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Abstract 
This paper explores the determinants of observed analyst-firm pairings. We adopt an analyst/brokerage house 
perspective that allows us to examine not only firm-level characteristics as in prior research, but also attributes of the 
analyst and the analyst’s brokerage house that may drive these pairings. Our empirical analyses provide two primary 
insights. First, analyst characteristics such as industry expertise and relative experience, and brokerage house 
characteristics such as continuity of coverage, are associated with the decision to follow a firm. Second, there is 
substantial variation in the association between firm, analyst, and brokerage house characteristics and the decision to 
follow a firm; this occurs across individual analysts as well as across different types of brokerage houses. Overall, 
our results provide further insights into the factors leading to observed analyst-firm pairings, and indicate that these 
factors vary across analysts and their brokerage houses – suggesting richer associations than the average firm-level 
relationships documented by prior research. 
 

1. Introduction 
What factors cause an analyst to follow a particular set of firms? For example, a prominent analyst with almost 15 
years of forecasting experience at a major brokerage house issued annual earnings forecasts for 20 firms in the year 
2000. While all the firms were in the technology sector, they spanned five industries: software and electronic data 
processing, office and communication equipment, [end of page 277] semiconductors, electronic systems, and 
computer manufacturing. The firms also ranged in size from over $100 billion in market capitalization (IBM and 
Hewlett-Packard) to under $600 million in market cap (Aspen Technologies and Intergraph). Further, the analyst did 
not cover a number of very large companies in these industries (such as Compaq and Computer Associates), nor any 
of the almost 1,100 other firms falling within these five industries. 

This paper explores the determinants of observed analyst-firm pairings. To better understand this issue, we 
adopt an analyst/brokerage house perspective. Prior research generally adopts a firm-level perspective – that is, it 
examines the determinants of the number of analysts following a particular firm. However, analysis at the firm-level 
reflects the aggregate demand for and supply of analyst research; these characteristics cannot explain, for example, 
why the analyst above would choose to follow IBM instead of Compaq, both of which were large and profitable 
firms in 2000. Our focus at the analyst/brokerage house level allows us to examine a broader range of factors likely 
to drive observed analyst-firm pairings. Consistent with this perspective, we assume that analysts themselves, or 
their employing brokerage houses, make conscious allocation decisions regarding which firms to follow. This 
assumption has intuitive economic appeal, as either the analyst or their employer should be well positioned to 
identify the firms likely to provide the greatest net benefit such as compensation or revenue generation. 

Our primary sample consists of ‘‘experienced” analysts, defined as those with 5 or more years of 
forecasting experience. This focuses the analyses on the subset of analysts who have demonstrated a capacity to 
perform and remain within the analyst industry and who are thus more likely to have decision rights over which 
firms they follow (as anecdotal evidence suggests that the ability to choose firms increases with an analyst’s tenure). 
In addition, the employing brokerage house is more likely to understand the strengths of this subset of analysts, and 
accordingly be better able to match them to firms the brokerage house wishes to cover.3 

Our empirical analyses examine three groups of characteristics that potentially affect observed analyst-firm 
pairings: those specific to the firm, to the analyst, and to the employing brokerage house. The primary analyses 

                                                           
3 Furthermore, Hong et al. (2000) argue that inexperienced analysts face higher career concerns relative to experienced analysts. Consistent with 
these implicit incentives, they find that inexperienced analysts deviate less from consensus forecasts. This suggests that experienced analysts are 
more likely to make unconstrained decisions, both in their portfolio choice (the current paper’s focus) as well as their output (e.g., earnings 
forecasts). In addition, turnover is greatest in the initial years of employment, suggesting that our focus on more experienced analysts will better 
capture analysts in a ‘‘steady-state” decision environment. 



 
 

focus on year-to-year changes in the set of covered firms: that is, we use an ordered probit model to jointly examine 
the decision to drop coverage, continue providing no coverage, continue coverage, or initiate coverage of a 
particular firm across the current and prior years. Another distinguishing feature of the research design is that we use 
not only firms for which the analyst has issued forecasts but also a population of ‘‘target firms”, or firms the analyst 
could potentially have covered but did not follow. To focus on firms likely to fall under the analyst’s purview, we 
include in the target firms only firms belonging to the industries the analyst covered in the previous year. 

Our empirical results offer some important insights. First, we provide evidence that analyst-firm pairings 
are driven not only by firm-level characteristics that are the focus of prior research, but also by factors specific to the 
analyst and the employing brokerage house. In particular, we find that an analyst is more likely to follow a firm that 
falls within his or her primary industry of expertise. We also find some evidence that an analyst is more likely to 
follow a firm when his or her experience is greater relative to the other analysts following that firm. With regard to 
the employing brokerage house, we find that an analyst is more likely to initiate coverage of a firm if the firm was 
previously followed by another analyst employed at the same brokerage house but who is no longer forecasting for 
that brokerage house. This is consistent with continuity of coverage also driving analyst-firm pairings, and further 
suggests an important role for the brokerage house in the coverage decision. An analyst is also more likely to cover a 
firm when the brokerage house has had a recent investment banking relationship with the firm. Interestingly, this 
effect appears to decline (but does not disappear) after Regulation Fair Disclosure became effective in 2000, 
consistent with that regulation having a noticeable impact on which firms are followed. Finally, our results regarding 
firm-level characteristics confirm the findings of prior studies on aggregate analyst following: that an analyst is 
more likely to [end of page 278] provide coverage of a firm that is increasing in size, belongs to or has joined the 
S&P 500 index, has experienced an increase in trading volume, or has issued debt or equity during the past year. The 
above insights are robust to alternative measures of both our dependent and independent variables, to alternative 
sampling mechanisms to define the population of ‘‘target firms”, to distinguishing between the drop versus initiate 
decision, and to stratifying the sample into large versus small firms. Overall, our results suggest that observed 
analyst-firm pairings are determined by a range of factors reflecting characteristics specific to the firm, the analyst, 
and the employing brokerage house. 

Our analyses also reveal substantial variation in the above associations, not only across individual analysts 
and analyst characteristics but also both within and across types of brokerage houses (e.g., investment banks versus 
pure research firms). These latter results lend further support to the notion that the decision to follow a particular 
firm reflects a unique combination of traits specific to an analyst and the employing brokerage house, as compared 
to a simple aggregation averaged across all analysts. 

Our findings are of interest for several reasons. First, an understanding of the factors that lead analysts to 
follow (or not follow) a firm may assist corporate managers in formulating communication and investor relation 
strategies. Second, regulators have revealed strong interest in the role analysts play in capital markets, as evidenced 
by recent regulations (such as Regulation Fair Disclosure) and censures (such as the Global Settlement).4 Insights 
into how analyst-firm pairings arise may inform future debates on the potential sources of conflict of interest, as well 
as on any necessary monitoring and enforcement of this important group of information intermediaries. Third, 
investors likely wish to understand these factors as well, to allow more informed assessments of the quality of and 
potential sources of bias in analyst forecasts. Finally, we expand the prior literature, particularly the literature that 
focuses on the firm characteristics associated with analyst following (e.g., Bhushan, 1989; Barth et al., 2001), by 
revealing that the factors driving observed analyst-firm pairings are richer than the average firm-level associations 
previously documented. 

The remainder of the paper is organized as follows. Section 2 provides a summary of relevant prior 
research and institutional background. Section 3 develops our empirical model and associated hypotheses. Section 4 
presents the descriptive statistics and empirical results. Section 5 discusses sensitivity analyses, and Section 6 
concludes. 
 

2. Prior Literature and Institutional Background 
 

2.1   Prior Literature 
                                                           

4 Regulation Fair Disclosure (FD), issued in 2000, mandates that all publicly traded companies must disclose 
material information to all investors at the same time. The impetus for this regulation arose, in part, due to certain 
high profile analysts and investors reportedly receiving information before other investors. The Global Settlement, 
reached in 2003, required 10 of the largest US investment firms to address issues of conflicts of interest within their 
businesses. The firms were also charged with a collective fine of $450 million. 



 
 

Prior research examines the characteristics of firms that attract an analyst following. This literature is generally 
motivated by the role analysts play as information intermediaries (e.g., Schipper, 1991). Bhushan’s (1989) seminal 
study finds that a number of firm characteristics (e.g., ownership structure and size) are associated with analyst 
following. O’Brien and Bhushan (1990), building on Bhushan’s paper, investigates changes in analyst following and 
institutional ownership in a simultaneous equations framework. Their investigation shows that the previously 
documented empirical link between changes in analyst following and changes in firm size disappears after 
considering simultaneity. McNichols and O’Brien (1997) suggests that analysts are more likely to provide forecasts 
for firms whose future prospects are viewed more favorably, and more likely to drop stocks viewed less favorably. 
Hayes (1998) provides an analytical model consistent with these results, suggesting that analysts are more likely to 
issue forecasts for firms expected to perform well. Lang and Lundholm (1996) finds that firms with more 
informative disclosure policies attract a larger analyst following, while Barth et al. (2001) finds that analyst 
following varies directly with the level of a firm’s intangible assets. [end of page 279] 

We extend this literature by taking an analyst/brokerage house perspective on how analyst-firm pairings 
arise.5 In particular, we focus on the characteristics of the suppliers of firm research (e.g., analysts and their 
brokerage houses) in addition to the characteristics of the covered firms. This allows consideration of a broader 
range of factors likely to affect the portfolio of firms followed. 
 

2.2.   Institutional background 
Many business decisions involve the optimal allocation of available resources given constraints (e.g., choosing 
which projects to fund from among a portfolio of possible projects, given a limited amount of funds to invest). 
Analysts and their brokerage houses make similar allocation decisions in the face of resource constraints – such as 
time, data, and access to management – and are unable to analyze and provide output on an unlimited number of 
firms. These constraints require an allocation of limited resources to generate outputs such as earnings estimates and 
stock recommendations and naturally limit the number of firms that can be followed. This resource allocation likely 
reflects expectations of optimizing some net benefit, such as compensation (for the analyst) or revenue generation 
(for the analyst’s brokerage house). 

Accordingly, we argue that the decision to follow a particular firm reflects a conscious allocation decision. 
The decision rights over this allocation may reside with the analyst, the employing brokerage house, or both. Several 
institutional features suggest that the rights reside with the analyst. Individual analysts likely have the best 
awareness of their capacities to research firms. This includes specific knowledge of the analyst’s own resources, 
such as his or her individual skills, industry expertise, and access to management. This also includes knowledge of 
the resources available to the analyst from the brokerage house, including data and assistants to perform additional 
research, as well as the analyst’s ability to leverage these resources. Anecdotal evidence affirms that analysts have at 
least some decision rights over which firms they follow. We interviewed several current and former senior analysts 
to discuss the portfolio formation process. The discussions verified that the analyst’s ability to choose which firms to 
follow generally increases with the tenure of the analyst. In addition, more experienced analysts often submit annual 
business plans, detailing their intentions regarding the firms they plan to follow, including those for which the 
analyst will initiate and drop coverage. 

However, analysts vary on a number of dimensions, including experience/seniority, forecasting ability, and 
industry focus. In addition, employing brokerage houses may differ in their intended clientele and operational 
objectives. These differences may affect where the decision rights lie, suggesting that the employing brokerage 
house may retain some, or all, decision rights over which firms an analyst will follow. This is likely particularly true 
for analysts who are beginning their careers; such analysts are typically assigned which firms to cover, often under 
the supervision of a senior analyst. 

Based on the above discussion, we focus our primary sample on ‘‘experienced” analysts, defined as those 
having five or more years of experience. Though this is a somewhat arbitrary classification, it will capture the subset 
of analysts who, having demonstrated an ability to generate forecasts and to remain in the brokerage industry, are 
more likely to have discretion in choosing which firms to follow. It also captures a group of analysts whose 
employers are more informed about their capabilities. We later examine differences between experienced and 
inexperienced analysts. 

Finally, we note two additional institutional factors that are relevant to our study. First, firms being 
considered for coverage can be broadly classified into two groups. The first group represents firms characterized 

                                                           
5 Although Clarke et al. (in press) also examine analysts’ coverage decisions, they only examine a sample of all-star analysts, who switch 
investment banks (thus representing less than 1% of the analyst population – see their Table 1). Their study focuses on whether analyst behavior 
is influenced by investment banking relationships and whether analyst behavior, in turn, affects investment banking deal flow. 



 
 

variously as ‘‘maintenance” or ‘‘must have” firms. These firms are often among the largest in their industry, and 
typically fall within key indices such as the S&P 500. Client demand for research on these firms is usually 
substantial owing to the firms’ high visibility, suggesting that the analyst (or brokerage house) has little discretion in 
the decision to follow these firms. The second group represents firms over which the analyst (or brokerage house) 
likely has more discretion; by definition, these will tend to be smaller in size. Our analyses attempt to capture this 
aspect with various [end of page 280] proxies for firm size and membership in a stock index. We also conduct 
additional analyses by stratifying the sample based on firm size. 

The second institutional factor stems from prior research (Cowen et al., 2006) suggesting that brokerage 
houses can be classified into four main categories: full-service investment banks, which use revenues from both 
underwriting and brokerage (i.e., trading) services to fund research; non-underwriter (or syndicate) banks, which 
fund research through modest fees from distributing (but not underwriting) new issues and from revenues from 
trading services; pure brokerage firms, which fund research through trading revenues; and research firms, which 
provide no investment banking or trade execution services but fund their research activities through direct sales of 
equity research to clients. The differing organizational structures across these types of brokerage houses may affect 
the incentives of analysts and their employers to follow particular firms. This, in turn, may affect the associations 
leading to observed analyst-firm pairings. Accordingly, we later explore whether differences in types of brokerage 
houses affect the associations we document. 
 

3. Research design and hypothesis development 
To investigate the decision to follow a firm, we employ a changes specification, examining the change in the 
likelihood of a firm falling within the portfolio of firms covered by the analyst. Specifically, we jointly examine 
whether an analyst drops coverage, continues to provide no coverage, continues coverage, or initiates coverage for a 
firm across the current and prior years. This specification enables us to focus on factors that influence changes in 
coverage and is intended to capture the analyst’s (and/or brokerage house’s) incorporation of changing 
characteristics into their portfolio construction. Accordingly, we perform the following ordered probit analysis (see 
also Appendix A for variable definitions): 

 
The dependent variable, CHANGE, captures changes in a particular firm’s status within the portfolio of 

firms followed by an analyst across years  and t. CHANGE is measured as a discrete variable equal to - 1 if 
analyst i follows firm j in year  but not in year t (i.e., drops coverage); 0 if analyst i does not follow firm j in 
either year  or year t (i.e., provides no coverage); 1 if analyst i follows firm j in both years  and year t (i.e., 
maintains coverage); and 2 if analyst i does not follow firm j in year  but does in year t (i.e., initiates coverage). 
Thus, larger values of CHANGE generally reflect an increase in the analyst’s likelihood of following the firm; hence 
we use an ordered probit specification. 

A distinguishing feature of our paper is that not only do we use observations where the analyst actually 
follows the firm, we also effectively create observations where the analyst potentially could have followed the firm 
but (implicitly or explicitly) chose not to. Constructing our dependent variable in this fashion requires defining the 
population of ‘‘target” firms that the analyst could have followed but did not. In the extreme, an analyst can consider 
any firm as a possible target. However, we anticipate that analysts (or their brokerage houses) consider only subsets 
of firms, likely reflecting core competencies and incentives. Accordingly, we define the population of target firms to 
include all firms falling in the four-digit industry groupings (identified via I/B/E/S) for which analyst i forecasts in 
year . This will restrict our candidate firms to the industries the analyst has self-selected into.6 

Note that inclusion of a firm in this subset does not suggest that the firm has been explicitly evaluated by 
the analyst (or brokerage house) for inclusion in the portfolio of firms followed. Rather, our approach represents a 
continuum of effort regarding how firms are chosen. For example, some firms may appear in a familiar trade 
journal. For several of these, the analyst may review annual reports and other financial information to further 
research the firm. The analyst may then follow up by contacting personnel within the firm, the firm’s suppliers, and 
the firm’s competitors. Ultimately, the analyst may [end of page 281] initiate coverage of the firm. Constructing the 
population of firms the analyst could potentially have followed reflects trading off the appropriate break in this 
‘‘effort continuum”. Of course, the actual set of firms evaluated by the analyst for inclusion in his or her portfolio, as 
well as the level of evaluation, is unobservable. Including the entire universe of firms provides for any level of effort 

                                                           
6 Note that the average analyst in our sample follows five industries. 



 
 

(including none), while restricting ourselves to a subset may eliminate firms that the analyst could potentially have 
followed. Thus, our process of defining the target firms is meant to capture firms that would reasonably fall within 
the pool of firms the analyst could follow. Since this choice is somewhat arbitrary, we examine the sensitivity of our 
results to alternative definitions of this set of firms. 

We then model the determinants of the analyst’s decision to include firm j in the portfolio of firms 
followed. The independent variables can be classified into three groups: characteristics specific to the firm followed 
(or not followed), characteristics specific to the analyst, and characteristics of the analyst’s employing brokerage 
house. 

Firm-specific characteristics. Prior research (e.g., Bhushan, 1989) shows a number of firm characteristics 
associated with analyst following. First, larger firms may be of greater interest to clients, have richer 
disclosure/information environments, and provide more visibility and opportunities for revenue generation for both 
the analyst and the brokerage house. Accordingly, we include the change in both the firm’s size (ΔSIZE) and the 
firm’s inclusion in the S&P 500 index (ΔSP500) to proxy for these general effects. We measure ΔSIZE as the 
change in the log of the market value of firm j from year t - 1 to year t. ΔSP500 equals - 1 if firm j is in the S&P 500 
in year t - 1, but not in year t; 0 if firm j is either continuously included or excluded from the S&P 500 for years t - 1 
and t; and 1 if firm j is not in the S&P 500 in year t - 1, but is in year t. We predict positive associations between 
these variables and the decision to follow the firm, as the analyst is more likely to maintain or initiate coverage of 
firms that are growing or have been added to the S&P 500 index. 

The analyst’s anticipated effort with respect to other analysts vis-à-vis a particular target firm may also 
affect the decision to cover a firm (e.g., O’Brien and Bhushan, 1990). We proxy for this effect using ΔFOLL, the 
change in the number of analysts following firm j from year t - 1 to year t. Typically, if increased analyst following 
indicates a richer information environment for the target, then ΔFOLL will be positively associated with the 
analyst’s decision to maintain or initiate coverage of a firm, because either the available information improves or the 
firm attains a higher profile (perhaps, for example, suggesting greater future trading commissions). However, to the 
extent ΔSIZE and ΔSP500 control for the information environment, a firm receiving increasing attention from 
competing analysts may require greater effort by the analyst to distinguish himself or herself as an expert. This 
possibility suggests that the decision to maintain or initiate coverage for firm j varies inversely with analyst 
following. Accordingly, we do not predict the sign on ΔFOLL. 

Prior literature suggests that analysts issue research reports, including earnings forecasts, in part to generate 
trading volume, which may in turn affect commissions earned by their brokerage houses as well as compensation 
provided to the analyst (e.g., Irvine, 2001; Cowen et al., 2006). Accordingly, we include a variable to capture the 
change in trading volume, ΔVOL, measured as the change in the log of annual trading volume in firm j’s common 
stock from year t - 1 to year t. The predicted sign is positive, as the decision to maintain or initiate coverage of a 
firm should be positively associated with increases in trading volume. 

A fifth factor that may affect the decision to cover a firm is the firm’s performance. McNichols and 
O’Brien (1997) argue that analysts tend to initiate coverage on stocks they expect to perform well and to stop 
coverage on stocks they believe will perform poorly. Firms exhibiting stronger performance may reflect greater 
upside in potential benefits for the analyst and their brokerage house. Accordingly, we include ΔRET, the change in 
stock return for firm j across years t - 1 and t; the predicted sign for this variable is positive. We also include a proxy 
for the change in the firm’s growth potential, ΔMB, measured as the change in the end-of-year market-to-book ratio 
for firm j across years t - 1 and t. We posit that firms with increased growth potential have higher investor interest, 
so the predicted sign is again positive. 

Prior research (e.g., Bhushan, 1989) also reveals that analyst following (at the firm-level) varies directly 
with the percentage of the firm’s shares owned by institutions, consistent with institutions generating demand for 
analyst research on the firms in which they have ownership. Accordingly, we include ΔINST, the change in the 
percentage of the firm’s common shares owned by institutions from [end of page 282] year t - 1 to year t. These 
data are collected from the Spectrum database, and the predicted sign is positive. 

Finally, we include an indicator variable ISSUE, equal to 1 if firm j issues debt or equity in year t - 1, and 0 
otherwise. A firm that is active in raising capital is more likely to be covered, therefore the predicted sign is positive. 
This variable is compiled from the SDC Platinum Global Corporate Financing database. We maintain ISSUE as a 
levels (as opposed to a change) variable because the act of issuing capital is likely associated with the decision to 
cover a firm.7 

                                                           
7 Because prior research documents that analyst following (at the firm-level) is positively associated with the level of a firm’s intangibles (Barth 
et al., 2001), we also conduct sensitivity analyses incorporating proxies for this firm characteristic: R&D expense (RD) and advertising (ADV) 
expense, both scaled by the firm’s operating expenses and measured at the end-of-year t - 1. We also include a dummy variable (MA) equal to 1 



 
 

Analyst-specific characteristics. The second group of proxies captures characteristics specific to the analyst 
that affect the decision to follow a firm. We first include NFIRMS as a proxy for the analyst’s workload, measured 
as the number of firms followed by analyst i in year t. Adding or retaining a specific firm reduces the resources (e.g., 
the time to review annual reports) available to evaluate other firms. This suggests that the greater the number of 
firms followed, the less likely it is that the analyst initiates coverage on an additional firm, leading to a negative 
predicted sign on NFIRMS. Alternatively, prior research (e.g., Clement, 1999; Jacob et al., 1999) suggests that 
NFIRMS proxies for the analyst’s ability to target a large portfolio. This perspective suggests a positive predicted 
sign. Thus, we do not predict the sign on NFIRMS. We also include the squared level of the number of firms 
followed (NFIRMS_2) to capture any potential nonlinearities in the association.8 

Building on Mikhail et al. (1999), we include INDUST, an indicator variable equal to 1 if the firm belongs 
to the primary industry followed by the analyst in year t - 1. This variable controls for synergies associated with 
following firms in the analyst’s industry of specialization and has a positive predicted sign. The primary industry is 
defined using the four-digit industry grouping per I/B/E/S having the largest representation for analyst i during year t 
- 1. 

Finally, we include a variable RELEXP to capture the difference between analyst i’s forecasting experience 
and the mean for all analysts following firm j in year t. Forecasting experience is measured as the number of years 
an analyst appears on the I/B/E/S database. If a particular analyst has greater forecasting experience than the mean 
of analysts forecasting for firm j, that analyst may be more likely to follow the firm (e.g., perhaps perceiving a 
comparative skill advantage). Thus, the predicted sign on this variable is positive. 

Brokerage house characteristics. We include four variables to capture characteristics of the analyst’s 
employing brokerage house that may affect the decision to follow a particular firm. First, the decision to follow a 
firm is likely a function of the resources available to the analyst. Thus, we include ΔBSIZE, the change from year t - 
1 to year t in the total number of analysts forecasting for the brokerage house that employs analyst i. Larger 
brokerage houses likely provide better resources to the analyst (e.g., administrative support, access to client 
management). Thus, we predict a positive sign for this variable. 

We then include two variables to capture how the coverage decision is affected by the brokerage house 
portfolio of firms. First, presuming that brokerage houses discourage overlap, we include BFOLL, an indicator 
variable equal to 1 if another analyst employed by the same brokerage house forecasts for firm j in year t. The 
predicted sign is negative. We also include DEPART, an indicator variable equal to 1 if another analyst employed 
by the same brokerage house forecasts for firm j in year t - 1, but that analyst is not forecasting for the brokerage 
house in the current year. If turnover within a brokerage house creates a need to follow particular firms previously 
covered to provide continuity in coverage, [end of page 283] then the predicted sign is positive. Both of these 
variables emphasize the role of the brokerage house in coverage decisions. Again, defining these indicator variables 
in terms of changes results in unclear economic interpretations, so both are defined as levels. 

Finally, we include IBANK, an indicator variable equal to 1 if the brokerage house employing analyst i is 
an underwriter on any new issues (including stock or bond issuances, and any merger or acquisition activity) for 
firm j in years t - 2, t - 1, or t, and equal to 0 otherwise. We measure the variable over 3 years as investment banking 
relationships typically extend beyond a particular transaction in a particular year. Based on Michaely and Womack 
(1999), we hypothesize that a firm is more likely to be followed if it has an investment banking relationship with the 
brokerage house. Similar to ISSUE, this variable is coded from the SDC database, and the predicted sign is 
positive.9 
 

4. Sample, Descriptive Statistics, and Empirical Results 
4.1 Sample 

Table 1 summarizes our sample compilation. Our starting point and primary data source is the I/B/E/S database for 
the period 1993–2002. We focus on active analysts by eliminating analysts following three or fewer firms in a given 

                                                                                                                                                                                           
if the firm engages in a merger or acquisition during year t - 1, and equal to 0 otherwise, as acquisition activity may be another firm-level 
characteristic that could affect the coverage decision. If the analyst is more likely to follow a firm that has greater levels of intangible assets, or 
has engaged in merger/acquisition activity, then the predicted sign is positive on all three variables. Untabulated results reveal RD obtains the 
wrong sign, while ADV and MA are positive as predicted. The associations with the other variables remain unchanged from the primary analysis. 
8 Note, we do not measure these variables as changes, primarily to avoid inducing a mechanical relationship with our dependent variable (i.e., an 
increase in NFIRMS should mechanically have a positive association with an increase in CHANGE). By maintaining NFIRMS as a levels 
variable, its interpretation in the changes regression is the likelihood of dropping/adding coverage for a given number of firms the analyst 
follows. 
9 Note that multiple brokerage houses are often listed as investment banks on any particular deal within the SDC database. We use all available 
brokerage houses to identify investment banking relationships for this variable. 



 
 

year; similarly, we eliminate teams (as opposed to individuals) by excluding analysts following 30 or more firms in 
a given year. These cut-offs approximate the 1% and 99% of firms followed. As stated previously, we restrict the 
primary analysis to analysts with five or more years of experience, in order to focus on analysts more likely to retain 
decision rights over which firms to follow as well as to focus on analysts whose abilities are better understood by the 
employing brokerage house. Our sample includes 82,762 analyst-firm-year observations, i.e., analyst-firm-years 
where the analyst issued at least one annual earnings forecast for the firm.10 Note that these observations constitute 
the portion of our data for which the analyst (or brokerage house) has chosen to follow the firm. Table 1 also 
presents the analyst-firm pairings for the ‘‘target” firms, or firms the analyst could potentially have followed but did 
not. These are defined to include all firms in the industries for which the analyst provides forecasts in year t - 1. This 
yields an additional 2,199,371 analyst-firm pairings representing firms the analyst did not follow. Thus, our analysis 
is based on 2,282,133 possible analyst-firm pairings. On average, analysts follow six firms and have an additional 
166 target firms. The overall number of observations increases through the 1990s, consistent with the increase in 
both analysts and firms. 

Table 2 presents the analyst-firm pairings for the observations used to estimate Eq. (1), which compares the 
change in the firm’s status in the portfolio of firms the analyst follows across years t - 1 and t; that is, whether a firm 
is dropped, receives no coverage, receives continued coverage, or is initiated in coverage. Computing the change 
specification results in losing 1 year from the sample (1993) as well as losing observations in which analyst-firm 
pairings cannot be matched across years t - 1 and t. The final sample of 1,066,043 observations includes 6794 
instances in which the firm is dropped from year t - 1 to t, 1,011,042 instances in which the firm receives no 
coverage in either in year t - 1 or year t, 42,453 instances in which the firm receives continued coverage, and 5754 
instances for which coverage is initiated.11 [end of page 284] 

 
 

                                                           
10 We note that the average number of firms followed (6, see column (4) of Table 1) is lower than that typically found in prior research (e.g., 
across the entire I/B/E/S database, the average analyst follows 16 firms). Our lower number is due to the data requirements imposed by Eq. (1). 
When these data requirements are not imposed, as in the creation of our variable NFIRMS, we obtain the more typical value (see NFIRMS in 
Table 3). 
11 It is noteworthy that drops are slightly higher than initiations except in 2002. This arises primarily because the dependent variable is measured 
as a change across t - 1 and t. For some initiations, there will be no observation for t - 1 (e.g., if the firm has an IPO in year t, there is no data for t 
- 1); these observations will be excluded in our change specification of Eq. (1). In addition, the increasing number of firms in the sample over 
time except in 2002 leads to a greater likelihood that some initiations are excluded due to firms missing in year t - 1 than drops being excluded 
due to firms missing in year t. However, we note that our results are consistent for an alternative levels specification (discussed later), which is 
unaffected by this issue. 



 
 

 
 

4.2. Descriptive Statistics and Empirical Results 
Table 3 provides descriptive statistics for the variables used in the analysis. Because we generally estimate 
parameters for annual regressions, we present statistics for means across the nine sample years 1994–2002. The 
average firm sees increases in size (ΔSIZE = 0.055), analyst following [end of page 285] 
 

 
 

(ΔFOLL = 0.238), trading volume (ΔVOL = 0.104), and institutional ownership (ΔINST = 0.014), and sees 
decreases in both stock returns (ΔRET = - 0.030) and the market-to-book ratio (ΔMB = - 0.122). About 9% of the 
firms issue debt or equity in the prior year (ISSUE = 0.091). The average analyst follows 15 firms (NFIRMS = 
15.145), with 39% of the covered firms falling within the primary industry (INDUST = 0.388). Consistent with our 
focus on experienced analysts, the analysts in our sample have 3 years more experience than the average for all 
analysts following the firm (RELEXP = 3.017). About 11% of the firms are followed by another analyst at the same 



 
 

brokerage house (BFOLL = 0.108).12 Less than 1% of firms were followed previously by another analyst at the 
same brokerage house (DEPART = 0.003), and less than 1% of firms have investment banking relationships with 
the employing brokerage house (IBANK = 0.008). 

Table 4 presents the results of the ordered probit specification examining the decision to drop coverage 
(dependent variable = -1), provide no coverage (0), continue coverage (+1), or initiate coverage (+2) of the firm. 
Because we primarily examine effects over our entire sample period, we focus on the ‘‘Avg” column, which 
presents coefficients averaged over the nine sample years and significance levels calculated using these nine 
coefficients (i.e., a Fama-Macbeth calculation).13 Of the firm-specific variables, ΔSIZE, ΔSP500, ΔVOL, and 
ISSUE are all significantly positive as predicted, consistent with analysts being more likely to continue or initiate 
coverage of a firm that has increased in size, joined the S&P 500, increased in trading volume, and issued debt or 
equity in the past year. ΔFOLL is positive and marginally [end of page 286] 
 

 
[end of page 287] 
significant, providing some evidence that an analyst is more likely to cover a firm with a greater following. ΔRET, 
ΔMB, and ΔINST are generally insignificant.14 

Regarding the analyst-specific variables, NFIRMS and NFIRMS_2 are significantly positive and negative, 
respectively, consistent with the analyst being more likely to continue or initiate coverage as the number of firms 
followed increases, albeit at a decreasing rate. INDUST is also significantly positive, suggesting that the analyst is 
more likely to continue or initiate coverage of a firm falling in their primary industry. RELEXP is insignificant. 

Of the brokerage house variables, ΔBSIZE is significantly positive, suggesting that as the analyst’s 
resources increase, the analyst is more likely to continue or initiate coverage of a firm. BFOLL and DEPART are 

                                                           
12 Prior research reveals that most instances of multiple analysts covering the same firm at the same employing brokerage house are the result of 
turnover in analysts (versus analysts providing simultaneous coverage). 
13 To provide an estimate of the explanatory power of the model, we use a pseudo-R2 measure based on Nagelkerke (1991). For the pooled 
sample years, the measure equals 6.6%. Within individual sample years, the power appears relatively stable, ranging from a low of 5.8% (for 
1997) to a high of 9.3% (for 2002), with an average of 7.0%. We do not report other measures of model power typically reported for probit 
models (e.g., concordant observations) due to the disproportionate number of our sample observations that consist of firms not followed by the 
analyst in either year t - 1 or year t. 
14 To examine the robustness of our proxies for performance, we alternatively replace ΔRET and ΔMB with either ΔSALES (measured as the 
change in sales, scaled by sales from year t - 1) or ΔNI. (measured as the change in net income before extraordinary items, scaled by the absolute 
value of this net income for year t - 1). We also include industry-adjusted ROE in year t. All three have positive predicted signs. ΔSALES is 
insignificant; ΔNI is significantly positive; and industry-adjusted ROE is marginally significantly positive. These latter results provide some 
support consistent with McNichols and O’Brien (1997). Results on the other variables are unchanged from those reported. 



 
 

significantly negative and positive, respectively, suggesting that the coverage decision is influenced by brokerage 
house portfolio considerations. Specifically, the negative coefficient on BFOLL indicates that the analyst is less 
likely to follow a firm already followed by another analyst at the same brokerage house. The positive coefficient on 
DEPART is consistent with analysts continuing coverage of a firm previously covered by a colleague, who has 
departed from the brokerage house. This suggests that the brokerage house plays a significant role in the coverage 
decision. Finally, IBANK is significantly positive, consistent with the analyst being more likely to continue or 
initiate coverage of a firm that has an investment banking relationship with the analyst’s brokerage house. 

Interestingly, several variables reflect significant changes over time (observed from regressing each 
variable’s annual coefficients on a time trend). Of particular note, IBANK has a decreasing association through time, 
suggesting that the existence of an investment banking relationship is becoming less prominent in the coverage 
decision, coinciding with enactment of Regulation FD in 2000. 
 

5. Sensitivity analyses 
We perform a number of sensitivity analyses to assess the robustness of our results and provide additional insights 
into the associations we document. First, we examine whether variation exists in the associations we have examined. 
Second, we examine alternative definitions for the set of firms the analyst potentially could follow. Finally, we 
model the decision to follow a firm at a point in time (i.e., a levels specification) rather than as the change in a firm’s 
position in the analyst’s portfolio across time as in our current Eq. (1). 
 

5.1. Tests for variation in observed associations 
Our estimation of Eq. (1) imposes certain restrictions on the coefficients on the firm, analyst, and employer 
characteristics that affect the decision to follow the firm. In particular, this estimation restricts the coefficients to be 
the same across all analysts, across all types of employing brokerage houses, across the drop versus initiate decision, 
and across the size of firms considered. We sequentially relax these restrictions, and test for variation in the 
coefficients for the observed associations. In addition, we also investigate potential variation in response coefficients 
for experienced versus inexperienced analysts. 

Estimation by analyst. We begin by estimating Eq. (1) by analyst to test for variation in these associations 
across analysts, as well as to mitigate the increase in statistical power that may arise from how we define our 
‘‘target” firms (firms that fit the profile of covered firms but are not followed by the analyst). Accordingly, we 
estimate 2,090 analyst-specific regressions of Eq. (1) (i.e., one regression for each analyst in our sample), with an 
average of 510 observations per regression. Table 5 presents the coefficients averaged across these analyst-level 
regressions, the number of regressions with positive and negative coefficients, and associated t-statistics. Note that 
the reported coefficients and [end of page 288] 



 
 

 
 
t-statistics are calculated using the trimmed-mean (at the 1% and 99% level) distribution of the coefficients from the 
analyst-level regressions. Of the firm-level variables, similar to the primary results of Table 4, ΔSP500, ΔFOLL, and 
ΔVOL are all significantly positive as predicted, but ΔSIZE and ISSUE are no longer significant. There is 
considerable cross-sectional variation in individual analyst coefficients for change in size, suggesting that different 
analysts place varying degrees of importance on size, with some probably preferring to follow small firms. Among 
the analyst-level variables, only INDUST is significantly positive, as predicted; NFIRMS and NFIRMS_2 have the 
predicted positive and negative signs, respectively, but are now insignificant. Among the employer-level variables, 
BFOLL, DEPART, and IBANK are significantly negative, positive, and positive, respectively, as predicted. In 
contrast to the primary analysis, ΔBSIZE is not significant, probably because this is estimated by analyst thereby 
sacrificing variation along this dimension. These regressions indicate that the average relationship holds across 
individual analysts; that the results are not driven by the statistical power arising from our test; and that substantial 
variation in these associations occurs across analysts (as reflected in the regressions having positive versus negative 
response coefficients). 

Estimation by type of employing brokerage house. Evidence from Cowen et al. (2006) suggests that analyst 
incentives vary, in part, due to the type of employer. As discussed previously, there are four types of brokerage 
houses: full-service investment banks, non-underwriter (or syndicate) banks, pure brokerage firms, and research 
firms. Because analysts’ incentives to cover a given firm can vary across these employers, we separately estimate 
Eq. (1) by each of the four types of brokerage houses. Based on these classifications, the available sample includes 
689,123 observations for full-service investment banks, 112,586 for syndicate banks, 29,665 for brokerage firms, 
and 4,253 for research firms. Untabulated results reveal that the coefficients are unchanged from our primary 
specification and [end of page 289] are similar across these employer types, with the following exception: the 
coefficients on both INDUST and DEPART are largest for research firms (both by a factor of two), suggesting that 
industry specialization and continuity of coverage play a bigger in role the decision to follow a firm for research 
firms relative to other types of firms. Further, the findings of Cowen et al. (2006) suggest that trading volume should 
figure most prominently for analysts at pure brokerage firms; however, we find that the coefficient on ΔVOL for 
brokerage firms does not differ from the other types of firms. Finally, we estimate Eq. (1) by analyst and group the 
coefficients by employer type. Results reveal that variation across analysts occurs even within types of brokerage 
houses, consistent with analysts applying individual preferences with regards to the firms that are followed. 



 
 

Drop coverage versus initiate coverage. Next, we examine whether the associations vary across the 
decision to drop coverage versus the decision to initiate coverage, which may be inherently different decisions (e.g., 
McNichols and O’Brien, 1997, 2000). We begin by estimating a regression to examine the decision to drop 
coverage. The starting point is all observations where the analyst follows the firm in year t - 1. If the analyst 
continues to follow the firm in year t, the dependent variable is equal to 1; if the analyst drops coverage of the firm 
in year t, the dependent variable is equal to 0. The average N across the nine sample years is 5472. Untabulated 
results are unchanged from those presented in Table 4, except that ΔSP500 and INDUST are now insignificant and 
ΔINST is now significant. We then estimate a regression to examine the decision to initiate coverage. The starting 
point is all observations where the analyst does not follow the firm in year t - 1. If the analyst also does not provide 
coverage in year t, the dependent variable is equal to 0; if the analyst initiates coverage in year t, the dependent 
variable is equal to 1. The average N across the nine sample years is 112,977. Untabulated results are similar to 
those of Table 4, except that neither ΔSP500 nor ΔFOLL is significant. Comparing results across the two 
regressions, the following differences are noted. The coefficients on ΔINST, NFIRMS, and NFIRMS_2 are all larger 
in the drop coverage specification, suggesting that changes in institutional ownership and workload figure more 
prominently in assessing whether to drop (versus initiate) coverage on a particular firm. In contrast, the coefficients 
on ΔVOL, ISSUE, INDUST, and IBANK are all larger in the initiate coverage specification, suggesting that trading 
volume changes, security issuances, industry specialization, and investment banking relationships figure more 
prominently in the decision to initiate coverage. 

Large versus small firms. In Section 2.2, we indicated that there may be little discretion over the decision to 
follow very large firms (i.e., these are the ‘‘maintenance” or ‘‘must have” firms). We now separately examine firms 
in the S&P 500 (‘‘large” firms) and firms not in the S&P 500 (‘‘small” firms), consistent with anecdotal evidence 
that membership in a key index such as the S&P 500 often determines whether a firm is a ‘‘must have”. Untabulated 
results reveal similar coefficients and significance levels across these two subsamples with the following exceptions. 
First, ΔFOLL, ΔVOL, and IBANK all appear to play larger roles in the decision to follow small firms relative to 
large firms, consistent with increasing interest by other analysts, increases in trading volume, and an investment 
banking relationship figuring more prominently in the decision to follow smaller firms. In contrast, INDUST and 
RELEXP figure more prominently in the decision to follow large firms relative to small firms, suggesting that for 
large and likely heavily followed firms, analysts focus more on their relative advantage in terms of industry 
specialization or being more experienced than competing analysts. 

Experienced versus inexperienced analysts. Finally, we examine whether the associations vary depending 
on the analyst’s level of experience. As stated earlier, our primary sample includes only those analysts with 5 or 
more years of experience. We now benchmark these associations to those for analysts with less than 5 years of 
experience, who presumably have less influence over the firms they follow. Table 6 presents the results, revealing 
that most associations are similar across the two groupings of analysts albeit with several notable exceptions. Most 
interestingly, RELEXP is positive and significant as predicted for less experienced analysts, consistent with relative 
experience being a more prominent factor across a greater variety of firms for less experienced versus more 
experienced analysts. In addition, there is some evidence that experienced analysts place greater weightings on 
ΔSP500, ISSUE, INDUST, and IBANK. This is consistent with experienced analysts either choosing to cover or 
being assigned to cover firms that are in the S&P 500, that have issued securities, that fall within their primary 
industry of expertise, and that have investment banking relationships with the analysts’ brokerage houses. [end of 
page 290] 



 
 

 
5.2. Alternative Definitions for Target Firms 

Our primary analyses define the population of ‘‘target” firms (again, firms that the analyst could potentially follow 
but does not issue a forecast for) to include all firms falling within each four-digit industry grouping per I/B/E/S for 
which the analyst issues a forecast in year t - 1. This definition results in an average of 166 potential target firms per 
analyst (see Table 1).1515 To examine the robustness of our results, we now explore alternative definitions for target 
firms. 

We first define the population of target firms to include only those firms in the analyst’s primary SIG code 
(per I/B/E/S) followed in year t - 1. Not surprisingly, this substantially reduces the number of observations to 
approximately 20 (versus the 166 indicated in Table 1). Untabulated results are generally unchanged for our primary 
analysis (Table 4), our analysis by analyst (Table 5), and our separate examination of the drop versus initiate 
decision. 

We also redefine the sample of target firms to correspond to the number of firms actually followed by the 
analyst. Accordingly, we match each firm for which the analyst issues a forecast with a firm selected from the firms 
not covered in the industries that the analyst covered in the previous year. As expected, the average number of 
observations drops substantially, to an average of 5203 per year. Results are consistent with the primary analysis, 
except that NFIRMS, NFIRMS_2, and BSIZE are now [end of page 291] insignificant. Overall, the latter analyses 
suggest that our results are robust to alternative definitions of target firms. 
 

5.3. Levels specification 
Our Eq. (1) is specified as a changes model in that we examine how a particular firm’s status in the analyst’s 
portfolio of firms followed changes across time. We alternatively model this in a levels specification with the 
dependent variable representing whether or not analyst i follows firm j in year t. The independent variables are 
similar to Eq. (1), with definitions adjusted slightly to correspond to the levels specification. Untabulated results are 
similar to those presented in Table 4 for the changes specification, suggesting that the associations we document are 
consistent across both changes and levels specifications. 
 

                                                           
15 Restated, our initial definition of ‘‘target” firms may overstate the set of firms the analyst would reasonably consider, leading to potential bias 
in only one value of our dependent variable (where CHANGE = - 1). 



 
 

6. Conclusion 
Prior literature examines the determinants of the number of analysts following a firm from a firm-level perspective – 
that is, based on characteristics of the covered firm. In contrast, we adopt an analyst/ brokerage house perspective 
and examine various analyst and brokerage house characteristics that may also affect the decision to follow a firm. 
We document that characteristics specific to the covered firm, the individual analyst, and the employing brokerage 
house are all associated with the analyst’s decision to follow a firm. Consistent with results in prior studies that 
focus on covered firms rather than analysts, we find that analysts follow firms that are growing, have issued debt or 
equity in the prior year, and have increasing trading volume. In addition, we document that an analyst is more likely 
to follow a firm falling within his or her primary industry of expertise and, in certain contexts, when the analyst has 
greater experience relative to other analysts following that firm. Further, we find that continuity of coverage by the 
brokerage house and whether the brokerage house has an investment banking relationship with the firm affect the 
coverage decision. Finally, we find substantial variation in these associations, suggesting that analyst-firm pairings 
arise from richer circumstances than the average firm-level relationships documented by prior research. 

Our research design is intended to focus on analysts most likely to have decision rights with regard to 
which firms to follow. To the extent that our design is successful, our results may be interpreted as modeling a 
process whereby individual analysts consider characteristics of the covered firm, their employing brokerage house, 
and their own individual capacities in how to construct their portfolio of covered firms. However, it is also possible 
that some or all of the decision rights reside with the employing brokerage house; in this case, our findings suggest 
that it is the employer that takes these factors into consideration when assigning analyst-firm pairings. Under either 
interpretation, our results are likely of interest to managers, regulators, and investors in that they improve our 
understanding of how analysts follow firms, which aids in understanding the qualities of the outputs generated by 
this important group of information intermediaries. Future research may consider the consequences of a non-random 
pairing of analysts and firms. 
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