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The Dependence of Measured Modulation Error Ratio on Phase Noise 
Ron D. Katznelson ∗ 

Abstract — This paper reviews the algorithms used by Vector Signal Analyzers to measure Modulation Error 

Ratio (MER) and derives the explicit functional dependence of measured MER on phase noise of digital 

transmitters. The modulation error model is introduced and the analytical expression for key estimated 

parameters required to obtain MER measure are derived. The essential elements of algorithms employed by 

MER measurement instruments to estimate amplitude scale, frequency offset, and initial phase intercept and the 

resulting MER are identified. The frequency response of the effective phase-noise rejection filtering action 

associated with a given measurement epoch is derived. It is shown that this effective rejection filter has a second-

order high-pass characteristics in MER instruments that use linear phase trajectory estimation. This result is 

subsequently applied in analyzing a typical Lorentzian density phase noise profile to obtain an explicit expression 

for phase-noise-induced MER values as a function of measurement block duration. Finally, certain implications of 

this study to MER measurement and specification practices including the Data-Over-Cable Service Interface 

Specifications (DOCSIS®) are identified. 

 

Index of terms — MER, Modulation Error Ratio, EVM, Error Vector Magnitude, QAM, Phase Noise, 

Lorentzian density, DOCSIS, Vector Signal Analyzer. 

I. INTRODUCTION 

The ultimate figure of merit for impairments in digital communication links is the deviation of actual 

received constellation vectors from an ideal reference constellation. Thus, the relevant metric of 

digital modulation accuracy is the Error Vector Magnitude (EVM), which represents the distance 

between measured and ideal modulation vectors [1]. This measure encompasses the effects caused 

by magnitude and phase distortions. The Modulation Error Ratio (MER) is an inversely related 

metric to EVM squared, conveying the same information but having the intuitive representation of 

signal-to-noise ratio. MER is the ratio of the average symbol power to average error power and is 

often expressed in dB. Because MER represents the power addition of all distortion errors including 

spurious noise, the industry embraced the MER measure as the operative criteria encompassing all 

the in-channel errors in one relevant measure from which bit error rate can be predicted. This paper 

focuses on an aspect of MER that received very little attention in the literature - the MER measures 
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resulting solely from phase errors due to phase noise of oscillators used in the communication link. 

The ability to predict these phase noise effects can help establish upper bounds for MER measures 

that are otherwise free from all other impairments. 

 

Two general categories of commercially available MER measuring instruments are distinguished by 

the method for establishing their internal reference symbol constellation. The first type employs a 

precision receiver-demodulator with continuously running carrier recovery and symbol timing loops 

as normally found in commercial modems. Some instruments in this first category may provide user 

selection among a couple of hardwired carrier tracking loop bandwidth settings. The second and 

more versatile category of MER measuring instruments are vector signal analyzers that acquire a 

block of digital raw samples during a measurement run. The block of samples is fed to digital signal 

processing software routines, which derive the appropriate parameters including carrier frequency 

offset, phase, amplitude, and symbol timing. Based on these estimated parameters that establish the 

presumed ideal constellation points, the MER software routine calculates an MER measure 

expressing the deviations from such presumed ideal vector points. A significant advantage of 

instruments in this second category is that they provide flexibility in setting detection parameters 

including samples per symbol and symbol block length. Because these vector signal analyzers 

operate on blocks of data samples and do not require continuous demodulation, they permit 

measurements of signals under bursty data protocols.  

 

The possible settings of MER instruments’ measurement modes affecting carrier phase tracking such 

as symbol block length, produce a range of susceptibilities to phase noise. However, there appears to 

be a paucity of published analytical treatment of the phase noise effects on measured MER. Previous 

work only assumes a given total phase noise error from the presumed ideal reference constellation, 

from which analytical results are derived showing that the relative error power is proportional to 

total phase noise power [2],[3]. However, these prior studies appear to assume that MER 

measurement instruments can somehow divine the ideal reference constellation from which MER 

measures are obtained.  They ignore the fact that such measurements involve the estimation of the 

parameters of the constellations based on noisy data, thereby introducing phase-noise-dependent 

‘definition’ of what constitutes an “error”. Thus, previous studies do not derive the MER values 

based on the phase noise spectral density and the symbol block length used by the instrument, 

wherein only a portion of the total phase noise energy is actually reflected in the MER. 
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Vendors of MER measuring instruments also appear silent on the numerical impact on MER 

measures by a specific choice of carrier phase tracking conditions such as the symbol block length. 

One such vendor apparently only identifies factors other than phase noise as considerations for 

selecting the symbol block size. It recommends setting the “Result Length” for bursted signals so as 

not to include data symbols taken before or after the burst [1]. It is therefore the purpose of this 

paper to rigorously derive the explicit numerical effects of phase noise on measured MER and its 

dependence on symbol block duration. We derive the results in the context of Quadrature Amplitude 

Modulation (QAM) signals although it can be shown that the results are essentially independent of 

the exact form of the modulation constellation. 

 

This paper is organized as follows: Section II introduces the definition of MER and the phase noise 

model including the parameters that must be estimated by MER measurement instruments to obtain 

the MER measure. Section III derives the essential elements of the algorithms employed by MER 

measurement instruments to estimate the relevant constellation parameters and the resulting MER. 

The frequency response of the effective phase-noise rejection filtering associated with a given 

measurement block size is analytically derived. This result is subsequently applied for a typical 

Lorentzian density phase noise profile to obtain an explicit expression for phase-noise induced MER 

degradation as a function of measurement block duration. Finally, Section IV identifies certain 

implications of this study to MER measurement and specification practices including its contribution 

to the Data-Over-Cable Service Interface Specifications (DOCSIS®). 

II. MER AND THE PHASE NOISE MODEL 

In the receiving device, a QAM signal is assumed to be received by an ideal quadrature demodulator 

employing a filter matched to the transmitter impulse response for each quadrature component, 

followed by a sampler at the correct symbol sampling times. We further assume that the digital 

demodulator incorporates a symbol-time recovery system that derives the optimal sampling rate and 

times, thereby assuming no timing error contributions to MER. These samples are each provided in 

two phase-quadrature components and represented by complex numbers. In ideal conditions, for 

every sample (sequentially indexed by k), these complex numbers or vectors (denoted by Zk) fall on 

discrete points of the reference QAM constellation having discrete symbol points with nearest-

neighbor voltage separation of 2d: 



1  whereand  ; ,...7,5,3,1  ,...;7,5,3,1   −=±±±±=±±±±=+= iqpdiqdpZ kkkkk  (1)

We assume that the random integers pk and qk are jointly uncorrelated and that each outcome in their 

respective range is equally likely. Over an observation period containing N contiguous statistically 

uncorrelated symbols, the transmitted vector signal may be subject to phase fluctuations kϕ  and 

additive complex noise and distortion components wk and is thus represented by an observed vector 

samples Vk given by 

kk
i

k wZeV k += ϕ  (2)

A measurement run involves generating and transmitting a random sequence of symbols comprised 

of a long pseudorandom sequence of integers pk and qk. After the MER instrument has acquired the 

signal and has stabilized, an ensemble of records, each N symbols long, is captured and processed. In 

order to measure the MER, the device must first derive the ‘best match’ between its internal 

reference constellation points Zk and the received signal vector Vk by estimating the constellation 

parameters discussed below. For each such record captured, the MER measurement device obtains 

the received symbols’ distance from the presumed noise-free reference constellation based on (2) 

and it estimates a mean-squared-error measure given by H as follows: 

2 2 22
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where the parameter a  is a single amplitude scale estimate for the full record of N consecutive 

symbols and where is phase trajectory estimate accounting for possible phase drifts over the 

observation of the N consecutive symbols. Because the MER instrument only observes the received 

samples V

ˆ

kϕ̂

k, it does not have a priori knowledge of the randomly transmitted symbols Zk and it uses 

the decision-directed values based on its received symbols’ decision regions. Some instruments may 

instead use the knowledge of the pseudorandom sequence employed by the test modulated signal 

generator after having frame-synchronized to it. In this analysis, we assume that such symbol 

detection error rate is negligible so that the MER instrument obtains the correct symbols Zk from 

which it constructs the squared error H in (3). A set of parameters  and , are estimated by the 

MER measuring device for every captured record of N consecutive symbols. The parameters that 

minimize the magnitude squared of H are selected for each record and as such, they are random 

variables depending on the random phases 

â kϕ̂

kϕ and implicitly on the transmitted random sequence of 
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symbols Zk. The resulting minimal relative level of H as derived is used to compute the MER value 

for that record. Averaging over an ensemble of MER values for each record establishes the resultant 

displayed MER value, as defined below: 
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where E denotes the statistical expectation. The approximation on the right hand side of (4) is most 

valid for long enough symbol record lengths (large values of N), for which the standard deviation of 

the sample record energy 2

1

N
kk

Z
=∑  is sufficiently small compared to its expectation so that the 

expectation of the ratio can be replaced by the ratio of the expectations. Most researchers and 

instrument designers define the average MER directly by the right hand side of (4) and we shall 

adopt this approximation for our results below.   

III. ESTIMATION OF MER AND RELATED PARAMETERS 

All MER measuring instruments essentially have in common the general process described above 

but they may differ in the manner in which they perform signal acquisition (i.e. symbol time and 

carrier recovery) and the method by which they derive the phase trajectory estimates kϕ̂ . In what 

follows, we will analyze systems that computationally derive phase parameter estimates based on 

finite length epochs of symbols and that use a first order linear phase trajectory model, as expected 

from any ideal modulation source having no phase noise but only an unknown frequency offset Ω . 

One such commercial measurement system has gained considerable adoption by the industry and the 

details of its early version are described in a patent to Birgenheier et al. [4]. Only two parameters 

need be estimated in order to describe the estimated phase trajectory kϕ̂ for every symbol k: 

Sk TkΩ+ϕ=ϕ ˆˆˆ 0  (5)
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The two parameters are the phase intercept estimate 0ϕ̂  and the angular frequency-offset estimate 

.  is the symbol duration, assumed to be known by the instrument with negligible error, as 

symbol rate is properly acquired. Any deviations of the actual measured random phase 

Ω̂ ST

kϕ  from the 

phase trajectory estimate would represent constellation noise degradation from a presumed ideal 

source and would therefore contribute to the measured MER. For purposes of assessing the phase 

kϕ̂



noise effects on MER at relatively high signal-to-noise ratios after carrier and symbol time tracking 

system convergence, we note that many practical estimation methods have asymptotically identical 

performance results (and therefore the same phase noise effects on measured MER) as they all 

asymptotically constitute Maximum Likelihood Estimators under Gaussian noise. Therefore, at 

sufficiently high signal-to-noise ratios, the various computational procedures commercially 

employed to obtain these estimates and the resultant MER values are essentially equivalent to the 

method of least square regression of the received data. Hence, we apply this minimum squared error 

estimation criterion to derive and evaluate these computational procedures’ performance under phase 

noise conditions. To derive these estimators, we seek the mathematical conditions for attaining the 

minimum in (4) above. Based on the expression for H in (3), the necessary conditions for a 

minimum are formally given by 
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Equations (7) and (8) were obtained by substituting (5) in (3). Now, (6) readily provides the 

amplitude scale estimate in terms of the observed vectors Vâ k: 
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It is now possible to eliminate in (â 3) by substituting the result of (9): 
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We note that system designs of MER measuring devices typically adopt programmatic procedures 

on the received samples Vk (and their related phase values kϕ ) for deriving the estimates 

, and  based on the mathematical assumption of zero additive noise. These approaches are 

effective because they produce unbiased estimates, at least asymptotically. In these assumed 

â 0ϕ̂ Ω̂
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structures, solving jointly for the two remaining phase and frequency offset estimates produces 

solutions for that are independent of , and that are subsequently used in (kϕ̂ â 10). These solutions 

can be obtained by using the phase observables kϕ of the received samples Vk in the noiseless 

version (wk = 0) of (2) by inserting them in (7) and (8):  
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As the MER measuring system converges after initial acquisition of the signal, the estimates 

improve in accuracy and the actual phase deviations from the estimates are sufficiently small so that 

 in ()ˆsin( kk ϕ−ϕ 11) and (12) can be approximated by kk ϕ−ϕ̂ . Using this approximation and 

substituting  of (kϕ̂

ϕ̂

5) in (11) and (12), we obtain the following set of two linear equations for the 

two unknowns  and : 0 Ω̂
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by For brevity, we define the symbol record moments μ
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Using this definition, we recognize that are the linear coefficients of the unknowns in 

(

21  and  , μμ

13) and (14), the solution of which in vector form is given by: 
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In this way, the unknown parameters are estimated based on the observables  and the 

corresponding detected symbols Z

kϕ

k. It should be noted that the values of  in (kϕ 16) must be their 

fully unwrapped rotational angles starting at the beginning of the measurement epoch and not their 

modulo- 2  values.  It is expected that upon convergence and correction of the instrument’s 

frequency offset and initial phase intercept, no wrap-around of phase would be encountered over 

practical measurement block durations. 

π

A. A Typical MER Estimation Algorithm 

The operation of a typical MER measuring device’s program implements a decision directed process 

for each block of N consecutive symbols with an outline essentially equivalent to the following: 

 

(a) Receiving vectors Vk and demodulating each symbol k in the block of N symbols. This is 

done based on decision regions of the operating reference constellation, to determine the 

presumed transmitted symbol value Zk. 

(b) Using the sequence of detected symbols Zk to form the record moments jμ for j = 0,1,2 in 

accordance with (15). 

(c) Deriving the phase observables kϕ from the received samples Vk based on (2), assuming 

maximum likelihood estimation (i.e., wk = 0): 

⎟⎟
⎠

⎞
⎜⎜
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⎛
=ϕ

)/Re(
)/Im(arctan

kk

kk
k ZV

ZV  (17)

(d) Substituting in (16) the values derived in steps (a) through (c) above to obtain the phase 

intercept estimate 0ϕ̂  and the frequency-offset estimate Ω̂ . 

(e) Deriving the array of phase estimates kϕ̂  based on (5) and the values of 0ϕ̂  and Ω̂ , and 

substituting kϕ̂  in (9) in order to obtain the amplitude scale estimate â . 

(f) Using the estimates kϕ̂ derived in step (e) above by inserting them in (10), thereby arriving at 

the minimum square error H for the symbol block and accumulating it in the ensemble 

average shown in (4) in order to obtain the estimated MER. 

(g) Updating the instrument’s reference constellation gain scale and its center frequency based 

on the most recent update of the estimates of â and Ω̂ respectively. This can be done by 
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driving the gain scale in a direction and magnitude that makes 1ˆ=a  and the receiver tuning 

frequency such that 0ˆ =Ω . These receiver parameters may be smoothed using running 

average techniques prior to their actual instrument update.  

(h) Repeating all of the above steps for the next block of N consecutive symbols.  

 

It can be shown (in an analysis that is beyond the scope of this paper) that although some of the steps 

described above are derived based on the assumption of zero additive noise, their programmatic 

results under noise conditions produce asymptotically stable and unbiased estimates. It can be further 

shown that both phase noise and the additive noise are fully and correctly accounted for in the 

resultant MER estimates.  

 

In order to evaluate the effects of phase noise alone on the average MER measure, we shall proceed 

to evaluate the random variable H in (10) assuming zero additive noise (wk=0). We shall average (4) 

over the ensemble of possible random transmission symbols Zk and the ensemble of random phase 

deviations  that are statistically independent of the transmission symbols Zkϕ k. Hence, for zero 

additive noise in (2) we substitute Vk in (10) and obtain after combining and collecting terms: 
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As before, we assume that the actual phase deviations kϕ from the phase estimates kϕ̂  are 

sufficiently small, permitting the expansion of the trigonometric expression in (18) and keeping only 

terms up to second order in  and in )kˆ( k ϕ−ϕ )ˆ( mm ϕ−ϕ  while neglecting higher order terms. Upon 

performing one of the sums and collecting terms, we obtain the following 

∑
=
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k
kkk ZH

1
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Thus, we have proved that the least-squared-error estimate produces an expected result: The error 

energy is expressed as the accumulation of the magnitude-squared tangential deviations from the 

estimated constellation points when the angular deviations )ˆ( kk ϕ−ϕ  are small. Using (4), we now 

obtain the MER due to phase noise alone as follows:  
 9
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It should be emphasized that we derived (20) using only the assumption of small phase deviations 

from an estimated phase trajectory without any assumption on how this trajectory is estimated. 

This result therefore applies regardless of the method for obtaining the phase estimate trajectory 

kϕ̂

kϕ̂ . 

For MER measuring systems employing a demodulator with a continuous carrier phase tracking 

loop, the quantities  in ()ˆ( kk ϕ−ϕ 20) may be thought of as the untracked phase errors, the power of 

which is weighted by |Zk|2 in order to obtain the MER. It can be shown that if  and |Z2)ˆ( kk ϕ−ϕ k|2 

were statistically uncorrelated and )( kˆ k ϕ−ϕ  a stationary process, (20) could be evaluated directly in 

a simple frequency domain analysis of the untracked phase error.  This would be based on the 

product of the phase noise power spectrum density and the demodulator tracking loop transfer 

characteristics, integrated over frequency. This frequency domain approach had been adopted by 

others [5],[6],[7], implicitly invoking a statistical independence of  from |Z2)ˆ( kk ϕ−ϕ k|2. However, 

this implicit assumption lacks theoretical support, particularly since any phase estimates kϕ̂  must 

necessarily be derived from the values of detected symbols Zk and are, by definition, statistically 

dependent on them. In our case, that dependence is evident from (16). In contrast, our analysis 

below, takes into account any statistical correlations that exist between  and Z2)kk ϕ−ϕ̂( k by 

inserting the estimation relations explicitly, thereby eliminating ˆ kϕ  from the MER expression. 

 

B. The effective phase-noise rejection filtering associated with a given measurement block size 

In order to evaluate (20) and express the result in terms of the phase noise statistics alone, we must 

eliminate by using its value from (kϕ̂ 5) and (16): 
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Substituting the result of (21) in (19) we obtain: 
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This expression is further developed in Appendix II, wherein it is shown and concluded in (50) that 

for stationary phase noise and for , its statistical expectation can be approximated using an 

integral of the continuous autocorrelation function of the phase noise 

1N >>

( ) [ ( ) ( )]R E t tϕ τ = ϕ + τ ϕ , with 

the following result: 

[ ]1 2
2 4
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4(0) ( )( )[ ( ) ]
TE H

MER R R T T T d
N Z T

−
ϕ ϕ= ≅ − τ − τ − τ − τ τ
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wherein T is the total duration spanned by the N consecutive symbols in the measurement record. 

 

Equation (23) is our central result and it shows that the inverse MER is equal to the total variance 

of the (zero mean) phase noise, minus a term related to the removal of phase drifts that are 

otherwise accounted for as an equivalent frequency offset during the epoch T. Thus, the kernel 

function given by  multiplying the phase noise autocorrelation function 

in the integrand of (

(0)Rϕ

2( ) ( )[ ( ) ]G T T Tτ = − τ − τ − τ

23) contains an effective phase noise filtering action associated with the MER 

measurement instrument’s phase trajectory estimation over a record duration of T seconds. A more 

useful and intuitive approach is to express (23) in the frequency domain. We note that the 

autocorrelation function of the phase noise can be obtained from the two sided phase noise spectral 

density  by the inverse Fourier transform: ( )Sϕ ω

( ) ( ) /(2 )iR S e dϕ ϕ

+∞
ωτ

−∞

τ = ω ω π∫  (24)

To see the filtering effect in an equivalent frequency domain view, we recall that the MER derivation 

from (48) in Appendix II relied on the even symmetry of the autocorrelation function stated in (46). 

This enables the even symmetry extension of ( )G τ  about 0τ =  and thus (23) can be written over the 

interval [  and subsequently transformed to the frequency domain using (, ]T T− 24) as follows: 

 11



1
4 4

4

2 2(0) ( ) (| |) (0) ( ) (| |)
2

2( ) ( ) (| |) ( ) ( )
2 2

T T
i

T T

T
i

T

d

2

MER R R G d R S e G d
T T

d dS S G e d S F
T

−
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+∞
ωτ

− − −∞

+∞ +∞ +∞
ωτ

−∞ −∞ − −∞

⎛ ⎞ω
= − τ τ τ = − ω τ⎜ ⎟

π⎝ ⎠
⎛ ⎞ω ω

= ω − ω τ τ = ω ω⎜ ⎟
π π⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫ ∫
d

τ

ω
π

 (25)

where we have used Fubini’s Theorem for changing the order of integration. As introduced above, 

the function  is defined based on ( )F ω ( )G τ  as follows:  
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The function  can be viewed as the magnitude-squared frequency response of an effective 

carrier-tracking filter. The following observations from (

( )F ω

26) are consistent with this view: 

 

(a) As a squared magnitude function in the right hand side of (25), ( )F ω  is indeed positive for 

all frequencies and is an even function of frequency. 

(b) By expanding the right hand side of (26) in a Taylor series about 0ω = , it can be seen that as 

ω  approaches zero, so does ( )F ω  and that it behaves asymptotically as a low frequency 

attenuator in accordance with:  

4 6( ) ( )( )
720 25200

T TF ω ω
ω = − +L  (27)

(c) Based on the first term in the above expansion, the effective filtering effect has an asymptotic 

corner frequency fC meeting the condition 4(2 ) 720 1Cf Tπ = , which corresponds to 

fC = 0.8244/T. 

(d) The frequency response in accordance with (26) is shown in Figure 1. 
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Figure 1. Magnitude squared frequency response ( )F ω  of the effective phase noise rejection filter due to least squared 

error MER estimates over a block of QAM symbols of duration T.  

 

At low frequencies, the phase noise rejection performance of ( )F ω is equivalent to that of a second-

order carrier-tracking loop. Indeed, test results reporting this property in a commercial block based 

vector signal analyzer measurement set are reported in [8]. 

  

C. Application to a typical phase noise profile 

The contribution to MER values due to degradations induced by phase noise as derived in (25) and 

(26) requires the specification of the phase noise spectral density ( )Sϕ ω . For practical purposes, an 

analytical estimate for the phase noise contribution to MER can be derived for carrier oscillator 

phase noise spectral profiles having a square law decline with offset frequency over the frequencies 

of interest. The Lorentzian spectral density has such characteristic and it is the phase noise density of 

a free-running oscillator perturbed by white noise sources [9] [10]. Indeed, such spectral densities 
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are typically observed over the offset frequency range that exceeds the phase locked loop bandwidth 

of synthesized oscillator sources (the free-running phase noise range).  

 

The Lorentzian phase noise density is given by  

2 2

2( ) (0)S Rϕ ϕ
β

ω =
ω +β

 (28)

where  is the Lorentzian angular corner frequency. Inserting the Lorentzian density from (β 28) and 

the function  from (( )F ω 26) into (25), we obtain1 

{ }

1

2

2 2 2 2

2 2 2

3 4

0

0

2 ( ) ( )
2

4 (0) 4 sin ( / 2) sin( )1 2 cos( ) 3 6
( ) ( ) ( / 2) 2

(0) ( ) ( ) 4 8 4 ( ) 6 6 exp( ) 24 ( )

2 ( ) ( )(0)
15 210 720

dMER S F

R T T dT
T T T

4R T T T T T T T

T T TR

−
ϕ

ϕ

ϕ

ϕ

+∞

+∞

ω
= ω ω =

π

⎧ ⎫β ⎡ ⎤ω ω ω⎪ ⎪= − + ω + −⎨ ⎬⎢ ⎥ω +β ω ω ω π⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤= β β − β + + β + β + − β − β⎣ ⎦ ⎣ ⎦

β β β
= − +

∫

∫

⎧ ⎫
+ +⎨ ⎬

⎩ ⎭
L

=
 (29)

For applications in which the symbol rate 1  is several MS/s, any practical MER analysis block 

length N would still make  sufficiently small compared to the effective Lorentzian 

relaxation time 1 . This means that 

/ ST

1

ST N T=

T/β β << , and that we can neglect the high-order terms in (29), 

arriving at the approximation for phase noise contribution to MER up to second order in Tβ : 

1 2 (0) ,   for 1
15

MER R T T−
ϕ≅ β β <<

                                                

 (30)

The equation above shows that under the foregoing assumptions, the phase noise contribution to 

measured MER is only a small fraction of the total phase noise power  and is inversely 

proportional to the duration of the measurement interval T over which the signal phase trajectory 

estimate is made. 

(0)Rϕ

 

( ) (0) exp( | |)R Rτ = −β τϕ ϕ

1  The result in (29) can also be obtained directly by inserting the autocorrelation function of the Lorentzian density 

 in (23) and performing the integration directly. 
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IV. IMPLICATIONS FOR MER SPECIFICATIONS AND TESTING 

Whereas contributions to MER from modulation errors associated with distortion and additive noise 

are nominally independent of the measurement block duration, this does not hold for phase noise 

error contributions, which we have shown to increase with block duration. The first important 

conclusion from this analysis is that no repeatable and consistent MER measurement results can be 

prescribed or expected by merely stating MER requirements in a single dB specification. Such single 

number specification is essentially meaningless without a second accompanying parameter defining 

the measurement symbol block duration T or alternatively, the specific effective frequency response 

of the MER measurement set’s demodulator carrier tracking system. Unfortunately, numerous 

specification documents for communications equipment that specify MER or EVM, do so without 

specifying this second essential parameter. 

 

Figure 2 shows laboratory test results indicating that the second parameter is indeed essential. It 

shows test results for QAM signals having various levels of carrier phase noise and the 

corresponding measured MER values as a function of the number of symbols in a measurement 

block. Note the general plot region to the right wherein phase noise effects appear to dominate the 

MER results only for block lengths greater than several hundred symbols. Thermal noise, 

quantization noise and distortion make a baseline contribution to the resultant MER, thereby 

masking some of the initial phase-noise-induced decline in MER with increased block length. 

 

The declines in MER values with reduction of block length N on the left side of the plots are 

inherent to the increased symbol fluctuation induced errors that are outside the scope of our model. 

These errors are in the decision-directed symbol sampling times and detected reference constellation 

points . In this regard, with short symbol records that fill only a fraction of all possible points 

in the constellation, there is a greater frequency of events having phase, amplitude and symbol-

timing ambiguity, which erratically establish erroneous reference constellation points. 

1{ }N
k kZ =

 

Figure 2 also shows the phase-noise-dominated MER decline for block lengths greater than 500 

symbols for the consumer grade LO plot. It appears steeper than the –10 dB per decade predicted by 

our model in (30). This is similarly likely due to increased errors of the estimated constellation 

parameters (particularly symbol-timing errors) induced by increasing phase noise.  
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Figure 2. MER measurement results by symbol block size with various carrier local oscillators (LO). Results for three 

distinct CATV head-end grade LOs are designated with LO-1,2,3 as distinguished from that of a consumer grade TV 

tuner LO. Measurements were made with an Agilent PSA 4440A Vector Signal Analyzer for 256-QAM DOCSIS 

compliant signals with 5.36 MS/s. at a center frequency of 500 MHz. 

 

A. Matching MER measurement conditions to end-user demodulator characteristics 

In order that MER measurements of downstream sources provide effective characterization of 

transmitter impairments including its phase noise, it is preferable to set the measurement block 

length T of the MER measurement system so that it matches actual carrier tracking loops’ 

characteristics of reference end-user demodulators. This practice is important for characterizing the 

actual MER or SNR margin that a particular transmitter’s phase noise provides for a specified end-

user demodulator. For consumer digital cable demodulators operating at 64 QAM, the reported 

carrier tracking loop response is of second order with a corner frequency of fC = 8 kHz [5].  

According to the results herein, the equivalent block period is therefore given by T = 0.8244 / fC and 

the corresponding number of symbols for a 64 QAM symbol rate of 5.057 MS/s is given by 

N = 0.8244 fS/ fC = 521 symbols. It is not surprising that this resulting block length (and the 

corresponding corner frequency) is also optimal for the phase noise characteristics of a consumer 

tuner as seen in Figure 2. This is likely because carrier tracking loop bandwidths reported for 

consumer demodulators in [5] were likely optimized for the particular phase noise performance of 
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their consumer grade tuners and those demodulator carrier tracking loop bandwidths are set for 

minimum effective demodulated constellation errors. Fortunately, the LO-1 through LO-3 plots in 

Figure 2 shows that these head-end sources’ phase noise contributions in of themselves practically 

do not impair the MER margin for such tracking loop corner frequencies. 

 

B. Application to MER specifications in DOCSIS 

DOCSIS sets forth the requirements of the cable industry for QAM transmission equipment used on 

cable systems in the U.S. and Europe. In 2005, the DOCSIS working group that developed its 

Downstream RF Interface Specification (DRFI) [11] sought to replace several in-band modulation 

distortion specifications with a single MER specification for greater efficiency in compliance testing. 

This author’s written contributions to the DRFI Working Group was an earlier version of this paper 

and an analysis of the various degradation components that contribute to MER [12]. Both showed 

that MER specifications must be consistent with the DOCSIS phase noise allowance specifications. 

The DOCSIS legacy RF Interface specifications permits downstream QAM transmitter phase noise 

up to the levels listed in Table 1. 

 

Frequency Offset Band 
Double Sided 

Integrated 
Noise Power 

Band 1 1 kHz - 10 kHz:  -33 dBc 

Band 2 10 kHz - 50 kHz: -51 dBc 

Band 3 50 kHz - 3 MHz: -51 dBc 

 

Table 1 Downstream phase noise DOCSIS specifications. Source: Table 6-3, DRFI [11]. 

 

By its very nature, the lack of a specific functional dependence on offset frequency precludes this 

type of integrated phase noise specification from uniquely predicting the effect on measured MER 

for a device operating at the compliance limit. However, based on practical considerations and 

certain approximations, reliable estimates for MER limits implied by the DOCSIS phase noise 

allowance can be obtained. To obtain these limits, we note that over the offset frequency range of 

interest, the source phase noise density can be approximated by a square-law decline, as obtained for 

 in (ω >> β 28): 
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2( ) 2 (0)S R −
ϕ ϕω ≅ βω  (31)

Therefore, the maximum allowable value of (0)Rϕ β  is a constant that can be determined by 

integrating (31) over the frequency band of interest and equating the result to a specified (or 

measured) integrated phase noise value in that band. With this spectral density, the double-sided 

integrated phase noise power between offset band edge frequencies fL and fH is given by: 

2
2 2

2 2
2

(0) (0)
( , ) 2 ( ) / 2

H H

L L

f f
H L

L H
H Lf f

R R f ff f S d f d f
f f

π
ϕ ϕ−

ϕ ϕ
π

β β ⎛ ⎞−
σ = ω ω π ≅ = ⎜ ⎟π π ⎝ ⎠

∫ ∫  (32)

We now note that whereas the specification in Table 1 restricts phase noise power in Band 2 to a 

level 18 dB below that allowed in Band 1, the integration factor ( )H L H Lf f f f−  in (32) for Band 2 

amounts to only 10.5 dB in relative reduction of integrated phase noise power. This implies that the 

maximum allowable value of  is determined by the limit in Band 2. This conclusion can be 

verified by similarly examining the relatively more relaxed specification (for this Lorentzian density) 

in Band 3. Using f

(0)Rϕ β

L = 10 kHz, fH = 50 kHz and the –51 dBc limit for 2 ( , )L Hf fϕσ  in Band 2, (32) 

yields the maximum allowed value (0) 0.98Rϕ β = s-1. This result2 sets the upper limit on observed 

MER of devices operating at the DOCSIS phase noise compliance limit (shown for fS = 5.3 MS/s in 

the broken line of Figure 2): 

 

 1
10 10

DOCSIS Phase Noise Limited MER 
210log( ) 10log (0) 10log 0.131s /

15D SMER R T N f−
ϕ

=

⎡ ⎤ ⎡ ⎤= ≈ − β = − ×⎣ ⎦⎢ ⎥⎣ ⎦

 

 

Hence, the DOCSIS specification of 43 dB for equalized MER (Table 6-3, DRFI [11]) provides 

necessary margin for additional impairments other than phase noise. The exclusion in the DRFI 

MER specifications of noise within 50 kHz of the carrier frequency cannot be fully utilized by 

practical MER measurement sets because raising the measurement corner frequency to such 

frequency requires setting N to unusable short block lengths of approximately 85 symbols. 

                                                 
2 This numerical result is half of that used erroneously in [12] due to its error in the counterpart equation of (31). 
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Nevertheless, this specification affirmatively provides full flexibility in selecting practical symbol 

block lengths for compliance verification and testing. 

 

C. Implications for MER Measurement Instruments’ Specifications 

MER measurement instruments employ internal receivers and associated synthesized LO sources. 

These sources’ own phase noise contributes to the observed MER results, setting a ceiling on 

possible MER measurement results and therefore must be taken into account. Unfortunately, as of 

this writing, this author is aware of no commercial MER measurement set having adequate 

specifications that specifies its MER or EVM measurement performance limits as a function of 

symbol block length or carrier tracking loop bandwidth settings. Often, a single (conservatively 

specified) MER value is guaranteed, perhaps applicable for a full range of measurement block 

periods. However, the usability of these vendors’ specifications is dubious at best, having values that 

are often lower than the specifications required in modern high order constellations such as 

DOCSIS. This deficiency frustrates the proper design, planning and automation of MER compliance 

testing. 

 

It is hoped that this paper would encourage vendors to correct these deficiencies in their MER 

measurement products’ specifications. In order to avoid specifying internal sources’ phase noise 

profiles, vendors should provide a specification of an MER mask that identifies an MER limit as a 

function of symbol block length or carrier tracking loop bandwidth settings. A mask of this type can 

appropriately reflect the internal phase noise profile limits, thereby facilitating useful overall MER 

measurement capability of such instruments. 

 

APPENDIX I. CERTAIN STATISTICAL MOMENTS OF QAM CONSTELLATIONS 

Here we evaluate certain even statistical moments of the transmitted symbols Zk given in (1): 

1  whereand  ; ,...7,5,3,1  ,...;7,5,3,1   −=±±±±=±±±±=+= iqpdiqdpZ kkkkk  (1)
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We assume that the random integers pk and qk are uncorrelated and that each outcome in their 

respective range is equally likely. The average power in the constellation is its second moment, 

which we denote by . Due to the four-quadrant symmetry, it can be found by averaging the 

square magnitude of all possible n

〉〈 2Z
2 symbols within one quadrant of the QAM constellation: 



{ }
2 2

22 2 2 2 2
2

1 1

1 2(2 1) (2 1)
3

n n

k
j m

d nZ E Z j d m d
n = =

−⎡ ⎤〈 〉 ≡ = − + − =⎣ ⎦∑∑ (4 1)  (33)

Similarly, the forth moment, which we denote by 4Z〈 〉 , can be found by averaging the forth power 

of the magnitudes of all possible n2 symbols of one quadrant of the QAM constellation: 

{ }
4 2 2244 2 2 2 2

2
1 1

1 4 (4 1)(28 13)(2 1) (2 1)
45

n n

k
j m

d n nZ E Z j d m d
n = =

− −⎡ ⎤〈 〉 ≡ = − + − =⎣ ⎦∑∑  (34)

It is often useful to express the higher moment 4Z〈 〉 in terms of the constellation average power, the 

second moment . It turns out that by using (〉〈 2Z 33) and (34), one can show that the relationship 

between 4Z〈 〉 and is approximately independent of the QAM constellation size and that the 

following asymptotic relation holds as the symbol decision region power d

〉〈 2Z
 2 is small compared to the 

full constellation power: 

( ) ( )2 2 22 2 2
4 2 2 2 27 42 28 13 7  when << 

15 5 5
Z Z dd Z nZ Z d
〈 〉 〈 〉 −〈 〉 −

〈 〉 = = ≅ 〈 〉 〈 Z 〉  (35)

We use the right hand side approximation above for large order constellations such as 64 QAM, 256 

QAM, and 1024 QAM. 

 

A. Joint moments 

For bivariate joint moments, the fact that Zk is uncorrelated with Zm whenever , leads to the 

following simple expression based on the constellation’s fourth-order moment result in (

k m≠

35): 

 

2 2 2 2 2 2
,

21
5k m k m k mZ Z E Z Z Z ⎛⎡ ⎤〈 〉 = = 〈 〉 + δ⎜⎣ ⎦ ⎝ ⎠

⎞
⎟   ; where ,k mδ is the Kronecker Delta (36)

 

We now turn to the trivariate joint moments of the form { }2 2 2 2 2 2
r k m r k mZ Z Z E Z Z Z〈 〉 = for 

possibly distinct symbol indices r, k, and m, and derive these moments in terms of the univariate 

moments { }22 , 1, 2,jj
kZ E Z j〈 〉 ≡ = 3 .  To do so, we make use of conditional expectation identities 

and the newly defined random variables Ym and Uk,m as follows: 
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[ ] { } [ ]

{ } ,

,

,  where

; ,

;

r k m r k m m m m

m r k m r k m k m k m k m

k m r k m

E X X X E E X X X X E Y X

Y E X X X E E X X X X X E U X X

U E X X X

⎡ ⎤= =⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦

 where  (37)

For jointly uncorrelated random variables Xj, we directly obtain the following property for Uk,m: 

 

[ ]
,

 , whenever  and 
; =  , whenever 

 , whenever  and 

r

k m r k m k

m

E X r k r m
U E X X X X r k

X r m r

⎧

k

≠ ≠
⎪⎡ ⎤= =⎨⎣ ⎦
⎪ = ≠⎩

 (38)

Identifying 
2

j jX Z≡  for j = r, k, m in our case, we write (38) as follows: 

( ) ( )( )2 22 2
, , , ,; 1k m r k m r k k r m r k mU E Z Z Z Z Z Z Z Z⎡ ⎤= = 〈 〉 + δ − 〈 〉 + δ − δ − 〈 〉⎣ ⎦

2 2  (39)

Substituting this expression for Uk,m in (37), using conditional expectation identities as in (38), and 

collecting terms, we obtain 

{ } ( ) ( ) (
( ) ( )

( )

2 2 2 6 2 4
, , , , , , , ,

2 3
, , , , ,

, , 3 , , , 2 1

1 1 1

1 1 1

,  whith the following definitions:

r k m r k m r k k m r m k m k m r k

r k r m k m k m r k

r k m r k r m k m

E Z Z Z Z Z Z

Z

u u u

)⎡ ⎤= 〈 〉δ + 〈 〉〈 〉 δ − δ + δ − δ + δ − δ⎣ ⎦

⎡ ⎤+ 〈 〉 − δ −δ − δ − δ − δ⎣ ⎦
= δ + δ + δ + δ +

 

( ) ( )2 3 2 4 2 2 6 2 2 2 4
1 2 3

, , , , , , , ,

; ; 2 3   and wherein

r k m r k r m k m r k k m r m

u Z u Z Z Z u Z Z Z Z= 〈 〉 = 〈 〉 〈 〉 − 〈 〉 = 〈 〉 + 〈 〉 〈 〉 − 〈 〉

δ = δ δ = δ δ = δ δ
 

(40)

 

For use in the text, the expression for u2 can be simplified based on the specific asymptotic value of 

the fourth moment in (35): ( ) ( )2 4 2 2 2 2 2 2 2 2 3
2 (7 / 5) 2 /5u Z Z Z Z Z Z Z= 〈 〉 〈 〉 − 〈 〉 ≅ 〈 〉 〈 〉 − 〈 〉 = 〈 〉  

 

APPENDIX II.  DERIVATION OF PHASE ERROR POWER 

We derive here the phase noise power of what MER instruments ascribe to phase fluctuations about 

their estimated linear phase trajectory of a transmitted QAM signal. For a given measurement record 
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of N consecutive symbols, the sample phase error power H is derived in the text in (22), wherein all 

the terms used in the equation below have their defined meaning as in the text. 

2 2
1 0 2

221 1
2

10 2 1

(2 )
N N

k m k m N
k m

k k
k

k k m Z Z
H Z= =

=

μ −μ −μ ϕ ϕ
= +

μ μ −μ

∑∑
∑ϕ  (22)

The random variable in the denominator of (22) has a mean value given by: 
2 2

2 22 2
0 2 1

1 1

( 1( )
12

N N

k m
k m

N NE k k m E Z Z Z
= =

−⎡ ⎤⎡ ⎤μ μ −μ = − = 〈 〉⎣ ⎦ ⎣ ⎦∑∑ 2 )   (41)

It can be shown that for sufficiently large N, the variance-to-mean-squared ratio of this denominator 

approaches zero as 1/N. Thus, for large values of N, the expectation of the quotient in (22) can be 

replaced by the quotient of the expectations as follows: 

[ ]
( ) 2 2

1 0 2
221 1

2 2 2 2
1

2

[ ( 1) 12]

N N

k m k m N
k m

k k
k

k k m Z Z
E H Z

Z N N
= =

=

〈 μ −μ −μ 〉〈ϕ ϕ 〉
= + 〈ϕ 〉〈 〉

〈 〉 −

∑∑
∑ ; (42)

where the brackets denote the statistical expectation and where the statistical independence of 

the random complex symbols and the random phases is assumed. We now note that the term 

used in (

〈 •〉

k m〈ϕ ϕ 〉 42) is the autocorrelation function of the phase noise, assuming the measurement 

demodulator is phase locked to the transmitted signal. It is denoted by 

[ ] ( , )k m k mE R k mϕ〈ϕ ϕ 〉 = ϕ ϕ =    (43)

Recognizing that the record moments jμ are random variables constructed from the complex 

symbols Zk in accordance with (15), we observe that the double sum numerator in (42) is in fact a 

function of the trivariate moments of Zk and is therefore given by  
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∑ (44)

To evaluate the triple sum above, we made use of (40), the expression for the trivariate moments in 

Appendix I, and the following summation identities: 

1

 ; for 0
( 1) / 2 ; for 1
( 1)(2 1) / 6 ; for 2 

N
j

k

N j
k N N j

N N N j=

=⎧
⎪= + =⎨
⎪ + + =⎩

∑  (45)

We now assume that the phase noise is stationary in the mean-square sense. This means that its 

autocorrelation function has the following property: 

 

( , ) ( , ) (| |)R k m R m k R k mϕ ϕ ϕ= = −    (46)

 

Using this stationarity property and (44), we write (42) after substitution and canceling of terms as 

follows: 
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(47)

 

wherein the values for u1 and u2 from Appendix I were substituted. The assumption of stationarity 

for the autocorrelation ( , ) (| |)R k m R k mϕ ϕ= −  renders its value constant along the lines k - m = 

const. Exploiting this fact, the double sum in (47) can be converted into two single sums by 

changing variables and summing diagonally in the k - m index space parallel to the m = k line.  

Using an index l defined by m = k+l in a first sum and by m = k – l in a second sum, the resulting 

summations are in the triangular regions above and below the line m = k respectively: 
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As a good approximation in cases where N is large ( ), we replace in (1N >> 48) every occurrence of 

the terms  by  and replace 2 1N − 2N 1N −  or 4 / 5N −  by N to arrive at 

[ ] 2 2
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1

4(0) ( )( )[ ( ) ]
N

l
E H Z R N R l N l N N l l

Nϕ ϕ
=

⎡ ⎤
= 〈 〉 − − − −⎢ ⎥

⎣ ⎦
∑  (49)

Because the symbol time granularity TS is much smaller than the time period over which the phase 

noise autocorrelation function ( )R lϕ declines in value, we can express the sum over l in (49) as a 

time integral by way of the limit of a Riemann sum. To do so, we set the time increments Δτ = TS so 

that  and so that NΔτ = NTlτ = ⋅Δτ S = T, wherein T is the total time over which a block of N 

consecutive symbols are received for analysis. The autocorrelation ( )R lϕ

( )Rϕ

of phases that are l symbol-

times apart, i.e.  seconds apart, is identified as equal to lτ = ⋅Δτ τ . In this way, we rewrite the 

MER equation (20) using (49) divided by 2N Z〈 〉 and by passing to the integral limit as follows: 
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