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Abstract 1 
The objective of this study was to develop and evaluate a methodology to identify individual 2 
sources of emissions based on the measurements of mixed air samples and the emission 3 
signatures of individual materials previously determined by Proton Transfer Reaction-Mass 4 
Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal 5 
processing principles was developed by employing the method of multiple regression least 6 
squares (MRLS) and a normalization technique. Samples of nine typical building materials 7 
were tested individually and in combination, including carpet, ceiling material, gypsum board, 8 
linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) 9 
emissions from each material were measured in a 50-liter small-scale chamber. Chamber air 10 
was sampled by PTR-MS to establish a database of emission signatures unique to each 11 
individual material. The same task was performed to measure combined emissions from 12 
material mixtures for the application and validation of the developed signal separation method. 13 
Results showed that the proposed method could identify the individual sources under 14 
laboratory conditions with two, three, five and seven materials present. Further experiments 15 
and investigation are needed for cases where the relative emission rates among different 16 
compounds may change over a long-term period. 17 
 18 
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1.  Introduction 24 
Source identification has been a challenging research topic in the area of indoor and outdoor 25 
air quality because this issue may have the key to open a new gate to develop optimal control 26 
protocols for protecting and improving human’s life and welfare for the coming ages. Over 27 
the last several decades, emissions of Volatile Organic Compounds (VOC) and Particulate 28 
Matter (PM) have been of global concern because of their significant impact on human’s 29 
health, comfort and performance. Exposure to these air pollutants has been reported to have 30 
various critical impacts on human performance and cardiovascular/respiratory related diseases 31 
in a negative way (Pope and Dockery, 2007; Wargocki and Wyon, 2006). For example, Corbett 32 
et al. (2007) examined the link between PM emissions from ships and human’s health, 33 
assessed their potential impact leading up to 60,000 premature deaths on a global scale 34 
annually and expected a further mortality increase by 40% by 2012 under current regulations 35 
and activity conditions. Moreover, this widespread concern is expected to increase in the 36 
future because of the fast growing rate of global-scale commercial trade and worldwide 37 
distributed manufacturing, the associated increase of vehicle/ship/air traffics and the 38 
corresponding massive use of diesel/gasoline fuels (Corbett et al., 2007; EPA, 2009). 39 
  40 
Although the predicted threats of these emissions have succeeded in attracting worldwide 41 
attention for reducing these emissions, it has been generally agreed that the present 42 
countermeasures for dealing with these emissions were not sufficient to protect human’s 43 
health (EPA, 2009). Because different sources of air pollution may affect the exacerbation of 44 
human’s health effects in different ways, it has been suggested as a desirable countermeasure 45 
to identify and quantify the partial contribution each type of major air pollution source makes 46 
to the overall air quality condition (Lin et al., 2010). In addition, the accurate and complete 47 
apportionment of these pollution sources is regarded as an essential step to the development of 48 
optimal control protocols for global and built environments (Lin et al., 2010). 49 
 50 
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Source identification and apportionment has been an active research subject for outdoor air 1 
quality, but existing methods have shortcomings. Many receptor modeling studies have been 2 
performed on ambient air quality data collected for this apportionment purpose (Cass, 1998; 3 
Cincinelli et al., 2003; Didyk et al., 2000; Edwards et al., 2001; Graham et al., 2004; Hagler et 4 
al., 2006; Lewis et al., 2004; Simoneit, 2002; Wu et al., 2007). Two receptor-based 5 
apportionment methods, Chemical Mass Balance model (CMB) and Positive Matrix 6 
Factorization (PMF), are most common techniques used nowadays for the source 7 
apportionment purpose. CMB has a limitation in identifying any new or unknown sources 8 
(Fujita et al., 2003; Schauer et al., 1996). On the other hand, the limitation of PMF is that the 9 
characteristics of the sources to be identified should be inferred from or interpreted by the 10 
characteristics of the profiles for several key factors identified (Begum et al., 2004; Buzcu and 11 
Fraser, 2006; Kim et al., 2003, 2004, 2008; Paatero and Tapper, 1994; Ramadan et al., 2000; 12 
Viana et al., 2009). Moreover, both methods are known to have high bias for some cases 13 
because of high variability and complexity of VOC/PM emissions, which makes the results 14 
from these methods as rough estimates on the profile of sources not knowing the true profile 15 
of emission sources (Zhao et al., 2007). Most compounds can be emitted from multiple types 16 
of sources, and thus identifying and quantifying sources on the basis of their correlation with 17 
several elemental data is limited and difficult because of similar emission characteristics of 18 
different sources. 19 
 20 
Different from the area of outdoor air quality, indoor source identification has rarely been 21 
studied with a few exceptions (Arhami et al., 2010; Jia et al., 2010; Liu and Zhai, 2007, 2008; 22 
Zhang and Chen, 2007). The problem has its challenge because of both indoor and outdoor 23 
sources, affected by outdoor air via traffic emissions and long-range transport pollutants 24 
(Edwards et al., 2001; Zhao et al., 2007) as well as indoor sources. In many cases, it has been 25 
known that the strength of indoor emissions has a more significant influence on indoor 26 
VOC concentrations than the effect of infiltration from outdoor air (Kim et al., 2001). One of 27 
the recent important research challenges in the field of indoor air quality is the identification 28 
of emission sources of indoor VOCs. Several field studies were performed in residential 29 
buildings to identify several possible active compounds with great potency to human’s health 30 
and perception, and their chemical measurements were reported. However, it was hard to trace 31 
the emission sources of the detected compounds clearly. As an example, Hodgson et al. 32 
(2000) identified acetic acid as one of the important compounds, but were not certain about 33 
the sources of acetic acid in the studied houses. A first step toward a source identification 34 
would be to determine a material emission signature if it is unique for each material or each 35 
type of material. This is similar to human’s fingerprint for personal identification. A study 36 
previously conducted to deal with this issue (Han et al., 2010) showed that unique emission 37 
patterns appeared to exist for different types of building materials. These patterns could be 38 
established by Proton Transfer Reaction - Mass Spectrometry (PTR-MS). Several studies 39 
performed in other research areas such as food engineering, medical research, forensic 40 
investigation, etc. implied that pollutant mass spectra measured by PTR-MS, could be useful 41 
tools for detection and identification purposes (Granitto et al., 2007, 2008; Lirk et al., 2004; 42 
Mayr et al., 2003; Moularat et al., 2008; Van Ruth et al., 2007; Wehinger et al., 2007; Whyte 43 
et al., 2007). With the definition of material emission signatures, a signal processing 44 
technique for pinpointing the materials responsible for certain indoor VOCs may be feasible. 45 
The objectives of this study were to explore the feasibility of a signal processing methodology 46 
for emission source identification, validated by measurement-based Monte-Carlo simulations, 47 
and to apply the method to actual combined emission measurements for separating and 48 
identifying the individual sources of emissions. To our best knowledge, this study is the first 49 
of its kind on how to clearly pinpoint indoor VOC emission sources. 50 
 51 
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 1 
2.  Materials and methods 2 
 3 
2.1.  Overview and basic assumptions 4 
In a previous study (Han et al., 2010), chamber exhaust air polluted by the emissions from 5 
nine individual building materials in a 50-l small-scale chamber was sampled by PTR-MS at 6 
low, medium and high airflow rates to establish a set of material emission signatures stable 7 
over different sampling time and over different area-specific ventilation rates, and to 8 
determine their variances because of noise. The emission signature is the PTR-MS ion mass 9 
(m/z, which is a physical quantity denoting the mass-to-charge ratio widely used in the 10 
electrodynamics of charged species) spectrum of the air sampled from each material, followed 11 
by subtracting the background air signature from the measured and removing any components 12 
within the measurement uncertainty (< 3 sigma of the background signal). Five actual 13 
emission cases of material mixtures were studied to validate source identification methods 14 
developed. The experimental setup is shown in Figure 1. Two signal separation methods were 15 
proposed, tested using measurement-based Monte-Carlo simulations, and validated on the five 16 
multi-material mixtures.  Before going into details, it would be useful to formally state the 17 
basic assumptions the separation methods were based on: 1) Emission signature exists and is 18 
unique for each material type, 2) Interaction effects between material emissions are small and 19 
can be modeled as noise or compensated, and 3) Emission signatures for material mixtures 20 
can be established by the superposition of individual emission signatures of the co-located 21 
materials. 22 
 23 

 24 
Fig1 25 
 26 
2.2.  Algorithms for separation and identification (Source identification module) 27 
2.2.1.  Algorithm 1 28 
Under the basic assumptions stated in the overview, the source identification problem to be 29 
examined in this study can be configured as the estimation of the set of materials present in 30 
the chamber {ID} expressed in terms of a set of integer material identification numbers, or 31 
IDs (i.e. i = 1, 2, …, 9 defined in Table 1 for each material) and the corresponding emission 32 
concentration level of each identified material expressed as a positive real number αi which is 33 
the signal intensity multiplication factor of material i. The measured output from PTR-MS is a 34 
mass spectrum of the emissions from a material mixture, consisting of ion mass x (related to 35 
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VOC) and its signal intensity Ssp(x) (related to concentration level) for all scanned ion masses 1 
x=[x1, x2, …, xN]. Measurements from single material emission tests (σ ~ 2 ncps or < 0.3 ppb 2 
for most ion masses) have shown that measured signal noise w(xn) of PTR-MS for each ion 3 
mass xn (where n=1, 2, …, N) can be roughly modeled as independent Gaussian noises having 4 
the same variance throughout the target ion masses (Note: Several ion masses for the 5 
background air such as m/z=29, 30, 32 and 37 had larger variances than others, so those were 6 
excluded from the target ion masses). Now, the measured emission signature of a material 7 
mixture by PTR-MS can be modeled as follows: 8 
 9 

[ ] NniforwithxforxwxSxS in
i

niniinsp ,,2,1,0,)()()( =∀>∀+⋅= ∑ αα                 (1) 10 
 11 
where sp represents ‘the measured sample’, i indicates the material ID of the correct material 12 
set for the mixture, defined in the database of material emission signatures, Ssp(xn) is the PTR-13 
MS signal intensity (not normalized) of the measured sample for a given ion mass xn, Si(xn) is 14 
the normalized magnitude of emission signature for a given ion mass xn of material i (Note:  15 
An emission signature for each studied material is recorded in the database in a normalized 16 
form having a peak magnitude of 100 as its maximum. For details, refer to Han et al., 2010), 17 
wi(xn) is the independent measurement noise for the ion mass xn contained in the signal for 18 
material i, and αi is the signal intensity multiplication factor of the emission signature for 19 
material i. 20 
 21 
The measured sample signature can also be expressed in a vector form as follows: 22 
 23 
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where )(xspS


 represents the sample signal intensity vector measured for all scanned ion 26 

masses x defined as [ ]TNspnspspsp xSxSxSS )(,),(,),()( 1 


≡x , )(xiS


is the normalized 27 
magnitude vector of the emission signature for material i defined as 28 
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≡x , iα  is given in Equation (1), )(xiw  is the 29 
corresponding signal noise vector for material i defined as 30 
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≡x , and nx  is the nth ion mass in the scanned range  31 
(Note: If there is no corresponding peak for the nth ion mass recorded in the emission 32 
signature of material i, then 0)( =ni xS  in this representation). 33 
 34 
To perform a signature separation and identification when )(xspS


 is the measurement from 35 

PTR-MS, let us define ))(( xSInd


, where Ind(.) is the set of ion mass indices corresponding to 36 
a given emission signature intensity vector )(xS


, with positive (or non-zero) signal 37 

intensities. Then, in the first step, the set of possible material candidates {db} in the database 38 
can be searched by comparing the ion mass components (related to VOC components in a 39 
physical sense) of each material emission signature ))(( xiSInd


with the measured ones 40 

))(( xspSInd


under the epsilon condition (ε) to be defined below. While performing the 41 
comparison between the measurement and the database signatures, if all ion mass components 42 
of a signature are found in the measurement, then that material i related to the signature will 43 
be selected as a possible material candidate (i.e. }{dbi ∈ ), having all VOC components to be 44 
found. However, due to noise, some ion masses that should be found in the measurement 45 
might be missed or measured falsely as any near ion masses. For example, the emission 46 
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signature for Wood (Material ID=9) has ten ion mass indices including m/z=33, 43, 44, 45, 47, 1 
59, 60, 61, 62 and 75, so ))(( 9 xSInd


= {33, 43, 44, 45, 47, 59, 60, 61, 62, 75}. If the 2 

component indices of the measurement from PTR-MS are given as ))(( xspSInd


= {33, 43, 44, 3 
46, 47, 59, 60, 61, 62, 69, 76, 83}, in order for Wood or i=9 to be selected as a possible 4 
material candidate, the mismatched two ion masses (m/z=45 and 75) should be checked 5 
whether they are present in the actual emissions, but measured wrongly (as m/z=46 and 76) 6 
due to noise. For this case, the epsilon condition, which considers the tolerable square error 7 
level along the ion mass axis, was considered. We assume that the noise occurring along ion 8 
masses can be modeled as an independent Gaussian noise having much lower variance than 9 
that of signal intensity for each ion mass. The missing of any correct materials due to this 10 
noise along ion masses can now be considered in the Chi-square distribution by setting a 11 
threshold value enabling the detection of the material at a 95% confidence level. This 12 
threshold value is a one-sided detection limit and can be determined based on actual PTR-MS 13 
measurements. These considerations can be summarized as Step 1 such that: 14 
 15 
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 18 
Here, )(

_
near

spnx , which is an element of {xn} of the measured sample, denotes the nearest ion 19 
mass component in the sample emission signature with a positive signal intensity to an ion 20 
mass ( dbnx _ ) for which there was no match in the attempted emission signature in the database 21 
because of noise.  For example, ε = (46-45)2 + (76-75)2 = 2. If the calculated threshold value 22 
for detection (in this case, for two degrees of freedom) is larger than 4, Wood or i=9 can be 23 
selected as a possible material candidate. But, if the detection threshold is less than 2, Wood 24 
or i=9 will not be included in the candidate set. 25 
 26 
Assuming wi(xn) is an i.i.d. Gaussian noise (Note: i.i.d. stands for ‘independent and 27 
identically distributed’), the signal intensity factor of each material candidate αi, where 28 

}{dbi ∈ , can be determined via the following linear regression approach such that: 29 
 30 
Step 2. Find an optimal value of each αi for }{dbi ∈ , which minimizes the following 31 
performance index J (i.e. in the sense of MRLS, multiple regression least squares. For detailed 32 
descriptions, see Cohen et al., 2003).  33 
 34 
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 36 
Here, it should be noted that αis are unknown control variables to be estimated in the sense of 37 
MRLS while Ssp(xn) is measured by PTR-MS and Si(xn) is given in the database for all 38 
scanned ion masses, where n=1, 2, …, N. 39 
 40 
The first step of the algorithm is the scanning of the ion mass components in the measured 41 
sample emission signature by the comparison with those in the database. Because of noise, 42 
several components can have small deviations from the exact values of ion masses. So, the 43 
algorithm tries to find any matching emission signatures in the database (a set of materials 44 
denoted as {db}), having the same ion mass components under the ε condition described 45 
above. Next, by using only the selected set of material emission signatures {db}, the 46 
algorithm attempts to find the optimal set of signal intensity factors α=[αID1, ..., αIDj, ..., αdb], 47 
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where ID j is the jth material ID in the set of {db} selected as possible material candidates. If 1 
the final value of αi is less than a specified small threshold value (e.g. 10% of the smallest 2 
signal intensity factor in the database, 0.007), then material i will be excluded from the final 3 
set of the material candidates {ID}. 4 
 5 
2.2.2.  Algorithm 2 6 
Let us set up the problem as wi(xn) being a function of the spectrum of xn, where n=1, 2, …, 7 
N.  In Algorithm 1, the error value for a relatively small signal peak contributes less (although 8 
it might be an important peak for detection and identification) to the overall performance 9 
index than larger peaks. So, a normalization technique for adjusting the weight for each term 10 
might be useful to reflect in the overall error terms the contributions of the errors for any 11 
small peaks in the proportion comparable with those of larger peaks. The other definitions and 12 
procedure are the same as those of Algorithm 1 except for the definition of the performance 13 
index J as follows: 14 
 15 
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 17 
2.3.  Environmental chamber setup and conditions 18 
For both single material and mixture tests, a 50-l small-scale environmental chamber (0.5 m × 19 
0.4 m × 0.25 m high) made of electro-polished stainless steel (Figure 1) was operated with a 20 
precise airflow controller (Alicat Scientific, accuracy ±0.1% of measured values) and a 21 
humidity controller (Vaisala INTERCAP HMP50, accuracy ±1% of measured values), using 22 
external supply air passing through a dedicated filtering assembly (Wilkerson 3-stage carbon 23 
filters with micro filtration). The chamber was maintained at a constant stable temperature in 24 
the range of 23.5-25.4˚C (with a small variation of < ±0.02˚C during each sampling period) 25 
and at a stable relative humidity of 31±0.1% RH during the tests.  The background 26 
concentrations of individual VOCs in the empty chamber were maintained clean to be less 27 
than 1 µg/m3. 28 
 29 
2.4.  Test specimens 30 
Nine typical building materials were used including ceiling, wood, carpet, linoleum, PVC, 31 
polyolefine, gypsum, paint 1 (water-based acrylic) and paint 2 (with linseed oil) applied on 32 
gypsum board. The detailed descriptions of the materials tested can be found elsewhere (Han 33 
et al., 2010). Specimens were cut and prepared according to the sizes specified in Table 1. 34 
The specimens except for Gypsum, Paint 1 and 2 were stapled together back to back in order 35 
that only the material upper surface was exposed to the air in the test chamber. A VOC-free 36 
aluminum tape (3M 2113) was applied to seal all edges. The prepared specimens were placed 37 
vertically, parallel with the airflow in the chamber (the same direction of the long side of the 38 
chamber). The range of area-specific ventilation rates defined as the ratio of ventilation rate to 39 
emitting surface area was set by adjusting the airflow to the chamber while keeping the size of 40 
specimen unchanged.   41 
 42 
Table1 43 
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 1 
 2 
2.5.  PTR-MS setting 3 
A PTR-MS device (Ionicon Analytik high-sensitivity model with a detection limit as low as 1 4 
pptv, Austria) was operated at the standard conditions (Drift tube pressure: 2.3 ~ 2.4 mbar, 5 
PC: 455 mbar, FC: 6.5 STP cc/min, U SO: 75 V, U S: 100 V, Drift tube voltage: 600 V and 6 
Source: 6.0 mA). Detailed descriptions of the device, its principle and applicability can be 7 
found elsewhere (Blake et al., 2009; de Gouw et al., 2003; Han et al., 2010; Hewitt et al., 8 
2003; Lindinger et al., 1998, 2001; Lirk et al., 2004; Steeghs et al., 2004). The signal intensity 9 
of VOC emissions used in the present study was measured by the instrument in the unit of ion 10 
count rates (counts per second, cps), which were then normalized by per million hydronium 11 
ion (H3O+) count rates to compensate the variations in the hydronium ions as other related 12 
works in this area (e.g. de Gouw and Warneke, 2007; Jobson et al., 2005; Whyte et al., 2007). 13 
This normalized product ion count rate (ncps) becomes directly proportional to the 14 
concentration level of a target VOC.  15 
 16 
2.6.  Test procedure 17 
The nine building materials were previously studied at three different area-specific ventilation 18 
rates (Measurements #1, #2 and #3) as shown in Table 1 to establish a database of emission 19 
signatures by PTR-MS specific to each individual material. Five multi-material mixture tests 20 
were conducted (Measurements #4-#8) in the present study to obtain combined emission 21 
signatures for the studied mixtures and to validate the feasibility of the proposed source 22 
identification methods. The mixture tests were performed within two weeks after the single 23 
material measurements were finished. For each measurement, the mass spectra for the 24 
background emission signal from the empty chamber and for the sample emission signal with 25 
each prepared specimen inside the chamber were measured all after three volumetric air 26 
changes from the start of ventilation to allow concentrations in the chamber to reach over 95% 27 
of the quasi-steady state level. PTR-MS was set to scan from m/z = 21 to m/z = 250 once 28 
every 12 s with an ion mass resolution interval of 50 ms. The total sampling period was 10 29 
min (600 s) with 50 ion mass spectra collected for each dataset. During each measurement, 30 
another set of duplicate mass spectra was scanned to verify the collected data. 31 
 32 
 33 
3.  Results  34 
 35 
3.1.  Relative signal intensity (α) and variance (ε) of material emission signatures 36 
The previous study (Han et al., 2010) determined the identification of each ion mass with a 37 
related VOC by using GC/MS and PTR-MS together.  Now, each ion mass (m/z) of PTR-MS 38 
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represents a VOC, and its signal intensity (ncps) corresponds to the concentration level of 1 
VOC. 2 
 3 
To perform a signal separation simulation using the Monte-Carlo method, some reasonable 4 
ranges of signal intensities (mean) and noise levels (variance) for material emission signatures 5 
are needed. To conduct a measurement-based simulation, the experimental data collected 6 
using PTR-MS through Measurements #1, #2 and #3 were used to get the range information. 7 
The pattern of material emission signatures determined by PTR-MS with a special filtering 8 
method employed were found to be consistent and stable in a normalized mass spectrum 9 
domain even under different area-specific ventilation rates tested and also over different 10 
sampling time (Han et al., 2010). There were also identifiable differences in the VOC 11 
emission signatures measured by PTR-MS among different types of building materials. The 12 
differences include the type of ion mass present, its relative amount (signal intensity) or both. 13 
This study used the emission signatures collected at Measurement #2 (medium airflow rate) as 14 
a reference, and the variance of signal intensity for each material was determined based on the 15 
variations of all collected data from the corresponding reference signature. Figure 2 16 
summarizes the results. 17 
 18 

 19 
Fig2 20 
 21 
3.2.  Separation simulations of the algorithms for various material mixtures 22 
To compare the performances of the suggested algorithms, Monte-Carlo simulations were 23 
conducted by setting the design parameters based on PTR-MS measurements (for relative 24 
signal intensities and noise levels). The Monte-Carlo method is a class of computational 25 
algorithms that rely on repeated random sampling to compute the performance results for a 26 
given method when simulating physical and mathematical systems, which tend to be 27 
unfeasible to compute an exact result with a deterministic algorithm. The noise component, w, 28 
was modeled as white Gaussian random noise, and its variance was determined by the 29 
corresponding percentage of noise level (ε) which represents the standard deviation of the 30 
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noise with respect to the maximum peak value of the corresponding reference material 1 
emission signature. The number of random samples, N, was determined to make the variance 2 
of the final simulation results less than 1% (e.g. σ of Success Rate < 1% out of 100%) with a 3 
computational time as small as possible. With these considerations, N=1000 was selected in 4 
this study. For the performance comparison of the algorithms, three indices - error norm 5 
expectation for the estimation performance of emission strengths, success rate for the 6 
detection performance of source material IDs, and success score expectation as an auxiliary 7 
index for success rate, were introduced as follows: 8 
 9 

{ }
2trueestEErr αα −≡ ,  { })(NscrEScore ≡ ,  ( ) NNNSR fail 100×−≡                       (5) 10 

 11 
where Err is the expected value of the 2-norm of the difference between the estimated value 12 
of signal intensity factor vector and the ground truth value, Nfail indicates the number of 13 
material identification failures that occurred during the simulation (If every material in the 14 
sample is correctly identified with several wrong candidates, this case is classified as success. 15 
However, if there is any missing material identified in the final set of the material candidates, 16 
then it is declared as failure. For example, for [5 6 8], if the ID result is [1 3 5 6 8], this is 17 
considered as success.  But, if the result is [3 5 6 7], this is failure), Score is the expected 18 
value of success score (scr) which is defined as follows: for each simulation, if the ID result is 19 
success with exact identification, then scr = 100;  if success with n wrong candidates, then scr 20 
= 100 - 10×n; and if failure, scr = 0, and SR represents the success rate in material 21 
identification defined in percentage. 22 
Note: To differentiate the ID performance result with less wrong candidates from that with more wrong 23 
candidates (e.g. For [5 6 8], [1 5 6 8] (scr = 90) vs. [1 3 4 5 6 8] (scr = 70)), Score index was introduced. 24 
 25 
Table2 26 

 27 
 28 
The results in Table 2 indicate five noticeable aspects concerning the performance of the two 29 
algorithms. The algorithm performance for signature separation and identification may rely 30 
mainly on key factors such as the number of materials in a mixture, the signal intensity ratio 31 
and the variance of each composing signature. Algorithm 1 always showed by far the better 32 
performance than Algorithm 2 in the present simulations in terms of error expectation (Err), 33 
which implies that Algorithm 2 may get affected more susceptibly to the variation of emission 34 
signature because of noise than Algorithm 1. For some conditions, Algorithm 2 could show a 35 
better performance than Algorithm 1 in the sense of success rate and score, which suggests 36 
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that the performance of the two algorithm can vary depending on given environmental and 1 
material conditions affecting the performance difference. A mixture case having no possible 2 
false ID can show a better performance in terms of success rate and score than that with 3 
several possible false IDs potentially under similar conditions (e.g. [2 8 9] vs. [3 6 8] or [1 7 4 
9]). The material number in a mixture seemed to strongly affect the performance difference 5 
because of complexity increase (e.g. the low success rate of the 9-material mixture case), but 6 
when focusing only on several major materials having higher signal intensities, the two 7 
algorithms suggested in this study still showed reasonably high success rates (>95%). 8 
 9 
3.3.  Monte-Carlo simulations for the nine-material mixture 10 
The results in Table 2 suggest that the two proposed algorithms in this study exhibited a 11 
different quality of performance depending on given conditions of the two key factors – the 12 
maximum ratio of signal intensity factors (γ) and the variance (ε). To examine this aspect of 13 
the two algorithms as the two key parameters change, the most complicated case in this study, 14 
9-material mixture, was selected, and the success rates of the two for this case were explored 15 
at various combinations of γ  and ε, varying within their corresponding realistic ranges (i.e. 16 

%0.50,1000.1 ≤≤≤≤ εγ ). Figure 3 shows the results. 17 
 18 
As expected, the trends in Figure 3a and 3b represent the decaying performance of both 19 
algorithms as the maximum ratio and the variance increase, although the slope of the 20 
decreasing performance of each algorithm is slightly different (i.e. The performance of 21 
Algorithm 1 in terms of success rate decays much faster in an exponential manner than that of 22 
Algorithm 2). Both algorithms exhibited high success rates within narrow decent ranges of the 23 
maximum ratio ( 200.1 ≤≤ γ ) and the variance ( %0.10 ≤≤ ε ) even for this complicated 24 
mixture. Within these decent ranges, Algorithm 1 showed a better performance than 25 
Algorithm 2 in terms of success rate. However, out of these ranges (more general ranges), the 26 
latter seemed better than the former in the sense of success rate (Figure 3c). 27 
 28 

 29 
Fig3 30 
 31 
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3.4.  Experimental results of multi-material mixtures 1 
•  Case 1: [7 8] = Carpet + Linoleum (Measurement #4) 2 
The algorithms validated by measurement-based Monte-Carlo simulations were applied to 3 
actual emission measurements obtained from five multi-material mixtures. For comparison, 4 
the ground truths for the correct material IDs and the corresponding emission levels 5 
(represented by signal intensities) were known and obtained by the optimal separation of each 6 
measured signature in terms of MRLS (The exemplary separation profile of the signature for 7 
Case 1 is shown in Figure 4). Case 1 was comprised of Carpet (Material ID=7) and Linoleum 8 
(ID=8). Both algorithms identified the correct sources of material emissions with some false 9 
materials: for Algorithm 1, Gypsum (ID=4), so success score (scr)=90; for Algorithm 2, 10 
Gypsum (ID=4) and Wood (ID=9), so success score (scr)=80. In addition, the corresponding 11 
emission levels from the two materials could be estimated by both algorithms with reasonably 12 
small errors (Error expectations, or Err, were <1.0 for both cases). The performance results of 13 
the two algorithms for the actual emission measurement from Carpet and Linoleum could be 14 
summarized as below in terms of the performance indices defined in the previous section: 15 
 16 
Algorithm 1:  IDest1 = [4 7 8], 1estα

 = [0.68 0.50 13.44], Err1 = 0.81, scr1 = 90 17 
Algorithm 2:  IDest2 = [4 7 8 9], 2estα

 = [0.28 0.53 13.63 0.02], Err2 = 0.39, scr2 = 80. 18 
 19 

 20 
Fig4 21 
 22 
•  Case 2: [8 9] = Linoleum + Wood (Measurement #5) 23 
The optimal signal intensity factors for this case were trueα

  for [8 9] = [18.42 8.23] in the 24 
MRLS sense. The following are the performance results: 25 
Algorithm 1:  IDest1 = [8 9], 1estα

 = [19.20 9.63], Err1 = 1.60, scr1 = 100 26 
Algorithm 2:  IDest2 = [8 9], 2estα

 = [20.47 4.82], Err2 = 3.98, scr2 = 100. 27 
 28 
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•  Case 3: [6 8 9] = Paint 2 + Linoleum + Wood (Measurement #6) 1 
The optimal signal intensity factors for this case were trueα

  for [6 8 9] = [6.09 5.96 4.41] by 2 
MRLS. The following are the performance results: 3 
Algorithm 1:  IDest1 = [6 8 9], 1estα

 = [1.71 6.51 5.78], Err1 = 4.62, scr1 = 100 4 
Algorithm 2:  IDest2 = [6 8 9], 2estα

 = [3.63 6.76 3.75], Err2 = 2.67, scr2 = 100. 5 
 6 
•  Case 4: [3 6 7 8 9] = Ceiling  + Paint 2 + Carpet + Linoleum + Wood (Measurement #7) 7 
 8 

 9 
Fig5 10 
 11 
The optimal signal intensity factors were trueα

  for [3 6 7 8 9] = [3.11 1.28 0.00 4.44 3.42] by 12 
MRLS (The detailed signature profile is given in Figure 5). The following are the 13 
performance results: 14 
Algorithm 1:  IDest1 = [1 8 9], 1estα

 = [0.16 4.28 3.58], Err1 = 0.28 15 
Algorithm 2:  IDest2 = [1 3 6 8 9], 2estα

 = [0.38 2.33 1.84 4.87 1.51], Err2 = 2.21. 16 
 17 
•  Case 5: [2 3 5 6 7 8 9] = PVC + CEI + PT1 + PT2 + CAR + LIN + WOD (Measurement #8) 18 
The optimal signal intensity factors for this case were trueα

  for [2 3 5 6 7 8 9] = [0.00 1.05 19 
0.00 0.00 0.19 1.38 2.30] in terms of MRLS. The following are the performance results: 20 
Algorithm 1:  IDest1 = [6 7 8 9], 1estα

 = [0.40 0.32 1.26 2.32], Err1 = 0.44 21 
Algorithm 2:  IDest2 = [1 3 6 7 8 9], 2estα

 = [0.02 1.04 2.27 0.04 1.50 1.63], Err2 = 2.37. 22 
 23 
 24 
4.  Discussion 25 
The experimental results imply three important aspects concerning the proposed technique, 26 
which may provide a new insight on adsorption effects occurring under material mixture 27 
conditions and open a new gate to quantitatively analyze and assess this adsorptive 28 
phenomenon inherent in material emissions. 29 
 30 
First, although there were some interactions among VOC emissions from a material mixture 31 
(which was observed in the measured signatures of the tested material mixtures having several 32 
different ion masses other than the ones found in the emissions from the original individual 33 
materials, with very small signal intensities), the effect appeared to be small enough to allow 34 
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the algorithms developed for separation and identification on the basis of the superposition 1 
assumption of the co-located materials’ emission signatures. In addition, the emission 2 
signatures of the mixtures maintained the individual emission signature pattern of each 3 
material almost unchanged even in a mixture. For example, note the similar pattern of the 4 
measured signature (Refer to the enlarged figure shown in Figure 6b) of a material mixture 5 
(Case 1 - Carpet and Linoleum) to the superposed signature of the two individual materials 6 
(Figure 6a), considering the given area-specific ventilation rates in Table 1. Generally, it was 7 
observed that the similar patterns of the measured signatures to the superposed ones were 8 
maintained for all mixture cases tested, but the measured signal intensities were reduced 9 
significantly (meaning a lowered level of VOC concentrations emitted from material 10 
mixtures) compared with the superposed ones, mainly because of sorption effect among 11 
materials. Another possible reason for this reduction of signal intensity may be the effect of 12 
VOC emission decay over time, but this might be small or negligible considering that the 13 
mixture tests were performed right after the measurements of the single materials. It is 14 
hypothesized that the compounds from a main emitting material were adsorbed on the 15 
surfaces of adsorptive materials, and in a quasi-equilibrium emission state, the adsorbed 16 
compounds may re-emit from the adsorptive surfaces with reduced emission intensities. In 17 
this process, the individual shapes of emission signatures were maintained and could be 18 
generated by the superposition of the initial library of material emission signatures established.  19 
If the major compounds having high concentration levels are heavy, this superposition may 20 
not be valid.  However, the major compounds for the materials studied were mostly light (< 21 
m/z=150). Because of these special phenomena, the algorithms could be applied to the actual 22 
combined emissions of the studied material mixtures and yield satisfactory performances. 23 
 24 

 25 
Fig6 26 
 27 
The second aspect examined in this study is that the sorption effect among materials can be 28 
quantitatively assessed in an accurate manner for each mixture by using this technique (Refer 29 
to another previous study on the assessment of sorption impact among material mixtures on 30 
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perceived indoor air quality by human assessments, which is done by Sakr et al., 2006). The 1 
approach derived from the present study is based on the reduced percentage of the estimated 2 
signal intensity of emission signature from a material mixture when compared with that of the 3 
stand-alone emission signature for each individual material obtained under the same emission 4 
conditions (RH, temperature and area-specific ventilation rate). For example, the mixture of 5 
Carpet and Linoleum (Case 1) should have the relative signal intensity factors as α7 = 0.53 for 6 
Carpet and α8 = 29.74 for Linoleum under the given mixture emission conditions in Table 1 7 
(Measurement #4) if there are no interaction and no sorption effect between the two. However, 8 
the experimental results showed that the intensity factors were different as α7 = 0.72 for 9 
Carpet and α8 = 13.82 for Linoleum (Figure 4). Because of large porous areas in the surface 10 
of Carpet, the major portion of the VOC emissions from Linoleum might be trapped (i.e. 11 
adsorbed) in those porous areas of Carpet because of adsorption, and the reduction effect of 12 
VOC emissions from Linoleum could be estimated at the percentage of 53.5% (from 29.74 to 13 
13.82). This sorption effect can be enhanced as sorptive materials such as Carpet (material ID 14 
= [7]) and Gypsum ([4]) or gypsum-based materials such as Ceiling ([3]), Paint 1 ([5]) and 15 
Paint 2 ([6]) are added more in the studied material mixture. This enhanced effect could be 16 
seen in the consecutive study of material mixtures as shown in Figure 7. The initial signature 17 
for Linoleum (the main emitting material in this case) could be measured again with a similar 18 
level of signal intensities after other added materials were taken out of the chamber as shown 19 
in Figure 7h.     20 
 21 

 22 
Fig7  23 
 24 
Lastly, by using this technique, emission sources and their corresponding signal intensities (i.e. 25 
concentration levels of VOC emissions) can be identified and estimated in a laboratory 26 
condition. PTR-MS emission signatures were specific to each material tested, and the 27 
interactions among different material emissions may not significantly affect the pattern 28 
change of the individual emission signatures at least for the studied material mixtures. 29 
Therefore, it is possible to identify the related material based on the emission pattern of the 30 
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same material measured by PTR-MS at least in a conditioned laboratory environment. The 1 
differences in emission patterns may potentially be used to identify emission sources (e.g. in 2 
buildings) based on air samples measured by PTR-MS. However, emission signatures may 3 
change over the course of long-term emissions.  4 
 5 
If there is a VOC related problem in an indoor air environment, different relevant sources can 6 
be identified and screened individually by PTR-MS. Finding the source(s) would help 7 
eliminating the problem efficiently and effectively. An advantage of this technique is that it 8 
may find the sources invisible or hidden when a building with problems of indoor air quality 9 
is suspected. Further studies are needed for extending this technique into a practical tool for 10 
emission source identification in real indoor environments because of the higher number of 11 
possible emission sources, the more complicated adsorption and desorption effects and the 12 
change of emission pattern over time for a given source.  The pattern change of material 13 
emission signatures over a long-term period may be accounted for by using appropriate 14 
emission source models. 15 
 16 
 17 
5.  Conclusions 18 
The results of this study demonstrate the feasibility of identifying emission sources with high 19 
success rates when multiple materials are present indoors by utilizing the PTR-MS and an 20 
effective signal processing method under laboratory indoor conditions. The following 21 
conclusions can be derived: 22 
 23 
• In a controlled environment, the identification of indoor emission sources was found feasible 24 
with the estimations of their individual relative source strengths when the developed 25 
technique was utilized with a limited number of materials for composing a mixture. 26 
 27 
• The effect of VOC mixture emissions might be superposed in the mass spectrum domain of 28 
PTR-MS because of small interactions among material emissions and the conservation of 29 
individual material emission pattern even in the presence of emission interactions such as 30 
sorption. 31 
 32 
• The sorption effect among material emissions could be quantitatively assessed using the new 33 
technique proposed. 34 
 35 
The source identification methodology presented in this study should consider the possible 36 
change of emission signatures over a long period of time as a main possible contributor of the 37 
change in a field condition. However, there are other possible causes affecting the change of 38 
emission signatures such as temperature, relative humidity, surface velocity over materials, 39 
large portion of chemical reactions among material emissions, etc. The source identification 40 
technique may break down in a mixture condition having a certain large number of materials 41 
(e.g. 30 materials) or in a highly reactive environment like an ozone-initiated chemical-42 
reaction dominant space. In addition, for some materials, any stable emission signature may 43 
not be established somehow. If some materials have heavy VOCs as major compounds for 44 
their emission signatures, the measured signature from their mixtures may be distorted from 45 
the superposed emission signature mainly due to different adsorption phenomena, leading to a 46 
breakdown of the method. For this reason, a broader range and different types of materials 47 
should be investigated before this new approach can be widely applied. 48 
 49 
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