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1. Introduction

Chern classes are objects associated to vector bundles. They describe relationships
between the vector bundle and the topology of the base space. They straddle the worlds
of topology and algebra or geometry; as such, they can be subtle, and difficult to compute.
On the other hand, they satisfy some nice properties, and they are useful tools. One goal
of these notes is to give examples of several different applications of Chern classes.

In particular, Chern classes of certain bundles on Grassmanians can be used to solve
enumerative problems, and this will be the main goal of these notes.

I hope these notes will be accessible to a student who has some basic knowledge of
algebraic geometry, say at the level of Shafarevich [14], and who is familiar with vector
bundles.

2. Chow Ring and Rational Equivalence

Let X be a smooth, irreducible projective variety of dimension n over an algebraically
closed field. We will define the Chow ring of X, which is where Chern classes will take
their values. I should warn the reader that the picture is a little different for non-smooth
X: here we are taking advantage of smoothness and Poincaré duality (so we will not
distinguish between cycles and cocycles).

For d ≥ 0, let Zd(X) be the free abelian group generated by irreducible closed subva-
rieties of X of codimension d. Elements of Zd(X) are called d-cocycles or (n− d)-cycles.

Definition 1. A principal k-cycle is div(f), where Y ⊆ X has dim Y = k + 1, f is a
rational function on Y , and div(f) = Zeros(f)−Poles(f), with appropriate multiplicities
(considered as a cycle on X rather than on Y ).

Two k-cycles are rationally equivalent if they differ by a sum of principal k-cycles.

Definition 2. The dth Chow group Ad(X) is Zd(X)/∼, where ∼ is rational equiv-
alence. That is, it is Zd(X) modulo the subgroup generated by principal cycles. The
equivalence class of a cycle V will be denoted by [V ], or just V by abuse of notation.

Another way to state the definition of rational equivalence is that k-cycles V, W ∈
Zn−k(X) are rationally equivalent if there is a subvariety Y in X × P1 of dimension
k + 1 such that V and W are the fibers of Y over two points of P1; or, more generally,
a sequence of such subvarieties Y1, . . . , Yr ⊂ X × P1 all of dimension k + 1 and V =
V0, V1, . . . , Vr = W ⊆ X all of dimension k such that each Yi has Vi−1 and Vi as fibers
over two points of P1.
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Rational equivalence is similar to cobordism in topology. Basically it says we can
“move” one subvariety to the other, with the motion parametrized by a P1, or by a
“chain” of P1s.

A few cases:

(i) A1(X) is generated by (classes of) Weil divisors; since X is smooth, this is the same
as Cartier divisors. Since the only choice for a 0-codimension subvariety (“Y ”)
is X itself, two divisors are rationally equivalent if and only if they are linearly
equivalent. So A1(X) is the Picard group of X.

(ii) A0(X) is generated by [X], the class of the cycle 1 · X, where X is considered as
a codimension zero subvariety of itself. There is no torsion (no multiple of X is
rationally equivalent to the empty set). So A0(X) ∼= Z0(X) ∼= Z.

(iii) For d > n = dim(X), Ad(X) = 0.
(iv) An(X) is generated by (classes of) points. Two points P and Q are rationally

equivalent if there is a chain of rational curves on X so that you can start at P , go
along the first rational curve to a point of intersection with the next rational curve,
go along the next rational curve to the next point, and so on, to arrive at Q.

Rational equivalence of points is subtle: the study of rational curves on varieties
is already deep, yet the full equivalence relation involves higher genus curves on X.
For example, two pairs of points P +P ′ and Q+Q′ are rationally equivalent if (but
not only if) there is a hyperelliptic curve in X on which P +P ′ and Q+Q′ both lie
in the hyperelliptic pencil; or if there is a chain of such hyperelliptic curves, meeting
in an appropriate way.

One thing we can say is that rational equivalence of points preserves the number
of points (i.e., the sum of the coefficients of a 0-cycle). Thus there is a well-defined
degree function An(X) → Z.

Example 3. For X = Pn, A1(X) = Pic(X) = Z, generated by the hyperplane class H.
Each Ad(X) for 1 ≤ d ≤ n contains the class of a codimension d linear subspace, which
we will denote by Hd: for now, this is just notation, but we will see that it actually
means a d-fold product in the Chow ring, which will be defined soon.

Exercise 4. Show that any two codimension d linear subspaces of Pn are rationally equiv-
alent, so this Hd is a single rational equivalence class.

Now, it turns out that Ad(X) ∼= Z is generated by Hd. Given a cycle Y in Pn of
codimension d (meaning every irreducible component of Y has this same codimension),
how can we relate it to Hd? The idea is that we project it down one dimension to a
hyperplane (a finite map), then down another dimension (again a finite map), and so on,
till we’ve projected it onto a codimension d linear subspace; the degree of this map is the
degree of the original subvariety Y . We just have to pick the projections in a reasonable
way: don’t use a projection so that Y is contracted to a smaller dimension. We can
always avoid this. Also, to make the image of Y a cycle, we have to assign the right
multiplicities to its irreducible summands.

If Y =
∑

aiVi is a cycle in Pn (so the Vi are irreducible) and π is a projection to
a hyperplane in Pn such that for each i, dim(π(Vi)) = dim Vi, (for example, if π is a
projection from a point not on any Vi), then we make π(Y ) a cycle by setting π(Y ) =∑

deg(π|Vi)aiπ(Vi). (More generally, if Vi is a summand in Y with dim π(Vi) < dim Vi,
then π(Vi) appears in π(Y ) with coefficient zero.)

Exercise 5. If Y is a cycle in Pn and π is a linear projection onto a hyperplane in
Pn such that π|Vi is finite for each i, then Y and π(Y ) are rationally equivalent, and
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deg(Y ) :=
∑

ai deg(Vi) is equal to deg(π(Y )) =
∑

deg(π|Vi)ai deg(π(Vi)). The finiteness
condition holds for a general projection π (indeed, for any projection from a point not
on Y ).

For example, if we start with a twisted cubic in P3, the first projection to a plane will
give (say) a plane nodal cubic curve (it can be cuspidal if you want), and projecting a
plane cubic curve to a line gives a three-to-one map to the line, which we interpret as
three copies of the line.

We have essentially given the definition of cycle pushforwards: for other maps it is the
same as for projections in Pn, as described above. But we will not go into more detail,
since we will not use cycle pushforwards again in these notes.

The above argument justifies the claim that Ad(Pn) is cyclic, generated by Hd, the
class of a codimension d linear subspace.

We can add and subtract rational equivalence classes of cycles formally. To give a
multiplication rule for (classes of) cycles, on a smooth projective X, it is enough to just
multiply (classes of) irreducible subvarieties, and then distribute over sums.

To multiply the classes of two irreducible subvarieties V and W , if they meet prop-
erly, meaning codim V ∩W = codim V +codim W , then the product is just (the class of)
the intersection of the subvarieties, with appropriate multiplicities assigned to the com-
ponents of the intersection (note that the assumption of proper intersection is exactly
what is needed to ensure the product takes Ad(X)×Ae(X) → Ad+e(X)). The question of
what the multiplicities should be is tricky. But if the intersection is transversal, mean-
ing that at each point of intersection, V and W are smooth and their tangent spaces
together span the tangent space of X, then the multiplicities are all 1.

If the subvarieties do not meet transversally, or properly, one strategy is to try to move
them by rational equivalence so that they do. Since our ambient variety X is smooth
and projective, we may apply the Moving Lemma of section 11.4 of Fulton’s Intersection
Theory [6], along with Example 11.4.2, which imply the following:

Fact 6.

• If α and β are cycles on X, there is a cycle α′ rationally equivalent to α such that
α′ and β meet transversally (that is, if α′ =

∑
a′iVi and β =

∑
bjWj then each

Vi meets each Wj transversally).
• If V and V ′ are rationally equivalent irreducible subvarieties of X and each is

transversal to the irreducible subvariety W , then V ∩W and V ′∩W are rationally
equivalent.

So, we define the product [V ][W ] as follows.

Definition 7. For any cycle ω =
∑

aiWi which is rationally equivalent to W and meets
V transversally, we set [V ][W ] = [V ∩ ω] = [

∑
ai(V ∩Wi)].

This gives a well-defined product of rational equivalence classes of cycles, taking
Ad(X) × Ae(X) → Ad+e(X). Note that the class [X] ∈ A0(X) is the unit element
for this multiplication (X is trivially transversal to any smooth V ⊆ X, so [X][V ] =
[X ∩ V ] = [V ]).

Definition 8. For smooth, irreducible, projective X, the Chow ring A(X), or A∗(X),
of X, is the direct sum of the Ai(X), with a product given by intersection as above. It
is commutative, graded by i, and has unit element 1 = [X].
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Example 9. We see now that Hd, the class of a codimension d linear subspace in Pn,
is in fact the d-fold product in A(Pn) of the class H of a hyperplane. Indeed, going
by induction on d, a codimension d linear subspace may be written as the transversal
intersection of a hyperplane H with a codimension d− 1 linear subspace, whose class is
Hd−1.

Now, Hn+1 = 0 because An+1(Pn) = 0, or because a general hyperplane (H) does
not meet (contain) a point (Hn); if the hyperplane and point do not meet, then they
are vacuously transversal, so Hn+1 is represented by their intersection, which is empty,
corresponding to the zero class in A(Pn). So Hn+1 = 0 is a relation in A(Pn). On the
other hand, A(Pn) is generated by H and each Ai(Pn) is cyclic (with no torsion), so there
can’t be any other relations in degree n + 1 or lower. Therefore A(Pn) is Z[H]/Hn+1.

(Note, when we are working over C, this is equal to the cohomology ring of Pn. The
same thing will happen with Grassmanians, below. It does not, however, happen for other
varieties: the Chow and cohomology rings coincide only under certain circumstances.)

3. Chern classes

To a vector bundle E on X of rank e, we associate Chern classes c1(E) ∈ A1(X)
(the first Chern class of E), c2(E) ∈ A2(X) (the second Chern class of E), and so on up
to ce(E) ∈ Ae(X). Note that if e > n, then some of these Chern classes have to be zero.
Sometimes we write ctop(E) for ce(E) and call it the top Chern class of E. The total
Chern class is c(E) = 1 + c1(E) + c2(E) + . . . ce(E).

The question of which classes they are and how to calculate them will be addressed
soon. First, the Chern classes have many formal properties. Here are two to start with.

Fact 10 (Two properties of Chern classes).

(i) If L is a line bundle and D is a Cartier divisor such that L = O(D), then c(L) = 1+D
(in other words, c1(L) is the class of D). (Notice that if D′ is another choice for a
divisor that gives L, then it is linearly equivalent to D, hence rationally equivalent,
so c1(L) is well-defined.) Another way of saying this is that any line bundle L is
equal to OX(c1(L)).

(ii) (Whitney sum) If 0 → A → B → C → 0 is a short exact sequence of vector
bundles, then c(B) = c(A)c(C). In particular, the total Chern class of a direct
sum of bundles is the product of the total Chern classes of the summands (for any
number of summands).

Example 11.

Projective space: Every line bundle on Pn is of the form OPn(a) for some a ∈ Z,
corresponding to the divisor aH; therefore this line bundle has total Chern class
1 + aH. Hence a direct sum of line bundles O(a) ⊕ O(b) has total Chern class
(1 + aH)(1 + bH) = 1 + (a + b)H + abH2.

From the Euler exact sequence,

0 → OPn → OPn(1)⊕(n+1) → TPn → 0,

we can find the Chern classes of the tangent bundle to Pn. The total Chern
class of the first bundle is c(OPn) = 1 + 0H = 1, and for the middle bundle
we get c(OPn(1)⊕(n+1)) = (1 + H)n+1. Therefore c(TPn) = (1 + H)n+1. Since
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A(Pn) = Z[H]/Hn+1, we find that

c(TP1) = 1 + 2H, c(TP2) = 1 + 3H + 3H2,

c(TP3) = 1 + 4H + 6H2 + 4H3,

and so on.
Note that 1+3H +3H2 is not a product of two linear polynomials in Z[H]/H3.

This shows that TP2 is not an extension of line bundles (meaning just that it
cannot fit in the middle of a short exact sequence with a line bundle on each
side), much less a direct sum of line bundles.

Similarly, c(TPn) is irreducible for n+1 prime, by Eisenstein’s criterion, showing
that TPn is not an extension of lower-rank bundles. On the other hand, c(TPn) is
reducible for n + 1 not prime: for example,

1 + 4H + 6H2 + 4H3 = (1 + 2H + 2H2)(1 + 2H).

It turns out that these tangent bundles can indeed be extensions of smaller-rank
bundles for certain n: see [13], section 4.2.

Curves: In fact, every vector bundle on a curve is an extension of line bundles.
There’s an exercise in Hartshorne about this (Chapter V, Exercise 2.3): Given
any vector bundle E on a curve, there is a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ee = E

such that Ei/Ei−1 is a line bundle for each i. Then

c(E) = (1 + c1(E1))(1 + c1(E2/E1)) . . . (1 + c1(Ee/Ee−1)).

On the other hand, every product (1 + a1)(1 + a2)(1 + a3) . . . (1 + ae), with
a1, . . . , ae ∈ A1(X), is the total Chern class of the vector bundle O(a1) ⊕ · · · ⊕
O(ae).

The following definition of the Chern classes of a vector bundle E was given by
Grothendieck [9]. We will not use it directly; instead, we will use a description in terms
of degeneracy loci, but we will state the definition for completeness. Let dim X = n and
let E be a vector bundle on X with rk E = r. Let Pquot(E) → X be the projective bundle
of hyperplanes in E, with projection map π. Then π∗(E) contains a canonical rank n
subbundle, sometimes written OE(1). Its first Chern class ξ is very important. There is
a pullback map π∗ : A∗(X) → A∗(Pquot(E)), taking each class in X to its preimage in
the projective bundle. (More general pullbacks will be discussed in a later section.)

Exercise 12. Check that for this π, the pullback π∗ is well-defined on rational equivalence
classes, preserves codimension, and commutes with transversal intersections.

This pullback map gives us a map,

A∗(X)[ξ] � A∗(Pquot(E))

whose kernel is principal, and has a unique monic generator,

ξr+1 + ξrc̃1 + ξr−1c̃2 + · · ·+ c̃r

where each c̃i is the pullback of an element ci ∈ Ai(X). Since the pullback map is in fact
injective, this ci is uniquely determined. This is the ith Chern class of E.

Earlier definitions of Chern classes were more analytical: see [2], [8]. Also see [1] for
historical information.

4. The splitting principle
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Many computations are much easier if the vector bundle at hand happens to be de-
composable, that is, a direct sum of line bundles, or split, that is, filtered so that all
the quotients are line bundles, as in the case of bundles on curves. In many cases, the
result of such a computation is valid even without the splitting hypothesis: this is called
the splitting principle—roughly speaking, in many situations, the hypothesis that a
vector bundle is split (or decomposable) can be removed freely. Before discussing where
this principle comes from and exactly when it is applicable, let’s see a few examples of
how it can be applied.

Example 13. Let E be a vector bundle and L a line bundle. What are the Chern classes
of E ⊗ L in terms of those of E and L?

First, if E is a line bundle, then

c(E ⊗ L) = 1 + c1(E ⊗ L) = 1 + c1(E) + c1(L).

If E is decomposable, E = L1 ⊕ · · · ⊕ Lr, then we can extend by linearity. We have
c(E) = (1 + c1(L1)) · · · (1 + cr(Lr)). Then E ⊗ L = (L1 ⊗ L)⊕ · · · ⊕ (Lr ⊗ L), so

c(E) = (1 + c1(L1) + c1(L)) · · · (1 + c1(Lr) + c1(L))

= 1 + (c1(E) + r c1(L))

+
(
c2(E) + (r − 1)c1(E)c1(L) +

(
r

2

)
c1(L)2

)
+ · · ·

If E is split, so there is a filtration

0 = E0 ( E1 ( · · · ( Er = E

with each quotient Ei+1/Ei a line bundle, then

c(E) = (1 + c1(E1))(1 + c1(E2/E1)) · · · (1 + c1(Er/Er−1)).

Considering the filtration

0 ( E1 ⊗ L ( · · · ( Er ⊗ L = E ⊗ L,

we see that each quotient (Ei+1 ⊗ L)/(Ei ⊗ L) = (Ei+1/Ei) ⊗ L. This lets us compute
that

c(E ⊗ L) = (1 + c1(E1) + c1(L))(1 + c1(E2/E1) + c1(L)) · · ·
· · · (1 + c1(Er/Er−1) + c1(L)),

and as in the decomposable case, we get

c(E ⊗ L) = 1 + (c1(E) + r c1(L))

+
(
c2(E) + (r − 1)c1(E)c1(L) +

(
r

2

)
c1(L)2

)
+ · · · .

The results of these computations are valid even without assuming E splits or is de-
composable. By applying the splitting principle, we obtain

Proposition 14. For any vector bundle E and line bundle L,

c(E ⊗ L) = 1 + (c1(E) + r c1(L))

+
(
c2(E) + (r − 1)c1(E)c1(L) +

(
r

2

)
c1(L)2

)
+ · · · ,

as above.
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Example 15. What is the relation between c1(TX) and the canonical divisor KX? Sup-
pose TX = L1 ⊕ · · · ⊕ Ln (where n = dim(X)), and ai = c1(Li). Then

c(TX) = 1 + c1 + · · ·+ cn = (1 + a1) · · · (1 + an),

so c1 = c1(TX) = a1 + · · ·+ an. Now, Ω1
X = T∨

X = L∨
1 ⊕ · · · ⊕ L∨

n , so

O(KX) = Ωn
X =

n∧
Ω1

X = L∨
1 ⊗ · · · ⊗ L∨

n = O(−a1 − · · · − an).

Therefore KX = −a1 − · · · − an, so c1 = c1(TX) = −KX .

Exercise 16. If TX is split, then dualizing does not give us a filtration of Ω1
X by subbundles,

but a filtration by quotient bundles: If

0 ⊂ E1 ⊂ · · · ⊂ En = TX ,

then, dualizing,
Ω1

X � E∨
n−1 � · · · � E∨

1 .

With this we can compute KX = c1(Ω
1
X) = −c1(TX).

Even if TX is not decomposable or split, we have

Proposition 17. For smooth, irreducible projective X, c1(TX) = −KX .

Note, this matches with our computation for Pn: c1(TPn) = (n + 1)H, and KPn =
−(n + 1)H.

Example 18. We can compute the Chern classes of Sym3 of a decomposable rank 2
bundle in terms of the Chern classes of the original bundle as follows. Say rk(E) = 2 and
c(E) = 1 + c1 + c2. If E = O(a1)⊕ O(a2), then c(E) = (1 + a1)(1 + a2), so a1 + a2 = c1

and a1a2 = c2.
Now,

Sym3(E) = O(3a1)⊕ O(2a1 + a2)⊕ O(a1 + 2a2)⊕ O(3a2).

Therefore

c(Sym3(E)) = (1 + 3a1)(1 + 2a1 + a2)(1 + a1 + 2a2)(1 + 3a2)

= 1 + 6c1 + (11c2
1 + 10c2) + (6c3

1 + 30c1c2) + 9c2(2c
2
1 + c2).

That is,

c1(Sym3(E)) = 6c1(E),

c2(Sym3(E)) = 11c1(E)2 + 10c2(E),

c3(Sym3(E)) = 6c1(E)3 + 30c1(E)c2(E),

c4(Sym3(E)) = 9c2(E)(2c1(E)2 + c2(E)).

(∗)

We proved (∗) for any bundle E which is a direct sum of two line bundles.

Exercise 19. Suppose E is split, that is, there is a line bundle L1 ⊂ E such that E/L1 =
L2 is a line bundle. Show that Sym3(E) has the following splitting:

0 ⊂ L3
1 ⊂ L2

1 ⊗ E ⊂ L1 ⊗ Sym2(E) ⊂ Sym3(E),

with adjacent terms having quotients L3
1, L2

1 ⊗ L2, L1 ⊗ L2
2, and L3

2. (Note that L3
1 =

Sym3(L1), and so on.) Check that the Chern classes of Sym3(E) in this case are the
same as for the direct sum case.

In fact, (∗) holds for any E of rank 2, regardless of whether or not E is split.
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In a similar way, we can work out the Chern classes of E ⊗ F ,
∧d E, Symd(E), E∨,

and E⊕F in terms of the Chern classes of E and F . The idea is to assume E and F are
decomposable (or split), and work out a formula only in terms of the Chern classes of E
and F (not their summands or subbundles). Such a formula will be valid even when E
and F are not decomposable or split.

The way the splitting principle really works is that you construct a space X̃ and a
map X̃ → X so that the pullback of E splits, and furthermore the pullback of Chow
rings A∗(X) → A∗(X̃) is injective (the pullback of Chow rings will be discussed in the
next section). (In giving the definition of Chern classes, we saw that Pquot(E) → X
satisfies this injectivity hypothesis, although the pullback bundle does not split.) Then
computations can be performed in A∗(X̃), where E splits, without any loss of information.

The space X̃ is constructed iteratively: on P(E), the pullback of E contains a rank 1
subbundle (the tautological line bundle); quotient out by it to get a new bundle of rank
one less, and keep going. It has to be checked that the map of Chow rings is injective.
This construction preserves any computation that “commutes with pullback”, such as
the operations listed above (tensor, wedge product, symmetric powers, dual, and direct
sums of vector bundles).

Regarding the computation of Sym3(E) carried out above, the splitting principle would
be applied as follows. For the map f : X̃ = P(E) → X, the bundle f ∗(E) satisfies the
following:

• The bundle f ∗(E) is split: there is a line bundle L1 ⊂ f ∗(E) such that f ∗(E)/L1 =
L2 is a line bundle.

• The Chern classes of E pull back to the Chern classes of f ∗(E): c(f ∗(E)) =
f ∗(c(E)) = 1 + f ∗(c1(E)) + f ∗(c2(E)). Similarly, the Chern classes of Sym3(E)
pull back to the Chern classes of f ∗(Sym3(E)).

• Sym3(f ∗(E)) = f ∗(Sym3(E))
• The map of Chow rings f ∗ : A∗(X) → A∗(X̃) is injective.

The upshot is that the Chern classes of f ∗(E) and f ∗(Sym3(E)) are related as in (∗); so
the pulled-back Chern classes of E and Sym3(E) are related as in (∗). Since the pullback
map of Chow rings is injective, the actual classes on X must have satisfied the relation
(that is, before being pulled back to X̃).

This argument is pretty standard, and tends to not be spelled out in this much detail!
For purposes of computation, the result of the splitting principle is more important than
the detailed application, or even the construction of the space X̃.

Here is one way to avoid the drudgery of the above argument: Even if E does not
split, we define the Chern roots formally to be ai such that c(E) = (1+ a1) · · · (1+ ae).
The Chern classes of E are the elementary symmetric functions of its Chern roots. If E
is decomposable, its direct summands are its Chern roots; if E is split, the line bundle
quotients of the splitting filtration (the Ei+1/Ei) are its Chern roots. Otherwise, the
Chern roots are just formal objects.

They behave as in the decomposable or split cases. For example, E ⊗ L has Chern
roots ai + c1(L), E∨ has Chern roots −ai, and so on—taking the elementary symmetric
functions, we can find the Chern classes of these bundles in terms of the Chern classes of
E. We regard the Chern roots as virtual elements of A1(X). (It would be more accurate
to say they are elements of A1(X̃), so they are elements adjoined to the ring A∗(X).)
The advantage of this formalism is that we can avoid dealing with the space X̃.
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5. Pulling back and restricting

Say you have a map f : X → Y and a bundle E on Y . Is there some relation between
the Chern classes of E and of f ∗(E)?

The easiest statement would be something like: ci(f
∗(E)) = f−1(ci(E)), where we

would like f−1(ci(E)) to mean the scheme-theoretic fiber of f over ci(E). Unfortunately,
this is not well-defined up to rational equivalence.

For example, say Y = P2, X = Blp(P2) is the blowup of P2 at p, and f : X → Y is the
blowdown, with exceptional divisor E. Then for any point x 6= p in Y , f−1(x) is a point,
the point in X − E lying over x, but f−1(p) = E. Now, in P2, p and x are rationally
equivalent, but f−1(p) has codimension 1 and f−1(x) has codimension 2, so they cannot
be rationally equivalent.

The upshot is that there is not necessarily a well-defined pullback map from A∗(Y ) to
A∗(X). But there is still a pullback map of divisors, or their rational equivalence classes
(i.e., line bundles), Pic(Y ) → Pic(X). What can we do with this?

If E is a decomposable bundle, then we can pull back the direct sum decomposition,
which means f ∗E splits into line bundles which are the pullbacks of the summands of
E. Those line bundles (or their first Chern classes) are the Chern roots of E; so this
is saying that the Chern roots of f ∗(E) are the pullbacks of the Chern roots of E.
Therefore the Chern classes of f ∗(E) are the same symmetric functions of the pullbacks
of the Chern roots of E. For example, if rank(E) = 2 and c2(E) = a1a2, then c2(f

∗(E)) =
f ∗(a1)f

∗(a2)—but this is different from intersecting first and then pulling back!
Similarly, if E is split, then pulling back the splitting (filtration) gives a splitting of

f ∗E. So the Chern roots of f ∗E are the pullbacks of the Chern roots of E. As before,
the Chern classes of f ∗E are not the pullbacks of the Chern classes of E, but at least
there is a description.

So, in the split or decomposable case we can say something about the Chern classes
of f ∗E. Unfortunately, if E does not split on Y , the Chern roots are just formal things
(they are really divisors on some other space Ỹ over Y ), so it is harder to say anything.
But according to the philosophy of the splitting principle, it is still true that many
computations carried out for pullbacks of split bundles will be true for pullbacks of non-
split bundles.

One “safe” case is pulling back via the inclusion of a closed subvariety. If X is a
smooth closed subvariety of Y , the way to restrict (pull back) Chern classes of bundles
on Y is just to move them so they are transversal to X and then intersect with X. Why?
Because to restrict a line bundle or divisor, move the divisor so it is transversal to X,
and then intersect with X; so, according to the previous discussion, that’s what we do
with the Chern roots of a bundle. So we can “split” a bundle on Y , restrict its Chern
roots, then take the same old symmetric functions of them to get the Chern classes of the
restricted bundle. But once we’ve moved the divisors, we can intersect them together first
and then intersect with X—in this context, intersecting does commute with restricting
(pulling back)—as long as everything is transversal.

This means we can just use the Chern classes on Y directly and intersect them down
to X. This is what we need to get information out of short exact sequences like the
following. Let X be a smooth subvariety of a smooth variety Y . Then NX/Y denotes the
normal bundle of X in Y , and IX/Y denotes the ideal sheaf of X in Y ; the restriction
IX/Y |X is locally free, and called the conormal bundle of X in Y . The following short
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exact sequences are standard:

0 → TX → TY |X → NX/Y → 0

0 → IX/Y |X → Ω1
Y |X → Ω1

X → 0

0 → NB/A → NC/A → NC/B|A → 0

(the last is for A ⊂ B ⊂ C closed subvarieties, all smooth).

Example 20. Let X be any variety, dim(X) = g, such that the tangent bundle of X
is trivial. (For example, any abelian variety has trivial tangent bundle.) Suppose X is
embedded in projective space Pn. Then in the short exact sequence

0 → TX → TPn|X → NX/Pn → 0,

we have c(TX) = 1, so c(NX/Pn) = c(TPn|X).

I claim cg(TPn|X) 6= 0. Indeed, cg(TPn) =
(

n+1
g

)
Hg, so cg(TPn|X) =

(
n+1

g

)
Hg ∩ X

(once we choose an Hg meeting X transversally). But Hg ∩ X is a finite set of points
on X whose number is the degree of X in the embedding X ⊂ Pn. Therefore cg(TPn|X)
consists of

(
n+1

g

)
deg(X) points in X, so it is not rationally equivalent to zero. (Rational

equivalence of sets of points preserves the number of points.)
Therefore cg(NX/Pn) 6= 0 as well. So we must have rank(NX/Pn) ≥ g.
This shows that if X is embedded in projective space, the codimension of X must be

at least as great as the dimension of X, so n ≥ 2g.
By looking at this more closely, Van de Ven [15] was able to say more about embeddings

of abelian varieties: he showed that an embedding of an abelian variety with n = 2g must
be an elliptic curve in P2 or an abelian surface in P4. See also [11].

6. Degeneracy Loci

We have seen how to work with Chern classes formally. The last ingredient we need
for our computations is a way of actually finding Chern classes “from scratch”, at least
sometimes.

Let E be a vector bundle such that rank(E) ≤ dim X, and with “lots” of global
sections; say, globally generated.1 Let s1, . . . , si ∈ Γ(X, E) be general sections, where
i ≤ e = rank(E). Equivalently, let u : O⊕i

X → E be a general map; and this is equivalent
to saying u is a general global section of E ⊗ (O i)∨ = E ⊗ O i = E⊕i.

At each point x ∈ X, we get vectors s1(x), . . . , si(x) in the fiber E(x). For general
s1, . . . , si, we expect these vectors to be linearly independent, at least for “most” x ∈ X.
The degeneracy locus D(u) or D(s1, . . . , sn) is the locus of points x at which the vectors
are not independent.

Equivalently, D(u) is defined by the equation s1(x) ∧ . . . ∧ si(x) = 0. In local coor-
dinates, and choosing a trivialization of E, we can represent u by an e × i matrix (in
which the jth column is sj); then D(u) is the locus where this matrix has rank less than
i. Therefore D(u) is defined locally by algebraic equations (the vanishing of all the i× i
minors of this matrix).

So D(u) is not just a set of points but really an actual cycle: that is, it’s a closed
subscheme of X and its irreducible components have multiplicities (independent of the
choices of trivializations). What is the codimension of this cycle?

1If E is not globally generated, we may be able to twist E up with an ample line bundle until it is; or,
it might be possible to do something with meromorphic sections of E.



CHERN CLASSES 11

• If i = 1, the matrix representing u is e× 1. For this to be linearly dependent, all
the entries need to vanish; that is e independent equations, so codim D(u) = e.

• If i = e, the matrix representing u is square. Then D(u) is cut out by a single
equation the vanishing of the determinant of this matrix, so codim D(u) = 1.

• The codimension of D(u) ought to be a linear function of i, the number of sections
of E we are taking. From the previous two cases we can see that codim D(u) is
e + 1− i.

Exercise 21. Prove this.

The degeneracy loci allow us to find the Chern classes of bundles, provided there are
plenty of global sections to choose from.

Theorem 22. For a globally generated bundle E of rank e, and i general global sections
s1, . . . , si, the cycle D(s1, . . . , si) is equal (rationally equivalent) to ce+1−i(E).

In particular, if u′ is another general i-tuple of sections of E, then D(u) and D(u′) are
rationally equivalent. We will use this theorem constantly, but its proof is beyond the
scope of these notes.

Example 23 (Bézout’s Theorem). Let X = P2 and E = OP2(a)⊕OP2(b), with a, b > 0.
Then c(E) = (1 + aH)(1 + bH) (where H = c1(OP2(1)) is the class of a line).

Let s ∈ Γ(P2, E) = Γ(P2, O(a)) ⊕ Γ(P2, O(b)), so s = (Fa, Fb). Then Zeros(s) =
Zeros(Fa) ∩ Zeros(Fb). If Fa and Fb are general, then Zeros(s) = D(s) is a closed cycle
in P2 representing c2(E). In this case, “general” means the curves Fa and Fb have no
common components. Since we know the total Chern class c(E), we know c2(E) = abH2.
So we expect #Zeros(s) = deg c2(E) = ab, in agreement with Bézout’s theorem.

Example 24 (Gauss-Bonet theorem). (Now working over the field k = C.) Suppose
there is an s ∈ Γ(X, TX) with isolated zeros. Since s is a vector field on X, the Gauss-
Bonet theorem states that if we assign a certain index to each zero of s, the sum of the
indices will be the topological Euler characteristic of X, χtop(X). The zero set of s is
D(s) = cn(TX), and in fact the indices are the same multiplicities assigned by the cycle
structure on D(s). Summing these multiplicities means finding deg cn(TX), which is often
written

∫
X

cn(TX). So χtop(X) =
∫

X
cn(TX). (Indeed, this turns out to be true even if

there is no vector field on X with isolated zeros.)

Example 25 (Topological Euler characteristic of projective hypersurfaces). (Working
over the field k = C.) Let X = Xd ⊂ Pn be a hypersurface of degree d. Let H be
(the class of) a hyperplane in Pn, and let h be the restriction of H to X (a hyperplane
section), so h = c1(OX(1)). From the short exact sequence

0 → TX → TPn|X → NX/Pn = OX(d) → 0

we see c(TX)c(OX(d)) = c(TPn|X). We know c(TPn) = (1 + H)n+1, so c(TPn|X) =
(1 + h)n+1. Similarly, c(NX/Pn) = 1 + dh. Therefore

c(TX) = (1 + h)n+1(1 + dh)−1

= (1 + h)n+1(1− dh + d2h2 − d3h3 + · · · )
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In particular,

cn−1(TX) =

(
n + 1

n− 1

)
hn−1 −

(
n + 1

n− 2

)
hn−2 · dh + · · ·

= hn−1

((
n + 1

n− 1

)
−

(
n + 1

n− 2

)
d +

(
n + 1

n− 3

)
d2 − · · ·

)
Note that dim X = n − 1, so this is the top Chern class of TX . From the Gauss-Bonet
theorem, we know that the topological Euler characteristic of X is the degree of ctop(TX).
Since X is a degree d subvariety in Pn, deg hn−1 = d. Therefore the topological Euler
characteristic of X is

d

((
n + 1

n− 1

)
−

(
n + 1

n− 2

)
d +

(
n + 1

n− 3

)
d2 − · · ·

)
.

For example, a degree d curve in P2 has topological Euler characteristic d
((

3
1

)
−

(
3
0

)
d
)

=
3d− d2.

7. Lines in P3

Let P3 = P(V ) be the set of one-dimensional quotients of V , that is, surjections V � k,
where dim V = 4 (and where we identify f, f ′ : V � k if they are scalar multiples of
one another). Each line P1 ⊂ P3 corresponds to a surjection V � W where dim W = 2,
and P1 = P(W ) ⊂ P(V ) = P3. Note that a point p ∈ P1 = P1

W iff the surjection V � k
corresponding to p factors through V � W , that is, the following diagram can be filled
in so that it commutes:

V //

  A
AA

AA
AA

A W

��
k

Let G = G(P1, P3) be the Grassmanian of projective lines in 3-space, so G is 4-
dimensional. Let VG = V × G be the trivial bundle of rank four on G. There is a
tautological rank 2 bundle on G whose fiber over the point in G corresponding to V � W
is W ; call this bundle Q. There is a surjective map VG � Q which over the point V � W
in G maps the fibers of the bundles by V � W .

Exercise 26. Check the following.

(a) Fix a basis for V ∼= k4. Then G is equal to the set of 2 × 4 matrices of full rank,
modulo the action of GL2 on the left, corresponding to changing the choice of basis
for W ∼= k2.

(b) Find a covering of G by open affine patches, and coordinates; find the transition
functions.

(c) Find the transition functions of Q.
(d) Find the map VG � Q in terms of the coordinates on the affine patches and check

that these matrices are compatible with the transition functions of Q.

Since VG is globally generated, so is Q, by the following exercise.

Exercise 27. On any space X, the surjective image of a globally generated sheaf is globally
generated. (This is true both for OX-modules and for arbitrary sheaves of abelian groups.)

Let’s find the Chern classes of Q. To find c2(Q), we’ll take a single section of Q and
look at its zero locus. Start by picking a 2-plane Π = P2 ⊂ P3. This corresponds to a
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surjection V � k3, so we for each line V � W , we get a diagram

k

��   B
BB

BB
BB

B

V //

����

W

k3

Globalizing, we have a similar diagram for bundles,

OG

��

s

  A
AA

AA
AA

A

VG //

����

Q

O3
G

This map s is the section of Q whose zero locus we will take to represent c2(Q). Over a
given V � W in G, the section is zero iff there is a factorization

k

��

0

  B
BB

BB
BB

B

V // //

����

W

k3

>> >>

which means the line P1 = P(W ) is contained in the 2-plane Π = P(k3) we picked at the
start. Therefore Zeros(s) = { ` ⊂ P3 | ` ⊂ Π }. Therefore c2(Q) is represented by this set
(assuming s is a general section of Q). The set is called a Schubert variety ; write σΠ for
it,

σΠ = { ` ⊂ P3 | ` ⊂ Π }.

Exercise 28. Show that σΠ is irreducible and closed in G. Show that for two P2’s Π and
Π′ in P3, the Schubert varieties σΠ and σΠ′ are rationally equivalent.

We will meet several more types of Schubert varieties.
To compute c1(Q), we’ll find two sections of Q and find the degeneracy locus. Start

by picking a line `0 ⊂ P3. This corresponds to a short exact sequence 0 → k2 → V →
k2 → 0. Globalizing, we get a map of bundles on G,

O2
G

�� ��@
@@

@@
@@

@

VG //

��

Q

O2
G
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The diagonal arrow (composition of O2 → VG → Q) gives our two sections of Q. Where
does this map drop rank? At ` = P(W ) ∈ G, the map of fibers is

k2

c

  A
AA

AA
AA

A� _

i
��

V
p // //

j
����

W

k2

where p corresponds to ` and j corresponds to `0. If rank(c) < 2, then ker(V → W ) +
ker(V → k2) is at most 3-dimensional in V . If it is 2-dimensional, then in fact ` = `0;
otherwise it is 3-dimensional and we can fill in the diagram

V

����

// // W

����
k2 // // k

showing ` meets `0. Therefore c1(Q) = { ` ⊂ P3 | ` meets a fixed `0 ⊂ P3 }. This is also
a Schubert variety; write σ`0 for it.

Notice that σP2
∼= G(P1, P2) is 2-dimensional, so it is codimension 2 in G = G(P1, P3).

Also, σ`0 is (almost) a P2 bundle over `0 = P1 because there are a P2 of lines ` through
any given point in `0 ⊂ P3. The only thing keeping this from being a P2 bundle is the
fact that we only include `0 once in σ`0 , instead of once for each point in `0. Apart from
this single point, we can see that σ`0 is 3-dimensional, hence codimension 1 in G.

We will need one more type of Schubert variety: for p ∈ P3, let σp be the locus in G
of lines through p. Note dim σp = 2, so codimG(σp) = 2.

Exercise 29. As before, check that σ` and σp are closed and irreducible, and for any other
line m and point q, σ` is rationally equivalent to σm (in fact, linearly equivalent) and σp

is rationally equivalent to σq.

Now we know the Chern classes of Q:

c(Q) = 1 + σ` + σΠ

for a line ` and a 2-plane Π.
We can work out all the products of Schubert varieties σp, σ`, σΠ.

• First, σ2
` = σΠ +σp. To see this, replace one ` with `′ which is distinct from ` but

meets ` at a point p. Then σ`∩σ`′ is the locus in G of lines m in P3 that meet both
` and `′. But m meets ` and `′ iff either m is in the 2-plane Π = Π(`, `′) spanned
by ` and `′, or m passes through p. Therefore σ`∩σ`′ = σΠ∪σp. The intersection
is proper, so it does compute the product in the Chow ring; the intersection is
not transversal, but in this case the multiplicities of the components σΠ and σp

will be 1 because the intersection is generically transversal. So

σ2
` = σ`σ`′ = σ` ∩ σ`′ = σΠ + σp.

(If we choose an `′ skew to `, then the locus of m’s we get is still rationally
equivalent to σΠ + σp, though it is less obvious geometrically.)

• σΠσp = 0: Pick p /∈ Π. Then a line ` ⊂ Π cannot pass through p. (If p ∈ Π, then
σΠ ∩ σp is 1-dimensional, but it is not a proper intersection.)
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• deg σ2
Π = 1: Given two distinct P2’s in P3, their intersection is 1-dimensional, so

there is exactly one line contained in both planes.
• deg σ2

p = 1: Similarly, for two distinct points, there is exactly one line through
both.

• The products σΠσ` and σpσ` are each equal to yet another type of Schubert
variety: given a plane Π and a point p ∈ Π, let σp,Π = { `|p ∈ ` ⊂ Π }. Then
σΠσ` = σpσ` = σp,Π. The verification is left as an exercise. As with the other
Schubert varieties, σp,Π is irreducible and independent (up to rational equivalence)
of the choice of p and Π.

This will allow us to compute with the Chern classes of Q. For example, deg c1(Q)4 =
deg σ4

` = deg(σΠ + σp)
2 = 2.

Remark 30. The Schubert varieties σ` ∈ A1(G), σp, σΠ ∈ A2(G), and σp,Π ∈ A3(G)
generate A∗(G) as a k-algebra, and over C, the corresponding cohomology classes generate
the cohomology ring H∗(G) ∼= A∗(G).

The study of Schubert varieties leads one to the vast area known as Schubert calculus.
For more information, see [7].

Going in a different direction, the geometry of G(P1, P3) contains much more than just
the Schubert varieties; its study is one of the classical foundations of algebraic geometry.
For an introduction, see [4].

For the rest of these notes, we will apply a very little bit of Schubert calculus to Chern
classes of appropriate bundles on Grassmanians in order to answer enumerative questions.

8. Lines on a cubic surface in P3

Let F be a polynomial defining a cubic surface X in P3. Then F ∈ Sym3(V ). (Re-
member, since P3 is the set of quotients of V , the homogeneous coordinates on P3 come
from V , not V ∗.) A line ` = P(W ) ⊂ P3 lies in X iff F |` = 0; from V � W , we get

Sym3V

����

3 F_

��
Sym3W 3 F |`

Which W have F |` = 0? Globalizing over G, we have the same map VG � Q, hence
Sym3VG � Sym3Q, and F defines a map k → Sym3V , hence a global section OG → VG.
We have a diagram

Sym3VG
// // Sym3Q

OG

OO 99r
r

r
r

r

and the locus of lines on X is the zero locus of the dashed line!
Since rank(Sym3Q) = 4, the zero locus of the section has expected codimension 4,

equal to the dimension of G, so we expect the zero locus to be finite.
Well, we expect the zeros of this section to represent (be rationally equivalent to)

ctop(Sym3Q). We have worked out what this is in terms of the Chern classes of Q: it is
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c4(Sym3Q) = 9c2(Q)(2c1(Q)2 + c2(Q)). Therefore

deg c4(Sym3Q) = deg 9σP2(2(σP2 + σp) + σP2)

= deg(27σ2
P2 + 18σP2σp)

= 27.

That is, we expect the section to have 27 zeros—so we expect the cubic surface X to
contain 27 lines.

The cubic surface is very special:

Exercise 31. Use Chern classes to explain why a quadratic surface is expected to have a
1-dimensional family of lines and a surface of degree ≥ 4 is expected to have no lines.

9. Lines on hypersurfaces in P4

Now, let dim V = 5, and let P4 be the set of one-dimensional quotients V � k. Let
G = G(P1, P4) be the Grassmanian of lines in P4, corresponding to surjections V � W
with dim W = 2. Note dim G = 6. As before, we have the trivial rank 5 bundle
VG = V ×G and a rank 2 bundle Q on G with a surjection VG � Q, where over V � W
in G, the fiber of Q is W and the bundle map is given over this point by V � W .

Let F be a degree d polynomial defining a hypersurface X in P4, so F ∈ SymdV .
Then F defines a map OG → SymdVG → SymdQ, where the zero locus of this map is the
collection of lines in P4 lying in X. We expect the zero locus of this map to represent
the top Chern class of SymdQ, which is a bundle of rank d + 1.

Claim 32. We expect the set

{ lines in X } = D(F : OG → SymdQ)

to be rationally equivalent to the top Chern class of SymdQ.

Therefore the collection of lines lying on X is a subvariety of G which we expect to
have codimension d + 1. In particular, if d = 4, we expect X to have a one-dimensional
family of lines on it; if d = 5, we expect X to have finitely many lines. In this section we
will first find the expected number of lines on a quintic 3-fold, then examine the family
of lines on a quartic 3-fold.

First, what are the Chern classes of Q? To find c2(Q), choose a hyperplane Σ = P3 ⊂ P4

corresponding to V � k4. Globalizing over G as before, we get a diagram of bundles

OG

��   A
A

A
A

VG // //

����

Q

O4
G
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Then c2(Q) is represented by the zero locus of the map represented by the dashed arrow.
This is zero at a particular V � W in G iff there is a factorization

k

��

0

  B
BB

BB
BB

B

V // //

����

W

k4

>>

and any such factorization (any way to fill in the dotted arrow) must be a surjection.
Therefore c2(Q) is represented by the locus of lines contained in Σ. For this Schubert
variety we will write σΣ:

σΣ = { `|` ⊂ Σ }

Exercise 33. As before, σΣ is closed and irreducible, and for any other hyperplane Σ′, σΣ

and σΣ′ are rationally equivalent.

Since σΣ
∼= G(P1, P3) is 4-dimensional, it has codimension 2 in G(P1, P4), which is just

what we expect for c2(Q).
To find c1(Q), choose a 2-plane Π = P2 ⊂ P4 corresponding to V � k3. The diagram

of bundles this time is
O2

G

��

u

��@
@

@
@

VG // //

����

Q

O3
G

Now we expect c1(Q) to be represented by the degeneracy locus D(u). The section u
is zero at a line ` ∈ G iff ` ⊂ Π. And u is degenerate but not zero at ` corresponding
to V � W iff the map has rank equal to 1, which happens iff there is a commutative
diagram

k2

��

u

  A
AA

AA
AA

A

V // //

����

W

����
k3 // // k

This means there is a point (V � k) which is in both the line ` (since W � k) and
Π (since k3 � k). Therefore c1(Q) is represented by the locus of lines which meet the
chosen Π. For this Schubert variety we write σΠ; it is closed and irreducible, and again
a different choice of Π leads to a rationally equivalent cycle on G. Geometrically σΠ is
“almost” a P3 bundle over P2, so it has dimension 5 and codimension 1 in G, as it should.

As before, it is useful to have on hand a few more types of Schubert varieties. For a
line `, let σ` be the locus of lines which meet `, and for a point p ∈ P4, let σp be the locus
of lines passing through p. Then σ` has codimension 2 in G and σp has codimension 3
in G. (There are other types of Schubert varieties in A∗(G), but we will not use them in
these notes.)
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Now we have worked out the Chern classes of Q. We can work out the top Chern class
of Sym5Q, which as we saw before, is expected to represent the lines on a quintic 3-fold
in P4. Let a1, a2 be Chern roots of Q, so

c(Q) = 1 + σΠ + σΣ = (1 + a1)(1 + a2).

Then
Sym5Q = OG(5a1)⊕ OG(4a1 + a2)⊕ · · · ⊕ OG(5a2),

so c(Sym5Q) = (1 + 5a1)(1 + 4a1 + a2) · · · (1 + 5a2). Therefore the top Chern class of
Sym5Q is

(5a1)(4a1 + a2)(3a1 + 2a2)(2a1 + 3a2)(a1 + 4a2)(5a2),

and using the relations a1 + a2 = σΠ, a1a2 = σΣ, we see that this is equal to

25σΣ(4σ2
Π + 9σΣ)(6σ2

Π + σΣ).

Let’s start figuring out this product. First, up to rational equivalence, σ2
Π = σΠσΠ′ is

the locus of lines meeting two distinct 2-planes Π and Π′. By counting dimensions, we
see that Π and Π′ must meet in at least a point, and this is the generic case. But if we
choose 2-planes that meet in a line `, then we see that Π and Π′ span a 3-dimensional
subspace Σ, and a line m meets both Π and Π′ iff either m is contained in Σ, or m meets
the line `. Therefore σ2

Π = σΠσΠ′ = σΣ + σ`.
This shows that the top Chern class of Sym5Q is equal to

25σΣ(13σΣ + 4σ`)(7σΣ + 6σ`) = 25σΣ(91σ2
Σ + 106σΣσ` + 24σ2

` ).

There are three products here: σ3
Σ, σ2

Σσ` and σΣσ2
` .

• deg σ3
Σ = 1: If we pick three independent hyperplanes Σ1, Σ2 and Σ3, then their

intersection has codimension 3 in P4, so their intersection is a line. Therefore
there is precisely one line contained in each Σi, so σΣ1σΣ2σΣ3 is a single point in
G.

• σ2
Σσ` = 0 (so the degree is also zero): For this one, first, σ2

Σ = σΣσΣ′ is the locus
of lines contained in the 2-plane Σ ∩ Σ′. If we pick the line ` to be disjoint from
this 2-plane (which is possible in P4) then it is impossible for any line m to be
contained in Σ ∩ Σ′ and meet `.

• deg σΣσ2
` = 1: Take two lines `, `′ which meet the 3-plane Σ in two distinct

points (since we are in P4, this is the generic case). Then there is exactly one line
contained in Σ meeting each line ` and `′, namely the line through the two points
Σ ∩ ` and Σ ∩ `′.

Therefore

deg c6(Sym5Q) = 25 · 91 · 1 + 25 · 106 · 0 + 25 · 24 · 1 = 2,875.

We see that the expected number of lines in a quintic 3-fold is 2,875.
Let’s take another look at the quartic 3-fold, which we saw is expected to have a one-

dimensional family of lines on it. So, the lines on a quartic 3-fold X sweep out a surface
S in P4. What is the degree of this surface (assuming it really is a surface)?

The locus of lines on X is expected to be in the rational equivalence class of c5(Sym4Q).
By the splitting principle again, if c(Q) = (1 + a1)(1 + a2), then

c(Sym4Q) = (1 + 4a1)(1 + 3a1 + a2)(1 + 2a1 + 2a2)(1 + a1 + 3a2)(1 + 4a2).
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Again using a1 + a2 = c1(Q) = σΠ and a1a2 = c2(Q) = σΣ, we see that

c5(Sym4Q) = (4a1)(3a1 + a2)(2a1 + 2a2)(a1 + 3a2)(4a2)

= 32(a1a2)(a1 + a2)(3(a1 + a2)
2 + 4(a1a2))

= 32σΣσΠ(3σ2
Π + 4σΣ)

= 32σΣσΠ(7σΠ + 3σ`).

Now, the degree of S is equal to the number of points in S∩H1∩H2 for general hyperplanes
H1 and H2. Say H1∩H2 = Π ∼= P2. Then each line ` contained in X either meets Π at a
point, or is contained in it, or does not meet it at all. If any line is contained in Π, then
Π meets S at infinitely many points, so we have to pick different hyperplanes H1 and
H2. So we can assume no line in S is contained in Π; then the degree of S is the number
of lines which meet Π. But since the lines on X are parametrized by c5(Sym4Q), this is
just the degree of the cycle σΠ · c5(Sym4Q), which is

32σΣσ2
Π(7σΣ + 3σ`) = 32σΣ(σΣ + σ`)(7σΣ + 3σ`).

As before, we use deg σ3
Σ = deg σΣσ2

` = 1 and σ2
Σσ` = 0 to see that the degree of this zero

cycle is 320. Therefore, for a general quartic 3-fold X, the surface S which is the union
of the lines on X is expected to have degree 320 in P4.

10. Interpretations and Limitations

One must be careful to label all Chern class computations of the types shown above
as “expected” values. Why?

Let’s look a little more closely at the computation of the number of lines on a cubic
surface. We started with a cubic polynomial on P3, that is, F ∈ Sym3(V ), where dim V =
4. From this we obtained a global section of the bundle Sym3(Q) on the Grassmanian
G. Now, we expect the zero locus of this section to represent the top Chern class of
Sym3(Q). By applying the splitting principle and a little elbow grease, we know what
this top Chern class is in terms of Schubert varieties, which in particular tells us its
degree.

The only step that’s not fully rigorous is the one where we say that the zero locus of
the section represents the top Chern class of the bundle. Provided the bundle satisfies
some hypothesis—for example, it is sufficient that the bundle be globally generated—
general global sections of the bundle will have the property that their degeneracy locus
represents the right thing.

So the first question is whether this bundle Sym3(Q) is globally generated. The answer
is “yes”: Sym3(Q) is the surjective image of the trivial bundle Sym3(VG), which is globally
generated.

The second question is whether this section coming from the cubic polynomial F really
constitutes a general section of the bundle. In effect, what we have is a function

Sym3(V ) −→ H0(G, Sym3(Q)),

and in fact it’s a linear function between these two vector spaces. Therefore the image
is a linear subspace, which is a Zariski closed subset. We know that the “good” set of
global sections whose zeros represent the top Chern class of the bundle contains a Zariski
open set in H0. It could happen that the image of our map completely misses the “good”
set, in which case no cubic surface has the right number of lines on it; or, the “good”
set could contain the image, or the part of the image that corresponds to nonsingular
cubic surfaces, or just some open set in the image. In these cases, all cubic surfaces,
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all nonsingular cubic surfaces, or just general cubic surfaces, would have the expected
number of lines.

Which is the case? By displaying a single example of a cubic surface with the expected
number of lines, we show that the image subspace and the “good” open set do meet,
therefore meet along an open subset of the image subspace. For such an example, see
[10], section 12.6; or [4]. Therefore, general cubic surfaces have 27 lines.

There are certainly cubic surfaces with the wrong number of lines: for example, a
union of three hyperplanes has infinitely many lines. On the other hand, it turns out
that every smooth cubic surface has exactly 27 lines.

Similarly, for quintic 3-folds, an example is needed to show that the expected number
actually occurs. In this case, it is not even true that all smooth quintic 3-folds have 2,875
lines; for a “bad” nonsingular example:

Exercise 34. (From [3].) For n ≥ 4, d ≥ 1, the Fermat hypersurfaces Xn,d ⊂ Pn defined
by Xd

0 + · · ·+ Xd
n = 0 are nonsingular and contain infinitely many lines.

(“Hint”: Pick a partition of 0, . . . , n into pieces of size at least two each. For each piece
i1, . . . , ir, pick values of Xi1 , . . . , Xir , not all zero, such that

∑r
s=1 Xd

is = 0. Each piece of
the partition now gives a point in Pn with these values in the corresponding coordinates
and zeros elsewhere; the linear span of these points lies in Xn,d and contains infinitely
many lines as long as at least one piece of the partition has size at least 3.)

For a much more detailed investigation of curves on the quintic 3-fold, see [12].
Similarly, we can produce finitely many lines on the X3,d’s; in particular, we can

produce 27 lines on X3,3. A separate argument is needed, however, to show these are the
only lines.

The moral is that in any computation of an “expected” number, an example is needed
to show that the expected number actually occurs: otherwise it is possible that it never
occurs. This issue is discussed from a different perspective in [10], section 12.6.
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