solution to it 
can be extrapolated to that of a real problem. In 2001 and 2002, three model SAS problems 
were specified; in 2002 and 2003, they were extended to include the domain of industrial 
robotics.

1.3 Objective of This Report
This report consolidates the results and discoveries of the SEI/ABB investigation in predict-
able assembly. It is, in effect, a retrospective on an extended laboratory experiment. Our intent 
2 CMU/SEI-2002-TR-031



is that this report serve as a basis for continued research within the SEI’s PACC Initiative. Our 
intent is also that this report, when combined with related SEI publications on predictable 
assembly and PECT, will provide a valuable resource for other applied research in this field.

1.4 Audience for This Report
The audience for this report is computer scientists and software engineering researchers with 
an interest in predictable assembly from certifiable components (by this or any other name). 
We assume that readers have technical backgrounds that are both diverse and deep, spanning 
areas of software architecture, software component technology, probability and measurement 
theory, real-time systems, and model checking, to name the major areas reflected in this report. 
Therefore, this report is not meant to serve as a general introduction to predictable assembly, 
component technology, or PECT. 

1.5 Structure of This Report
An overview of substation automation and the details of the SAS model problems are 
described in Chapter 2. In Chapter 3, we provide an overview of the technical concepts of 
PECT. The key workflows of a process for developing and validating a PECT are summarized 
in Chapter 4. In Chapter 5, we summarize the chronology of a key development activity in the 
design of a PECT, called co-refinement, the result of which was a controller PECT for predict-
ing point-to-point latency for any controller assembly. The techniques used to empirically val-
idate the SAS-controller PECT are outlined in Chapter 6. In Chapter 7, the focus shifts from 
empirical to formal approaches to predictable assembly, where we describe the use of model 
checking to verify safety and liveness conditions of controller assemblies using temporal 
logic. Chapter 8 extracts the key results of the work to date, emphasizing the benefits and risks 
of the PECT approach to predictable assembly. The plan for the next phase of our investigation 
is outlined in Chapter 9.

More details on the work are provided in appendices of this report. Appendix A describes the 
λABA analysis model for predicting controller latency and its interpretation; this is the model 
that emerged from co-refinement. A detailed account of the empirical validation of λABA is 
provided in Appendix B. In Appendix C, we provide the temporal-logic specifications and 
state model used to reason about controller safety conditions. Appendix D provides a sche-
matic for the switch hardware developed for the prototype. The Acronym List on page 145 
defines the acronyms used in this report.
CMU/SEI-2002-TR-031 3
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2 Model Problems for Substation 
Automation

The following description of an SAS is excerpted from a paper by Preiss and Wegmann [Preiss 
01]: 

Networks (power grids) of different topologies are responsible to transport 
energy over short or long distances and finally distribute it to end-consumers 
(such as households and companies). The nodes in such a network are called 
substations .... Substations may be manned or unmanned depending on the 
importance of the station and also on its degree of automation. Substations are 
controlled by Substation Automation Systems (SAS). Since unplanned network 
outages can be disastrous, an SAS is composed of all the electronic equipment 
that is needed to continuously control, monitor, and protect the network. This 
covers all the high voltage equipment outside the substation (overhead lines, 
cables, etc.) as well as those inside the substation (transformers, circuit break-
ers, etc.).

This combination of challenging and concrete requirements means that an SAS provides a 
good basis for model problems in predictable assembly. We outline the basic structure of the 
SAS model problems in Section 2.1. Background information on the International Electrotech-
nical Commission (IEC) 61850 standard, the SAS domain model used to develop the control-
ler PECT prototype, is provided in Section 2.2. An overview of the hardware and software 
used in the operation and controller prototypes is provided in Section 2.3.

2.1 Three Model Problems and Three PECTs
The scale of an SAS depends on the cost, size, and criticality of the primary equipment that it 
manages. For the model problems described in this report, we envisage a manned SAS that has 
an operator workstation and one or more controllers, each of which controls some primary 
equipment (e.g., breakers, switches, and transformers). The operator has a graphical display 
console for observing and interacting with primary equipment. For the purpose of this report, 
we are not concerned with details such as the allocation of controllers to bays or the interaction 
of multiple controllers (e.g., bay interlocking). Instead, we assume a single operator console, a 
single primary switch, and a single controller for that switch. From this general structure, we 
defined three model problems, each leading to a PECT as its model solution. 
CMU/SEI-2002-TR-031 5



The overall scheme is depicted in Figure 1. The SEI developed a low-power, high-speed 
switch (labeled “SEI Switch” in Figure 1) to play the role of primary equipment. One model 
problem was to develop a PECT for predictably assembling SEI switch controllers, a second 
model problem was to develop a PECT for predictably assembling operator interfaces, and a 
third model problem was to develop a higher-order PECT for composing controller and opera-
tor assemblies into an overall SAS application. This PECT would allow operators to monitor 
and control the state of the switch.

Figure 1: Three PECTs

The PECTs were intended to enable the prediction of the end-to-end latency of operations 
within an operator assembly, within a controller assembly, and over a combined operator/con-
troller assembly. Nominal requirements were established for the accuracy and reliability of 
predictions and were expressed as statistical tolerance intervals:7

• controller PECT: 99% confidence that 80% of latency predictions will have a magnitude 
of relative error (MRE) < 5%

• operator PECT: 95% confidence that 80% of latency predictions will have MRE < 10%

• SAS PECT: 95% confidence that 80% of latency predictions will have MRE < 10%

It must be emphasized that these requirements were not selected with any consideration for the 
practicality of or resemblance to operational requirements. For example, the controller PECT 
was to be developed on Windows 2000, and we understood that it is problematic to achieve the 
stated tolerance interval on that platform (given that Windows 2000 is not a real-time operat-
ing system). Instead, the above norms were selected as a plot device for our study of empirical 
validation.

7. The statistical intervals selected for these model problems were derived from Preiss and Wegmann’s work [Preiss 01].
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Although the model problems were purposely kept quite abstract, two technology decisions 
were made in the interest of reducing the gap between the model solutions and their ultimate 
deployment environments. The operator PECT was developed for the ABB Aspect Integration 
Platform (AIP). The AIP is a development and deployment environment for automation sys-
tems; it uses OPC8 to enable operator interfaces to communicate with controllers. The control-
ler PECT was developed using the IEC 61850 standard for substation automation.

This report focuses on the controller PECT, since that model problem posed the most chal-
lenges. Although the latency prediction enabled by the controller PECT is quite flexible in 
defining the end points of an “end-to-end” latency prediction, two specific controller scenarios 
were defined:

1. switch control latency. In this scenario, we are interested in predicting the end-to-end 
latency of an operation to manually “throw” the SEI switch.

2. over-current protection latency. In this scenario, we are interested in predicting the time 
required to detect an over-current condition and automatically “throw” the switch.

These scenarios were selected in part because they correspond to actual SAS functionality, as 
defined in the IEC 61850 standard.

2.2 The IEC 61850 Domain Model
The IEC 61850 standard defines a domain model of the functionality of substation automation 
in a form that is readily adopted for use with software component technology [Ivers 02]. Fig-
ure 2 depicts, in the Unified Modeling Language (UML), the IEC 61850 concepts that are 
most important for SAS model problems. An SAS consists of a physical system and a logical 
system. The physical system comprises primary equipment, such as switches, breakers, and 
transformers, and secondary equipment, such as intelligent electronic devices (IEDs) or other 
controller hardware. The logical system comprises the data and software functions for Super-
visory Control and Data Acquisition (SCADA), Energy Management Systems (EMSs), and 
other substation applications.

The IEC 61850 standard defines a variety of functions and the quality attributes required for 
each, including reliability, accuracy, and latency. Each function is defined in terms of one or 
more logical nodes (LNs). The standard defines many LNs; each one is a primitive building 
block from which many SAS functions may be composed. Conceptually, then, there is a close 
correspondence between LNs and software components. Although it is possible, and perhaps 
reasonable, to deploy several LNs as a single component, we chose to maintain a one-to-one 
correspondence between LNs and the software components that implement them.

8. OPC stands for OLE (Object Linking and Embedding) for Process Control.
CMU/SEI-2002-TR-031 7



Figure 2: Key Concepts of the IEC 61850 Standard for a SAS Model Problem

The IEC 61850 components implemented for the controller PECT are summarized in Table 1. 
Only rudimentary functionality was implemented. (Other components that were developed but 
are not shown here include an OPC gateway for communicating with the operator PECT and a 
clock component for delivering periodic stimulus to controller components.)

Table 1: IEC 61850 LNs as Components of the Controller PECT

IEC 61850 LN Summary of Function

TCTR Calculates current

TVTR Calculates voltage

MMXU Calculates power

CSWI Provides safety rules for the controller (e.g., select before use)

XCBR Acts as the controller interface

PIOC Provides over-current protection
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2.3 Lab Environment and the SEI Switch
The hardware and software platforms used for the operator and controller PECTs were con-
ventional, Intel-based personal computers running Microsoft’s Windows 2000 operating sys-
tem. The operator PECT was developed for Microsoft .NET in C#. The controller PECT used 
VenturCom’s RTX9 real-time extensions package to support priority-based scheduling. Other 
details of the hardware and software configuration for the controller PECT are described in 
Table 14 and Table 15 on page 120. 

The SEI also developed a low-power, high-speed switch to facilitate the prototype develop-
ment. An abstraction of this switch is depicted in Figure 3; the actual schematic is shown in 
Figure 61 on page 139.

Figure 3: SEI Switch Abstraction

The SEI switch communicates with the software controller using two digital input channels for 
commands and five output channels (two digital and three analog) for status and values. Digi-
tal input is provided for the controller to select the switch and set its position to “open” or 
“close.” Analog output provides positive feedback on switch selection status and reports on 
the switch’s current, voltage, and position. The switch is implemented as a serial composition 
of two high-speed electronic switches, which are also known as TRIACs. One TRIAC repre-
sents the primary equipment being controlled (labeled “Software Switch” in Figure 3); the 
other is controlled internally on the SEI switch and used for over-current protection test sce-
narios (labeled “Hardware Switch” in Figure 3). The hardware switch is controlled by a micro-
processor that monitors current and time. If the current exceeds a value for a specified duration 
(both are configurable), the microprocessor “throws” the hardware switch, representing a fail-
ure of the PIOC (see Table 1) component to protect the primary equipment.

9. See <http://www.vci.com> for details about this software package.
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The software switch is operated by a software controller running on the Windows 2000 plat-
form through a data acquisition card that is connected to the analog and digital lines. This con-
troller is shown in detail in Figure 9 on page 23.
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3 Prediction-Enabled Component 
Technology

Our approach to predictable assembly is to develop and use prediction-enabled component 
technologies (PECTs). We formulated the basic concepts of PECT prior to undertaking our 
SAS effort [Hissam 02], but refined and expanded them substantially as a result of the work 
reported here. 

In this chapter, we first outline the theory of PECT in Section 3.1 and then describe the struc-
ture of a PECT implementation in Section 3.2. Next, we provide an overview of Pin, the core 
component model we use to build PECTs, in Section 3.3. Not all the Pin features described in 
this report were implemented in the model solutions; those that were are summarized in Sec-
tion 3.4. Section 3.5 depicts the SAS software controller developed in Pin.

In the following discussion, we adopt the terminology of architecture documentation used by 
Clements and associates to describe PECT [Clements 02b]. You should consult their work if 
the meanings of these terms are not self-evident. Our only modification to this terminology is 
that, in some situations, we prefer the term assembly to view10 for its connotations of compo-
sitionality. 

3.1 The Theory of PECT
Component composition, in the literature, almost universally assumes an underlying compo-
nent-and-connector viewtype.10 Correspondingly, a PECT has a central component-and-
connector10 viewtype, called the constructive viewtype that models runtime components and 
their interaction topologies. In general, we denote a view in this viewtype as a constructive 
assembly. The constructive viewtype has one or more analysis viewtypes, called analysis 
views,11 associated with it. Each analysis viewtype provides a basis for compositional reason-
ing about some runtime behavior; for example, latency, security, safety, liveness, or reliability. 

10. As defined by Clements and associates [Clements 02b].

11. In previous documents, we referred to analysis views as analysis assemblies. View seems preferable to assembly here, be-
cause assembly has a stronger connotation of components and connectors than can be justified in the general case of views
that support behavioral analysis technology. However, in this case study, the term analysis assembly turns out to be appro-
priate.
CMU/SEI-2002-TR-031 11



In PECT, analysis views are derived automatically from constructive assemblies by means of a 
syntactic transformation, called an interpretation (see Figure 4). An interpretation is a partial 
function from constructive assemblies to analysis views. Three interpretations are shown in 
Figure 4: ILATENCY, ISAFETY, and IAVAIL.

Figure 4: Interpretations on Constructive Assemblies and Analysis Views

Interpretations may impose constraints on constructive assemblies beyond those specified in 
the constructive viewtype, for example, restrictions on allowed topologies of component inter-
actions or on component behavior. Interpretations may also require analysis-specific compo-
nent information that is not defined in the constructive viewtype. For example, a latency 
analysis viewtype might require the priority assignment of component execution threads. 

An interpretation is consistent if each constructive assembly is related to, at most, one analysis 
view under that interpretation. An interpretation is valid if there is empirical or formal justifi-
cation for the claim that behaviors predicted in the analysis view will be manifested by the 
assembly of components specified in the constructive view. A PECT, then, consists (in part) of 
a set of consistent and valid interpretations.

3.2 The Structure of PECT
Figure 5 depicts the four different environments in PECT and their conceptual dependencies in 
terms of a UML class diagram. As implied by its name, a PECT consists of a component tech-
nology that has been extended with one or more prediction-enabling technologies. We do not 
claim to have discovered a universally acceptable definition of these technologies; instead, we 
define them relative to PECT. The assembly and runtime environments are provided by a com-
ponent technology discussed in Section 3.2.1, while the analysis and validation environments 
are provided by a prediction-enabling technology discussed in Section 3.2.2.
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Figure 5: The Four Environments of a PECT

3.2.1 Component Technology

A component technology comprises an assembly environment and a runtime environment. In 
current literature and commercial products, a component runtime environment is often 
referred to as a container. We prefer our own terminology here.

• The assembly environment supports development-time activities such as selecting compo-
nents, configuring component properties, and connecting components into assemblies. An 
assembly environment supports pure composition if those operations are the only ones 
required to develop applications. Pure composition involves developing applications 
entirely from components and connectors.

• The runtime environment manages the execution of components (e.g., their execution 
schedules and life cycles), manages resources shared by components, and provides ser-
vices that allow components to interact with the external world. 

Assemblies are deployed in their runtime environment, that is, by a mechanism either native or 
external to the component technology.

Not shown in Figure 5 is the fact that both of the above environments are specialized to sup-
port a particular construction model.12 The construction model specifies the types of compo-
nents in an assembly, their type-specific runtime behavior, and the constraints on their 
connection topology [Bachmann 00]. In our view, this concept of construction model is nearly 
(if not exactly) identical to that of architectural style, as that term has been used in current lit-
erature [Gardiner 00], [Bass 98], [Clements 02b]. Therefore, the Pin construction model, or, 

12. Our use of the term construction model supersedes the earlier, and more ambiguous, term component model.
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more ponderously, the Pin constructive component model, is also sometimes referred to as the 
Pin style. Pin is described in Section 3.3. 

3.2.2 Prediction Enablers

Prediction enablers comprise an analysis environment and a validation environment: 

• The analysis environment supports reasoning about the runtime behavior of a system. 
Simplistically, reasoning is compositional if it supports “divide and conquer” analysis.

• The validation environment is an infrastructure for controlled, experimental validation of 
predictions of assembly behavior made in the analysis environment. 

The association between the analysis and validation environments shown in Figure 5 reflects a 
logical dependency between the theoretical model underlying a particular form of design anal-
ysis and the experimental apparatus needed to experimentally validate the theory.

3.2.3 PECT=Component Technology+Analysis Technology

We enable reasoning in a component technology by extending its assembly environment with 
one or more analysis environments. This extension is implemented via a plug-in interface. An 
analysis environment provides an implementation that satisfies the plug-in, which, in turn, 
allows users of an assembly environment to reason about as many assembly properties as there 
are plug-ins.

We enable the validation of analysis technology by extending the component runtime with one 
or more validation environments. This extension is also implemented by means of a plug-in 
interface, although in this case, we do not envisage multiple validation environments operating 
concurrently (but you never know). The observation mechanism is based on execution traces 
where observable trace events (e.g., procedure calls or message exchanges) have been anno-
tated with property-theory-specific information. 

3.3 The Pin Style13

Pin allows us to emphasize the compositional potential of software component technology. 
This may sound tautological at first, but, with a little study, it becomes apparent that compo-
nents and composition do not always go hand in hand. Consider, for example, the amount of 
“glue” code that must often be developed, in conventional programming languages, to inte-
grate components [Wallnau 02].14 With Pin, we can explore the potential for pure composi-

13. What is referred to here as the Pin Style, or elsewhere as the Pin Component Model, or often just Pin, has become progres-
sively more formal over time. Pin is now (at the time of the second edition of this report) the metamodel of the Construction
and Composition Language (CCL). This language is described by Wallnau and Ivers [Wallnau 03b].
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tion. It is our view that breakthroughs in programmer productivity and system quality require 
higher-level programming abstractions, and that pure composition has many of the qualities 
we might want such abstractions to possess, especially when it is “prediction enabled.”

The Pin style (hereafter referred to as simply Pin) adopts the hardware metaphor that compo-
nents interact with their environment through a set of pins. Components in Pin are specified as 
a set of pins and pin behaviors; assemblies are specified as a set of connections among pins. 
Pin defines a number of connectors, each specialized to a particular type of pin and pin-to-pin 
interaction scheme. In this report, we provide a high-level overview of the graphical notation 
for Pin and the connectors used in SAS PECTs. A more formal and detailed treatment is pro-
vided by Ivers and associates [Ivers 02].15

We describe the notation of components and pins in Section 3.3.1, assemblies and environ-
ments in Section 3.3.2, the behavioral specification of components and the composition of 
component behavior in Section 3.3.3, and assemblies of assemblies in Section 3.3.4. 

3.3.1 Components and Pins

A component interacts with the external world exclusively through its pins; there are no other 
communication paths to or from a component. There are two types of pins: sink pins and 
source pins. A component receives communication (stimuli) from the environment via its sink 
pins and sends communication (responses) to the environment via its source pins. Figure 6 
depicts the graphic notation we use. As suggested by the different shapes given to pin heads in 
Figure 6, there are different types of source and sink pins. These types and their notations are 
defined in the following sections.

14. By “glue” code, we mean something messy and ad hoc that integrators cobble together as needed. While connectors are
also a form of “glue,” we typically think of connectors as being well defined and provided by a compiler or infrastructure.

15. A more recent treatment of this topic since the first edition of this report is provided in a short paper that outlines an algorithm
for the variant (near subset) of UML statecharts used by CCL [Ivers 03]. 
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Figure 6: Pin Notation

Components are denoted by cj, sink pins are denoted by sj (for stimulusj), and source pins are 
denoted by rj (for responsej). Where the distinction between sink and source pin is irrelevant, 
we use pj (for pinj). In all cases, we omit subscripts where they are not required. Component 
names, which must be unique, are also used as pin names. The expression c.p denotes pin p of 
component c. We use capitalized names to denote the predicates defined on pins. For example, 
SomeCondition(c.p) is true if pin c.p satisfies SomeCondition, and is false otherwise. We use 
lowercase names to denote properties of pins. For example, someProperty(c.p) denotes the 
value of pin c.p’s someProperty property. 

Pin Data Interface

All pins have a data interface, denoted by interface(c.p). This corresponds to what is usually 
called the signature of a method and defined as a sequence of formal arguments <name, type, 
mode>, where mode is one of {In, Out, InOut}, and type is one of {Boolean, SByte, UByte, 
SWord, UWord, SDWord, UDWord, SDouble, Float, String}. For simplicity, we do not define 
the representation of these types in this report.

Source Pins

There are two types of source pins: asynchronous and synchronous. Informally, an asynchro-
nous source pin represents the ability of a component to make a request, where the component 
does not wait (or block) for the request to be satisfied. A synchronous source pin also repre-
sents the ability to make a request by a component, but in this case, the component must wait 
for the request to be satisfied. Asynchronous source pins are graphically denoted with the � 
pin head, and synchronous ones use the > pin head. In Figure 6, c.r1 is an asynchronous source 
pin, while c.r2 is a synchronous source pin. It is reasonable to think of asynchronous source 
pins as message sends and synchronous source pins as procedure calls, but you shouldn’t put 
too much faith in this gross interpretation; in fact, that is not how these pins were implemented 
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in the SAS model solutions. Nonetheless, arguments in an asynchronous pin data interface 
must be of mode In. 

If Mandatory(c.r), then c.r is a mandatory source pin; otherwise it is optional. Optional source 
pins need not be connected in an assembly, while mandatory source pins must be connected. 
This models the distinction between uses (mandatory) and calls (optional), respectively. A 
component c0 uses sink pin c1.s if the behavior of c0 depends on the correct behavior of c1.s; 
otherwise it only calls c1.s. Graphically, we distinguish optional source pins from mandatory 
ones by enclosing the names of optional sources in square brackets ([ ]). So, c.[r2] is an 
optional source pin in Figure 6.

Sink Pins

There are two types of sink pins: asynchronous and synchronous, referring to a component’s 
ability to receive asynchronous or synchronous communication, respectively. As with source 
pins, the data interface of an asynchronous sink pin may include only arguments of mode In. 
Asynchronous and synchronous sink pins are graphically denoted with pin heads � and >, 
respectively. In Figure 6, c.s1 is asynchronous, while c.sk, 2 ≤ k ≤ 6, are synchronous.

If Threaded(c.s), then c.s has its own thread of control, and threadId(c.s) denotes its identity. 
Threads represent units of concurrent execution and may be implemented by operating system 
threads, processes, tasks, and so forth. Graphically, tj = threadId(c.s) is denoted as a suffix: tj 
on the sink pin name. In Figure 6, sink pins c.s2 and c.s3 are unthreaded. Threads may be 
shared by sink pins. So, in Figure 6, c.s5 and c.s6 share thread t3, but c.s1 and c.s4 have their 
own threads. Note that asynchronous sink pins must be threaded, that is, 
Asynchronous(c.s) ⇒Threaded(c.s).

If Mutex(c.s), then c.s is called a mutex sink, and only one caller may be active on c.s at any 
given time—in effect, the caller must obtain the semaphore for c.s. Conversely, if 
¬Mutex(c.s), then c.s is called a reentrant sink and is never guarded by a semaphore. Note that 
even a reentrant c.s might force a caller to wait while c.s synchronizes on an internal (to c.s) 
resource. This characteristic pertains only to synchronous sink pins. Mutex sinks are repre-
sented by >|. In Figure 6, Mutex(c.sk), where 3 ≤�k�≤ 6. Note that 
Threaded(c.s) ∧ ¬Asynchronous(c.s) ⇒ Mutex(c.s).

3.3.2 Assemblies and Environments

An assembly is defined as a set of components and their connections. We denote an assembly 
as aj, and a.c denotes the component c in the scope of assembly a. An assembly is graphically 
depicted as a box enclosing a set of connected components, which visually reinforces the 
notion that assemblies are composed of components. Figure 7 depicts a simple assembly to 
illustrate key points in the following discussion.
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A connection, or connector, is established between two components when some source pin ci.r 
is connected to some sink pin cj.s, i ≠ j (this inequality is assumed in further discussion). Com-
ponents ci and cj must be part of the same assembly if they are to be composed. In text, we 
denote the connection as a(ci.r���cj.s), although we usually omit the a() where doing so will 
not cause confusion. A connection ci.r���cj.s requires that ci.r and cj.s be mutually conform-
ant. The rule for mutual conformance is simple: both pins must be synchronous, or both must 
be asynchronous, and their data interfaces must have the same argument types, modes, and 
positions. Graphically, we denote a connection as a double-headed lollipop, with the lollipop 
heads circumscribing the connected pins. In Figure 7, c0.r ��c2.s is a connection.

Figure 7: A Simple Assembly

Each assembly has an associated environment type, which is denoted by the :Ej suffix of an 
assembly name. Environment types play two crucial roles in Pin. First, they define the services 
(specified as sink and source pins) that components may use. Graphically, these services are 
attached to the assembly by means of environment junctions, drawn as small black boxes. For 
example, in Figure 7, a runtime environment associated with assembly a0 provides two ser-
vices: the source pin CLOCK and the sink pin CONSOLE. The environment’s services can be 
thought of as being implemented by an environment-provided component with a single sink 
pin (a0.CONSOLE) and source pin (a0.CLOCK). We denote a connection with an environment 
service in an analogous way to that defined earlier, that is, as a0.CLOCK���a0.c0.s1 and 
a0.c3.r1 � a0.CONSOLE. To make these expressions easier to read, we allow assembly names 
to distribute over �, so, instead of the above, we could write a0(CLOCK���c0.s1) and 
a0(c3.r1 � CONSOLE). Again, we might omit a0 if doing so does not cause confusion.

Second, environment types supply the interaction models implemented by connectors. For 
example, consider the interaction topology in Figure 7 that includes

• CLOCK���c0.s1, c3.r1 � CONSOLE, c2.r2 � c0.s2
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• c0.r � {c1.s, c2.s}

• {c1.r, c2.r1} � c3.s

where we use sets {c.p1, c.p2,...} to denote multiple sinks and sources on 1:N and N:1 compo-
sitions, respectively. The semantics of 1:1 composition (the first bulleted item, above) is likely 
to be clear intuitively, but what about the 1:N asynchronous composition (the second bulleted 
item)? How many connectors are there? Is a broadcast or a sequence of unicasts represented? 
If a sequence is, what is its order? What is the semantics of message buffering—first in, first 
out (FIFO) or last in, last out (LIFO)? What is the capacity of the message buffers? Analo-
gously, what is the interaction order of the N:1 synchronous composition? We may want dif-
ferent answers to these questions in different component runtime environments. Ivers and 
associates give a detailed treatment of how the semantics is defined [Ivers 02].

3.3.3 Behavior: Reaction and Interaction

In PECT, the semantics of composition is defined by analysis views. That is, we define the 
semantics of an assembly as the observable behavior of an assembly. Informally, the Pin syn-
tax describes what an assembly looks like, while the semantics describes what it does at run-
time. We say that Pin is semantically extensible since different syntactic elements of Pin may 
be annotated16 with information that is used to construct, via interpretations, the semantics of 
each assembly in the Pin style. 

Nonetheless, one semantics is of such utility to predictable assembly that it is built into Pin—
the behavior that is specifiable in a process algebra such as Hoare’s CSP [Hoare 85], Magee 
and Kramer’s FSP [Magee 99], or Milner’s CCS [Milner 89] and π-Calculus [Milner 99]. We 
have chosen, at this time, to use CSP as the behavior specification language for Pin. In this 
report, we describe only the essence of our approach. For complete details on it, see A Basis 
for Composition Language CL [Ivers 02]. We first treat the specification of component behav-
ior in the form of reactions and then treat the composition behavior in the form of interactions.

Component Behavior: Reactions

Components have intrinsic behavior, as defined by their implementations. We model the 
behavior of a component in terms of reactions. A reaction is a CSP process that relates one or 
more sink pins to one or more source pins, indicating how the component reacts to the stimula-
tion of its sink pins. The general form is a process that looks something like R = s → r → R, 
where s is a sink pin that can be stimulated, r is a source pin that is stimulated in response to an 
interaction on s, and R is the CSP process that describes this pattern of behavior. Note that 
reactions are defined within the scope of a component, so the usual denotation of c.s, c.r, c.R 
and so on is superfluous.

16. The annotation mechanism or syntax is not described in this report.
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Reactions also reflect the thread structure of a component. For example, all behavior imple-
mented by a common thread is modeled as a single reaction. This allows analyses to take into 
account the actual degree of threading, and potential concurrency errors, of the component 
implementation. A component’s behavior as a whole is specified as the CSP parallel (indicated 
by the || symbol) or interleaved (indicated by the ||| symbol) composition of its reactions, 
depending on which better models the actual interaction among the component’s threads.

The gist of reaction rules is depicted in Figure 8.

Figure 8: Reactions Specify Component Behavior

In this example, there are three reactions: R1, R2, and R3. The ovals are used to illustrate 
which pins are related by each reaction; for example, R1 is shown as relating sink pins s1 and 
s2 to source pins r1 and r2. R1 represents the behavior of a single thread t that is used to process 
sinks s1 and s2. A definition of R1 could be R1 = (s1 → r1 → R1) � (s2 → r2 → R1) where ��
means external choice. 

Reactions allow us to specify the causal dependencies among behaviors in an assembly of 
components. The most basic causal dependency is the dependency chain, as illustrated in the 
above reaction. In fact, this is the only causal dependency we required for the latency analysis 
in SAS model solutions. More complex behaviors, such as coordination among reactions or 
changes in behavior based on accumulated state information, can also be modeled.

Assembly Behavior: Interactions

Up to this point, we have been using the���operator in an informal manner. Although we 
never made the claim, the reader might infer that���has some sort of algebraic properties and 
associated composition semantics. A simple algebraic model for���might be 

, where R�denotes reactions, and in place of the single operator �, we have a 
set of operators , one for each (nth) interaction scheme an defined for an environment E, 
where the operators of an may be of arbitrary arity. 

So, for example, from Figure 7, the 1:N interaction a0(c0.r �� {c1.s, c2.s}) denotes the syntac-
tic composition of three components c0, c1, and c2, in assembly a0, on pins c0.r, c1.s, and c2.s. 
The interaction scheme for this composition is �, as defined in environment type E0. We can-
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not tell whether �� is a binary (unicast) or n-ary (broadcast) operator. This and other aspects of 
the semantics of this interaction must be formally specified. 

Such specifications are not trivial, but there are specification patterns that can simplify them. 
One objective of A Basis for Composition Language CL [Ivers 02] is to produce a general 
approach for specifying the composition semantics for arbitrary interaction schemes (connec-
tors) for arbitrary environment type E. We hasten to add here that end users of PECTs never 
see these semantic complexities, any more than users of modern programming languages see 
the complexity of type checking or code generators.

3.3.4 Hierarchical Assembly

So far we have described a component model that is quite flat: components can interact only 
with components in the same assembly and only with a single runtime environment associated 
with that assembly. Pin will not scale to interesting problems without introducing some form 
of hierarchical composition. In fact, the algebraic model has a hierarchical 
meaning, because R3 = R1�R2 (for some arbitrary binary composition operator���and reac-
tions R{1,2,3}) induces a hierarchy that is rooted at R3 and composes R1 and R2. 

Hierarchical assembly in Pin always involves treating an assembly as a component. That is, 
the assembly has an interface defined in terms of source and sink pins. The correspondence 
between component pins and assembly pins is established by means of assembly junctions. 
Two forms of junctions are defined: null junctions and gateway junctions. We note at the out-
set that hierarchical composition introduces many subtle complexities not generally addressed 
by component technology. We do not discuss these subtle issues in this report because our 
focus is on the controller assembly only.

3.4 Pin Subset in SAS Model Solutions
The preceding description of Pin is more general and complete than the version of Pin used in 
the SAS PECTs—many of the generalities were a result of our experience. The following sum-
marizes those aspects of Pin that were actually used:

• The operator PECT used Microsoft .NET as its component runtime, while the controller 
PECT used Microsoft Windows 2000 augmented with support for real-time, priority-
based scheduling. Differences between these runtimes were reflected in the latency theo-
ries used, but not in composition semantics.

• The assembly environments for the operator and controller PECTs were conventional text 
editors operating on component and assembly descriptions written in Extensible Markup 
Language (XML). 
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CMU/SEI-2002-TR-031 21



• The operator and controller PECTs had an analysis environment in the limited sense that 
latency prediction was automated, and both had validation environments based on traces 
of time-stamped pin activations.

• All the pin types described in Section 3.3.1 were implemented. However, components 
were restricted to one thread of control that was shared by all asynchronous sink pins. Fur-
ther, synchronous sink pins were not threaded.

• Sink pins were annotated (in XML) with execution time. Components were annotated 
with a single execution priority. Callers on synchronous, mutexed sink pins would acquire 
the priority level of the called component.

• The notion of assemblies was implicit—although assemblies were units of deployment, 
they were not named entities. Environment types did not appear at all. Environment ser-
vices, such as periodic timers, were implemented as environment-provided components.

• OPC gateway junctions were used to (hierarchically) compose an assembly of the operator 
PECT with an assembly of the controller PECT; analysis hierarchies using null junctions 
were not used.

• The CSP reactions were specified, on paper, for each controller component. These reac-
tions were then used to manually construct the models used in the temporal-logic model 
checking, as described in Chapter 7 and Appendix C, and the ordering of interactions over 
1:N connection topologies for controller latency prediction.

• There were no formal compositional semantics defined for the connectors.

3.5 SAS Software Controller in Pin
Figure 9 depicts the SAS software controller developed in Pin for this model problem.

The names and functional roles played by the components in Figure 9 (i.e., CSWI, TCTR, 
TVTR, MMXU, XCBR, and PIOC) are defined by the IEC 61850 standard. SwMonSource 
and SwMonSink manage the interface to the hardware switch, Clock is a component that is 
(logically) bundled with the λABA latency model, and OPCGateway allows us to create an 
assembly of assemblies—one that allows the operator and controller assemblies to interact 
using the OPC protocol.
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Figure 9: SAS Software Controller in Pin17

17. Each component in this figure had at most one thread of execution that was shared among all asynchronous sink pins. Those
threads are not depicted in this figure for the sake of simplicity.
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4 PECT Process and Workflows 

4.1 The PECT Development Process
We develop and validate a PECT using a process that consists of four fundamental phases:

1. Definition 

2. Co-Refinement

3. Validation

4. Packaging

During the Definition phase, we define the functional requirements, the assembly property to 
analyze, and the statistical goals for the PECT. Once those goals have been set, we create a 
component model, an analysis model, and a measurement framework through an iterative pro-
cess known as co-refinement. A PECT instance, which integrates the component and analysis 
models, emerges from co-refinement. During the Validation phase, we validate the PECT 
instance against the defined goals. If it meets the goals sufficiently, the PECT is packaged and 
released. If the goals are not met, co-refinement is repeated until they are. Figure 10 shows a 
brief overview of the PECT process. As the arrows indicate, this process is highly iterative.
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Figure 10: An Overview of the PECT Development Method

In the following sections, we translate the PECT process concretely into (using Kruchten’s 
terms) deliverables, workers, activities, artifacts, and workflows [Kruchten 00]. Deliverables 
constitute the primary output of the PECT process. Workers are those involved in performing 
the PECT process. Artifacts describe what is produced during the PECT process. Activities 
describe how the PECT process is accomplished, and workflows provide insight into when in 
the process they occur.

4.1.1 Deliverables

The outcome of the process is a PECT that consists of

• a component technology

• one or more analysis views and their associated interpretations

• a validation environment or other means of establishing trust in analysis and predictions

• validation data and statistical labels

Define

Co-Refine

Validate

Package

[insufficient]

[post: PECT]

[pre: identified business need for predictable
assembly, business case for PECT]
26 CMU/SEI-2002-TR-031



The delivered PECT has the following characteristics:

• zero programming assembly
Components can be assembled into applications without additional programming. If addi-
tional code has to be provided, the code must be encapsulated in PECT-compliant compo-
nents.

• automatic interpretation
To perform predictions in an execution environment where the end assemblies are 
unknown, the PECT must be able to interpret a constructive assembly into an analysis 
view automatically. The analysis view is then used to perform the desired prediction.

• objective trust
Objective trust is achieved by validating the prediction theory using a wide variety of 
assemblies. Statistical means can be used to calculate how many assemblies have to be 
executed to meet the statistical goals set for the prediction theory. 

4.1.2 Workers, Activities, and Artifacts

In the Rational Unified Process (RUP), an activity is generally assigned to a specific worker 
and has a duration of a few hours to a few days [Kruchten 00]; we relax this stipulation some-
what and allow multiple workers to contribute to an activity, where that activity has an indeter-
minate duration. As with the RUP, each activity has a clear purpose, usually centered on 
creating or modifying artifacts—the tangible products of the PECT development method.

Table 2 depicts the major artifacts of the PECT development process that are the result of 
workers performing activities. The fact that each artifact is assigned to just one worker should 
be interpreted not as an exclusive assignment, but rather as an assignment of primary responsi-
bility. In general, multiple workers are required for most artifacts. For example, defining the 
requirements for a PECT is primarily the responsibility of the customer, but setting the appro-
priate requirements requires the contributions of the PECT designer, attribute specialist, and 
component model specialist. 

Table 2: PECT Development Activities 

Activity Workers Artifacts

Define functional requirements customer PECT requirements

Define assembly property customer assembly property definition

Define statistical goals customer normative confidence labels

Define component model component model specialist constructive viewtype

Define analysis model attribute specialist analysis viewtype

Define property theory attribute specialist property theory and its valida-
tion concept
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Below, we describe workers whose roles are not implicitly clear by their names alone:

• component model specialist: defines the constructive viewtype used in the PECT. This 
person may or may not be the designer of a proprietary component technology. Either way, 
if the component technology has already been defined, this specialist will have in-depth 
knowledge about it.

• attribute specialist: defines and helps to validate both the property theory and the analysis 
model. This person must know the theories behind the chosen attribute (emergent prop-
erty) that the PECT is engineered to predict. For example, if the attribute is latency, the 
attribute specialist would likely have in-depth knowledge about real-time performance and 
how to analyze for performance. 

• measurement specialist: develops both the component and assembly measurement appara-
tus and obtains the component and assembly measurements. This person must know how 
to measure and empirically validate the property theories in the PECT and would typically 
have broad knowledge of statistical methods.

• PECT designer: unifies the constructive and analysis models through co-refinement (as 
manifested in the analysis interfaces) and then packages and deploys the PECT. This per-
son holds the holistic view of the PECT and communicates with the other workers to keep 
the various parts of the PECT development synchronized.

Validate theory empirically measurement specialist experiment design, statistical 
labels

Develop analysis interpretations PECT designer component and assembly 
description schemas; interpreta-
tions

Develop component measure-
ment apparatus

component developer

measurement specialist

test components (synthetic, 
actual)
testbench for component and 
assembly measurement

Develop assembly measurement 
apparatus

measurement specialist assembly generator and analysis 
tools

Create validation sample component developer

application assembler

any additional assembly compo-
nents
sample assembly set

Obtain component 
measurements

measurement specialist component measurements 
(labels)

Obtain assembly measurements measurement specialist assembly measurements and 
analysis (labels)

Deploy PECT PECT designer packaged PECT

Table 2: PECT Development Activities  (Continued)

Activity Workers Artifacts
28 CMU/SEI-2002-TR-031



In addition to those workers actually involved in the PECT process, two other roles are key to 
its successful execution: 

• system specialist: has in-depth knowledge about the execution environment that usually 
affects the behavior of the components residing in the PECT. For example, the PECT may 
need to be designed to restrict the use of the operating system to meet the set goals. 

• domain expert: knows how the PECT will be used from the end customer’s perspective 
and provides input about existing standards, methods, and user profiles. This role is 
important, because it helps to ensure that the PECT’s design will fit the system’s intended 
usage.

4.2 Workflows
The workflows in this section are elaborations of the PECT overview workflow shown in Fig-
ure 10 on page 26. 

4.2.1 Definition Phase

The workflow shown in Figure 11 is an elaboration of the Define process shown in Figure 10. 
The Definition phase has two parallel paths—one to define the functional requirements and 
another to gather the necessary requirements for the property of interest and set the PECT’s 
prediction goals.

Figure 11: Definition Phase Workflow

Define Functional 
Requirements 

Define Assembly 
Property

Define Statistical 
Goals

[post: identified property and tolerance
 

[pre: identified business need for predictable
assembly]

requirements]
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Statistical goals should be based on the business need. Because producing it takes effort, a 
PECT should be only as general as necessary to fill that need.

4.2.2 Co-Refinement Phase

During the Co-Refinement phase shown in Figure 12, we define the constructive and analysis 
viewtypes, and the interpretation that integrates them. We also define a plausible and possibly 
high-level scheme for validating predictions based on the analysis viewtype. 

The workflow depicted suggests a process that is somewhat more structured than what occurs 
in actual practice. The constructive and analysis viewtypes are depicted as being developed in 
parallel, but they are, in fact, mutually constraining, as explained and illustrated in Chapter 5. 
In our experience, considering validation places useful constraints on the development of the 
analysis viewtype, so we placed “Define Validation Concept” at the same level of activity in 
the workflow as “Define Constructive Viewtype” and “Define Analysis Viewtype.” A similar 
argument can be made for placing “Define Interpretation” alongside “Define Validation Con-
cept,” although our experience suggests that defining the interpretation is usually the closing 
step in a co-refinement iteration.

Figure 12: Co-Refinement Workflow

Define Constructive 
Viewtype 

Define Analysis 
Viewtype

Define Interpretation 

Define Validation
Concept 

[¬(tractable∧general∧interpretable)]

[tractable ∧ general ∧ interpretable]

[pre: identified property and tolerance 
 

[post: analysis viewtype,
 
 

requirements]

interpretation, validation
concepts]
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The iteration within the co-refinement workflow must not be confused with the iteration that 
results from the empirical validation shown in Figure 13. Within co-refinement, the condition 
for iteration is an assessment of whether the resulting constructive assembly is sufficiently 
general to handle an anticipated range of assemblies and whether the property theory underly-
ing the analysis viewtype will, with reasonable computation and interpretation effort, yield 
predictions for all these assemblies.

4.2.3 Validation Phase

After co-refinement, the resulting PECT is validated against its requirements. The definition 
workflow shown in Figure 11 identifies functional requirements and tolerance requirements. 
Functional requirements define the range of assemblies that must be “spanned” by the con-
struction model and its interpretations; the tolerance requirements refer to the desired quality 
of predictions based on the analysis viewtypes supported by the PECT. The workflow shown 
in Figure 13 is biased toward the validation of analysis viewtypes whose underlying property 
theories are empirical (i.e., based in measurement) rather than formal (i.e., based in logic). As 
this workflow is currently defined, it addresses the validation of both functional requirements 
and statistical goals.
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Figure 13: Empirical Validation Workflow

There are four general aspects to carrying out an empirical validation study:

1. Define the validation goal. 
The goal is a normative or informative statement about the predictive power of the PECT. 
Typically, a goal is stated in terms of the probability that a prediction will lie within some 
accuracy bounds, with some stated confidence level.

2. Define the validation process. 
Validating the accuracy of a prediction is analogous to validating a scientific theory. That 
is, behaviors are observed systematically under controlled circumstances, and this 
observed behavior is then compared to predicted behavior. The key word is systematic, 
since validation results should be, above all else, objective and hence repeatable.

Define Validation 

Analyze Results

Process

Define Validation 
Goal

Collect Validation 
Data

[pre: analysis view and interpretation
statistical norms for predictions]

[post: validation data and labels]
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3. Collect validation data. 
This step involves conducting the actual validation experiment. Important in this activity 
are good laboratory techniques—for example, keeping good notes and records so that 
anomalies can be studied and results can be repeated.

4. Analyze the results. 
The purpose of the analyses is twofold: first, to objectively and reliably describe the pre-
dictive powers of a PECT; second, to provide analysis data to support additional co-refine-
ment, should normative goals fail to be satisfied.

This workflow is expanded considerably in Chapter 6.

4.2.4 Packaging Phase

The workflow for packaging is a lacuna at this time. The objectives of packaging are twofold. 
One objective is to ready the technology for deployment, including the development of instal-
lation support, documentation, and so forth. A second and more fundamental objective is to 
design automation support for the PECT to minimize the property-theory-specific expertise 
required by PECT users to make effective use of analysis viewtypes supported by the PECT. 
This area requires further work.
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5 Co-Refinement of the Controller PECT

5.1 What Is Co-Refinement?
PECT creation is a process of iterative negotiation between the constructive and analysis 
points of view. We call this process co-refinement. Co-refinement does not necessarily follow 
a rigorously defined process, but rather it is channeled by a set of forces that guide co-refine-
ment as the two points of view (models) converge into a PECT.

The constructive point of view pushes for assembly generality; the more assemblies that can 
be represented in the construction model, the better. The analysis point of view pushes for pre-
dictability, which implies constraining the construction model to adhere to the assumptions of 
the property theories that enable analysis and prediction. These forces tend to act in opposition 
to each other.

Practicability, tractability, and interpretability also weigh in as important forces and act as 
moderators. Practicability pushes for a level of generality that is necessary (but no more than 
necessary) to represent some class of realistic system; it acts as a bounds on generality. Tracta-
bility is concerned with the level of difficulty in solving the analysis model; it acts as a bounds 
on predictability. For example, it might not be viable to require a supercomputer to solve the 
analysis model. Interpretability ensures that automatic translation from the construction model 
to the analysis model is possible. This possibility implies the ability to formally specify both 
models and to translate the constructive representation into the analysis representation. Vali-
datability is concerned with the level of difficulty in obtaining empirical validation of the anal-
ysis model.

5.2 How Co-Refinement Proceeds
The co-refinement process starts with an initial, not necessarily formal, description of the “lan-
guages” for the constructive and analysis models. The elements of the construction model lan-
guage are influenced by the PECT’s target domains and how systems in those domains will be 
structured, developed, deployed, and sustained (evolved) over time. The elements of the anal-
ysis model language are simply a subset of some property theory that is suitable for analyzing 
the behavior of interest. 
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Initially, each model is independently subjected to its own starting criteria. The construction 
model18 has to be expressive enough to describe the types of components and interactions 
expected in the domains that will use the PECT. However, initially, the construction model 
might not be interpretable vis-à-vis the analysis model, and the analysis model might not be 
general enough to account for all aspects of the construction model.

Given a starting point for the constructive and analysis models, the forces guide co-refinement 
as the initial models converge into final models that define the PECT. While there is no precise 
set of steps for determining the sequence of intermediaries from the initial models to the final 
models, there are some rules of thumb.

Generality increases monotonically. After the first iteration, the PECT designer should have 
reasonable confidence that the construction model is interpretable and that the analysis model 
is tractable. Therefore, the dominant force in co-refinement at this point is moving the con-
struction model to the desired state of generality. The only reason to reduce generality would 
be if the designer’s confidence in interpretability proved to be unwarranted. 

Interpretability increases monotonically. While co-refinement might not start with interpret-
ability, it must end with it. This leads us to believe that interpretability must monotonically 
increase as co-refinement proceeds. This means that, during co-refinement, the languages 
describing the constructive and analysis models, and the interpretation rules become more for-
mal. In addition, a translator for the construction model is developed iteratively as co-refine-
ment proceeds.

Validatability is an invariant. Validatability is a defining characteristic of a PECT. Unlike 
generality and interpretability, however, it is important that all analysis models be validatable, 
at least in principle, for each iteration of co-refinement. By in principle, we mean that there 
must be a plausible means for obtaining or validating component properties, and for falsifying 
predictions made in the analysis model. While plausibility is not an objective quality, it is one 
that has a reasonable intuitive meaning.

Using these rules, co-refinement drives for increasing generality in the construction model 
until all the following stopping conditions are met:

• The practicability boundary is reached—striving for more generality is not worth it.

• The interpretability boundary is reached—an automatic translation becomes impossible.

• The tractability boundary is reached—because of its complexity, solving the analysis 
model is too costly.

This iterative scheme was depicted in Figure 12 on page 30.

18. The terms construction model and construction model language are used interchangeably in this report.
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5.3 Key Ideas for the Controller PECT
Performance is important in the intended domain for this PECT—power station control. Sen-
sor inputs are gathered at various rates, inputs are coalesced, and actions are taken depending 
on the input values. Computations must adhere to both worst-case and average-case latency 
requirements. Typically systems are multiprocessing on a single processor or multiprocessors, 
connections can be both synchronous and asynchronous, and some data stores must be updated 
atomically.

The property theory for the controller PECT is based on rate monotonic analysis (RMA) 
[Klein 93]. RMA is well suited for predicting worst-case latency for a collection of processes 
on a single processor in a mostly (but not solely) deterministic situation; events occur mostly 
periodically, and process execution times are bounded and do not vary dramatically. RMA 
requires information such as process periods, and execution times and priorities; whether 
mutually exclusive access to shared resources is needed; whether there are intervals of nonpre-
emptability; and whether each process has a unique priority. In general, RMA strives to 
account for any factor that can contribute to latency—the time interval from when an event 
occurs until it has completely been processed.

5.4 Co-Refinement of the Controller PECT
This section describes the starting state (initial condition) for each model and then walks 
through the five iterations of the co-refinement process, leading to λABA, the property theory 
whose validation is the subject of Appendix B. For each iteration, constraints on the construc-
tion model and model semantics (i.e., what is predicted) are described. The five iterations are

• predicting worst-case latency (λW)

• predicting average-case latency (λA)

• introducing mutual exclusion and worst-case blocking (λWB)

• predicting average-case blocking (λAB)

• introducing asynchrony (λABA)

It should be noted that this is an a posteriori examination of a co-refinement experience. A pri-
ori, you would not expect to know the specifics of each iteration or how many iterations are 
required.

5.4.1 Initial Conditions

The initial construction model was relatively simple. It consisted of a collection of compo-
nents, where each component had a set of source and sink pins. Since concurrency was known 
to be important, each component could have either no threads or one thread associated with 
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it.19 Since some components had to be activated periodically, there was a special source pin 
that was denoted as periodic. Naturally, these components were threaded. Sink pins could be 
either reentrant or non-reentrant. Both synchronous and asynchronous connections were 
allowed. 

The analysis model is based on a collection of real-time analysis techniques known as RMA 
for predicting worst-case latency. Latency is the measure of how long it takes to service an 
event. For example, we consider reaching a voltage sensor’s read time as the occurrence of an 
event. Servicing the event comprises all the computations that are necessary to respond to the 
event, such as acquiring input from the sensor, converting the input to a number with some 
physical meaning, filtering noise, combining the input with other data, testing the data against 
some important physical conditions, and then issuing some output. These computations take 
place on a single processor that is also servicing other events. Latency is how long it takes 
from the voltage sensor’s read time (not necessarily when the sensor is actually read) to the 
completion of the response to the event. 

The initial analysis model used a subset of the modeling capabilities of RMA including

• considering only periodic events, that is, those that occur at regular intervals

• each periodic event is allocated its own process (or thread)

• each process is assumed to have a constant, unique priority

• the variability of the execution time for any given component is bounded

• the worst-case latency of all events is less than or equal to the period

• only reentrant, synchronous connections are allowed

• no blocking is allowed (sources of blocking include critical sections and nonpreemptable 
sections)

5.4.2 First Iteration: Worst-Case Latency (λW)

Tractability and interpretability were the dominant forces during this iteration. They caused us 
to both extend the construction model with the annotations necessary to provide the analysis 
model with the needed information and to constrain the construction model to conform to the 
restrictions of the initial conditions of the analysis model. The annotations included

• specifying execution times as properties

• specifying unique priorities for each thread. This turned out to be a significant restriction, 
because Windows imposed severe limitations on the number of priority levels.

19. This has since been generalized. See Section 3.3.1.
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Modifications to the construction model involved mainly the thread model. Since periodic 
invocations were important, we decided to extend the construction model with an explicit 
notion of time using an environment component, the clock component. This extension elimi-
nated the need for a periodic source pin. Also, since the analysis model was not considering 
blocking during this iteration, we disallowed threaded components, because they would have 
resulted in non-reentrant components and hence blocking. The construction model was also 
constrained to allow only synchronous calls, conforming to this restriction of the analysis 
model.

With these restrictions to the analysis model, the worst-case latency for each process could be 
calculated using the following fixed-point calculation:

This formula can be used to compute the worst-case latency Li for the ith process. Ci is the 

execution time of the ith process; Ti is the period of the ith process. Processes 1 through i-1 are 

assumed to be all the processes whose priorities are higher than that of process i. The iterative 
calculation starts by using Ci as the first guess for the worst-case latency by setting L1 to Ci. 

Then it computes Ln+1 using the formula above. It continues until Ln = Ln+1, at which point 

the fixed point has been reached, and Ln+1 is the worst-case latency. 

The interpretation from the construction model to this analysis model (the above formula) is 
straightforward. Execution time (associated with sink pins), periods (associated with clock 
components), and priority (associated with threads) all map directly to the formula. The only 
complication occurred for the case in which a clock component initiates a sequence of compo-
nent calls, as shown in Figure 14.

Figure 14: Clock Component Initiating a Sequence of Interactions

In this case, the period of the clock corresponds directly to the period of process i in the analy-
sis model, the priority of component ci corresponds to the priority of process i in the analysis 
model, and the sum of the execution times of components c1, c2, c3, and so on, corresponds to 
the execution time of process i. 
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At this point, we did not yet have an automatic translation from the constructive to the analysis 
model, but we did have a high degree of confidence that such a translation could be created.20

5.4.3 Second Iteration: Average Latency (λA)

For the second iteration, practicability started to exert influence mainly in terms of the need of 
the construction model to satisfy average-case latency requirements in addition to worst-case 
latency requirements. Another facet of practicability influencing this iteration was the realiza-
tion that the zero-phasing21 assumption of the analysis model was not realizable in the con-
struction model. Therefore during this iteration, the construction model did not change; the 
analysis model evolved to predict average-case latency and to handle non-zero-phasing.

Zero-phasing is significant because a key idea of RMA is that worst-case latency occurs for 
process i when it becomes ready to execute at exactly the same time that all higher-priority 
processes do. The fixed-point formula shown in the previous section computes worst-case 
latency assuming zero-phasing. If the construction model does not in fact adhere to zero-phas-
ing, the prediction might produce a result that is too pessimistic. Accounting for non-zero-
phasing requires only minor changes to the fixed-point formula shown in the previous section. 
These changes were made during this iteration.

A more substantive change to the analysis model was required to calculate average latency. 
The critical observation was that the execution profile of process i repeats itself. The interval 
of repetition (known as the hyper-period) is equal to the least common multiple (LCM) of T1, 
T2, ..., Ti.. Every NP period, process i’s performance behavior repeats, where NPi = LCM(T1, 
T2, ..., Ti)/Ti. Therefore, the latency for the first instance of process i should be the same as the 
latency for the 1+NPi

th instance. To calculate the average latency for process i, we simply 
compute the average of the NPi instances of process i during a hyper-period. The fixed-point 
calculation above had to be generalized to work across the hyper-period instead of just stop-
ping after the first instance of the job.

At this point, we performed a “spot validation” of the interpretation and analysis model. That 
is, we constructed a small experiment, consisting of a small sample (< five simple assemblies) 
to see if we were predicting average latency accurately. The results were encouraging.

20. Although rewrite rules were possible, we chose not to implement them, because the generality of this approach to interpre-
tation was not clear.

21. We say two or more events are zero-phased in time when they happen at the same moment (i.e., there is no time delay
between them). In the context of the controller PECT, zero-phasing means that process i will become ready to execute at
the exact moment all higher-priority processes become ready to execute (the critical instant). 
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5.4.4 Third Iteration: Worst-Case Latency + Blocking (λWB)

During this iteration, practicability continued to be a dominant influence. The controller 
domain required non-reentrant execution within components to ensure data consistency. 

During the first two iterations, the only influences on process latency (in theory) were its own 
execution time and preemption from higher-priority processes. With non-reentrancy, a higher-
priority process might have to wait while a lower-priority process is executing a non-reentrant 
component. This effect is known as blocking. It prolongs latency and must be accounted for in 
the analysis model. 

To account for blocking in the analysis model, a blocking term is simply added to the expres-
sion on the right side of the worst-case latency equation shown on page 39. However, the real 
issue is how to control the magnitude of this term. To do so, we impose a restriction on the 
construction model that is based on another key result of RMA. One of the synchronization 
protocols discovered by RMA is the priority ceiling protocol. That protocol exhibits an impor-
tant property known as the blocked-at-most-once property, which says that a process that exe-
cutes in several critical sections can be blocked in, at most, one critical section. 

The priority ceiling protocol requires that when more than one component interacts with a 
non-reentrant sink pin, the thread for that sink pin must execute at a priority level that is at 
least as high as the priority of the effective thread of any of the calling components. This prior-
ity level is known as the ceiling priority. Note that for this priority assignment to emulate the 
priority ceiling protocol, the thread that is assigned this priority cannot suspend for any reason, 
including input/output (I/O).

The prediction obtained using the priority ceiling is a worst-case prediction with respect to 
blocking, because a blocking term is used for every job in the hyper-period, regardless of 
whether the job is actually blocked during its execution. Assemblies must honor the priority 
ceiling to be well formed with respect to λWB. Since the construction model has no concept of 
priority, it is the interpretation rather than the construction model that enforces this topological 
constraint.

5.4.5 Fourth Iteration: Average Latency + Blocking (λAB)

The goal of this iteration is to calculate average latency in the presence of blocking, taking into 
account the possibility that blocking will occur only for a portion of the jobs in a hyper-period. 
The initial challenge for this iteration was deriving a variation of the fixed-point calculation 
that could also determine when blocking did and did not occur. To make this determination, 
the notion of a subtask was introduced. A subtask is a portion of a component’s computation 
distinguished by its priority; different subtasks have different priorities.
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At this point, a purely analytic approach became unwieldy—in fact, nearly intractable. How-
ever, the analysis model yielded to a hybrid simulation-based approach [Schwetman 78]. In a 
hybrid simulation approach, an analysis model is used to compute values that define initial or 
test conditions in a simulator. Details of the hybrid simulation are provided in Appendix A.

At this stage, a formal interpretation was defined. Although we knew that the average-case 
latency theories were, in principle, validatable, it was by no means clear that the earlier spot 
validation would scale from λA to λAB. The PECT was not yet sufficiently general, since it did 
not accommodate assemblies with asynchronous pins. This led to the final iteration.

5.4.6 Fifth Iteration: Asynchronous Interactions (λABA)

The previous iterations had all involved adding new terms and features to the analysis model, 
and introducing or removing constraints on the construction model to accommodate those 
additions. At this point, it was clear that the final and necessary step of the co-refinement pro-
cess would be to relax the prohibition against asynchronous pins. It was unclear at this point 
how this constraint could be relaxed, or how much its relaxation would affect the analysis 
model or simulation. Our great fear was that it would result in some kind of fundamental dis-
continuity, effectively demonstrating that the basic RMA approach was insufficient, or vastly 
complicating the simulator (loss of tractability).

Our fears proved to be unfounded, however. We made the fortuitous discovery that we could, 
through the application of rewrite rules, transform a constructive assembly with an arbitrary 
topology of asynchronous interactions into a behaviorally equivalent one (from the perspec-
tive of latency computation) with a more restrictive topology, as with synchronous pins only. 
These restrictions simplified the interpretation and preserved the hybrid simulation model. 
Thus, we were able to introduce asynchrony to the latency model strictly through rewriting 
and interpretation.
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6 Empirical Validation

6.1 What Is Empirical Validation?
There are two classes of property theory: those based in logic and those based in measurement. 
Logical property theories, such as those found in model checking and other forms of program 
verification, involve demonstrative reasoning: the validity of a property is mathematically 
demonstrated, or proven, in a way that bars contradiction. Empirical property theories, such as 
λABA, involve plausible reasoning: the validity of a property theory is established inductively, 
based on observations.

The fact that empirical theories are based on observations and measurement introduces uncer-
tainty. The property theory itself may abstract aspects of an implementation that influence the 
assembly-level property. This, in turn, introduces variability and some degree of non-determi-
nacy, for we cannot give a systematic accounting of an abstracted system aspect without undo-
ing the effect of its abstraction.

Empirical validation is the means by which we validate empirical property theories. The vali-
dation does not yield a simple “yes” or “no.” Instead, it produces statistical evidence of a prop-
erty theory’s effectiveness and of the component property measures on which the validation’s 
predictions are based. Before describing the workflow for empirical validation in Section 6.3, 
we provide a brief overview of the statistical models used to express statistical evidence.

6.2 Introduction to Statistical Labels
Rigorous observation takes the form of measurement, and measurement invariably introduces 
error. Thus, measured component properties are described not as discrete values, but as proba-
bility density functions over a range of values. As was the case with component properties, 
measured assembly properties are described using probability density functions over a range 
of values. Likewise, determining the effectiveness of a property theory also involves measure-
ment, this time in a more classical application of the scientific method. The property theory is 
a hypothesis; it is tested by comparing assembly properties predicted by the hypothesized 
property theory with observed assembly properties. 

We refer to the statistical descriptors of component properties and property theory effective-
ness as statistical labels. Our position is also that all empirical properties and property theories 
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can be described in a uniform way, using the same, or very similar, statistical models, resulting 
in standard labels.

6.2.1 Component Labels

The measurement and subsequent description of empirical component properties do not intro-
duce novel methodological challenges. Objective measurement requires a measurement object 
(the component), a measurement scale for the component property of interest (e.g., time, in 
seconds), and a measurement apparatus (e.g., the Microsoft Windows’ high-performance 
clock). Measurement is conducted using the apparatus within some controlled environment 
and with control exerted over all independent variables of the dependent (measured) property.

Component Property Estimators

In general, the measurand Y, or property of interest, is a function of N values: 
 [Taylor 94]. For latency, these values include execution time, blocking 

time, and period. We would like to know the true value of Y, component latency. Of course, the 
true value is not obtainable, as the following definition makes clear: 

True Value: the mean (µ) that would result from an infinite number of measure-
ments of the same measurand carried out under repeatable conditions, assuming 
no systematic error. 

Because we cannot, even in principle, know the true value of µ, we must use an estimator for 
it, one that is produced by statistical methods. 

For example, we take sample observations of X and use their average  as the estimator of µ, a 
population parameter. The uncertainty associated with this estimator is expressed as the devia-
tion s such that the true—and unknown—value of µ will fall within some interval  with 
some specified confidence. The factor k is known as the coverage factor. When k=1,  
yields a 68% confidence interval (one standard deviation). That is, we have 0.68 confidence 
that this interval contains µ. Typically, we compute the 0.95 confidence interval (k=2), which 
yields higher confidence but a larger bound. This confidence interval expresses a fundamental 
component measure; it is fundamental because  is how a component property is modeled 
in any property theory parameterized by that component property.

Component Property Intervals

It might be useful to have other descriptors, or labels, for component properties. One such 
label is the tolerance interval. For example, in the case of component latency, the consumer 
might want to know which latency interval  contains a specified proportion p of all exe-
cutions of component c. For instance, a tolerance interval with p=0.95 might state that there is 

Y f X1 X2 … XN, , ,( )=

x

x ks±

x ks±

x ks±

x ms±
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a 0.95 probability that any given component’s execution will have a latency of , 
where  is the computed tolerance interval.

Another potentially useful label is the conceptual, but not mathematical,22 inverse of the above 
tolerance interval. This label is the confidence interval on the probability of satisfying some 
property specification. Conceptually, this label is the inverse of the tolerance interval, since we 
specify the latency interval here and use it to compute the probability that any particular exe-
cution will fall within this interval. For example, we might specify the latency interval  
and use it to calculate that there is a 0.64 probability that any given component’s execution 
will fall within the interval . 

6.2.2 Property Theory Labels

Measuring and describing the effectiveness of property theories is methodologically more 
challenging than measuring component properties. As noted earlier, at the limit, this measure-
ment process reduces to theory falsification as it is practiced in the empirical sciences; in that 
sense, at least, no new ground is broken. Our concern is with characterizing (labeling) the 
quality of a property theory. Such a characterization translates into labeling the accuracy of the 
theory’s predictions and determining how often they are accurate.

One-Tail Inferential Intervals

We use inferential statistical models to characterize how effective a property theory is likely to 
be for future predictions. For this purpose, we use confidence and tolerance intervals. For 
property theories, we are usually interested in the MRE between predicted and observed val-
ues. For latency, this equation is used:

where a.λ′ is the measured assembly latency and a.λ is the predicted latency.23 A normative 
confidence interval will describe the probability that the MRE for a particular prediction will 
lie within a specified MRE interval. 

Notice that the lower bound for an MRE interval represents situations where predictions are 
better than the mean MRE of the statistical sample (i.e., in our experiment, for N=30 assem-
blies). While we might want to know how frequently our predictions are better than the mean, 
we might be concerned only when the predictions are worse than the mean. In this case, we 

22. Different equations are used to compute conceptual and mathematical intervals.

23. We note in passing that a.λ′ is described using the fundamental label for components. That is, for statistical analysis, the
assembly is treated as a component, and the estimator for assembly latency is described by an interval obtained using a
coverage factor k=2.

50ms 17ms±

17ms±

5ms±

50ms 5 ms±

MRE
a.λ a.λ′–

a.λ′
--------------------------=
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use a one-tail interval, or bound, instead of a two-tail interval. The one-tail tolerance interval 
for λABA is summarized in Table 3. 

The tolerance interval for λABA can be interpreted as saying that 80% of latency predictions 
will not exceed an MRE of roughly 1%, and that the manner in which that interval is con-
structed yields greater than 99% confidence that this upper bound is correct. As with measures 
of component properties, one- and two-tail normative confidence intervals can be computed 
by specifying interval bounds and computing p, the probability that any particular prediction 
will satisfy these specified bounds.

Linear Correlation

Linear correlation is a descriptive statistic: it describes the strength of correlation between two 
data sets and is not directly useful for drawing inferences about future data sets. A consumer 
might be interested in linear correlation analysis as a descriptor of previous experimental vali-
dations of a property theory’s accuracy.

We characterize that accuracy using linear correlation analysis, which allows us to assess the 
strength of the linear relation between two variables—in our case, predicted and observed 
assembly latency. The result of such analysis is the coefficient of determination, 0 ≤ R2 ≤ 1, 
where 0 represents no relation, and 1 represents a perfect linear relation. In a perfect prediction 
model, predicted and observed latency would be identical; therefore, the goal for the model 
builder is a linear relation.

For λABA, a distribution-free linear correlation was used (Spearman rank correlation). The 
resulting R2 = 0.998 means that there is < 0.001 probability that the reported correlation could 
have been achieved by chance.

6.3 Workflow for Empirical Validation
The workflow in Figure 15 expands the first two steps of the four-step validation process illus-
trated in Figure 13 on page 32. Figure 13’s workflow is reproduced in the left portion of Figure 

Table 3: Distribution-Free Tolerance Interval for λABA

Part of Interval Description

N = 156 sample size

γ = 0.9929 confidence level

p = 0.80 population

µMRE = 0.0051 MRE

UB = .01 upper bound
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15; the first two steps of Figure 13 have been replaced by their expansions, resulting in a six-
step workflow.

Figure 15: Expanded Workflow for Empirical Validation

In the remainder of this section, we describe the six steps shown in Figure 15.

6.3.1 Define Validation Goal

The overall objective of empirical validation is to assign a statistical label to a property theory 
that describes the effectiveness of that theory and to design the means of producing trusted 
component labels in support of that theory. 

Two types of goals yielding different types of statistical labels are possible: normative and 
informative. Normative goals express a prediction requirement that has to be met. For exam-
ple, predictions might be required to be, on average, accurate to within 0.5%. An informative 
goal is free of norms—it’s up to the validator to describe the effectiveness of predictions. For 
example, the validator might compute the upper bound of a confidence interval for 60, 70, 80, 
and 90% of predictions, assuming varying levels of confidence.

Part of defining the validation outcome involves selecting the statistical models used for 
labels. As discussed in Section 6.2.2, we have used the MRE as a basis for the empirical vali-
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dation of property theories and two forms of intervals for descriptive and inferential labels. 
Those choices are not a necessary consequence of the initial “customer” objective—rather 
they are choices made by the measurement specialist of the best labels for a particular valida-
tion effort. As we learn more about empirical validation, we anticipate a broadened repertoire 
of statistical models.

For λABA, the design problem was to develop a controller PECT that would predict latency 
with an upper bound of a tolerance interval for MRE ≤ 0.05, for a population p = 0.80, with a 
confidence level γ =0.99. Thus, the empirical validation for λABA was dominated by normative 
goals.

6.3.2 Define Measures

It is not always obvious what exactly must be measured to validate a property theory, or which 
measurement units are best to express those measures. Indeed, frequently there are several 
possible measurement units, depending on whether a direct or indirect approach is desired, or 
on the degree of accuracy or stability required. A good discussion of measures and measure-
ments can be found in the seminal work of Fenton and Pleeger [Fenton 97]. 

From λABA, we have identified the property of interest—latency—and defined it as the total 
time a task requires to perform its work. The constituents of this total time—execution time 
and blocking time—also had to be expressed in terms of the Pin component model and mea-
surement units. We also had to know whether there was a technical basis for measurement at 
all, which, surprisingly perhaps, was not trivial.

Translating the notion of time to Pin was conceptually straightforward. Sink and source pins 
provided convenient “hooks” for hanging instrumentation. Each pin can be instrumented to 
record the moment of its activation (e.g., when a sink pin receives a request or when a source 
pin sends a message or makes a request), and the moment of its deactivation (e.g., when the 
sink pin satisfies its request or when a source pin completes its message send or has its request 
satisfied). These four measurement points permit a variety of time durations to be recorded on 
any assembly.

Defining the appropriate units of time depends on the available instruments. For λABA, we 
chose to use the Microsoft high-performance clock, which records times in nanoseconds. 
Before making this selection, though, we had to establish that that clock could be used to mea-
sure component latency. To do so, we had to first demonstrate that the latency of a process, as 
recorded by the clock, was equal, within measurement tolerance, to the sum of system time 
and wait time for a process, as recorded by the central processing unit (CPU) clock. Once we 
had established this correlation, which itself required a validation activity, we were satisfied 
with our defined measures.
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6.3.3 Define Sampling Procedure

Defining the validation experiment eventually requires that we select a set of components and 
assemblies for measurement. This can be viewed as selecting components and assemblies 
from a population, with one important proviso: if we expect a PECT to work for all future 
assemblies, we must assume that not all of its components and assemblies exist. So a question 
arises as to how to select from a population of nonexistent entities. The three main approaches 
to selecting samples from a population are random, convenience, and judgment sampling.

Random sampling is useful when samples can truly be selected randomly. Convenience sam-
pling occurs when the sample is taken while considering some a priori knowledge. Judgment 
sampling occurs when the sample is selected explicitly and sufficient domain knowledge 
exists to judge a sample set that represents the whole population. Of the three methods, ran-
dom sampling provides the best statistical data, but it might be difficult to obtain a real random 
set of samples. On the other hand, convenience and judgment sampling are more practical and 
easier to perform, but the resulting statistical data might be biased and therefore not fully rep-
resentative. 

For λABA, random sampling was used to collect latency measures from a set of synthetic com-
ponents—components whose functionality consists of consuming CPU resources. We used a 
combination of judgment and random sampling to collect measures for assembly latency mea-
sures, and we used judgment sampling to define variation points for assemblies. Doing so cre-
ated an assembly design space for constructing viable assemblies. Then, from that design 
space, we selected assemblies randomly. For example, in the controller PECT, no realistic 
assemblies have more than 50 components. Thus, that was an upper bound for one variation 
point in the assembly design space that we defined.

In an analytic study, we must define the design space and select a random sample from it. Our 
approach to validating λABA was to exploit the “pure composition” aspects of Pin to define 
various dimensions of variation—the number of input and output connectors, the number of 
instances of each type of component, and so forth—and thereby sketch the outlines of the 
design space. Using these variations, we generated the pseudorandom assemblies.

We have made only tentative steps in understanding how to analytically characterize the 
design space and draw a random sample from it. At this point, we have only two conjectures. 
The first is that a component model that provides well-defined and restricted rules for allow-
able patterns of component interaction is likely to be better suited for statistical analysis than a 
wholly unconstrained component model. The second conjecture is that product line settings 
may augment a component model’s structure-oriented rules with rules governing semantic 
variation (i.e., product feature variation [Clements 02a]). 
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Section B.2.3 on page 107 describes the details of the sampling procedure for both compo-
nents and assemblies used in the empirical validation of the controller PECT.

6.3.4 Develop Measurement Infrastructure

As with any experimental process, a measurement infrastructure must be developed to collect 
data. Where objective measurements are taken, as with λABA, this infrastructure must be suffi-
ciently well constructed to produce reliable and repeatable measurements. For λABA, we 
developed a shared-memory mechanism for capturing traces of pin activation and deactiva-
tion. We also developed a distributed, trace mechanism based on the Universal Datagram Pro-
tocol (UDP) for measuring higher-order SAS assemblies (i.e., an assembly of operator and 
controller subassemblies). 

The measurement infrastructure must also be sufficiently well documented to allow the results 
to be repeated, possibly by disinterested third parties not associated with the original valida-
tion experiment. Just what should be documented has much to do with the property of interest. 
Often, it is clear which environmental factors have a direct correlation to a property, for 
instance, latency. Latency for a component will vary from environment to environment, based 
on processor speed. Other environmental characteristics could have an indirect correlation to a 
property—which may not be immediately obvious—for example, the compiler (or compiler 
flags) used to produce the component.

Describing the test environment becomes increasingly important when trying to establish 
causal relationships between runtime and observed behavior and is especially critical when a 
discrepancy exists between the predictions and observations. Trying to find a correlation 
between such environmental characteristics, and behaviors of components and assemblies can 
be difficult. Altering the environment to limit or prevent unexpected behaviors is one viable 
approach. However, having a description about what characteristics were present during the 
validation may hold clues as to what was and was not considered to be possible sources of 
error.

For λABA, the environmental characteristics that were recorded for the validation included 
platform hardware characteristics (e.g., processor, bus, and memory speed), software charac-
teristics (e.g., operating system and compiler versions), and residual processes (e.g., those 
background tasks running at the time of the validation). These characteristics are discussed in 
Appendix B. A summary of the overall measurement and analysis infrastructure developed for 
λABA is discussed in Appendix B.

6.3.5 Collect Validation Data

This step more or less speaks for itself. The only issue that requires attention is that a realistic 
validation experiment will generate a large volume of data and may require significant com-
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puting resources and time to do so. All generated data should be archived so that it can be sub-
jected to historical analysis. 

6.3.6 Analyze Results

As noted earlier, the primary objective of empirical validation is to assign statistical labels to 
components and property theories. The computation of these labels should be straightforward, 
given an adequate definition of goals, measures, and sampling procedures. However, this does 
not mean that the only utility of empirical validation is the assignment of labels. In particular, 
the data generated by the validation experiment can be an invaluable resource for improving 
the quality of the property theory.

This proved to be a source of particularly valuable lessons in the case of λABA. The data pro-
duced by validating the property theory uncovered several subtle and not so subtle inconsis-
tencies in the PECT implementation. It is the repair of these inconsistencies that led to a 
second edition of this report.
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7 Safety and Liveness Analysis in the 
Controller PECT 

This report is focused on an empirical property theory (λABA) and its validation. Equally vital 
to PECT are formal property theories. In this chapter, we illustrate the main ideas of model 
checking, one approach to formally verifying safety and liveness properties of components 
and assemblies. In that approach, a system model is extracted from component reactions and 
their compositions in an assembly. Safety and liveness conditions are expressed in a modal 
(temporal) logic and tested by an exhaustive search of the state space described by the system 
model.

We describe only the modeling and verification of temporal claims against a single component 
in the controller assembly. We defer a description of composed controller models and verifica-
tions to a follow-on report. A formal description of composition in Pin is provided by Ivers 
and associates [Ivers 02].

7.1 Model Checking
Model checking is a formal method for verifying finite-state concurrent systems. It is based on 
algorithms for system verification that operate on a system model usually expressed in some 
form of state-transition representation.

This system model is then checked against a set of desired properties expressed in a modal 
(temporal) logic. Model checking is a desirable verification approach, because it is automated 
and exhaustive. State-transition representations, in essence finite state machines, are intuitive 
to the average engineer. Temporal logics, such as computational tree logic (CTL) and linear 
temporal logic (LTL), are not as intuitive, but can be mastered with practice [Prior 62], [Pnueli 
85]. Verification of the system is accomplished by “checking” the model—exhaustively 
searching the state space described by the system model and, for each state, checking whether 
the desired properties have been satisfied.
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Characteristics of system models that favor model checking over other behavioral verification 
techniques include

• ongoing I/O behavior (in so-called “reactive” systems)

• concurrency (not a single flow of control)

• control intensive (minimal data manipulation)

The controller assembly has each of the above characteristics, indicating that model checking 
is likely to be a good fit.

The next section addresses how we apply model checking in the context of a PECT.

7.2 Process
The goal of our analysis is to determine whether the assembly of components used to imple-
ment the controller satisfies various safety and liveness properties. Therefore, we begin by 
producing a model of the software components used to implement the controller. In this exam-
ple, we focus on the CSWI component of the SEI switch controller (see Figure 9 on page 23).

First, we build a Pin model of the CSWI component, basing the model on the implemented 
component, rather than its requirements. This is an important distinction; we care about what 
the implemented component actually does, not what it should do. Essentially, we want to 
ensure a strong correspondence between the model and the component implementation. 
Extraction of the model from the implementation is one way to accomplish this, even when 
performed manually, as in this example. (Alternatively, we could have built the model and 
generated the implementation; however, since we already had the latter, that approach was not 
useful.)

Next, we use a model checker to analyze the CSWI model. However, the Pin model uses a for-
mal language—CSP [Hoare 85]—that is not understood by the model checker used in this 
exercise—NuSMV [Cimatti 00]. Consequently, we must define an interpretation of Pin to 
NuSMV. In this exercise, the interpretation is performed manually, although there is no obvi-
ous reason why it cannot be automated.

Once the CSWI model is expressed in a form that is understood by the model checker, we for-
malize the safety and liveness properties we want to analyze and use the model checker to 
determine whether the model satisfies them. Any failure that is uncovered by the tool must 
then be analyzed. Most failures include a counterexample—an execution trace in which the 
desired property is not satisfied. 
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A failure could mean one of three things:

1. There is an error in the CSWI component model. If the counterexample is not a possible 
trace of the implemented component, the formal component model must be corrected.

2. There is an error in the formalization of the safety or liveness property. If the counterex-
ample does not violate the desired property we meant to check, the property has not been 
formalized correctly.

3. The model does not satisfy the property. If the counterexample is a possible trace of the 
implemented component and fails to satisfy the desired property, we have a real error, and 
the component implementation must be repaired.

Any type of failure can mean that we iterate back through the steps of this process. Modeling 
and analysis are often iterative processes that conclude only when a statement can be made 
regarding whether the component satisfies its required safety and liveness properties.

The steps of this process are elaborated in the following sections.

7.3 Building the Model
We assume that a Pin model of an assembly is available, such as the one shown in Figure 9 on 
page 23. As noted, the model checker we used, NuSMV, does not accept input in the formal 
notation used by Pin. Consequently, we translate our Pin model into a formal notation that the 
model checker will accept. The steps to translating the model include (corresponding to Sec-
tions 7.3.1-7.3.4, respectively)

1. Determine the scope of problem analysis.

2. Produce a Pin model of the problem.

3. Translate the Pin model into a state machine.

4. Translate the state machine into NuSMV.

These steps are elaborated in the following sections.

7.3.1 Determining the Scope of Problem Analysis

The context diagram shown in Figure 16 shows the controller assembly in Pin and highlights 
the region of that assembly used for our verification. The CSWI component contains the logic 
for interfacing to the operator and carrying out the selection and operation protocol with the 
XCBR component. The XCBR component controls the signals sent to the physical switch, and 
contains protection logic (via PIOC) and the logic needed to accept commands (i.e., select, 
open, and close) from the operator (via CSWI).
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Figure 16: Controller System Diagram

As shown in Figure 16, the operator has two inputs to the controller—opsel and oppos—that 
indicate requests to select or position the switch. The CSWI component can send two outputs 
to the XCBR component—sbosel and sbopos—the effect of which is to select or position the 
switch. Before continuing, CSWI always waits until it receives a reply from XCBR indicating 
that the task has been performed. XCBR has two outputs to the physical switch where a selec-
tion or position change actually occurs—swsel and swpos. Two inputs from the physical 
switch—sosel and sopos—provide acknowledgement feedback to XCBR, through the respec-
tive sbo channels, and ultimately to the operator (perhaps in the form of indicator lights, etc.). 

In this discussion, we focus on modeling the behavior of the controller assembly’s CSWI com-
ponent.

7.3.2 Producing a Pin Model of the Problem

CSWI has two sink pins—opsel and oppos—each of which is a synchronous mutex pin. Addi-
tionally, each sink pin is threaded, and the two sink pins are handled by the same thread. CSWI 
also has two synchronous source pins—sbosel and sbopos.
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Because CSWI only has one thread of control, it is formally modeled in CSP as a single reac-
tion. This specification is shown in Figure 17. Note that the leading underscore character (_) in 
event names indicates the initiation of an interaction on a pin of that name; the absence of a 
leading underscore indicates the completion of an interaction.

Figure 17: CSWI Pin Specification

7.3.3 Translating the Pin Model into a State Machine

While the Pin model of CSWI is based on CSP, NuSMV (our target model checker) requires 
input in the form of a finite state machine. As shown in Figure 18, we translated the Pin model 
to a simple state machine as an intermediate representation.

The transitions in that diagram correspond to CSP events in the Pin model. The names associ-
ated with these transitions, and subsequently in the NuSMV model, are based on the names of 
CSP events in the Pin model. For example, the Pin model defines the operator selection event 
as _opsel, with a data parameter of either on or off, written as _opsel.on or 
_opsel.off, respectively. To preserve traceability to event names in the Pin model, the 
state machine modifies this convention slightly by changing _opsel.on to _opsel_on or 
_opsel.off to _opsel_off. This transformation is necessitated by the syntax of 
NuSMV, which uses the period (.) operator for a different purpose. Consequently, periods (as 
well as exclamation points [!] and question marks [?]) were changed to underscores.

CSWI = _opsel.on -> _sbosel!on -> sbosel -> opsel -> Selected
    [] _opsel.off -> _sbosel!off -> sbosel -> opsel -> CWSI
Selected = _opsel.on -> _sbosel!on -> sbosel -> opsel ->

Selected
        [] _opsel.off -> _sbosel!off -> sbosel -> opsel -> CSWI
        [] _oppos?x -> _sbopos!x -> sbopos -> _sbosel!off ->

sbosel -> oppos -> CSWI
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Figure 18: CSWI State Machine

Seven states compose CSWI: waiting, selecting, selected, opening, closing, deselecting, and 
unselecting.

The states and major transitions are described below.

• waiting state: CSWI starts in the waiting state and transitions to another state only when an 
_opsel_on or _opsel_off event occurs. An _opsel_on event, for example, indi-
cates that the operator is selecting a switch and results in a transition to the selecting state. 
As part of this transition, CSWI initiates an _sbosel_on event. The “event1/event2” 
convention indicates that an occurrence of event1 not only triggers a transition, but also 
results in the generation of event2.24 This convention is how we reflect the behavior found 
in the Pin reaction specification.

• selecting state: CSWI remains in the selecting state until it receives an acknowledgement 
that the selection has been accomplished, an sbosel output is received, and an opsel input 
is generated. CSWI then transitions to the selected state. 

• selected state: CSWI waits in the selected state until one of the following events occurs: 

- An _opsel_off event is received, indicating the operator action of deselecting the 
switch and causing a transition to the unselecting state.

- An _oppos_open event is received, indicating the operator action of requesting to 
open the switch and causing a transition to the opening state.

24. This follows the convention of Harel’s statecharts, which are reflected in UML [Rumbaugh 00], where “event2” is called “ac-
tion.”
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- An _oppos_close event is received, indicating the operator action of requesting to 
close the switch and causing a transition to the closing state.

- An _opsel_on event is received, indicating the operator action of selecting the 
switch and causing a transition back to the selecting state.

• opening state: If CSWI is in the opening state and an sbopos output is received, CSWI 
transitions to the deselecting state and generates an _sbosel_off event to deselect the 
switch, since the positioning is complete. If the acknowledge is not received, the system 
continues to wait in the opening state.

• closing state: If CSWI is in the closing state and an sbopos output is received, CSWI tran-
sitions to the deselecting state and generates an _sbosel_off event to deselect the 
switch, since the positioning is complete. If the acknowledge is not received, the system 
continues to wait in the closing state.

• deselecting state: If CSWI is in the deselecting state and an sbosel output is received, 
CSWI transitions to the waiting state and generates an oppos input.

• unselecting state: If CSWI is in the unselecting state and an sbosel output is received, 
CSWI transitions to the waiting state and generates an opsel input.

Although they are similar, the deselecting and unselecting states are both needed; the select 
and operate actions require different acknowledgements to be generated, even though the tran-
sition to each is caused by the same thing—an sbosel output.

7.3.4 Translating the State Machine into NuSMV

This section discusses the translation of the model from the state machine represented in Fig-
ure 18 to the NuSMV textual model shown in Appendix C. It was done in a straightforward 
manner following the steps listed below. Note that since the Pin model indicates that CSWI 
has a single thread of control, there is no need to use multiple processes in the NuSMV model.

1. The transitions in the state machine (e.g., _opsel_on and _oppos_open) appear in 
the NuSMV model as symbolic names associated with the input variable, which can be 
assigned any of the input values shown in the state diagram. The input variable can also 
have the value “none,” indicating that no inputs currently exist. The input variable is 
declared as an IVAR,25 directing NuSMV to consider all combinations of input sequences 
when analyzing claims. 

25. IVAR is a keyword from the NuSMV tool. It’s short for “input variable.”
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2. The outputs in the state machine (e.g., _sbosel_on and _sbopos_open) appear in 
the NuSMV model as symbolic names associated with the output variable, which is 
declared as a VAR.26 As with input, output can have the value “none,” indicating that 
no outputs currently exist. The output variable is changed only within the NuSMV 
model. The other VAR declaration is the state variable, which takes on the state names 
from the state machine (e.g., waiting and selecting).

3. There is a case expression relating the behavior of the output variable at the next state to 
the current values of the state and input variables. For example, the first rule states 
that if the current state is waiting and the current input is _opsel_on, the next 
value of the output is _sbosel_on. Hence, each output is delayed by a single tick 
from the condition causing it. The last rule in the case expression (1: none) indicates 
that if none of the other rules in the case expression apply (e.g., if the state is waiting 
and the input is _oppos_open), the output variable will default to “none.”

4. The other case expression relates the changes in the state variable to the current state 
and the input variable. For example, if the state is waiting and the input is 
_opsel_on, the next state will become selecting. The last rule (1: state) indicates 
that if none of the other rules apply, the next state remains equal to the current state.

7.4 Analyzing the Model
Once we have a model of CSWI in a form that NuSMV understands, we can apply model 
checking to determine whether the model (and, therefore, the component’s implementation) 
satisfies various system properties. For example, this type of analysis can determine whether 
deadlock is possible.

In this section, we begin by discussing different types of system properties that we can analyze 
using model checking. We then introduce temporal logic, a formal language commonly used to 
express system properties. Finally, we show examples of properties expressed in temporal 
logic that we used in analyzing the CSWI model.

7.4.1 Types of System Properties

The types of system properties evaluated by model checkers are typically classified as safety 
or liveness properties. Although other taxonomies have been proposed by Naumovich and 
Clarke [Naumovich 00], we continue to use the safety and liveness classification. Intuitively, a 
safety property specifies that “bad things” cannot happen, and a liveness property specifies 
that “good things” eventually happen [Lamport 77].

26. VAR is a keyword from the NuSMV tool. It’s short for “variable.”
60 CMU/SEI-2002-TR-031



To illustrate these points, consider a software application in which two or more concurrent 
processes must access the same critical section of code. A condition that must hold is mutual 
exclusion, which means that two (or more) concurrent processes cannot enter and execute a 
common critical section of code simultaneously. This condition can be specified as the safety 
property “two processes cannot be in the same critical section at the same time.” Another con-
dition that is usually desirable in concurrent processes is starvation freedom, which means that 
eventually each process will enter the critical section. This can be specified as the liveness 
property “whenever process P1 wants to enter the critical section, it will eventually do so.”

7.4.2 Temporal Logic

Temporal logic is frequently used to formally define safety and liveness properties. Two well-
known logics used in verification are LTL and CTL. 

In LTL, time is viewed as a linear sequence of time instants, with each time instant having 
exactly one successor. The semantic intuition of LTL expressions (where a and b are primitive 
prepositions) is as follows: 

-  

This is read as “henceforth (or always) a” and means that statement a is true now and 
in all future time instants.

-  

This is read as “eventually a” and means that a is true either now or at some time 
instant in the future. 

- �a 

This is read as “in the next state or at the next time instant, a will be true.”

- au b 

This is read as “a is true until b becomes true.”

In CTL, time is viewed as a branching tree of time instants, each with one or more possible 
successors. A path is a particular linear sequence of time instants (a path in the tree) in which 
each successive time instant is one of the possible successors of the current time instant. The 
semantic intuition of CTL expressions (where p and q are primitive prepositions) is as fol-
lows:

- AG p
Along all paths, p holds globally (henceforth).

- EG p
At least one path exists where p holds globally.

a

a◊
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- AF p
Along all paths, p holds at some time instant in the future (eventually).

- EF p
A path exists where p holds at some time instant in the future.

- AX p
Along all paths, p holds in the next time instant.

- A[p U q]
Along all paths, p holds until q holds.

- E[p U q]
A path exists where p holds until q holds.

Both LTL and CTL include the usual  logic expressions. While LTL 

expressions appear to be a subset of CTL, their expressive powers differ. It is possible to 
express properties in LTL that cannot be expressed in CTL, and vice versa. The NuSMV 
model checker allows claims to be expressed in either CTL or LTL; however, CTL was used as 
the primary specification language in this experiment.

7.4.3 CSWI Claims

The desired system properties analyzed with respect to the CSWI model include safety and 
liveness properties. The specific behavioral characteristics of each property are often first 
expressed in a natural English language format and then translated into CTL (or LTL). These 
temporal logic expressions are often called claims. Examples of claims for CSWI are dis-
cussed in the following sections.

Example Liveness Claim

A number of liveness claims were constructed for CSWI, the most obvious of which investi-
gate its operational correctness. Those claims follow the pattern of “if an operator action 
occurs, a signal is conveyed to the appropriate entity.” In this example, the entity would be 
XCBR. A specific desired liveness property is “if the operator selects the switch, the ‘select 
before operate’ signal is sent to the XCBR.” Translating this into the appropriate CTL expres-
sion results in

AG ((state = waiting) ∧ (input = _opsel_on) −> AX(output = _sbosel_on))

The above claim is read as “for all paths globally, whenever CSWI is waiting and the operator 
select comes on, the sbo select signal will come on.” 

a b∧ a b∨ a a b→,¬, ,
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Example Safety Claim

Safety properties are logical expressions of conditions that should never occur, presumably 
because the resultant action could endanger a person or harm equipment. One of the opera-
tional characteristics of the controller assembly is the enforcement of the “select before oper-
ate” protocol. This can be rephrased as the desired safety property “under human control, the 
switch cannot be operated unless it is first selected.” Translating this into the appropriate CTL 
expression results in

¬E [¬(output = _sbosel_on) U (output = _sbopos_open)]

The above statement is read as “it is impossible for the switch to be opened 
(_sbopos_open) before it has been selected (_sbosel_on).”

Example Failed Claim

The CSWI model does not satisfy the following safety claim:

AG(input = _opsel_on −> AG output = none)

This is actually a good thing, because we don’t want the safety claim to be true. The claim 
asserts that whenever the operator selects the switch, nothing will ever happen (i.e., no output 
will be generated). When we run this claim in NuSMV, it confirms that the model does not sat-
isfy the claim, and it also presents a counterexample showing a particular trace in which the 
claim is not satisfied. The counterexample is shown in Figure 19.

Figure 19: NuSMV Counterexample

-- specification AG (input = _opsel_on -> AG output = none)
-- is false
-- as demonstrated by the following execution sequence
State 1.1:
input = none
output = none
state = waiting

State 1.2:
input = _opsel_on

State 1.3:
input = _oppos_close
output = _sbosel_on
state = selecting
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The counterexample represents three time instants (1.1, 1.2, and 1.3), which have the follow-
ing meanings:

• 1.1: CSWI begins in the initial state, waiting, and there is no input or output.

• 1.2: An input of _opsel_on is received, indicating that the operator selects the switch.

• 1.3: An output of _sbosel_on is generated, and CSWI transitions to the selecting state.

In the final time instant, 1.3, CSWI generates an output, violating the claim that nothing will 
happen after an operator selects the switch.

The NuSMV model and the claims verified against it are contained in Appendix C.
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8 Discussion

The basic structure and concepts of a PECT had been prototyped before the SAS model prob-
lems were defined [Hissam 02]. Nonetheless, the SAS problems, although simple by the stan-
dards of production systems, were complex enough to reveal previously unappreciated, or 
underappreciated, subtleties of PECT. We discuss some of those subtleties, with an emphasis 
on those aspects of PECT that were shown to require further study. In Section 8.1, we discuss 
methodological results, while, in Section 8.2, we briefly touch on the model solutions.

8.1 Results on Method

8.1.1 Interfaces Between Specialized Skills

One striking observation is that designing, implementing, and validating a PECT requires a 
combination of specialized expertise. Some indication of this can be gleaned from the different 
workers identified in Chapter 4. Table 4 focuses not on workers, but on their skills, and in par-
ticular those skills needed to build the SAS PECT. To some extent, these skills are coherent 
with the workers identified earlier. However, it is significant that we often found it necessary 
for a single worker to straddle several skills, suggesting, as is anticipated in the RUP, that a 
single person will fill many roles, perhaps simultaneously. Note that some divergence from the 
general set of workers and their implied skills outlined in Chapter 4 is expected, given our 
focus on research rather than production. 

Table 4: Areas of Expertise Needed to Build SAS Operator and Controller 
PECTs 

Area of Expertise Use of Expertise in SAS Model Solutions

component technology Design the Pin component model, application program interface (API), 
runtime environment, and deployment model. 

component-based 
development 

Implement the component technology, and define and implement con-
formant SAS components (including their behavioral models) and their 
SAS assemblies.

systems programming Implement real-time extensions to Windows 2000, observation mecha-
nisms for validation environments, and low-level features of the compo-
nent runtime environment.

measurement, valida-
tion, experimental design, 
statistical analysis

Define measurement scheme, and statistical analysis and labeling 
approach for component execution time and latency property theories. 
Conduct component measurement and empirical validation.
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As discussed in Chapter 5, co-refinement is a means by which actors possessing expertise in 
two domains, each with specialized conceptual schemes and vocabularies, can nonetheless 
negotiate mutual satisfaction of a shared concern (practicability), while ensuring satisfaction 
of their unique concerns (generality and tractability). Co-refinement is a negotiation process 
that establishes a shared conceptual interface between those actors. Note that although the 
interface is conceptual, it serves an analogous role to the more familiar notion of software 
interface: it helps to make explicit, and therefore manage, the dependencies in a system.

Figure 20: Interfaces Among PECT Development Skills

This metaphor of negotiation is apt and can be applied elsewhere in the PECT development 
process. Consider, for example, the interface between the skills depicted in Figure 20. Above 
or beneath each skill, we placed, in brackets ( [ ] ), a one-word descriptor for the PECT design 
concern that motivates the application of that skill. The associations are labeled with a one- or 
two-word descriptor of a shared concern. In Figure 20, we show a shared concern between 
component technology and measurement validation—“certifiable.” This concern covers issues 
such as whether the measured property can be validated by an independent party, whether the 

performance modeling Define the latency property theory based on the theory underlying 
RMA.

model checking Develop model-checker-specific state models and define, develop, and 
check temporal claims of controller safety and liveness conditions.

language design and for-
mal semantics

Design the specification language(s) for Pin assemblies and the formal 
(CSP) compositional semantics of connectors between component 
(CSP) behaviors.

electronics Design, develop, and calibrate test hardware to simulate switch control. 
This custom hardware was used to empirically validate the controller 
latency theory.

substation automation Define the model problems and evaluation criteria such that the PECT 
reflects a representative class of design and engineering problems.

Table 4: Areas of Expertise Needed to Build SAS Operator and Controller 
PECTs  (Continued)

Area of Expertise Use of Expertise in SAS Model Solutions

measurement
validation

component
technology

performance
modeling

interpretable

substation
automation

certifiable

systems
programming

measurable

Skills Interface:

Skill Interfaces TBD

[tractable] [general]

[repeatable]

[implementable][valuable]

Co-Refinement

representative

validatable
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measures fall within required confidence or tolerance intervals, or whether the level of system-
atic and random measurement error can be quantified. Measurement and validation also share 
a concern with the domain specialist—whether the assemblies used for empirical validation 
are representative of real design problems. 

It is unreasonable to expect a single person to possess the range of expertise reflected in Figure 
20. A transitionable PECT development method must provide a clear distribution of these 
forms of expertise across different workers and processes that define a separation of the skills 
across activities.

8.1.2 Infrastructure Complexity

Carl Sagan introduced his television series, Cosmos, with the statement, “To bake an apple pie, 
we must first create the universe.” 

Before we can assemble components and predict their aggregate properties, we must create a 
PECT infrastructure that includes the collection of programs exclusive of application-level 
(e.g., controller-level) components and their assemblies. The view of PECT depicted in Figure 
5 on page 13, The Four Environments of a PECT, is a good guide to what constitutes infra-
structure. Nonetheless, that structure is guilty of oversimplification. The practicality of PECT 
rests, to some extent, on the cost of developing and maintaining its infrastructure. We must 
therefore strive to understand which part of a PECT infrastructure’s complexity is inherently 
related to PECT, and which part arises from concerns that have already been addressed by 
available technology or is inherent to a problem domain such as SAS.

One approach to obtaining this understanding is to examine Figure 5 from the perspective of a 
software development environment (SDE). Clearly, more is required of an SDE than the 
assembly and analysis environments shown in Figure 5. An SDE would also include facilities 
for configuration and version management, and a repository of components and assemblies, 
for example. The components themselves will likely be implemented in a conventional pro-
gramming language such as C#, C++, or Java. This suggests that code browsing, compiling, 
linking, and debugging facilities are also required in a PECT. Still, none of this is part of a 
PECT-specific infrastructure, and it is all readily available—for example, Microsoft’s Visual-
Studio and Borland C++’s Developer. What remains is to ensure that a PECT infrastructure is 
integrated with an existing SDE. While not trivial, this is not a substantial risk to PECT.

Another way to look at Figure 5, however, is from the perspective of a language-specific SDE 
(LS-SDE). A language comprises its syntax and semantics. In PECT, the syntax of the lan-
guage is defined by the construction model [Ivers 02]. However, the language used to specify 
(constructive) assemblies for any PECT is not necessarily simple in structure; its syntax and 
semantics are dependent on an open-ended set of environment types and analysis views, only 
some of which may be applicable in any given application. This added complexity must be 
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laid directly on the PECT doorstep—it cannot be waived off as a simple matter of SDE tool-
ing.

Some of the infrastructure needed to support such a semantically extensible LS-SDE can be 
regarded as a one-time investment—once developed, a construction model and its infrastruc-
ture can be used repeatedly for a family of applications [van Ommering 02]. This suggests that 
a PECT may be more easily justified in the context of a product line. Although product lines 
require a substantial organizational commitment, they are justified by business considerations 
[Clements 02a], and PECT may in fact make product lines more effective. On the other hand, 
there is not likely to be an infinite supply of useful construction models. For example, Pin 
bears a strong resemblance to other component languages, notably Darwin [Magee 93], 
Wright [Allen 97], and the emerging UML 2.0 standard.27 There is hope, then, for conver-
gence on an industry-standard component language. 

8.1.3 Design Space: Rules for Inclusion and Exclusion 

We have adopted the idea of a PECT design space as a basis for validating empirical property 
theories—in this report, latency. The term design space has a metaphorical connotation, but it 
is given concrete meaning in empirical validation through its definition as a set of discrete 
variation points. That is, we define design space as an N-dimensional cartesian coordinate sys-
tem,28 where coordinates on each dimension take values from a (small) finite set representing 
one possible variation at that variation point, or on that dimension. From this design space, we 
select the sample of assemblies to use for the statistical analysis of predicted versus observed 
assembly behaviors.

The coordinate system for this design space defines the set of assemblies that are included 
within the scope of a property theory. That is, the coordinate system defines inclusion rules for 
assemblies. That definition reflects a positive statement of where a property theory must be 
valid, in the sense that any sample taken from this design space will be representative of the 
class of systems to which this PECT will be applied. We want the predictions to be valid for all 
members of this class. There is evidently a close connection between this concept of design 
space and that of variation points in product line architecture (e.g., Theil and Hein’s work 
[Theil 02]), and in fact we use the term variation point to emphasize this connection. 

In practice, however, we must also define rules for exclusion from the design space. That is, 
we will almost certainly want to characterize not just where we think the property theory 

27. UML 2.0 is currently a work in progress. See <http://www.omg.org/uml/> for more information about it.

28. To be more precise, the coordinate system under discussion defines sufficient conditions for the assemblies of a class of
products; the necessary conditions are defined by the construction model and its interpretation under the property theory
being validated. For example, the interpretation of the controller latency theory λABA restricts assembly topologies to only
those that satisfy the priority ceiling constraint. All assemblies must satisfy these purely syntactic, and therefore necessary,
conditions.
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should be valid, but also where we know it is not valid. One way to approach this is to discover 
the analysis limits for each variation point. The analysis limits of a variation point define the 
greatest lower bounds and/or the least upper bound for the set of values defined for each varia-
tion point.29 More simply, each variation point can be tested to destruction to find its analysis 
limits. This is analogous to the approach taken by Gorton and Liu [Gorton 02]; however, their 
measurement object is a large-scale commercial off-the-shelf (COTS) component (an Enter-
prise JavaBeans server) and not the property theory used to predict performance.

In general, there has been insufficient work in software engineering research regarding the 
empirical validation of design theories. PECT provides a conceptual vocabulary and technical 
means for making much needed progress in that area.

8.1.4 Confidence Intervals for Formal Theories

If there has been insufficient work in the empirical validation of design theories based on 
observation (and, therefore, measurement), there has been almost no work in the empirical val-
idation of theories based on formal logic. (Barnett and Schulte’s work is an exception [Barnett 
01].) Indeed, the very notions seem to be mutually exclusive, which may account for the lack 
of attention to this subject. Nonetheless, assertions about safety and liveness properties of 
assemblies (as discussed in Chapter 7) are made with respect to a model of the components’ 
behaviors and their interactions. We can have 100% confidence that a claim is satisfied or fal-
sified by a model. However, there are two more substantial questions:

1. Can we have objective confidence that the model corresponds to reality? 

2. Can we have confidence that the model is sufficient to justify the claims?

The answer to question 1 depends, to some extent, on how the correspondence (the hypothe-
sized “satisfies” relation) between the model and reality is established in the first place. It 
might be established through automated (implying formal) translation. Two forms of auto-
mated translation are possible: generating components from models (e.g., Sharygina’s work 
[Sharygina 02]) and generating models from components (e.g., Havelund and Pressburger’s 
work [Havelund 00]). The first form is common in practice, while the second is more of a 
research topic. In both cases, our confidence in the satisfaction claim is proportional, if not 
equal, to our confidence in the correctness of the translator implementation. This does not lead 
to infinite regress, however, since we have an empirical means of establishing this confidence 
through the testing of the translator. If, however, the correspondence between the model and 
component is manual, there is no basis for objective confidence in the hypothesized “satisfies” 

29. We assume that the set of values for each variation point is partially ordered. This assumption seems reasonable if there is
a correspondence between the variation point and some property theory parameter. Only those variation points will be of
interest when testing that theory’s failure.
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relation. The implication is that we must use automation to generate models and/or compo-
nents in our approach to PECT.

The answer to question 2 is more subtle and rests on equivalence relations over models. Ask-
ing whether a model satisfies an implementation (we now use this term in place of reality) is 
just a more specific form of the question of whether two models are equivalent for some pur-
pose. Sometimes, but by no means always, the more concrete model is said to refine, or be a 
refinement of, the more abstract model; the equivalence relation is then called refinement. A 
property proven to hold for a model will also hold for its refinements.30 However, there are 
many different ways of defining refinement. Roscoe defines a hierarchy of three forms of 
refinement for the CSP process algebra—trace, trace failures, and failures-divergence refine-
ment [Roscoe 98]; Davies (citing work by Reed [Reed 88]) describes a lattice of nine refine-
ment equivalences for CSP [Davies 93]. Not to be outdone, van Glabbeek [van Glabbeek 01] 
identifies 13 equivalence relations, not all based on CSP traces. In each case, different notions 
of equivalence can be used to justify different claims. 

We can draw two inferences from the discussion of question 2. First, we should leave the defi-
nition of equivalence relations over formal models—and the theorem provers based in them—
to the experts; we should apply the fruits of their efforts in PECT. Second, a PECT infrastruc-
ture must be flexible enough to accommodate a variety of formal theories, each of which pro-
vides a notion of semantic equivalence sufficient to make the kinds of specification claims 
required.

8.2 Results on Model Solutions
Three model problems were posed, one leading to an operator-level PECT, one to a controller-
level PECT, and one to a higher-order PECT for assemblies of assemblies. In the final analy-
sis, only the operator and controller PECTs were developed. While a higher-order operator/
controller assembly was demonstrated, no property theory was developed for higher-order 
assemblies.

The operator-level PECT was developed without incident. However, it became apparent dur-
ing its development that the operator interface was quite simple—in fact, only reentrant sink 
pins were required. Moreover, operator display latency is completely dominated in any higher-
order assembly—the time required to interact with the display and perform data validation on 
operator input is minor (often less than a simple scheduling question), compared with network 
and controller latency. 

30. This is actually too strong a statement; not all properties are preserved under refinement—deadlock freedom, for example.
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Nonetheless, we developed a simple latency property theory for the operator PECT that 
proved to be, under the highly constrained construction model used, highly accurate. A sum-
mary of the property theory’s performance is shown in Figure 21. We do not summarize the 
results of this performance as a confidence or tolerance interval, since the simplicity of the 
PECT led us to focus our validation efforts elsewhere. 

Figure 21: Results of Spot Validation of Operator PECT Latency Theory

The controller-level PECT presented considerably more methodological and technological 
challenges, most of which have been discussed already. To reiterate the main results, the λABA 
produces stable and accurate predictions—a 99% confidence interval for an upper bound of 
1% MRE for 8 out of 10 predictions. A full report on the empirical validation of λABA is pro-
vided in Appendix B.

The λABA validation exercise was more interesting for its methodological implications than 
for its validation of a specific latency model. The initial validation data revealed a significant 
quotient of systematic and random error. Several experiments were required to stabilize the 
model, each of which exposed different sources of experimental error. The first three served to 
remove errors in the measurement infrastructure itself—the instrumentation was developed in 
tandem with the validation work and was therefore itself a work in progress. The last two runs 
served to remove inconsistencies between the model and the controller runtime implementa-
tion. In other words, the empirical validation exposed an inconsistency between model 
assumption and runtime implementation; moreover, the raw data produced by the validation 
allowed us to quickly identify the sources of error.
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9 Next Steps

As noted in the introduction to this report, the objective for this work was exploration—the 
technical concepts of PECT and the methods for developing and validating a PECT. As with 
any exploration, a body of knowledge was generated that must now be consolidated. Improved 
understanding leads to new, and more challenging, questions that must be explored. 

In this chapter, we summarize the most important areas of consolidation and exploration. 
Motivating these priorities is our plan to extend the work reported here during the next year to 
accommodate more rigorous feasibility requirements and, working with our industry partner, 
ABB, to incorporate feasibility requirements drawn from the domains of substation automa-
tion and industrial robotics.

9.1 PECT Infrastructure
The infrastructure of a PECT is only a means to an end—predictable assembly from certifiable 
components. However, it is a necessary means, and our ability to “scale up” the PECT 
approach requires some up-front investment in that infrastructure. Some of this investment has 
already occurred as a by-product of producing SAS model solutions and their PECTs; more 
needs to be done.

9.1.1 Measurement and Validation Environment

A substantial suite of tools was developed to measure component execution time, automati-
cally generate assembly samples, interpret those assemblies to instantiate and operate on anal-
ysis views, capture traces of assembly execution, and perform statistical analysis of the timed 
execution traces vice their predicted traces. Most of the tools in this tool suite were used for 
both the operator and controller PECTs, suggesting that those tools may well form the core of 
a common measurement and validation environment for future PECT development. 

The future work required is consolidative in nature; it involves integrating, refining, and rug-
gedizing the existing tool set. Integration will achieve the end-to-end automation that is 
required to generate the large data sets necessary to empirically validate a substantial design 
space. This automation will require more attention to the interfaces defined between tools and 
to data interchange syntax and semantics. A good foundation for data interchange has been 
established by using XML to externalize component assemblies, but this externalization must 
be made consistent with an evolving construction model and its specification language.
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9.1.2 Core Pin Language and Assembly Environment

One of the tenants of the PECT approach is that complexity can be “packaged” and hidden 
from end consumers. Still, there will be some minimum, irreducible complexity exposed by 
each analysis view. If this complexity is to be manageable in the aggregate, we must strive to 
eliminate as many forms of unnecessary complexity as possible. To (mis)appropriate a now 
famous political aphorism, “it’s the packaging, stupid!”

The process used in the SAS model solutions for creating and deploying assemblies of compo-
nents was tedious and error prone. Component properties and assemblies of components were 
encoded directly in XML, and although the connector “wiring” was generated automatically 
from XML, there is no disguising the awkwardness of representation and process. A visual 
composition environment (e.g., see the work of Plakosh and associates—specifically Chapter 
5 [Plakosh 99]) is a form of packaging that can dramatically simplify, and make more pleasur-
able, the process of attributing component behavior, and developing, analyzing, and deploying 
their assemblies.

As discussed in Section 8.1.2 on page 67, a (visual) PECT assembly environment is a form of 
LS-SDE—in this case, one that emphasizes pure composition. The future work needed in this 
area is a mix of exploration and consolidation, and requires a definition of a core language for 
the Pin component model (see the work of Ivers and associates for a start at this [Ivers 02]) and 
the development of a visual environment to support it (a small matter of programming). By 
core, we mean a graphical and textual syntax (including a syntax for reaction rules) and syn-
tax-directed externalization.

9.1.3 Real-Time Component Runtime Environment

One pleasant surprise in developing the SAS model solutions was that the component runtime 
environments for the operator and controller were rather simple to develop. Only the controller 
environment posed a challenge due to the artificial circumstance of our building a priority-
based real-time PECT on an operating system (Windows 2000) with very limited support for 
priority-based scheduling. Even so, the operator and controller component runtime environ-
ments emerged largely from a restriction of component freedom to only a limited set of envi-
ronment (runtime) interfaces. 

Still, for the next stage of PECT development, more care must be taken when selecting an 
underlying operating system and specifying the environment types for hierarchical assemblies 
(see Section 3.3.2 on page 17)—the latter supports distributed assemblies. A definition of 
these environment types will also be essential to the compositional semantics of environment-
specific connectors added to the core Pin component model.
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9.1.4 Model Checking (Analysis) Environments

The SAS model problems were focused primarily on theories of latency. For PECT to be suc-
cessful, it must be applicable to other behavioral theories. Compositional theories of reliability 
for components and assemblies are also of interest to the software industry. Empirical theories 
for compositional reliability are possible, but generalized, falsifiable theories have proven to 
be elusive. See the work of Mason [Mason 02], and Stafford and McGregor [Stafford 02] for 
an entree to this topic. Formal proofs of correctness have traditionally been thought of only as 
a means of obtaining reliability, not for predicting it. However, as discussed in Section 8.1.4 on 
page 69, there may be an empirical dimension to formal theories of correctness after all.

Complete proofs of correctness remain problematic, but within recent years, substantial 
progress has been made in improving the practicality of technologies for so-called partial 
proofs of correctness. In particular, proofs based on the exhaustive model checking of specific 
safety and liveness properties specified in a temporal logic are becoming almost mainstream. 
For recent developments in model checking of control systems, see Sharygina’s work [Shary-
gina 02], for details on process algebra and model checking of concurrent Java programs, see 
the work of Magee and Kramer [Magee 99], and for a more theoretical perspective on the 
model checking, see the work of Clarke and associates [Clarke 99]. These results and those 
related to them are finding their way into practice. For example, Microsoft is using composi-
tional verification to certify third-party device drivers [Ball 02].31 Our principle motivation for 
using the CSP process algebra to specify models of component behavior (i.e., reactions) is that 
models of assembly behavior can be composed for analysis automatically.

Our concrete next step is to develop back ends to generate lower-level model representations 
for use in formal model checkers such as SMV32 [Cimatti 00], Failures-Divergence Refine-
ment [Gardiner 00], and SPIN [Holzman 97], probably in that order. Although this is not triv-
ial, it is fairly simple. More complexity is involved in the question of compositional reduction 
and abstraction, and other techniques to minimize the state space of composed assembly 
behaviors. Our approach is to defer as many of these details to the back-end analysis tool as is 
practical and to introduce such techniques in the Pin infrastructure only as needed.

9.2 PECT Method
This report has outlined in a broad way the processes involved in developing and validating a 
PECT. The general area of certification is ripe for consolidation into a PECT validation guide 
and further exploration into the certification locale (i.e., the environment where the certifica-
tion will be done). The next steps in these areas are outlined below.

31. For more information, see <http://research.microsoft.com/slam/>.

32. SMV is a symbolic model-checking tool developed at Carnegie Mellon University. For more information about it, see 
<http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.ps>.
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9.2.1 PECT Empirical Validation Guide

How is a validation experiment constructed? How are measurements collected, and how is 
systematic and random error quantified? How is systematic error removed? And how is the 
remaining error propagated? How many samples are required to achieve the desired statistical 
confidence? Which form of confidence interval is most appropriate? How is the assembly pop-
ulation defined, and how is the sample (or frame) of that population selected? What inferences 
can be drawn given this sampling procedure? What statistical tools can be used to analyze 
unexpected results?

Most of these questions are reflected in the workflows discussed for empirical validation in 
Chapter 6 and illustrated in detail in Appendix B. However, our workflows are descriptive 
rather than prescriptive—they describe what steps should be performed, but do not, in most 
cases, specify how. Any prescriptions provided are quite general. As a result, the skills needed 
to validate a PECT are not well contained within the current method; a more prescriptive guide 
for laboratory validation work is a necessary consolidation effort. The objective of a prescrip-
tive guide would be to describe the validation process and identify (if not describe) the experi-
mental and statistical foundations necessary for conducting a sound validation. Elements of 
such a guide are outlined by Moreno and associates [Moreno 02], but many more elements are 
needed. 

9.2.2 Certification Locale and Foundations for Trust

Our work so far has focused on establishing component measures in a laboratory setting. We 
have not yet addressed issues of how these measures can be established independently. Of 
equal importance to the ability of third parties to validate the predictive power of a PECT is 
their ability to assign trusted and objective properties to components. One aspect is the poten-
tial of insurance underwriting (e.g., see the work of Li and associates [Li 02]) as a basis for a 
weaker notion of trust, which we may call confidence. This is, however, just one aspect of a set 
of aspects required to establish what amounts to a social network of trust. We plan to explore 
them in the context of our next round of industry model problems.
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Appendix A λABA Property Theory

An integral part of a PECT is its reasoning framework, which comprises three elements: a 
property theory that allows reasoning about a specific quality attribute using models of the 
system; an automated reasoning procedure that maps assemblies to elements of the property 
theory (interpretation) and produces predictions about the assemblies; and a validation proce-
dure that is used to assess the validity of the predictions. This appendix describes the first two 
elements of the λABA reasoning framework; Appendix B shows how empirical evidence is 
used to validate the predictions.

λABA can be used to predict the average latency of arbitrary execution paths through an assem-
bly comprised of concurrent periodic tasks with bounded execution times running on a single 
processor. The essential concepts of the λABA property theory are presented in Section A.1, 
and the algorithms used for prediction are discussed in Section A.2. Section A.3 describes the 
Pin-to-λABA interpretation, and Section A.4 gives an (abstract) syntax-directed translation 
scheme for this interpretation.

A.1 Essential Concepts of the λABA Property Theory
A task is the unit of concurrency in the system; it executes periodically and has a fixed period. 
Initially, let’s assume that a task has two other properties: priority and CPU time (sometimes 
referred to as execution time). We refer to each complete execution of a task as a job. The job 
latency is the amount of time it takes from the moment the task is ready to run to the moment 
it finishes executing. In Figure 22, there are three tasks that are ready to run at time zero. The 
timeline shows six jobs for task T1, each one with a latency of one unit of time. It shows four 
jobs for task T2, of which the first, second and fourth have a latency of three units of time, and 
the third has a latency of two units of time. Finally, the timeline shows one job for task T3 that 
has a latency of 14 units of time. 

The latency of different jobs of the same task may be different due to the phasing of tasks and 
their priorities. In Figure 22, for example, as a result of delays, T2 latency varies from two to 
three units of time. The start of a task is sometimes delayed because of a higher-priority task 
(e.g., the start of the first job of T2 is delayed by T1). A delay can also occur when a task is 
already running and is preempted by a higher-priority task (e.g., in its second job, T2 is pre-
empted by T1).
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Given N tasks Ti, we define the hyper-period33 (HP) as the least common multiple (LCM) of 
the periods of all tasks. As shown in Figure 22, the hyper-period is the amount of time until the 
pattern of execution for a set of tasks repeats. We only need to analyze the hyper-period, 
because it covers all the possible latencies that a task will exhibit. After a hyper-period, the 
pattern of latencies repeats, meaning that, for each task, the number of latency predictions can 
be computed as follows:

Besides the period, a task Ti has a property, Ti.offset, that indicates the arrival time of the 
task’s first job. In Figure 22, all tasks have offset zero, but in most assemblies analyzed using 
λABA, tasks are ready to run their first job at different times after the first job of the first task 
starts. In this case, the tasks have different offsets. Period and offset are required, fixed-value 
properties of a task. 

33. Sometimes also referred to as cycle time in real-time literature.

Figure 22: Timeline Showing Task Phasing and Hyper-Period
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Legend
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Task execution - Start of execution is delayed by a higher-priority task(s), and execution is preempted by 
higher-priority task(s) during execution. 

Task execution - Start of execution is not delayed but the task execution is preempted by higher-priority task(s) 
during execution. 
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Each task Ti consists of a sequence of subtasks, Ti.subtasks, that perform the actual computa-
tion. A subtask corresponds to the execution that takes place when a sink pin of a component is 
activated. Each subtask sj has a priority, sj.priority, and an execution time, sj.C. These concepts 
and their relations are depicted in Figure 23. The total execution time of a task can be calcu-
lated as the sum of the execution time of its subtasks.

The following are the major assumptions of the λABA property theory: 

• A task is the only unit of concurrency. In fact, tasks are partitioned in subtasks, but sub-
tasks within a task run sequentially, not concurrently.

• A subtask corresponds to the activation of a component and, because different components 
may have different priorities, each subtask runs at a different priority. Therefore, the same 
task can run at different priorities depending on which subtask of that task is running at the 
moment.34

• A task can be preempted only by a higher-priority task.35

• If no higher-priority task is ready, a running task runs up to completion.

• Subtasks do not yield the CPU until they complete their execution (i.e., tasks do not sus-
pend themselves).

• Subtasks do not block on I/O.

λABA does not address the situation where tasks can be blocked waiting on an I/O request, but 
it can handle blocking on a semaphore to enter a critical section. If two or more tasks share a 
critical section, that section is modeled as a subtask in each task. In Figure 24, the shared criti-
cal section is subtask C. Task A consists of subtasks A1, A2, C, and D; task B consists of sub-
tasks B1, C, and D.

34. Priorities are fixed and predefined by the assembly developer; priorities are not assigned using rate monotonic assignment.

35. Based on Figure 23, one can argue that tasks do not have priority. Indeed, when we say that a task T is running at priority
X, we implicitly mean that the subtask of T that is currently running has priority X. Also, when we say task T1 preempts task
T2, it is the current subtask of T1 that is preempting the current subtask of T2.

Figure 23: Elements of the λABA Analysis Model
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The priority of critical section C must be assigned according to the priority ceiling protocol.36 
That is, its priority has to be as high as the highest priority of all the subtasks immediately pre-
ceding the critical section. For example, if the priority of A2 is 2 and the priority of B1 is 4, the 
priority of C has to be at least 5. In Section A.3, we will see how interpretation handles priori-
ties.

A.2 λABA Predictor
As explained in Chapter 5, the initial λ* property theories were purely analytic. When we 
wanted to know not only how the latency of a task would be affected by blocking, but also 
when blocking would occur, the amount of information in the model made the formulation of a 
purely analysis model quite awkward. Thus, we developed a simulator that uses the tasks, sub-
tasks and their properties to simulate the execution of one hyper-period, keeping track of the 
state of all the tasks while advancing time.

36. The use of a priority ceiling has several virtues, including the blocked-at-most-once property of assemblies that adhere to
this restriction. Nonetheless, there are alternatives; for example, allowing priority inheritance if it is supported by the runtime
environment.

Figure 24: Blocking Example
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Some analytic computations are used by the simulator, thus making λABA a hybrid analytic-
simulation theory.37 For example, the end of the hyper-period is computed as

HPEnd = maxi=1..N(Ti.offset) + LCMi=1..N(Ti.period)

Also, the arrival time of the next task at or after time t for task Ti is computed as

The simulation is event driven (commonly referred to as discrete-event simulation) and con-
trolled by a main loop that advances the time from one scheduling event to the next. A sched-
uling event is a point in time when a task must be stopped, started, or resumed.

Figure 25 shows the pseudocode of the predict function. It takes as input a vector of tasks; 
each task has a period, an offset, and an ordered list of subtasks. Tasks have also two dynamic 
properties that are relevant when we run the prediction: state and current subtask. The state 
indicates whether the task is ready to run, running, or sleeping. In Figure 22 for example, task 
T2 is ready from time 0 to 1, running from 1 to 3, sleeping from 3 to 5, running from 5 to 6, 
ready from 6 to 7, running from 7 to 8, sleeping from 8 to 10, and so forth. The current subtask 
points to the subtask of that task that will execute if the task has the CPU. 

Each subtask has priority and execution time. The predict function simulates the execution 
of the tasks through a loop that advances time from instant zero to the end of the hyper-period. 
In each iteration of the loop, we inspect the state of all tasks to determine the next scheduling 
event for each task (see Figure 26 for the pseudocode of getNextEvent). Then, based on 
time, priority, and type, one event is selected to be handled next. Tasks are told to advance 
their internal clock to the point in time when the selected event starts, and to update their inter-
nal states accordingly (see Figure 27 for the pseudocode of advanceClock). Upon an event, 
each task knows what it has to do next: start, run, or stop. At any point, only one task has the 
CPU; when this task advances its internal clock, it assumes it has executed for that amount of 
time.

37. Models can be analytic, simulation based, or a hybrid of both. An analysis model is based on mathematical relations among
variables and intended to be solved mathematically. A simulation model is a computer program that reproduces, to some
level of detail, the behavior of a real system. Simulation models are generally used instead of analysis models when it is
impossible, or very difficult, to create an analysis model. λABA is a hybrid analytic-simulation model.

ai t( ) t Ti.offset–

Ti.period
------------------------------ Ti.period( ) Ti.offset+=
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Figure 25: Prediction Pseudocode

predict(tasks) {
  hyperPeriodEnd = lcmOfPeriods(tasks) + maxPeriod(tasks)
  // put all tasks in the sleeping queue
  for (int i = 0; i < tasks.length; ) {
    tasks[i].state = SLEEPING
    tasks[i].currentSubtask = tasks[i].subtasks[0]
  }
  t = 0      // time in the execution timeline
  taskWithCPU = null
  while (t < hyperPeriodEnd) {
    // Each task can be: ready to run, running, or sleeping (has 
    // executed all subtasks and is waiting for the next period).

    // Check what would be the next event of each subtask
    Vector events
    for (int i = 0; i < tasks.length; ) {
      events[i] = getNextEvent(tasks[i], t)
    }
    sort events vector by timeItHappens and priority (in this order)
    // The event in events[0] is the next to occur (ordering by time and
    // priority). It will indeed be the next if:
    //   - it’s START or STOP
    //   - it’s RUN and has higher priority than the priority of the subtask
    //     currently running. If it has lower priority, we check the 
    //     following events to see if any of them is able to preempt the 
    //     currently running subtask.
    j = 0
    while (events[j].type == RUN &&
           events[j].priority < taskWithCpu.currentSubtask.priority) {
      j++
    }
    // Next event to happen is events[j] and we have to "advance the clock"
    // accordingly
    delta = events[j].timeItHappens - t
    // For each task, we check what happens when we advance the clock
    for (int i = 0; i < tasks.length; ) {
      advanceClock(tasks[i], t, delta, taskWithCpu)
    }
    t = t + delta
    if (events[j] == STOP) {
      taskWithCpu = NULL
    } else if (events[j] == RUN) {
      taskWithCpu = events[j].task
    }
  }
}
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Figure 26: Pseudocode of getNextEvent and getNextPeriod

Figure 28 is a statechart diagram using UML notation that represents a task as a composite 
state. There are two concurrent substates, one that tells if the task is ready to run, running, or 
sleeping, and the other that indicates whether the task has the CPU.

When predict ends, we have recorded the exact moment when each subtask started and fin-
ished, and hence we know how long it took to run each job of each task. That would give us 
the average latency of the task, accounting for the execution times and delays due to blocking 
and preemption. However, in reality, the execution time of a subtask is not an exact number as 
we have used it so far. It comes from the execution time of a previously measured certified 
component and consists of a mean value and respective standard deviation. Therefore, in order 
to gain statistical certainty that average job latency is estimated correctly, we should run the 
prediction several times, each time picking a value for the subtask execution time that is 

Event getNextEvent(task, currentTime) {
  if (task.state == SLEEPING) {
    // task is sleeping: next thing is to start when the next period arrives
    nextEvent.type = START
    nextEvent.priority = priority of the 1st subtask
    nextEvent.timeItHappens = getNextPeriod(task, currentTime)
  } else if (task.state == READY) {
    // task is ready to run: next thing is to run as soon as now
    nextEvent.type = RUN
    nextEvent.priority = task.currentSubtask.priority
    nextEvent.timeItHappens = currenTime   // task is ready to run now
  } else if (task.state == RUNNING) {
    // task is running: next thing is to stop when the current subtask ends
    nextEvent.type = STOP
    nextEvent.priority = task.currentSubtask.priority
    nextEvent.timeItHappens = currentTime +
                              amount of time to the end of current subtask
  }
  return nextEvent
}

Time getNextPeriod(task, currentTime) {
  nextPeriod = task.offset +
    ceiling((currentTime - task.offset) / task.period) * task.period 
  return nextPeriod
}
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bounded by the respective standard deviation. Thus, the definite prediction comes from the 
average of the results of many executions of predict, each execution using random execu-
tion times for subtasks. Such procedure follows the Monte Carlo simulation method, as illus-
trated in the pseudocode in Figure 29. The inputs to the montecarlo function are a vector of 
tasks and the number of iterations. In each iteration, the function creates a clone of each task 
and their subtasks, with the single difference that the execution time of each subtask is reas-
signed to a random value following a normal distribution.

To this point, we have seen how the property theory handles tasks and subtasks in a hybrid 
analytic-simulation model to predict average job latency. What we have not seen so far is how 
to obtain tasks and subtasks from a Pin assembly. That is the subject of the next section.

Figure 27: Pseudocode of advanceClock

advanceClock(task, currentTime, delta, taskWithCPU) {
  if (task.state == SLEEPING) {
    nextPeriod = getNextPeriod(task, currentTime)
    if (currentTime + delta == nextPeriod) {
      task.state = READY
    }
  } else {
    if (task.state == READY && task == taskWithCPU) {
      task.state = RUNNING
    }
    if (task.state == RUNNING
      if (task == taskWithCPU) {
        if (currentTime + delta == time when current subtask is complete) {
          if (task.currentSubtask == task.lastSubtask) {
            // finished task
            task.state = SLEEPING
            task.currentSubtask = task.subTasks[0]
            record execution time for the job just completed
          } else {
            // There are more subtasks to run within this task. The state
            // changes to READY and when the next subtask can be scheduled
            // to run the state we’ll change to RUNNING again.
            task.currentSubtask = task.nextSubtask
            task.state = READY
          }
        }
      } else {
        // Task was running but lost CPU to a higher-priority task
        task.state = READY
      }
    }
  }
}
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Figure 28: Task Statechart Diagram
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Figure 29: Pseudocode of montecarlo

A.3 Pin-λABA Interpretation
The property theory models every assembly as a set of periodic tasks. Each task comprises a 
sequence of subtasks, which execute at specified priority levels. The goal of Pin-λABA inter-
pretation is to translate a well-formed assembly into a group of tasks, each consisting of a lin-
ear sequence of subtasks. The tasks can then be analyzed by the λABA property theory, using 
the algorithms described in Section A.2.

A.3.1 Clock Components and Task Period

The concept of task and subtask does not exist in Pin. Given that a task in the analysis model 
performs a computation periodically, it is intuitive to associate clock components with tasks. A 
clock component is provided by an environment; it has no sink (i.e., it doesn’t execute any-
thing) and has one asynchronous source pin that is activated periodically. 

In λABA, each task corresponds to exactly one clock component and all components that get 
called when that clock is activated.

montecarlo(tasks, numberOfIterations) {
  for (sample = 1; sample <= numberOfIterations; sample++) {
    Vector simulatedTasks
    for (int i = 0; i < tasks.length; ) {
      //Create a clone of each task
      simulatedTasks[i] = tasks[i]
      for (int j = 0; j < tasks[i].subtasks.length; ) {
        //The clone has the same subtasks of the cloned task
        simulatedTasks[i].subtask[j] = tasks[i].subtask[j]
        //The only difference is that the execution time of a cloned subtask
        //is random. The random value is calculated based on the average
        //execution time and stddev of the corresponding component.
        simulatedTasks[i].subtask[j].executionTime =
              random(tasks[i].subtask[j].executionTime, 
              tasks[i].subtask[j].stddev)
      }
    }
    predict(simulatedTasks)
    store results of prediction
  }
}
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A.3.2 Restrictions on Reactions

The Pin assembly shown in Figure 30 has a clock component with a period of 60 milliseconds, 
and two subtasks, C1 and C2. Period is a property of clock components and, in the SAS proto-
types, this and other properties were encoded directly in an XML description of the assembly.

Figure 30: Simple Constructive Assembly

We impose restrictions on the form that reactions take within components. In our interpreta-
tion, sink pins will be mapped to subtasks. If we allow components to have the following code 
structure (as reflected in the reaction specification of components), we would generate a sub-
task timeline along the lines of the one shown in Figure 31.

C1.s() {
Do some computation
Activate pin C1.r
Do some more computation

}

c1.s

c2.s

time

Figure 31: Timeline for a Sink Pin with Interactions in the Middle of Its Execution
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This would, however, violate our analysis assumption that a subtask has to finish before its 
successor can start. To avoid this situation, we introduce a constructive constraint requiring 
that reactions occur only at the end of a sink’s execution. With this constraint, the code for the 
previous example follows this pattern:

C1.s() {
Do all computation
Activate pin C1.r

}

Its execution timeline is shown in Figure 32.

The first step of interpretation is to identify clock components. In Figure 30, we have one 
clock and hence one task. Each activation of a component corresponds to a subtask, so we 
identify subtasks with the name of the sink pin that is called (e.g., c1.s is the subtask that is 
executed when the homonymous sink pin is activated). Thus, the result of interpretation for the 
assembly in Figure 30 is <c1.s, c2.s>. We use the notation <a, b> to represent a sequence that is 
interpreted as a executes before b.

A.3.3 Interpreting Synchronous Interactions

The assembly Figure 30 has a linear topology, making it straightforward to get the correspond-
ing sequence of subtasks. However, Pin allows one source pin to be connected to multiple sink 
pins and, within a component, one sink pin to react to multiple source pins. Thus, it is possi-
ble—and perhaps the most common situation—to have assemblies with tree-like topologies. 
The challenge then is to linearize that tree into a sequence of subtasks that can be analyzed by 
the property theory.

Figure 33 shows an assembly with a more interesting topology. Again, there is one clock and 
hence one task. The reaction on c1.s, denoted Rs in Figure 33, defines the order of the interac-
tions associated with c1.s. Based on Rs, we can determine that source pin c1.r1 is activated 
before c1.r2 and therefore, that c1.r1�c2.s occurs before c1.r2�c3.s2. What is not clear though 
is whether c1.r1 interacts first with c2.s or c3.s1. The order of interactions can be specified 

c1.s

c2.s

time

Figure 32: Timeline for a Sink Pin with Interactions at the End of Its Execution
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using the appropriate annotation, but hereafter we consider the order of interaction in diagrams 
to be from top to bottom. So, in Figure 33, c1.r1�c2.s occurs before c1.r1�c3.s1. 

The assembly in Figure 33 has only one thread, which is associated with c1.s. Sinks c2.s, c3.s1, 
and c3.s2 execute in that same thread, because they are synchronous reentrant pins, which are 
always non-threaded. If c2.s, c3.s1, and c3.s2 were synchronous mutexed pins, they could pos-
sibly be threaded (i.e., execute in a separate thread). However, in the examples of this 
appendix, as well as in all assemblies used in the experiments documented by this report, syn-
chronous sink pins are non-threaded. Nonetheless, λABA and the runtime environment support 
threaded synchronous pins, and they shall be used in the future. Figure 34 depicts all existing 
types of sink pins, highlighting the ones used in the experiments conducted with λABA so far.

The fact that only one thread is created for this assembly makes it easy to figure out the order 
in which sinks and, consequently, subtasks will execute. The corresponding analysis task for 
this assembly is <c1.s, c2.s, c3.s1, c3.s2>. As we will see soon, when multiple threads exist, pre-
emption makes interpretation more difficult. 

For assemblies that use a single thread, the sequence of subtasks can be obtained algorithmi-
cally by doing a pre-order traversal of the tree. Another algorithm starts from the leaves and 
works towards the root. Every time we get to a node where two branches are synchronously 
connected, we prepend the subsequence for the branch that executes first to the subsequence 
for the branch that executes second. For example, from the C1 branch, we obtain the subse-
quences x = <c2.s, c3.s1> and y = <c3.s2>. When we get to c1.s, subsequence x is prepended to 
subsequence y, and then c1.s is prepended to the result, obtaining, as before, <c1.s, c2.s, c3.s1, 
c3.s2>.

Figure 33: Assembly with Synchronous Pins and Non-Linear Topology
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A.3.4 Interpreting Asynchronous Interactions

When we introduce more asynchronous connections to the assembly, we also introduce more 
threads, because asynchronous sink pins have associated threads. The problem that arises is 
that now we have many concurrent elements in the construction model (i.e., threads), and they 
must somehow be mapped to concurrent elements in the analysis model. But in the analysis 
model, the unit of concurrency is task and we do not have one task per thread: we have one 
task per clock component. So, to solve this problem, we eliminate real concurrency within the 
constructive assembly. We achieve this by assigning unique priorities to asynchronous sink 
pins. Figure 35 shows an example in which concurrency is handled via priorities.

Sink pins c1.s and c3.s have threads; therefore, the top and bottom paths of execution could, in 
principle, run concurrently. Priorities allow us to interpret this subassembly into a linear 
sequence of subtasks. 

The asynchronous calls to c1.s and c3.s are done before either of the two sink pins has a chance 
to execute, meaning that both C1 and C3 are ready to run right after the clock call. Pin c3.s will 
execute first, because it has a higher priority than c1.s. Then, even though c1.s is ready to exe-
cute, c4.s will execute because it has a higher priority. When c4.s finishes, it activates c5.s, but 
c1.s (which has a higher priority) goes first. Then c2.s executes and lastly c5.s does. The result-
ing analysis task is <c3.s, c4.s, c1.s, c2.s, c5.s>. If we try to interpret this assembly by doing a 
prepend of branches as we did in Section A.3.3, we will obtain the incorrect sequence <c1.s, 
c2.s, c3.s, c4.s, c5.s>. 

Figure 34: Taxonomy of Sink Pins in Pin
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For assemblies like the one in Figure 35, the right sequence of subtasks can be obtained algo-
rithmically. The sequence of subtasks for the two concurrent branches are x = <c1.s, c2.s> and 
y = <c3.s, c4.s, c5.s>.38 When two execution paths are initiated asynchronously, we merge the 
two sequences. This merge operation consists of creating a new sequence of subtasks by 
appending to it the highest priority subtask from the head of the sequences being merged and 
repeating this step until both sequences have been consumed. Table 5 shows the state of the 
sequences during the merge operation in the example.

The merge operation requires only that the two subtasks in the head of the sequences do not 
have the same priority. If they did, the algorithm would not be able to determine which one 
would execute first. It is important to note that, as long as the previous condition is met, differ-

38. In Figure 35, you can easily see what the sequences are because both branches are very simple, with no further branches.
In general, to compute the sequences algorithmically, it is necessary to apply the same operation starting from the leaves.

Table 5: Merge Operation Example

Clock0.subtasks x y

<> <c1.s, c2.s> <c3.s, c4.s, c5.s>

<c3.s> <c1.s, c2.s> <c4.s, c5.s>

<c3.s, c4.s> <c1.s, c2.s> <c5.s>

<c3.s, c4.s, c1.s> <c2.s> <c5.s>

<c3.s, c4.s, c1.s, c2.s> <> <c5.s>

<c3.s, c4.s, c1.s, c2.s, c5.s> <> < >

Figure 35: Constructive Assembly with Asynchronous Connections
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ent sink pins in one task could share the same priority level. This property will be helpful when 
we try to interpret synchronous sink pins, as we will see in the next section.

A.3.5 Synchronous Sink Pins and Priorities

If a synchronous sink pin is reentrant (non-mutexed), in λABA, it will run at the caller’s prior-
ity. Otherwise, if a reentrant synchronous sink pin were assigned a priority, two separate tasks 
could call that sink pin concurrently, and there would be two threads running at the same prior-
ity—a situation we should avoid. 

If a synchronous sink pin is mutexed and non-threaded, in λABA, it will run at the maximum 
priority. A mutexed sink pin is a “shared resource.” So, we need to guarantee the blocked-at-
most-once property. One alternative would be to check the priority of all callers of a mutexed 
synchronous pin and use the highest value to define that pin’s priority, like in the priority ceil-
ing protocol described in Section 5.4.4. A simpler approach, which gives satisfactory practical 
results, was chosen—for any mutexed synchronous sink pin, the priority is raised to the maxi-
mum value, which we call “super ceiling.”

Synchronous sink pins that are mutexed and threaded were not used in the experiments dis-
cussed in this report.

Figure 36 shows the same assembly represented in Figure 35, where the sink pins of C2, C4, 
and C5 were changed from asynchronous to synchronous. We use the same merge operation 
described earlier to define the sequence of subtasks. But, because synchronous sink pins use 
the caller’s or the maximum priority, the resulting sequence of subtasks is <c3.s, c4.s, c5.s, c1.s, 
c2.s>. In Figure 30, all the synchronous sink pins are mutexed and have maximum priority. 
However, in this case, the merge operation would produce the same sequence if any of the syn-
chronous pins were reentrant.
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Figure 36: Synchronous Connections Following Asynchronous Connections

A.3.6 Asynchronous Connections Following Synchronous 
Connections

It may seem that applying the prepend and merge operations will produce the correct interpre-
tation of any assembly with mixed synchronous and asynchronous connections. However, this 
strategy will not render the right analytic interpretation if synchronous connections are fol-
lowed (from root to leaves) by asynchronous connections, as is the case in the assembly shown 
in Figure 37.

The correct interpretation of this subassembly is <c3.s, c2.s, c1.s, c4.s, c6.s, c7.s, c5.s>. If we 
work from the leaves toward the root, we get the sequences x = <c2.s, c6.s, c7.s> and y = <c1.s, 
c4.s, c5.s>. If we apply the prepend operation as suggested for the earlier interpretations (see 

Figure 37: Asynchronous Connections Following Synchronous Connections
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Section A.3.3), we would get a different sequence, <c3.s, c2.s, c6.s, c7.s, c1.s, c4.s, c5.s>, which 
would be correct if the sink pins of C5 and C6 were synchronous and not asynchronous. Fur-
thermore, we cannot apply the merge operation as described in Section A.3.4 because we 
should only merge execution paths that are initiated asynchronously, and we have synchronous 
connections after C3.

Asynchronous interactions activate new threads, allowing more than one component to be 
ready simultaneously. The asynchronous connections to C6 and C5 in Figure 37 are preceded 
by synchronous connections. To handle this situation, we use a modified version of the merge 
operation. The algorithm is modified as follows: 

• When we obtain a sequence that corresponds to a branch, if the subtask is activated asyn-
chronously, an overbar ( ) is used over the name of the asynchronous sink pin. Thus, in 
Figure 37, the two sequences after C3 are x = <c2.s, c6.s, c7.s> and y = <c1.s, c4.s, c5.s>.

• The operation behaves as a prepend as long as no asynchronously activated subtasks are in 
the head of either sequence. When one is, the operation behaves as a merge from that point 
on.

Table 6 shows the steps to combine the two sequences in Figure 37. Note that the synchronous 
sink pins of C1, C2, C4, and C7 are mutexed and hence run at maximum priority (see Section 
A.3.5). Thus, for example, in the second step of the algorithm, when c6.s and c1.s are the heads 
of sequence x and y respectively, c1.s is chosen because it has maximum priority, whereas the 
priority of c6.s is 5. 

The results would be different if the synchronous sink pins were reentrant instead of mutexed. 
Figure 38 shows the same assembly using reentrant pins. We also changed the priority of c3.s 
from 6 to 3. The interpretation for this assembly is <c3.s, c2.s, c6.s, c7.s, c1.s, c4.s, c5.s>, and 
the iterative merge operation is described in Table 7. Because reentrant sink pins run at the 
caller’s priority, c1.s, c2.s, and c4.s use priority 3 (the priority of c3.s), and c7.s uses priority 5 

Table 6: Merging the Sequence in Figure 37

Clock0.subsequence x y Mode

<> <c2.s, c6.s, c7.s> <c1.s, c4.s, c5.s> prepend

<c2.s> <c6.s, c7.s> <c1.s, c4.s, c5.s> merge

<c2.s, c1.s> <c6.s, c7.s> <c4.s, c5.s> merge

<c2.s, c1.s, c4.s> <c6.s, c7.s> <c5.s> merge

<c2.s, c1.s, c4.s, c6.s> < c7.s> <c5.s> merge

<c2.s, c1.s, c4.s, c6.s, c7.s> <> <c5.s> merge

<c2.s, c1.s, c4.s, c6.s, c7.s, c5.s> <> <> merge
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(the priority of c6.s). Therefore, when c6.s and c1.s are the heads of the sequences, c6.s is cho-
sen.

Table 7: Merging the Sequences in Figure 38

A.3.7 Multiple Connections on One Source Pin

When two or more sink pins are connected to the same source, at runtime they are activated in 
the order specified in the assembly—in our examples, this order is assumed to be from top to 
bottom. If one of the activated sinks is asynchronous or leads to the activation of an asynchro-
nous sink having a priority greater than that of the activating source, the source will be pre-
empted, possibly before it finishes activating the remaining sinks. However, the merge 
operation described in previous sections assumes that these multiple connections will be acti-
vated one after the other without interruption, that is, without the activating source itself being 
preempted. For that reason, the actual execution sequence of components may differ from the 
sequence of subtasks interpreted by the merge operation. 

Clock0.subsequence x y Mode

<> <c2.s, c6.s, c7.s> <c1.s, c4.s, c5.s> prepend

<c2.s> <c6.s, c7.s> <c1.s, c4.s, c5.s> merge

<c2.s, c6.s> <c7.s> <c1.s, c4.s, c5.s> merge

<c2.s, c6.s, c7.s> <> <c1.s, c4.s, c5.s> merge

<c2.s, c6.s, c7.s, c1.s> <> <c4.s, c5.s> merge

<c2.s, c6.s, c7.s, c1.s, c4.s, > <> <c5.s> merge

<c2.s, c6.s, c7.s, c1.s, c4.s, c5.s> <> <> merge

Figure 38: Asynchronous Connections and Reentrant Synchronous Connections
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Although this problem may arise with both multiple asynchronous and multiple synchronous 
connections, it is easier to see its effect when a source pin has multiple asynchronous connec-
tions. Figure 39 depicts an assembly with this problem. The interpretation algorithm described 
so far renders the incorrect sequence <c3.s, c1.s, c4.s, c2.s, c6.s, c5.s>, when the actual behavior 
is <c3.s, c2.s, c6.s, c1.s, c4.s, c5.s>. The difference stems from the fact that the merge operation 
assumes that both c2.s and c1.s are activated at the same time, before either has a chance to 
start executing. The actual behavior differs because sink c2.s preempts the thread on the reac-
tion (source) c3.r before it activates pin c1.s.

Figure 39: Multiple Synchronous Connections Problem

We solve the problem by applying a rewrite rule on the constructive assembly before interpret-
ing it. This preprocessing consists of rewriting all asynchronous connections by interposing a 
proxy component between each source and the asynchronous connector. The proxy has a reen-
trant (and therefore unthreaded) sink that is connected to the original caller component, but 
using a synchronous instead of the original asynchronous source. The proxy also has a source 
pin that is connected to the asynchronous sink of the original called component. The proxy 
component has no execution time, and because it is unthreaded, it executes at the same priority 
as its caller. Figure 40 shows this rewrite rule applied to the assembly in Figure 39.

After preprocessing, the interpretation renders <c3.s, pc2.ps, c2.s, c6.s, pc1.ps, c1.s, c4.s, c5.s>. 
The proxy components pcn have no execution time, so they can be removed from the 
sequence. Finally, we obtain the correct execution sequence <c3.s, c2.s, c6.s, c1.s, c4.s, c5.s>. 
The problem just described would not occur if C3 had a priority greater than the priority of C1 
and C2 in Figure 39. In this case, during the actual execution, the source (c3.s) would activate 
the two sinks (c2.s and c1.s) without being preempted, and the actual sequence would be <c3.s, 
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c1.s, c4.s, c2.s, c6.s, c5.s>. Interpretation using the merge operation would produce the same 
sequence without requiring proxy components. 

Therefore, proxies are not necessary when the caller component has a priority higher than the 
priority of the called components. Nonetheless, the addition of proxies does not affect the cor-
rect interpretation in this case and, indeed, proxies are created in λABA for all asynchronous 
connections. In Figure 40 for example, if the priority of C3 were higher, say 20, interpretation 
would produce <c3.s, pc2.ps, pc1.ps, c1.s, c4.s, c2.s, c6.s, c5.s>, which can be factored to <c3.s, 
c1.s, c4.s, c2.s, c6.s, c5.s>, the same as the actual sequence.

In the case of multiple synchronous connections, an analogous technique is used, and proxy 
components have a synchronous source.39

A.4 Syntax-Directed Interpretation
The discussion so far has been informal. Table 8 summarizes the key elements of Pin and their 
corresponding elements in λABA. To enable automated interpretation, we must complete the 
formalization. We chose to use syntax-directed translation to implement the interpretation 

39. In the interim between the first and second edition of this report, Pin was further restricted to disallow 1:N synchronous in-
teractions. 

Figure 40: Multiple Asynchronous Connections Rewrite Rule Using Proxy 
Components
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[Aho 87]. This requires an input grammar for the constructive assembly and a set of semantic 
reductions that render the interpretation. 

Table 8: Mapping Pin to λABA

Constructive 
Framework 

Reasoning 
Framework 

Comment

clock component task The execution of all components that 
occur after a given clock is activated 
comprise a task.

clock period task period

— job A job is one complete execution of a 
task.

clock period minus the 
period of the clock with the 
smallest period in the 
assembly

task offset For the clock with the smallest period, 
the corresponding task has offset zero.

assembly set of concurrent 
tasks

environment — The environment is abstracted from the 
property theory.

sink pin of a component subtask A sink pin (more accurately, the reaction 
associated with it) is mapped to a sub-
task.

• asynchronous sink pin: 
value of the “priority” prop-
erty;
• reentrant synchronous 
sink pin: priority of the 
caller;
• mutexed synchronous 
sink pin: maximum priority

subtask priority

value of the “execution 
time” property of a compo-
nent

subtask execution 
time

thread — During interpretation, the existence of 
multiple threads, and mutexed and reen-
trant pins in the assembly governs pre-
emption and affects the sequence of 
subtasks, but no element of the reason-
ing framework represents these ele-
ments directly.

mutex —

reentrancy —
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The grammar for constructive assemblies is as follows:

asm → src | asm & src 
src → pin * subasm_set |  pin + subasm_set
pin → component.pinId
subasm_set → ( subasm_list )
subasm_list → subasm | subasm_list , subasm
subasm → snk | snk – src_set
snk → pin
src_set → ( src_list )
src_list → src | src_list , src

where an asterisk (*) denotes asynchronous interaction, a plus sign (+) denotes synchronous 
interaction, a dash (–) denotes reaction, and a comma (,) separates source pins in a reaction and 
sink pins in a 1:N interaction. Note that reactions are not expressed in CSP, but rather only in 
the restricted form of call dependency.

Notes: 

• The interpretation assumes that all λABA constructive constraints are honored. That 
is why we make no distinction in this language for mutex sink pins—their blocking 
effect is addressed by the constructive constraint for the priority ceiling. 

• To make the grammar simpler, we have disregarded the fact that the src sources in 
the first production have to be different, because their pins must have an implicit 
periodic stimulus. This is the case for the clock component.

The syntax-directed definition for obtaining the analytic assembly for a constructive assembly 
is shown in the following table. Both synthesized and inherited attributes are used. The 
pseudocode for the types and functions used in the syntax-directed translation are shown in 
Sections A.4.1 and A.4.2. 

To keep the syntax-directed definition presented here as simple as possible, some liberties 
have been taken. The src.period and pin.priority attributes are used without first 
being assigned anywhere. Assigning them would have required adding a declaration construct 
to the grammar and a symbol table to the syntax-directed definition. Also, the src.period 
attribute should have been synthesized from the pin.period attribute, which isn’t 
expressed in the semantic rules either.
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Table 9: Syntax-Directed Definition for the Analytic Interpretation 

Production Semantic Rules

asm → src addtask(src.period, src.subtasks)
src.priority = 0

asm → asm & src addtask(src.period, src.subtasks)
src.priority = 0

src → pin * subasm_set src.subtasks = subasm_set.subtasks
subasm_set.priority = src.priority
subasm_set.mode = async

src → pin + subasm_set src.subtasks = subasm_set.subtasks
subasm_set.priority = src.priority
subasm_set.mode = sync

pin → component . pinId pin.name = component.lexicalvalue() +
pinId.lexicalvalue()

subasm_set → ( subasm_list ) subasm_set.subtasks = combine(subasm_list.stseq)
subasm_list.priority = subasm_set.priority
subasm_list.mode = subasm_set.mode

subasm_list → subasm subasm_list.stseq = seqadd(null, subasm.subtasks)
subasm.priority = subasm_list.priority
subasm.mode = subasm_list.mode

subasm_list → subasm_list1 , 
subasm

subasm_list.stseq = seqadd(subasm_list1.stseq, sub-
asm.subtasks)
subasm.priority = subasm_list.priority
subasm.mode = subasm_list.mode

subasm → snk snk.epriority = getpriority(subasm.priority, snk)
subasm.subtasks = prependsubtask(<>, snk.name, 
snk.epriority, subasm.mode)

subasm → snk - src_set snk.epriority = getpriority(subasm.priority, snk)
src_set.priority = snk.epriority
subasm.subtasks = prependsubtask(src_set.subtasks, 
snk.name, snk.epriority, subasm.mode)

snk → pin snk.priority = pin.priority
snk.name = pin.name
snk.mutex = pin.mutex
snk.threaded = pin.threaded

src_set → ( src_list ) src_set.subtasks = combine(src_list.stseq)
src_list.priority = src_set.priority

src_list → src src_list.stseq = seqadd(<>, src.subtasks)
src.priority = src_list.priority

src_list → src_list1 , src src_list.stseq = seqadd(src_list1.stseq, src.subtasks)
src.priority = src_list.priority
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A.4.1 Types
// type definitions
t_seq : sequence of subtasks
t_stseq : sequence of sequences of subtasks
t_mode: mode of activation of a sink: sync, async

A.4.2 Functions

The functions used in the semantic rules of the syntax-directed translation are shown here in 
pseudocode. The notation for sequences uses angle brackets. The empty sequence is denoted 
by <>, and <x,y,z> is a sequence containing the objects x, y, and z in that order. If x is a 
sequence, then <x> is a sequence of sequences. The binary operator + applied to sequences 
means concatenation. The function head(s) returns the first element of the sequence s, and 
the function tail(s) returns a sequence containing the subsequence of s that follows its first 
element. For example, if s=<x,y,z>, then first(s)=x, and tail(s)=<y,z>.
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addtask(int period, t_seq subtasks) {
adds a periodic task with the specified period and subtasks
to the analytic assembly

}

t_seq seqadd(t_stseq a, t_seq b) {
t_seq r
r = a + <b>
return r

}

int getPriority(int callerPriority, snk sink) {
// determine the effective priority of a sink
if (sink.mutex) {

return SUPER_CEILING_PRIORITY
}
if (sink.threaded) {

return sink.priority
}
return callerPriority

}

t_seq prependsubtask(t_seq a, char name, int priority, t_mode mode) {
t_subtask st
st.name = name
st.priority = priority
st.mode = mode
t_seq b = <st> + a
return b

}

t_seq combine(t_stseq a) {
t_seq b = <>
for (each t_seq c it a)

// combine t and c into b
b = <>
while (t.size > 0 && first(t).mode == sync) {

b = b + <head(t)>
t = tail(t)

}
while (t.size > 0 && c.size > 0) {

if (head(c).priority > head(t).priority) {
b = b + <head(c)>
c = tail(c)

} else {
b = b + <head(t)>
t = tail(t)

}
}
if (t.size > 0) {

b = b + t
} else {

b = b + c
}

}
return b

}
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Appendix B λABA Empirical Validation

B.1 Introduction
Validation for the controller PECT consists of empirically quantifying the accuracy and confi-
dence of the predictions based on λABA. This quantification is done by statistically comparing 
predictions with actual measurements of assembly properties and establishing confidence in 
the results, which, in turn, increase confidence in the analysis model.

This appendix describes in detail the experiment to empirically validate λABA.

B.2 Empirical Validation
Sections B.2.1 - B.2.6 correspond to steps 1 - 6 in Figure 15 on page 47.

B.2.1 Define Validation Goal

The goal for the controller PECT is that the latency for a job within the hyper-period can be 
predicted with an MRE ≤ 0.05 (5%) with a confidence level γ =0.99 (99%). A minimum 
acceptable p = 0.80 (80%) was established for a pass/fail condition. Latency is defined as the 
average latency of each job in each period of the assembly hyper-period.

B.2.2 Define Measures

B.2.2.1 Time and Pins

Which time is measured and how is fundamental to this empirical validation, the controller 
PECT, and λABA. Although the specific measure for time differs between the property for 
components (Section B.2.2.2) and assemblies (Section B.2.2.3), the units of time are the same, 
and the same apparatus is used.

The measurement infrastructure put into place is hosted on a Microsoft Windows platform and 
is conformant to the VenturCOM RTX clock counter, which has a resolution on the order of 
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< 1µs.40 Time recorded by the measurement infrastructure using this clock counter is in milli-
seconds (ms) with eight digits of precision.

A time-stamped event is generated when a pin is entered (activated) or exited (deactivated). 
When such an event is generated, the measurement infrastructure reads the clock counter’s 
value and records it with the event. Doing so provides two pieces of information—a time-
ordered sequence of pin events and a means of determining the time interval between any two 
events.

B.2.2.2 Component Execution Time

When a pin (source or sink) is entered, it is considered activated. Activation occurs immedi-
ately after a

• sink pin enter event. The component is in receipt of a message or request (stimulus). This 
is the start of a reaction.

• source pin enter event. The component is making a request or sending a message 
(response). This is the start of an interaction.

When a pin (source or sink) is exited, it is considered deactivated. Deactivation occurs imme-
diately after a

• sink pin leave event. The component has satisfied the request. This is the end of a reaction.

• source pin leave event. The component has completed making the request or sending the 
message. This is the end of an interaction.

The above time-recorded events define measurement points. For example, consider the com-
ponent shown in Figure 41. 

Figure 41: Pin Component Enter and Leave Events

The reaction rule for this simple component could be expanded from that illustrated in Figure 
41 to show the specific enter and leave events as Rs = s → r → r → s → Rs, where x represents 

40. RtGetClockTime() reports time in 100 nanosecond units.

�rs� C

2: Enter

3: Leave

1: Enter

4: Leave

Rs = s → r → Rs

�rs� C �r �rs�s� C

2: Enter

3: Leave

1: Enter

4: Leave

Rs = s → r → Rs
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the specific leave event for a given sink or source pin. Figure 42 illustrates six time measure-
ments on a component based on enter and leave events for sink and source pins.

Figure 42: Time Measurements on Component Sink and Source Reactions

When two or more components are assembled, the number of possible measurement points 
(due to the increase in events generated by additional components) allows additional calcula-
tions to be made across component interactions.

For λABA, the total execution time of reactions is of interest—specifically, t1 in Figure 42, 
where t4 = 0 for all source pins in the reaction (see Figure 43).

Figure 43: Measuring the Execution Time of a Pin Component

B.2.2.3 Assembly Latency

An interaction between components exists when the source pin of one component is connected 
to the sink pin of another. Further, interactions between components can continue as a

• linear interaction (as shown in Figure 44)

• multilinear interaction (as shown in Figure 45)

• one-to-many interaction (as shown in Figure 46)

• many-to-one interaction (as shown in Figure 47)

• many-to-many interaction (as shown in Figure 48)41

41. Since the writing of the first edition of this report, 1:N synchronous interactions have been disallowed by Pin.
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Figure 44: A Simple Linear Interaction

Figure 45: A Simple Multilinear Interaction

Figure 46: A Simple One-to-Many Interaction

Figure 47: A Simple Many-to-One Interaction
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Figure 48: A Simple Many-to-Many Interaction

An assembly is a set of one or more interactions. A task is defined as the set of interactions 
starting with one component’s source pin and terminating at another component’s sink (or 
source) pin. Consider the small assembly depicted in Figure 44. The set of interactions from 
c1.r2�� c3.s2 (i.e., {c1.r2 � c2.s2, c2.r2 � c3.s2}) is considered a task. A job is the scheduled 
periodic execution of a task; a task has one or more jobs in a hyper-period. For λABA, latency 
for any job in any period is of interest. 

Latency for a job is measured from the time the first source pin is activated to the time the last 
sink pin is deactivated (c3.s2), as illustrated in Figure 49.

Figure 49: Measuring the Latency for a Simple Assembly

B.2.3 Define Sampling Procedure

The overall process for validating λABA was to

1. Predict the latency of the longest path jobs in a sample of assemblies.

2. Measure the actual latencies of those jobs.

3. Compare predicted and actual latencies.
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To perform the steps above, we needed the following:

1. a population of components (with measured execution times)

2. a representation population and sufficient quantity of assemblies built from those compo-
nents

The components and their assemblies did not exist—a situation that may arise frequently in 
the early stages of PECT development. We therefore performed an analytic rather than enu-
merative study. For this we developed synthetic components and the means to generate syn-
thetic assemblies. 

B.2.3.1 Component Sample

To create a viable population of components to choose from, 15 classes of synthetic compo-
nents were created. The classes were named sequentially from synthetic5 through synthetic20, 
where the numerical postfix indicated the number of milliseconds for which the component 
was designed to execute. The calculation that was performed by this synthetic component is 
shown in Figure 50.

Figure 50: Execution Calculation Made by the Synthetic Component

The variable execution in Line 3 of Figure 50 is initialized for all instances for each class 
to a value that approximates the desired execution delay (e.g., execution = 5 ms for synthetic5 
and 6 ms for synthetic6).

The interface and reaction rules for each synthetic component were identical. Each synthetic 
component had one synchronous (s1) and one asynchronous (s2) sink pin, as well as one syn-
chronous (r1) and one asynchronous (r2) source pin. The interface for each pin (named signal) 
was identical, taking no in or in/out arguments and having no return value, which is equiv-
alent to the C language specification void signal (void). The asynchronous sink pin 
(s2) was handled by one thread. Finally, the reaction rules for the synthetic component were

 RS1 = s1 → r1 → r1 → r2 → r2 → s1 → RS1 

 RS2 = s2 → r1 → r1 → r2 → r2 → s2 → RS2

Line. 1 double t = execution;
Line. 2 for (int i = INT_MIN / 76500; i < 0; i++) {
Line. 3  for (int j = 0; j < execution * 4; j++) {
Line. 4   t = j + i * j + i;
Line. 5  }
Line. 6 }
Line. 7 t = t * t;
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The reaction rule for either sink pin would be fired only after the internal calculation in Figure 
50 was performed.

The execution time (in milliseconds) for each reaction was measured to a 95% confidence 
interval. The number of samples was chosen to achieve that target precision. In most cases, 
that precision was achieved before 30 samples. For each reaction, the average execution time 
and standard deviation were recorded.

In addition to synthetic components, the environment Clock component was developed. This 
component is used to periodically generate a signal on a source pin for a specific period (e.g., 
every 200 ms). The period can be configured prior to the execution of any instance of that 
class, and the signal can be generated on either a synchronous or asynchronous source pin.

For the validation of λABA, it was only necessary to measure the execution time of synthetic 
components. The Clock component has no “internal” calculation and is used as the stimulus 
for various jobs within the assembly. The remainder of this section discusses the procedure for 
measuring synthetic components.

The steps for sampling the execution time of the synthetic component are

1. Create a test Pin component assembly for each synthetic component to be measured.

2. Execute each synthetic component through the runtime environment and capture its mea-
sured execution time.

3. Update the Pin component description (registry) for each component tested with the cap-
tured measures from the runtime environment.

Each step is described in detail below.

Step 1: Create a test Pin component assembly for each synthetic 
component to be measured.

This step is done using a series of MS-DOS batch (.BAT) files. The createsinktest.bat script is 
used to generate a component description for each synthetic component class having an 
approximate designed execution time of 5 ms (i.e., synthetic5) to 20 ms (i.e., synthetic20). 
That script calls the createonesinktest.bat script to generate a single component description for 
the synthetic component enumerated as a parameter. The output from this initial step is a 
sequence of synthetic component classes, each with its own unique execution time in the gen-
eral form shown in Figure 51.
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Figure 51: General Assembly Topology Description for Benchmarking Synthetic 
Component Classes

In lines 13 and 16 of Figure 51, where N was the configured execution time for the instances of 
synthetic components being tested, N for this validation ranged from 5 to 20, inclusive. Figure 
52 shows the general topological form for each synthetic component tested.

Figure 52: General Assembly Topology for Benchmarking Synthetic Components

Line. 1 <?xml version="1.0" ?>
Line. 2  <Assembly xmlns="PinTekXML.xsd">
Line. 3   <Components>
Line. 4    <Component name="clock1" type="clock">
Line. 5      <Property propId="measurement" value="true" />
Line. 6      <Property propId="period" value="100" />
Line. 7    </Component>
Line. 8    <Component name="task1" type="synthetic5">
Line. 9      <Property propId="measurement" value="true" />
Line. 10     <Property propId="priority" value="10" />
Line. 11     <Property propId="loadFactor" value="5" />
Line. 12   </Component>
Line. 13   <Component name="task2" type="syntheticN">
Line. 14     <Property propId="measurement" value="true" />
Line. 15     <Property propId="priority" value="15" />
Line. 16     <Property propId="loadFactor" value="N" />
Line. 17   </Component>
Line. 18  </Components>
Line. 19  <Connectors>
Line. 20   <Connector>
Line. 21     <Source component="clock1" pin="0" />
Line. 22     <Sink component="task1" pin="1" />
Line. 23   </Connector>
Line. 24   <Connector>
Line. 25     <Source component="task1" pin="2" />
Line. 26     <Sink component="task2" pin="0" />
Line. 27   </Connector>
Line. 28   <Connector>
Line. 29     <Source component="task1" pin="3" />
Line. 30     <Sink component="task2" pin="1" />
Line. 31   </Connector>
Line. 32  </Connectors>
Line. 33 </Assembly>

�r1

�r2�s2

s1�

ta
sk

2�r1

�r2�s2

s1�

ta
sk

1

�
r1

cl
oc

k 1

Component being measured

�r1 �r1

�r2 �r2�s2��s2

s1�

ta
sk

2�r1

�r2�s2��s2

s1�

ta
sk

1

�
r1

cl
oc

k 1

Component being measured
110 CMU/SEI-2002-TR-031



Step 2: Execute each synthetic component through the runtime 
environment and capture its measured execution time.

The synthetic components are run using the sinktestscript.bat and measure2.bat scripts. 

These scripts invoke the Pin runtime environment and assembly measurement environment 
using the test Pin component assemblies built in the previous step. Each test component 
assembly is run twice: once for the synchronous pin of the synthetic component (task2.s1 � 
task2.s1) and once for the asynchronous pin of the same synthetic component (task2.s2 � 
task2.s2). The test assembly is run until it is stopped by the assembly measurement environ-
ment. The measurement environment will cease measuring once it has achieved a 95% confi-
dence interval in the latency of the measured reaction. In all cases, the 95% confidence 
interval was achieved before the minimum number of samples, which was set to 30.

Step 3: Update the Pin component description (registry) for each 
component tested with the captured measures from the runtime 
environment.

As the measurement environment measures the component from the runtime traces emanated 
from the runtime environment, it is continuously computing the average elapsed execution 
time (in milliseconds) and standard deviation. Once the 95% confidence interval is met, the 
measurement environment records the measures for the component and exits (thus causing the 
runtime environment to cease). The form of the results for each recorded assembly is shown in 
Figure 53.

Figure 53: Example Measures for Component Execution Time

In Figure 53, component synthetic10 has an average execution time for synchronous pin s1 of 
10.03 ms with a standard deviation of 0.002 ms and an average execution time for asynchro-
nous pin s2 of 9.84 ms with a standard deviation of 0.004 ms. The actual execution time for 
each synthetic component class is captured in Table 17 on page 122.

The measures collected by the measurement environment were transferred to the Pin compo-
nent description for each synthetic component class tested in this procedure, essentially estab-
lishing those measures as the “certified” execution time properties for those components, 
under the runtime environment described in Section B.2.4.2.

Line. 1 <ComponentProperties
Line. 2  name="sinktest\sinktest10.xml.cfg"
Line. 3  pin="1" samples="30"
Line. 4  avgElapsedTime="10.03265333" stdDevElapsedTime="0.001559"/>
Line. 5 <ComponentProperties
Line. 6  name="sinktest\sinktest10.xml.cfg"
Line. 7  pin="2" samples="30"
Line. 8 avgElapsedTime="9.83988000" stdDevElapsedTime="0.003972"/>
CMU/SEI-2002-TR-031 111



B.2.3.2 Assembly Sample

Rather than arbitrarily selecting and manually building assemblies from the population of 
components (possibly introducing bias into the selection process), assemblies were randomly 
selected from a population of possible assemblies defined by assembly variation points. The 
variation points serve to define an assembly design space (an n-dimension coordinate system) 
of possible assemblies. For example, no assembly was considered for λABA if it had more than 
50 components. The following variation points were defined:

• number of clocks—the total number of Clock components discussed above that are used 
as a stimulus to other components within an assembly

• number of components—the total number of components, in this case, synthetic compo-
nents, that make up an assembly

• number of connections per source pin—the maximum number of connections allowed for 
a single component’s source pin to be connected to other components’ sink pins

• minimum load factor—the minimum execution time for a component in the assembly. 
This number could range from 5 to 20 and had to be less than or equal to the maximum 
load factor.

• maximum load factor—the maximum execution time for a component in the assembly. 
This number could range from 5 to 20.

• harmonic period—determination of whether the clocks in the system have the same period

• minimum clock period—the minimum clock period for the clocks in the assembly. This 
value must be less than or equal to the maximum clock period.

• maximum clock period—the maximum clock period for the clocks in the assembly

• communication type—determination of whether the connections between the components 
in the assembly are asynchronous (‘A’), synchronous (‘S’), or heterogeneous (‘M,’ a mix 
of synchronous and asynchronous) type communications

• percent blocking—percentage of the total number of synchronous pins used in the assem-
bly that must be blocked or mutexed

Tuples A′ = <v0,  v1, ..., vn>  are constructed from variation points, where vk is a binding of the 
kth variation point. Each tuple  A′ represents, in some way, a stereotypical assembly. Thirteen 
such tuples were defined, again using judgment. An example tuple is shown in Figure 54; the 
complete set of tuples is shown in Table 10.
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Figure 54: Variation Points for One Assembly Design Space

Each tuple (one row of Table 10) was given to the SEIAssemblyGeneratorController tool to 
randomly select an assembly from the design space. Each generated assembly was tested for 
λABA well-formedness per the rules described in Appendix A.

Table 10: Variation Points for All Assembly Design Spaces
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1 1 2 1 5 5 Y 20 100 A 50

2 4 50 2 5 20 Y 500 1000 A 50

3 1 2 1 5 5 N 20 100 A 50

4 1 2 1 5 5 Y 20 100 M 50

5 4 50 2 5 20 Y 500 1000 M 50

6 1 2 1 5 5 N 20 100 M 50

7 2 4 1 5 10 N 100 500 M 50

8 2 4 1 5 10 Y 100 500 M 0

9 2 8 1 5 10 N 20 100 A 100

10 2 8 1 5 10 N 20 100 M 0

11 4 35 2 15 20 Y 500 2000 A 50

12 4 35 1 5 5 Y 500 2000 M 100

13 2 4 1 5 5 Y 200 400 M 25

14 3 10 1 5 5 N 200 400 M 25

15 4 15 1 5 5 Y 200 400 M 25

16 2 15 3 20 20 Y 400 1200 M 75

Line. 1 <Description name="1"
Line. 2   nofClocks="1" nofComponents="2"
Line. 3   nofConnectionsPerSrc="1"
Line. 4   minLoad="5" maxLoad="5"
Line. 5   harmonicPeriods="true" 
Line. 6   minPeriod="20" maxPeriod="100" 
Line. 7   connectionType="A"
Line. 8   percentblocking="50" />
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Figure 55 is one of the assemblies generated randomly from tuple #1 (i.e., the first row in 
Table 10).

Figure 55: Example of a Randomly Selected Assembly

Figure 56: Topology of an Example of a Randomly Selected Assembly

λABA predicts the average latency of the longest path of an assembly of components from the 
“certified” execution time of components (see Section B.2.5.1). The latency computed for the 
job becomes the prediction for the latency of that job for that assembly. For the assembly 

Line. 1 <?xml version="1.0" encoding="utf-8" standalone="yes"?>
Line. 2 <Assembly xmlns="PinTekXML.xsd">
Line. 3   <Components>
Line. 4     <Component name="Clock0" type="clock">
Line. 5       <Property propId="period" value="40" />
Line. 6     </Component>
Line. 7     <Component name="C1" type="synthetic5">
Line. 8        <Property propId="measurement" value="true" />
Line. 9        <Property propId="priority"    value="68" />
Line. 10       <Property propId="loadFactor"  value="5" />
Line. 11       <Property propId="blocking"    value="true" />
Line. 12     </Component>
Line. 13     <Component name="C2" type="synthetic5">
Line. 14       <Property propId="measurement" value="3" />
Line. 15       <Property propId="priority"    value="124" />
Line. 16       <Property propId="loadFactor"  value="5" />
Line. 17       <Property propId="blocking"    value="false" />
Line. 18     </Component>
Line. 19   </Components>
Line. 20   <Connectors>
Line. 21     <Connector>
Line. 22       <Source component="Clock0" pin="0" />
Line. 23       <Sink   component="C1" pin="1" />
Line. 24     </Connector>
Line. 25     <Connector>
Line. 26       <Source component="C1" pin="3" />
Line. 27       <Sink   component="C2" pin="1" />
Line. 28     </Connector>
Line. 29   </Connectors>
Line. 30 </Assembly>
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shown in Figure 56, the calculated prediction (based on the component property for pin 1 of 
the synthetic5 component [see Table 17 on page 122]) is shown in Table 11. 

Task #1 (from Table 11) refers to the job beginning with component instance clock0 in the 
assembly. Job #1 is the “longest path” emanating from that clock. Since, in this assembly, 
there is only one “path” (i.e., clock0.r1 � c1.s2, c1.r2�� c2.s2), it is, by default, the “longest 
path” and therefore the only job—hence one prediction. Predicted latency is the prediction for 
the average number of milliseconds it will take to complete one period in the hyper-period for 
the job, which for Task #1, Job #1 is 10.45 ms. The standard deviation is the computed stan-
dard deviation for the prediction (in milliseconds).

With a prediction for each job in each defined and randomly selected assembly, each assembly 
was run using the assemblytestscript.bat and measureAssembly.bat scripts. These scripts 
invoke the Pin runtime environment and assembly measurement environment using the ran-
domly selected component assemblies. Each random component assembly is run once for each 
job found in the assembly so that it can be measured independently from any other executing 
jobs in the assembly. Each assembly job is run until it is stopped by the assembly measurement 
environment. That environment will cease measuring once it has collected N samples (in this 
experiment, N=30).

The measurement environment computes continuously, from time-stamped Pin events, the 
average elapsed time (in milliseconds), and the standard deviation of assembly execution. 
Upon completion of the measurement process, the measurement environment records the mea-
sures for the assembly and exits. The form of the results for each recorded assembly is shown 
in Table 12.

Table 12 is very similar to the table described above for recording the prediction. The differ-
ences are that after successfully measuring a job for an assembly, the total number of latency 
samples observed are recorded (in this case, Samples = 30), and the computed arithmetic mean 
(i.e., Average Latency = 10.46 ms) is calculated.

The actual assembly latencies observed for all tasks (i.e., average job) are captured in Table 18 
on page 123.

Table 11: Predicted Latency for Synthetic5’s Job

Task Job Predicted Latency (ms) Standard Deviation (+/- ms)

1 1 10.447651 0.001320

Table 12: Observed Average Latency for an Assembly

Task Job Samples Average Latency (ms) Standard Deviation (+/- ms)

1 1 30 10.464237 0.007309
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B.2.4 Develop Measurement Infrastructure

The infrastructure described here was developed to support the sampling procedure outlined in 
Section B.2.3. We expect a large portion of this infrastructure to be reusable by other property 
theories, not necessarily time-based ones.

B.2.4.1 Measurement Tool Suite

The complete measurement infrastructure required to obtain measurement data on the compo-
nents and assemblies used in the empirical validation is discussed briefly below.

The overall control and data flow for the tools created for the empirical validation is shown in 
Figure 57. Component execution time is measured by placing components in a test harness—
essentially an assembly occupied only by the component (the Composer tool). An assembly 
generator uses variation points (the tuples described earlier) to generate well-formed assem-
blies from measured components. The generated assemblies are then executed in an instru-
mented runtime that records actual job latencies. This data is then compared with predictions 
to produce statistical labels for λABA.

Figure 57: Measurement Infrastructure Tool Workflow
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The specific tools that were created and their purposes are shown in Table 13.

Table 13: Measurement Infrastructure Tool Suite 

Workflow Element/Tool Purpose

Component repository

reg.bat Registers RTX components (.rtdlls) with the RTX Runt-
ime executive

*.rtdll RTX components

*.dll WIN32 components

Composer

createsinktest.bat Outer control loop, iterating from 5 to 20 times as argu-
ments for the component assembly generator script

createonesinktest.bat Component assembly generator script, creating a sim-
ple assembly for testing a single component. The name 
of the component is passed as an argument.

XML2CFGsinktest.bat Outer control loop, iterating over the assemblies gener-
ated by the component assembly generator and pass-
ing the generated XML file to the XML-to-CFG 
translator

SEITranslateAssembly-
fromXML.exe

XML-to-CFG translator that converts an assembly gen-
erated by the component assembly generator from an 
XML representation to a CFG representation suitable 
for consumption by the RTX Pin Runtime

Component test bench

sinktestscript.bat Outer control loop, iterating over the assemblies gener-
ated by the component assembly generator and pass-
ing the converted CFG file to the main measurement 
script

measure2.bat Main measurement script overseeing the execution of 
the assembly in the RTX Pin Runtime and measured by 
the RTX Assembly Measurement tool. When the RTX 
Assembly Measurement tool is complete, the script kills 
the RTX Pin Runtime and exits.

results2.xml Component measurements (results) of actual values 
captured by the RTX Assembly Measurement tool

Component test bench OR controller assembly test bench

Runtime.rtss RTX Pin Runtime. Besides executing the Pin assembly, 
the RTX Pin Runtime generates measurement events 
that are consumed by the RTX Assembly Measurement 
tool.

assemblymsrmt.rtss RTX Assembly Measurement tool. Reads measurement 
events generated by the RTX Pin Runtime and calcu-
lates the job execution time for a hyper-period based on 
command line arguments.
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mywait.bat Used to pause the execution of the main measurement 
script until the RTX Pin Runtime has been signaled by 
the RTX Assembly Measurement tool that it is com-
plete. The mywait.bat script and the RTX Assembly 
Measurement tool do this signaling through the creation 
and removal of a file in the file system.

wait.exe A tool designed to block (wait) for N seconds using 
native WIN32 calls for sleep() (a non-busy wait)

killruntime.rtss Used to signal the RTX Pin Runtime to suspend execu-
tion of the assembly and exit

rtx-hack.exe A tool that is used to aid the continuous, non-human 
interactive execution of the RTX Pin Runtime. A bug in 
the RTX executive causes the generation of an RTX 
exception that can be dismissed only by pressing a but-
ton on the exception dialog. This WIN32 application 
looks for that dialog and dismisses the dialog automati-
cally.

Component registry

components.xml Registration information about components available for 
use within the Pin Runtime environment. This file con-
tains path locations to the components in the file system 
as well as pin configurations and measurement data for 
those components.

components.cfg RTX-Pin-Runtime-translated version of the XML repre-
sentation of the same name. This file is suitable for use 
with the RTX Pin Runtime.

XML2CFGcomponents.bat Simple one-line script for running the XML-to-CFG 
translator for the component registry

SEITranslateCompo-
nentsXML.exe

XML-to-CFG translator that converts a component reg-
istry from an XML representation to a CFG representa-
tion suitable for consumption by the RTX Pin Runtime

Controller assembly design space description

ControllerValidationDescr.xml XML file that describes a number of valid design spaces 
from which assemblies can be selected randomly

Assembly generator and predictor

SEIAssemblyGeneratorCon-
troller.exe

Outer control loop, iterating over randomly selected 
assemblies from a predetermined assembly design 
space. The selected assembly is passed to the Pin 
Runtime simulator for rejection (a non-schedulable 
assembly) or prediction (a schedulable assembly).

AsyncGen.exe Pin Runtime simulator. If the assembly is schedulable, a 
prediction is made for each job within the assembly. If it 
is not schedulable, the assembly is rejected.

Table 13: Measurement Infrastructure Tool Suite  (Continued)

Workflow Element/Tool Purpose
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SEI_#_*.xml Assembly that is generated by the SEIAssemblyGener-
atorController.exe script and deemed schedulable by 
the Pin Runtime simulator

SEI_#_*.cfg CFG representation of the XML assembly generated by 
the SEITranslateAssemblyfromXML.exe script

SEI_#_*.csv Prediction made for each job in the assembly by the Pin 
Runtime simulator

SEI_#_*.lpi “Longest path” information for each job within an 
assembly

XML2CFGassemblies.bat Outer control loop, iterating over the assemblies gener-
ated by the SEIAssemblyGeneratorController.exe script 
assembly generator and passing the generated XML file 
to the XML-to-CFG translator

SEITranslateAssembly-
fromXML.exe

XML-to-CFG translator that converts an assembly gen-
erated by the component assembly generator from an 
XML representation to a CFG representation suitable 
for consumption by the RTX Pin Runtime

sed Tool used to patch the generated CFG file due to a bug 
in the Pin Runtime simulator

Controller assembly test bench

doemall.bat Outermost control loop to repeat execution of all the 
assemblies generated by the SEIAssemblyGenerator-
Controller.exe script and the Pin Runtime simulator. As 
configured, this script will repeat the run of the entire set 
of assemblies 40 times.

2assemblytestscript.bat Support script for the outermost control loop

assemblymeasure.bat Inner control loop to manage the execution of all gener-
ated assemblies

measureAssembly.bat Main assembly measurement script overseeing the 
execution of the assembly in the RTX Pin Runtime and 
measured by the RTX Assembly Measurement tool. 
When the RTX Assembly Measurement tool is com-
plete, the script kills the RTX Pin Runtime and exits.

Controller measurement aggregation and basic calculations

pcfu_analysis_v3.xls Excel spreadsheet to collect all the measurements 
recorded by the Pin Measurement tool into one place. 
Performs basic descriptive statistics on the data and 
aggregates (such as Average, MRE, and standard devi-
ation). Other sheets within the Excel workbook include 
those on graph generation and other manual aids for 
analysis.

Module1.gatherpredictions() Excel.VBA script for automating the inclusion and 
aggregation of recorded measurement data

Table 13: Measurement Infrastructure Tool Suite  (Continued)

Workflow Element/Tool Purpose
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B.2.4.2 Test Environment

Execution time properties for components, as well as assembly job latency, are directly 
affected by the runtime environment. Such properties include both hardware (e.g., processor 
speed) and software (e.g., operating system) properties. The significant hardware and software 
features and configurations are listed in Table 14 and Table 15, respectively.

Module1.paccCompare() Excel.VBA script for automating the separation of actual 
latency records from the bulk of other collected data. 
Also aids in analysis.

Module1.paccCompareAVG() Excel.VBA script for automating the separation of 
Actual MREs calculated from the bulk of other collected 
data. Also aids in analysis.

Controller analysis script

pect1.exa Script used for automating the analysis that determines 
the statistical labels from the experiment

StInt.exe Tool created by Hahn and Meeker that comes complete 
with a rudimentary statistical scripting language [Hahn 
91]

Table 14: Hardware Characteristics

Item Value

System Manufacturer Dell Computer Corporation

System Model DIM4400

Processor x86 Family 15 Model 1 Stepping 2
GenuineIntel ~1595 Mhz

Physical Memory 1,047,856 KB
184-pin DIMM PC2100

Virtual Memory 3,570,352 KB

Hard Disk 1 WDC WD400BB-75CAA0
40 GB
7200 RPM
2 MB Buffer
8.9 ms Average Read Seek Time

Table 13: Measurement Infrastructure Tool Suite  (Continued)

Workflow Element/Tool Purpose
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Additionally, the property values collected can be affected by other operating and user pro-
cesses currently running on the machine. All opportunities were taken to “quiet” the runtime 
environment. Table 16 lists all the residual processes running at test time.

Table 15: Software Characteristics

Item Value

Operating System Name Microsoft Windows 2000 Professional
5.0.2195 Service Pack 2 Build 2195

Compiler Microsoft Visual C# .NET
1.0 Build 3705

Compiler Microsoft Visual Studio C++
6.0 Service Pack 5

Real-Time Extensions VenturCom RTX
5.1.1 Build 3517

Table 16: Processes (Running Tasks)

Name Version

smss.exe 5.00.2195.2901

csrss.exe 5.00.2195.2581

winlogon.exe 5.00.2195.2953

services.exe 5.00.2195.2780

lsass.exe 5.00.2195.2964

svchost.exe 5.00.2134.1

spoolsv.exe 5.00.2161.1

svchost.exe 5.00.2134.1

mdm.exe 7.00.9466

regsvc.exe 5.00.2195.2104

mstask.exe 4.71.2195.1

winmgmt.exe 1.50.1085.0029

logon.scr 5.00.2195.2104
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B.2.5 Collect Validation Data

B.2.5.1 Component Execution Times

Table 17 lists the actual execution times recorded for each synthetic Pin component.

Table 17: Recorded Actual Execution Time Per Synthetic Pin 
Component 

Component Pin Samples Average Execution 
(ms)

Standard 
Deviation
(+/- ms)

synthetic5 s1 30 5.418953330 0.0015290

s2 30 5.223903330 0.0009710

synthetic6 s1 30 6.339036670 0.0011540

s2 30 6.150383330 0.0010060

synthetic7 s1 30 7.262256670 0.0010040

s2 30 7.069983330 0.0012750

synthetic8 s1 30 8.186626670 0.0011700

s2 30 7.992573330 0.0012050

synthetic9 s1 30 9.108433330 0.0012930

s2 30 8.916026670 0.0011840

synthetic10 s1 30 10.032653330 0.0015590

s2 30 9.839880000 0.0039720

synthetic11 s1 30 10.956230000 0.0012750

s2 30 10.758920000 0.0013960

synthetic12 s1 30 11.878773330 0.0035830

s2 30 11.680800000 0.0017240

synthetic13 s1 30 12.797450000 0.0013040

s2 30 12.607413330 0.0011450

synthetic14 s1 30 13.722073330 0.0016360

s2 30 13.527796670 0.0018540

synthetic15 s1 30 14.647590000 0.0010480

s2 30 14.450010000 0.0015210

synthetic16 s1 30 15.567820000 0.0016890

s2 30 15.371700000 0.0012900

synthetic17 s1 30 16.491470000 0.0012860

s2 30 16.291336670 0.0012010
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B.2.5.2 Assembly Latencies

Table 18 lists the predicted and actual latencies recorded for each Task.

synthetic18 s1 30 17.415736670 0.0020440

s2 30 17.214350000 0.0013260

synthetic19 s1 30 18.334366670 0.0013310

s2 30 18.141623330 0.0012160

synthetic20 s1 30 19.257180000 0.0014420

s2 30 19.062330000 0.0015600

Table 18: Recorded Predicted and Actual Latencies Per Task
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1 1 1 10.447651000 10.464237000 0.001585018
2 2 1 10.447651000 10.464103000 0.001572232
3 3 1 10.447651000 10.468303000 0.001972813
4 4 1 10.447651000 10.481843000 0.003262022
5 5 1 10.642405000 10.647977000 0.000523292
6 6 1 5.223772000 5.242617000 0.003594579
7 7 1 10.642405000 10.649987000 0.000711926
8 8 1 10.642405000 10.648773000 0.000598003
9 9 1 10.466214200 10.434522200 0.003037226

10 2 26.211976000 26.010260000 0.007755247
11 10 1 16.908883000 16.938880000 0.001770896
12 2 39.233906000 39.198687000 0.000898474
13 11 1 21.285280000 21.317490000 0.001510966
14 2 15.866593500 15.845152000 0.001353190
15 12 1 26.899670000 26.476400000 0.015986690
16 2 64.441911500 63.444630000 0.015718927
17 3 86.117799000 84.727607000 0.016407781
18 4 96.760863000 95.213423000 0.016252330

Table 17: Recorded Actual Execution Time Per Synthetic Pin 
Component  (Continued)

Component Pin Samples Average Execution 
(ms)

Standard 
Deviation
(+/- ms)
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19 13 1 31.343418000 31.345887000 0.000078766
20 2 10.447805000 10.486627000 0.003702048
21 14 1 32.319165000 31.876143000 0.013898231
22 2 70.056397000 68.859087000 0.017387829
23 3 51.089765500 50.240897000 0.016895966
24 4 77.989699000 76.642826500 0.017573367
25 15 1 5.223772000 5.240607000 0.003212414
26 16 1 10.447651000 10.467927000 0.001936964
27 17 1 10.447651000 10.483470000 0.003416712
28 18 1 5.223772000 5.241083000 0.003302943
29 19 1 10.642405000 10.645567000 0.000297025
30 20 1 5.223772000 5.242970000 0.003661665
31 21 1 10.642405000 10.644620000 0.000208086
32 22 1 31.040545514 30.827478573 0.006911592
33 2 28.740783575 28.494810878 0.008632193
34 23 1 5.223772000 5.245897000 0.004217582
35 24 1 12.486407000 12.507233000 0.001665116
36 2 13.313233500 13.312455000 0.000058479
37 25 1 54.716278000 54.752170000 0.000655536
38 2 5.223817000 5.243300000 0.003715790
39 26 1 20.895468000 20.905221500 0.000466558
40 2 10.447968000 10.486070000 0.003633582
41 27 1 54.686602000 54.454630000 0.004259913
42 2 14.143044000 14.143053000 0.000000636
43 28 1 17.302273710 17.261133611 0.002383395
44 2 22.866187841 22.621172793 0.010831227
45 3 11.003177993 11.022679949 0.001769257
46 29 1 203.385312000 201.129930000 0.011213557
47 2 55.102592500 53.494173500 0.030067181
48 3 123.077102000 121.362487000 0.014128048
49 4 17.559318500 16.247148500 0.080763095
50 30 1 15.866163000 15.851590000 0.000919340
51 2 23.897367500 23.910218000 0.000537448

Table 18: Recorded Predicted and Actual Latencies Per Task (Continued)
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52 31 1 204.195290000 201.662288833 0.012560609
53 2 344.016553333 338.834986333 0.015292302
54 3 58.958727333 58.155217833 0.013816636
55 4 48.185407000 47.485040750 0.014749198
56 32 1 5.223772000 5.239153000 0.002935780
57 33 1 214.891847000 214.506840000 0.001794847
58 2 34.433039000 34.449800000 0.000486534
59 3 88.236056000 88.217465000 0.000210741
60 4 148.640039500 148.530475000 0.000737657
61 34 1 10.447651000 10.464323000 0.001593223
62 35 1 7.069980000 7.089007000 0.002684015
63 2 13.220204000 13.212337000 0.000595428
64 36 1 437.787672000 437.825835000 0.000087165
65 2 17.214288000 17.253165667 0.002253364
66 3 33.505698000 33.522708667 0.000507437
67 4 68.248844667 68.215058667 0.000495287
68 37 1 10.447651000 10.466423000 0.001793545
69 38 1 202.290165000 202.417706500 0.000630091
70 2 229.650747000 229.393180000 0.001122819
71 3 12.293624000 12.336327000 0.003461565
72 4 39.963095500 39.935103500 0.000700937
73 39 1 10.447651000 10.463353000 0.001500666
74 40 1 7.992571000 8.012658500 0.002506971
75 2 8.814414333 8.819739000 0.000603722
76 41 1 222.578150000 222.664175000 0.000386344
77 2 98.374782000 98.301925000 0.000741155
78 3 114.665828000 114.596211500 0.000607494
79 4 94.683699000 94.630223000 0.000565105
80 42 1 10.447651000 10.469507000 0.002087586
81 43 1 10.642405000 10.647427000 0.000471663
82 44 1 229.516865000 228.742650000 0.003384655
83 2 23.361351000 22.890378500 0.020575129
84 3 31.353861000 31.342447000 0.000364171
85 4 33.507831000 33.512895000 0.000151106

Table 18: Recorded Predicted and Actual Latencies Per Task (Continued)
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86 45 1 5.223772000 5.240627000 0.003216218
87 46 1 41.155253000 40.868471500 0.007017182
88 2 26.821569000 26.696627000 0.004680067
89 47 1 9.225493000 9.226523500 0.000111689
90 2 6.150224000 6.163042286 0.002079863
91 48 1 6.453807375 6.467737125 0.002153729
92 2 9.839250000 9.856764333 0.001776885
93 49 1 473.421081167 470.870088333 0.005417615
94 2 5.223854000 5.254280750 0.005790850
95 3 6.965180333 6.980025333 0.002126783
96 4 9.577441000 9.584958167 0.000784267
97 50 1 85.142083000 84.681448667 0.005439613
98 2 49.101117500 48.649770000 0.009277485
99 3 90.366019000 89.437177667 0.010385405

100 51 1 95.980318000 95.206460000 0.008128209
101 2 5.223967000 5.252733500 0.005476482
102 3 26.314324000 26.267070000 0.001798983
103 4 21.090584000 21.061773000 0.001367929
104 52 1 362.962624000 363.222297000 0.000714915
105 2 343.900028000 343.661253000 0.000694798
106 53 1 10.447651000 10.466990000 0.001847618
107 54 1 211.515258000 211.171632000 0.001627236
108 2 233.034612000 232.761743000 0.001172310
109 3 53.188201000 53.152377000 0.000673987
110 4 27.981434000 28.033153500 0.001844940
111 55 1 10.447651000 10.476167000 0.002721988
112 56 1 15.867223000 15.900327000 0.002081970
113 57 1 194.014049000 192.847623000 0.006048433
114 2 26.899835500 26.926842000 0.001002958
115 3 129.438334000 128.484298500 0.007425308
116 4 148.500717500 148.038875000 0.003119738
117 58 1 10.447651000 10.461457000 0.001319701
118 59 1 38.628699250 38.482468250 0.003799938
119 2 15.254885000 15.268325800 0.000880306

Table 18: Recorded Predicted and Actual Latencies Per Task (Continued)
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120 60 1 9.839871000 9.851990600 0.001230168
121 2 11.989716500 11.993116500 0.000283496
122 61 1 6.150381000 6.167381000 0.002756437
123 2 8.551507545 8.568310364 0.001961042
124 62 1 189.479111833 189.407213833 0.000379595
125 2 132.194130500 132.131390000 0.000474834
126 3 123.174457667 123.090005333 0.000686102
127 4 25.416587333 25.455879000 0.001543520
128 63 1 237.923872000 235.610187000 0.009819970
129 2 62.941314500 62.047110750 0.014411690
130 3 5.224044000 5.252087000 0.005339401
131 4 6.530178250 6.548859750 0.002852634
132 64 1 31.538572000 31.547863000 0.000294505
133 2 10.447630000 10.484670000 0.003532777
134 65 1 172.340149000 171.930870000 0.002380486
135 2 38.124446000 38.165202000 0.001067884
136 66 1 10.447651000 10.474927000 0.002603932
137 67 1 171.854499000 171.951639750 0.000564931
138 2 217.354521000 217.203003000 0.000697587
139 3 41.199258000 41.228013000 0.000697463
140 4 215.511509500 215.330905000 0.000838730
141 68 1 10.642405000 10.651257000 0.000831076
142 69 1 10.642405000 10.649523000 0.000668387
143 70 1 32.553767000 32.335025889 0.006764835
144 2 14.091335800 13.996779000 0.006755611
145 71 1 396.218259000 393.783429000 0.006183170
146 2 436.698304333 433.988472333 0.006244018
147 3 219.274297167 217.936968500 0.006136309
148 4 142.896621250 142.249186000 0.004551416
149 72 1 10.642405000 10.649430000 0.000659660
150 73 1 10.642405000 10.648750000 0.000595845
151 74 1 32.553767000 32.335675222 0.006744618
152 2 14.091335800 14.149474800 0.004108916

Table 18: Recorded Predicted and Actual Latencies Per Task (Continued)
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B.2.6 Analyze Results

The goal of the analysis study for empirically validating the property theory (in Appendix A) 
was to support or refute the hypothesis that λABA would predict the latency for any job within 
the hyper-period with an MRE ≤ 0.05 with a confidence level γ =0.99. A minimum acceptable 
p = 80% was established for a pass/fail condition.

B.2.6.1 Computations

The MRE for each recorded and observed average latency was calculated for each task using 
this equation:

This resulted in having one MRE computed for each task executed. The result of that compu-
tation is found in Table 18.

153 75 1 396.218259000 393.627532333 0.006581670
154 2 436.698304333 433.993043333 0.006233420
155 3 219.274297167 237.628940500 0.077240774
156 4 142.896621250 142.245071500 0.004580473

Table 18: Recorded Predicted and Actual Latencies Per Task (Continued)
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B.2.6.2 Descriptive Statistics

Table 19 includes some basic descriptive statistics for the assembly measures recorded in 
Table 18.

B.2.6.3 Normality Test

The Shapiro-Wilk normality test was used to support (or refute) the hypothesis that the popula-
tions of job AVGMREs was normal. Depending on the result, different forms of intervals must 
be used. The results from the Shapiro-Wilk normality test are shown in Table 20.

Since the p-value is less than the generally accepted critical p-value of 0.05, the hypothesis 
that the MREs for the jobs are normally distributed was rejected.

Next, a logarithmic transformation was applied to the AVGMREs with the intent to make them 
normally distributed. That is, each AVGMRE in the population was transformed using 
LOG(AVGMRE), and a new population was created. Again, the Shapiro-Wilk normality test 
also refuted that the new, transformed population was normal because the p-value, although 
much improved, was still smaller than the critical p-value of 0.05.

Table 19: Descriptive Statistics for Job Assembly Measurements

Basic Statistic Value

Samples (N) 156

Mean MRE (mAVGMRE)  0.005081224

Standard Deviation (s)  0.009841344

Spearman rank correlation of Predicted 

Latency and Average Latencya

a. A high correlation (closer to -1.0 or 1.0) is an indication of correlation between the
predicted latency and average latency. P-value is the probability that any such
correlation is a coincidence. For a small p-value, reject the hypothesis that the cor-
relation is a coincidence. Spearman’s correlation is a non-parametric correlation
and does not make assumptions about the data (i.e., normality).

0.998
p-Value < 0.001

Table 20: Results from the Shapiro-Wilk Normality Test on AVGMRE

W statistic p-value

0.4403 2.2e-16

Table 21: Results from the Shapiro-Wilk Normality Test on LOG(AVGMRE)

W statistic p-value

0.9427 5.77e-06
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Similarly, a Box-Cox transformation also failed to produce a normal distribution (varying 
λ= { 5.0, 0.5, 0.3, 0.1, 0.01}42). Histograms of the AVGMRE and LOG(AVGMRE) popula-
tion are shown in Figures 58 and 59 below.

Figure 58: Histogram of AVGMRE

42. As the λ-values approach 0, the transformation approaches the logarithmic transformation performed earlier. This is not sur-
prising, because the Box-Cox transformation for λ-value 0 equals LOG().
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Figure 59: Histogram of LOG(AVGMRE)

Given that the population of the AVGMRE job data is not normal, statistical intervals that 
assume normally distributed data cannot be used. Therefore, distribution-free statistical inter-
vals had to be used to compute the tolerance and confidence intervals.

B.2.6.4 One-Tail Distribution-Free Statistical Intervals

The upside to using distribution-free statistical intervals is that there are no assumptions about 
the data’s normality. Given that the population of the AVGMREs recorded is not normal, this 
upside is an incentive for using distribution-free intervals. However, the downside is that it is 
difficult to achieve, precisely, the desired confidence intervals. Further, the intervals that are 
determined tend to be longer than those derived from normal distributions. One reason for this 
difference is that such statistical methods do not require parameters to the formulae and table 
lookups (such as standard deviation) that are used to determine either tolerance or confidence 
intervals for distribution-free populations43 [Hahn 91].

The goal for this analysis is to support or reject the hypothesis that λABA will predict the 
latency of a job to have an MRE ≤ 0.05. This is the upper bound for an MRE interval repre-
senting situations where predictions would be no worse than the µMRE for a job. Notice that 
the lower bound for an MRE interval would represent situations where the predictions would 

43. Distribution-free statistical intervals are also referred to as non-parametric statistical intervals.
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be no better than the µMRE for a job. Thus, knowing both ends of the interval (a two-tail 
interval) is not the goal of this analysis study, as only the upper-bound interval (a one-tail 
interval) is of interest.

StInt, a tool that performs a number of different kinds of statistical intervals (including distri-
bution-free intervals), was used to determine the tolerance interval for the population of job 
AVGMREs [Meeker 93]. The first calculation performed is shown in Figure 60 where

• p=0.80 is the proportion of the percentile of the population to compute the interval.

• kside=2 is the upper tolerance bound.

• conlev=0.99 is the desired confidence level.

Figure 60: Distribution-Free Calculation Using StInt

The result of this initial calculation is that our hypothesis for achieving an MRE ≤ 0.05 was 
supported. The upper-bound tolerance we could expect to achieve based on this population 
(N=156, line 7 above) was 0.01 (or 1% MRE, line 11 above) for 80% of the population, with 
an actual confidence level of 99.29% (line 9 above).

Table 22: Results from the Initial Calculation for a One-Sided Distribution-Free 
Tolerance Interval

Part of Interval Value

N = 156 sample size

γ = 0.9929 confidence level

ρ = 0.80 proportion

µMRE = ~0.0051 (or 0.51%) mean MRE

UB = 1% upper-bound MRE

Line. 1 stint> dfti p=0.80 kside=2, conlev=0.99
Line. 2  finding a nonparametric  99.0% upper confidence bound
Line. 3    for the  80.0 percentile.
Line. 4  this is also a 99.0% upper tolerance bound to exceed
Line. 5    at least 80.0% of the population.
Line. 6 
Line. 7  the interval (bound) is based on  156 observations.
Line. 8  the desired upper bound is x(137).
Line. 9  the actual confidence level is= 0.9929 (99.29%)
Line. 10 
Line. 11  ordered observation number   137 is    0.01 (1% MRE)
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Based on trial and error (iterating though different values of ρ), it was determined that an 
upper-bound tolerance of 2% MRE could be achieved for 90% of the population with an actual 
confidence of 99.04%.44

B.2.7 Final Statistical Labels

Table 23 is a compilation of the data from the previous sections. All calculations assume a dis-
tribution-free tolerance interval.

B.3 Conclusions
The goal for the λABA property theory that the latency for a job within the hyper-period can be 
predicted with an MRE ≤ 0.05 with a confidence level γ =0.99 for at least 80% of the popula-
tion was supported thorough empirical validation.

B.4 StInt Program
The StInt program contains the following code:

Line. 1 batch
Line. 2 c
Line. 3 c  # AVGMRE dataset
Line. 4 c

44. dfti p=0.90 kside=2, conlev=0.99

Table 23: Final Statistical Label

Descriptive Statistics

Basic Statistic Value

Samples (N) 156

Mean MRE (µMRE) < 0.51%

Standard deviation (s) < 0.01

Spearman rank correlation 0.998
p-Value < 0.001

One-Tail Confidence Interval

Part of Interval Value

confidence level (γ) 99.29%

proportion (ρ) 80%

upper bound (UB) 1%
CMU/SEI-2002-TR-031 133



Line. 5 read 156 observations
Line. 6 0.001585018, 0.001572232, 0.001972813, 0.003262022,
Line. 7 0.000523292, 0.003594579, 0.000711926, 0.000598003,
Line. 8 0.003037226, 0.007755247, 0.001770896, 0.000898474,
Line. 9 0.001510966, 0.001353190, 0.015986690, 0.015718927,
Line. 10 0.016407781, 0.016252330, 0.000078766, 0.003702048,
Line. 11 0.013898231, 0.017387829, 0.016895966, 0.017573367,
Line. 12 0.003212414, 0.001936964, 0.003416712, 0.003302943,
Line. 13 0.000297025, 0.003661665, 0.000208086, 0.006911592,
Line. 14 0.008632193, 0.004217582, 0.001665116, 0.000058479,
Line. 15 0.000655536, 0.003715790, 0.000466558, 0.003633582,
Line. 16 0.004259913, 0.000000636, 0.002383395, 0.010831227,
Line. 17 0.001769257, 0.011213557, 0.030067181, 0.014128048,
Line. 18 0.080763095, 0.000919340, 0.000537448, 0.012560609,
Line. 19 0.015292302, 0.013816636, 0.014749198, 0.002935780,
Line. 20 0.001794847, 0.000486534, 0.000210741, 0.000737657,
Line. 21 0.001593223, 0.002684015, 0.000595428, 0.000087165,
Line. 22 0.002253364, 0.000507437, 0.000495287, 0.001793545,
Line. 23 0.000630091, 0.001122819, 0.003461565, 0.000700937,
Line. 24 0.001500666, 0.002506971, 0.000603722, 0.000386344,
Line. 25 0.000741155, 0.000607494, 0.000565105, 0.002087586,
Line. 26 0.000471663, 0.003384655, 0.020575129, 0.000364171,
Line. 27 0.000151106, 0.003216218, 0.007017182, 0.004680067,
Line. 28 0.000111689, 0.002079863, 0.002153729, 0.001776885,
Line. 29 0.005417615, 0.005790850, 0.002126783, 0.000784267,
Line. 30 0.005439613, 0.009277485, 0.010385405, 0.008128209,
Line. 31 0.005476482, 0.001798983, 0.001367929, 0.000714915,
Line. 32 0.000694798, 0.001847618, 0.001627236, 0.001172310,
Line. 33 0.000673987, 0.001844940, 0.002721988, 0.002081970,
Line. 34 0.006048433, 0.001002958, 0.007425308, 0.003119738,
Line. 35 0.001319701, 0.003799938, 0.000880306, 0.001230168,
Line. 36 0.000283496, 0.002756437, 0.001961042, 0.000379595,
Line. 37 0.000474834, 0.000686102, 0.001543520, 0.009819970,
Line. 38 0.014411690, 0.005339401, 0.002852634, 0.000294505,
Line. 39 0.003532777, 0.002380486, 0.001067884, 0.002603932,
Line. 40 0.000564931, 0.000697587, 0.000697463, 0.000838730,
Line. 41 0.000831076, 0.000668387, 0.006764835, 0.006755611,
Line. 42 0.006183170, 0.006244018, 0.006136309, 0.004551416,
Line. 43 0.000659660, 0.000595845, 0.006744618, 0.004108916,
Line. 44 0.006581670, 0.006233420, 0.077240774, 0.004580473
Line. 45 c
Line. 46 c  # Calculate mean and stdev
Line. 47 c
Line. 48 cndata
Line. 49 c
Line. 50 c  # distribution free one-tail tolerance interval
Line. 51 c  # for upper bound for 80% population.
Line. 52 c
Line. 53 dfti p=0.80 kside=2, conlev=0.99
Line. 54 c
Line. 55 c
Line. 56 c  # distribution free one-tail tolerance interval
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Line. 57 c  # for upper bound for 90% population.
Line. 58 c
Line. 59 dfti p=0.90 kside=2, conlev=0.99
Line. 60 stop
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Appendix C NuSMV Model of CSWI

This appendix contains the NuSMV model for the CSWI component described in Chapter 7.

MODULE main

IVAR

  input : {_opsel_on, _opsel_off, _oppos_open, _oppos_close, 

sbosel, sbopos, none};

VAR

  output : {_sbosel_on, _sbosel_off, _sbopos_open, 

_sbopos_close, opsel, oppos, none};

  state : {waiting, selecting, selected, opening, closing, 

deselecting, unselecting};

ASSIGN

  init(input) := none;

  -- next(input) is unconstrained/non-deterministic

  init(output) := none;

  next(output) := 

    case

      state = waiting     & input = _opsel_on    : _sbosel_on   ;

      state = waiting     & input = _opsel_off   : _sbosel_off  ;

      state = selecting   & input = sbosel       : opsel        ;

      state = selected    & input = _opsel_on    : _sbosel_on   ;

      state = selected    & input = _opsel_off   : _sbosel_off  

;

      state = selected    & input = _oppos_open  : _sbopos_open 

;

      state = selected    & input = _oppos_close : 

_sbopos_close;

      state = opening     & input = sbopos       : _sbosel_off  ;

      state = closing     & input = sbopos       : _sbosel_off  ;

      state = deselecting & input = sbosel       : oppos        ;

      state = unselecting & input = sbosel       : opsel        ;

      1 : none;
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    esac;

  init(state) := waiting;

  next(state) := 

    case

      state = waiting     & input = _opsel_on    : selecting  ;

      state = waiting     & input = _opsel_off   : unselecting;

      state = selecting   & input = sbosel       : selected   ;

      state = selected    & input = _opsel_on    : selecting  ;

      state = selected    & input = _opsel_off   : unselecting;

      state = selected    & input = _oppos_open  : opening    ;

      state = selected    & input = _oppos_close : closing    ;

      state = opening     & input = sbopos       : deselecting;

      state = closing     & input = sbopos       : deselecting;

      state = deselecting & input = sbosel       : waiting    ;

      state = unselecting & input = sbosel       : waiting    ;

      1 : state;

    esac;

  

SPEC EF(state = waiting)

SPEC EF(state = selecting)

SPEC EF(state = selected)

SPEC EF(state = opening)

SPEC EF(state = closing)

SPEC EF(state = deselecting)

SPEC EF(state = unselecting)

SPEC AG((state = waiting) & (input = _opsel_on) -> AX(output = 

_sbosel_on))

SPEC AG((state = selected) & (input = _opsel_off) -> AX(output 

= _sbosel_off))

SPEC AG((state = selected) & (input = _oppos_open) -> AX(output 

= _sbopos_open))

SPEC AG((state = selected) & (input = _oppos_close) -> AX(out-

put = _sbopos_close))

SPEC !E[!(output = _sbosel_on) U (output = _sbopos_open)]

-- the following claim is expected to fail

SPEC AG(input = _opsel_on -> AG output = none)
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Appendix D Switch Schematic

The schematic for the SEI switch is shown in its entirety in Figure 61. Figures 62 through 65 
show the same schematic in larger scale split into four quadrants for easier viewing. To get a 
copy of the original schematic, contact Kurt Wallnau via email at kcw@sei.cmu.edu. 

Figure 61: SEI Switch: Full Schematic
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Figure 62: SEI Switch: Upper Right Quadrant
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Figure 63: SEI Switch: Lower Right Quadrant
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Figure 64: SEI Switch: Upper Left Quadrant
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Figure 65: SEI Switch: Lower Left Quadrant
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Acronym List

ABB/CRC ABB Ltd. Corporate Research Center

AIP Aspect Integration Program

API application program interface

COTS commercial off-the-shelf

CPU central processing unit

CTL computational tree logic

DoD Department of Defense

EMS energy management system

FIFO first in, first out

HP hyper-period

IEC International Electrotechnical Commission

IED intelligent electronic device

I/O input/output

LCM least common multiple

LIFO last in, first out

LN logical node

LS-SDE language-specific software development environment

LTL linear temporal logic
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MRE magnitude of relative error

MS milliseconds

NS nanoseconds

OLE object linking and embedding

OPC OLE (object linking and embedding) for process control

OS operating system

PACC predictable assembly of certifiable components

PC physical connection

PD physical device

PECT prediction-enabled component technology

RMA rate monotonic analysis

RUP Rational Unified Process

SAS substation automation system

SCADA supervisory control and data acquisition

SDE software development environment

SEI Software Engineering Institute

TBD to be decided

UDP Universal Datagram Protocol

UML Unified Modeling Language

XML Extensible Markup Language
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