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The Stata Journal, Volume 10, Nu 1: 104-124 
 
Creation of Synthetic Discrete Response Regression Models 
 
Joseph M. Hilbe 
 
Statisticians employ synthetic data sets to evaluate the appropriateness of fit statistics as well 
as to determine the effect of modeling the data after making specific alterations to the data. 
Models based on synthetically created data sets have proved to be extremely useful in this 
respect, and appear to be used with increasing frequency in texts on statistical modeling.  
     In this article I demonstrate how to construct synthetic data sets that are appropriate for 
various popular discrete response regression models. The same methods may be used to create 
data specific to a wide variety of alternative models. In particular I show how to create 
synthetic data sets for given types of binomial, Poisson, negative binomial, proportional odds, 
multinomial, and hurdle models using Stata’s random number generators. Demonstrated are 
standard models, models with an offset, models with a cluster or longitudinal effect, and 
models having user-defined binary, factor, or non-random continuous predictors. Typically, 
synthetic models have predictors with values distributed as pseudo-random uniform or pseudo-
random normal. This will be our paradigm case, but synthetic data sets do not have to be 
established in such a manner – as we demonstrate.  
     In 1995, Walter Linde-Zwirble and I developed a number of (pseudo) random number 
generators using Stata’s programming language (1995, 1998, Hilbe and Linde-Zwirble), including 
the binomial, Poisson, negative binomial, gamma, inverse Gaussian, beta binomial and others. 
Based on the rejection method,  random numbers that were based on distributions belonging 
to the one-parameter exponential family of distributions could rather easily be manipulated to 
generate full synthetic data sets. A synthetic binomial data set could be created, for example, 
having randomly generated predictors with corresponding user-specified parameters and 
denominator. One could also specify whether the data was to be logit, probit, or any other 
appropriate binomial link function.   
     Stata’s random number generators are not only based on a different method from those 
used in the earlier rnd* suite of generators, but in general they employ different parameters. 
The examples used in this article all rely on the new Stata functions, and are therefore unlike 
model creation using the older programs. This is particularly the case for the negative binomial.  
     I divide this article into four sections. First, I shall discuss creation of synthetic count 
response models – specifically, Poisson, NB2, and NB-C. Second, I develop code for binomial 
models, which include both Bernoulli or binary and binomial or grouped logit and probit 
models. Since the logic of creating and extending such models was developed in the preceding 
section on count models, I do not need to spend much time explaining how these models work. 
A third section provides a relatively brief overview of creating synthetic proportional slopes 
models, including the proportional odds model, and code for constructing synthetic categorical 
response models, e.g, the multinomial logit. Finally, I present code on how to develop synthetic 
hurdle models, which are examples of combining binary and count models under a single 



 

 

covering algorithm. Statisticians should find it relatively easy to adjust the code that is provided 
to construct synthetic data and models for other discrete response regression models.  

 

 

 

1:  SYNTHETIC COUNT MODELS 
 

I shall first create a simple Poisson model since Stata’s rpoisson() function is similar to my 
original rndpoi (used to create a single vector of Poisson distributed numbers with a specified 
mean) and rndpoix (used to create a Poisson data set) commands.  
 

SYNTHETIC POISSON DATA 
[With predictors x1 and x2, having respective parameters of 0.75 and -1.25 and an intercept of 
2] 
 
* Joseph Hilbe  22Jan2009 : poi_rng.do 

clear 

set obs 50000 

set seed 4744 

gen x1 = invnorm(runiform())   // normally distributed: values between ~ -4.5 – 4.5 

gen x2 = invnorm(runiform())   // normally distributed: values between ~ -4.5 – 4.5 

gen xb = 2 + 0.75*x1 - 1.25*x2 // linear predictor; define parameters 

gen exb = exp(xb)              // inverse link; define Poisson mean  

gen py = rpoisson(exb)         // generate random Poisson variate with mean=exb 

glm py x1 x2, nolog fam(poi)   // model resultant data 

 

The model output is given as: 
 

Generalized linear models                          No. of obs      =     50000 

Optimization     : ML                              Residual df     =     49997 

                                                   Scale parameter =         1 

Deviance         =  52295.46204                    (1/df) Deviance =  1.045972 

Pearson          =  50078.33993                    (1/df) Pearson  =  1.001627 

 

Variance function: V(u) = u                        [Poisson] 

Link function    : g(u) = ln(u)                    [Log] 

 

                                                   AIC             =  4.783693 

Log likelihood   = -119589.3262                    BIC             =   -488661 

------------------------------------------------------------------------------ 

             |                 OIM 

          py |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |   .7488765   .0009798   764.35   0.000     .7469562    .7507967 

          x2 |  -1.246898   .0009878 -1262.27   0.000    -1.248834   -1.244962 

       _cons |   2.002672   .0017386  1151.91   0.000     1.999265     2.00608 

------------------------------------------------------------------------------ 

 

 

Notice that the parameter estimates approximate the user defined values. If we delete the seed 
line, add code to store each parameter estimate, and convert the do file to an rclass ado 
program, it is possible to perform a Monte Carlo simulation of the synthetic model parameters. 



 

 

The above  synthetic Poisson data and model code may be amended to do a simple Monte 
Carlo simulation as follows: 
 

* MONTE CARLO SIMULATION OF SYNTHETIC POISSON DATA 
* Joseph Hilbe 9Feb2009 

program define poi_sim, rclass 

version 10 

drop _all 

set obs 50000 

gen x1 = invnorm(runiform())    

gen x2 = invnorm(runiform())    

gen xb = 2 + 0.75*x1 - 1.25*x2 

gen exb = exp(xb)               

gen py = rpoisson(exb)         

glm py x1 x2, nolog fam(poi)  

return scalar sx1 = _b[x1] 

return scalar sx2 = _b[x2] 

return scalar sc  = _b[_cons] 

end 

 

 

Once the model parameter estimates are stored in sx1, sx2, and sc respectively, the following 
simple simulate command can be used for a Monte Carlo simulation involving 100 repetitions. 
Essentially, what we are doing is performing 100 runs of the poi_rng do-file program, and 
averaging the values of the three resultant parameter estimates.   
 
. simulate mx1 = r(sx1)  mx2 = r(sx2) mcon = r(sc), reps(100) : poi_sim 

 

  . . . 

 

 

. su 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         mx1 |       100    .7499347     .001024   .7476258    .752877 

         mx2 |       100   -1.250061    .0010646  -1.252795  -1.246607 

        mcon |       100    1.999881    .0016697   1.996198   2.003531 

 

 

Employing a greater number of repetitions will result in mean values closer to the user specified 
values of .75 and -1.25. Standard errors may also be included in the above simulation, as well as 
values of the Pearson-dispersion statistic, which will have a value of 1.0 when the model is 
Poisson. The value of the heterogeneity parameter, alpha, may also be simulated for negative 
binomial models. In fact, any statistic which is stored as a return code may be simulated, as well 
as any other statistic for which we provide the appropriate storage code.  
     It should be noted that the Pearson-dispersion statistic displayed in the model output for the 
generated synthetic Poisson data is 1.001627. This value indicates a Poisson model with no 
extradispersion. That is, the model is Poisson. Values of the Pearson dispersion greater than 1.0 
indicate possible overdispersion in a Poisson model. See Hilbe (2007) for a discussion of count 
model overdispersion, and Hilbe (2009) for a comprehensive discussion of binomial 
extradisperson. A brief overview of overdispersion may be found in Hardin and Hilbe (2007).  
 



 

 

Poisson models are commonly parameterized as rate models. As such they employ an offset, 
which reflects the area or time over which the count response is generated. Since the natural 
log is the canonical link of the Poisson model, the offset must be logged prior to entry into the 
estimating algorithm.  
     A synthetic offset may be randomly generated, or may be specified by the user. For this 
example I will create an area offset having increasing values of 100 for each 10,000 
observations in the 50,000 observation data set. The shortcut code used to create this variable 
is given in the first line below. We assume the same clear, set obs and set seed commands as in 
the earlier algorithm. I have commented code that can be used to generate the same offset as 
in the single line command that is used in this algorithm. It better shows what is being done, 
and can be used by those who are uncomfortable using the shortcut.  
 

 SYNTHETIC RATE POISSON DATA 
 *  Joseph Hilbe  22Jan2009  : poio_rng.do 

< clear, set obs and set seed commands> 

 

. gen off = 100+100*int((_n-1)/10000)  // creation of offset 

 

. * gen off=100 in 1/10000             // These lines duplicate the single line above 

. * replace off=200 in 10001/20000            

. * replace off=300 in 20001/30000 

. * replace off=400 in 30001/40000 

. * replace off=500 in 40001/50000 

 

. gen loff = ln(off)                      // log offset prior to entry into model 

. gen x1 = invnorm(runiform()) 

. gen x2 = invnorm(runiform()) 

. gen xb = 2 + 0.75*x1 - 1.25*x2 + loff   // offset added to linear predictor 

. gen exb = exp(xb) 

. gen py = rpoisson(exb) 

. glm py x1 x2, nolog fam(poi) off(loff)  // added offset option 

 

 

We expect that the resultant model will have approximately the same parameter values as the 
earlier model, but with different standard errors. Modeling the data without using the offset 
option results in similar parameter estimates to those produced when an offset is employed, 
but highly inflated intercept.  
 

The results of the rate parameterized Poisson algorithm above is displayed below: 
 

Generalized linear models                          No. of obs      =     50000 

Optimization     : ML                              Residual df     =     49997 

                                                   Scale parameter =         1 

Deviance         =  49847.73593                    (1/df) Deviance =  .9970145 

Pearson          =  49835.24046                    (1/df) Pearson  =  .9967646 

 

Variance function: V(u) = u                        [Poisson] 

Link function    : g(u) = ln(u)                    [Log] 

 

                                                   AIC             =  10.39765 

Log likelihood   = -259938.1809                    BIC             = -491108.7 

------------------------------------------------------------------------------ 

             |                 OIM 

          py |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 



 

 

          x1 |   .7500656   .0000562 13346.71   0.000     .7499555    .7501758 

          x2 |  -1.250067   .0000576 -2.2e+04   0.000     -1.25018   -1.249954 

       _cons |   1.999832   .0001009 19827.16   0.000     1.999635     2.00003 

        loff |   (offset) 

------------------------------------------------------------------------------ 

 

 

I mentioned earlier that Poisson models having a Pearson dispersion greater than 1.0 indicates 
possible overdispersion. The negative binomial (NB2) model is commonly used in such 
situations to accommodate the extra dispersion.  
     The NB2 parameterization of the negative binomial can be generated as a Poisson-gamma 
mixture model, with a gamma scale parameter of 1. We use this method to create synthetic 
NB2 data. The negative binomial random number generator in Stata is not parameterized as 
NB2, but rather derives directly from the canonical negative binomial (see 2007, Hilbe). 
rnbinomial() may be used to create a synthetic canonical negative binomial (NB-C) model, but 
not NB2 or NB1. Below is code that can be used to construct NB2 model data. The same 
parameters are used here as for the above Poisson models.  
 

SYNTHETIC NEGATIVE BINOMIAL (NB2) DATA 
*  Joseph Hilbe  22Jan2009  : nb2_rng.do 

clear 

set obs 50000 

set seed 4744 

gen x1 = invnorm(runiform()) 

gen x2 = invnorm(runiform()) 

gen xb = 2 + 0.75*x1 - 1.25*x2  // same linear predictor as Poisson above 

gen a = .5                      // value of alpha, the NB2 heterogeneity parameter 

gen ia = 1/a                    // inverse alpha 

gen exb = exp(xb)               // NB2 mean 

gen xg = rgamma(ia, a)          // generate random gamma variate given alpha 

gen xbg = exb * xg              // gamma variate parameterized by linear predictor 

gen nby = rpoisson(xbg)         // generate mixture of gamma and Poisson 

nbreg nby x1 x2, nolog          // model as negative binomial (NB2) 

 

 

Model output is given as: 
 

Negative binomial regression                      Number of obs   =      50000 

                                                  LR chi2(2)      =   74048.24 

Dispersion     = mean                             Prob > chi2     =     0.0000 

Log likelihood = -153736.53                       Pseudo R2       =     0.1941 

------------------------------------------------------------------------------ 

         nby |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |    .747614   .0038335   195.02   0.000     .7401004    .7551277 

          x2 |  -1.248845   .0040646  -307.25   0.000    -1.256811   -1.240878 

       _cons |     2.0027   .0039333   509.16   0.000     1.994991    2.010409 

-------------+---------------------------------------------------------------- 

    /lnalpha |  -.6967115   .0083518                     -.7130807   -.6803423 

-------------+---------------------------------------------------------------- 

       alpha |    .498221    .004161                      .4901319    .5064436 

------------------------------------------------------------------------------ 

Likelihood-ratio test of alpha=0:  chibar2(01) = 4.1e+05 Prob>=chibar2 = 0.000 

 

 



 

 

Note that the values of the parameters and of alpha approximate the values specified in the 
algorithm. These values may of course be altered by the user. To verify the appropriateness of 
the model I estimate the same data using the glm command below, with the value of alpha 
given by the maximum likelihood model. Observe the Pearson dispersion; it approximates 1.0. 
This same data estimated using a Poisson model yields a dispersion value of 11.67703 (not 
shown). The data is therefore Poisson overdispersed, but NB2 equidispersed, as we expect. See 
Hilbe (2007) for a discussion of NB2 overdispersion and how it compares with Poisson 
overdispersion.   
 

 

. glm nby x1 x2, nolog fam(nb .498221) 

 

Generalized linear models                          No. of obs      =     50000 

Optimization     : ML                              Residual df     =     49997 

                                                   Scale parameter =         1 

Deviance         =    54228.123                    (1/df) Deviance =  1.084628 

Pearson          =  49817.63954                    (1/df) Pearson  =  .9964126 

 

Variance function: V(u) = u+(.498221)u^2           [Neg. Binomial] 

Link function    : g(u) = ln(u)                    [Log] 

 

                                                   AIC             =  6.149581 

Log likelihood   = -153736.5309                    BIC             = -486728.3 

------------------------------------------------------------------------------ 

             |                 OIM 

         nby |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |    .747614   .0038335   195.02   0.000     .7401004    .7551277 

          x2 |  -1.248845   .0040646  -307.25   0.000    -1.256811   -1.240878 

       _cons |     2.0027   .0039333   509.16   0.000     1.994991    2.010409 

------------------------------------------------------------------------------ 

 

 

Performing a Monte Carlo simulation of the NB2 model requires that the algorithm first 
estimate a maximum likelihood model, estimating alpha. alpha is then passed to a glm 
command which provides estimation of the dispersion statistic as well as parameter estimates. 
The value of alpha is entered as a constant into the glm algorithm by use of the option, fam(nb  
`=e(alpha)'). Note how the statistics we wish to use in the Monte Carlo simulation program are 
stored.  
     [Note: When Stata’s glm command is amended so that the negative binomial family option allows maximum 
likelihood estimation of alpha, the following code can bypass the nbreg command.]  

 

* SIMULATION OF SYNTHETIC NB2 DATA   
* Joseph Hilbe Jan 2009 

* x1=.75, x2=-1.25, _cons=2, alpha=0.5 

program define nb2_sim, rclass 

version 10 

clear 

set obs 50000 

gen x1 = invnorm(runiform()) 

gen x2 = invnorm(runiform()) 

gen xb = 2 + 0.75*x1 - 1.25*x2 

gen a = .5 

gen ia = 1/a 

gen exb = exp(xb) 



 

 

gen xg = rgamma(ia, a) 

gen xbg = exb * xg 

gen nby = rpoisson(xbg) 

nbreg nby x1 x2, nolog                    // model specified synthetic NB2 data 

glm nby x1 x2, nolog fam(nb `=e(alpha)')  // glm with alpha from nbreg 

return scalar sx1 = _b[x1]             // synthetic model value of x1 

return scalar sx2 = _b[x2]             // synthetic model value of x2 

return scalar sxc = _b[_cons]          // synthetic model value of intercept (_cons) 

return scalar pd  = e(dispers_p)       // synthetic model value Pearson dispersion 

return scalar _a = `e(a)'              // synthetic model value of alpha 

end 

 

 

 

In order to obtain the Monte Carlo averaged statistics we desire, we use the following options 
with the simulate command.   
 
. simulate mx1= r(sx1) mx2= r(sx2) mxc= r(_cons) pdis= r(pd) alpha= r(__a), reps(100)   

   : nb2_sim 

 

. su 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         mx1 |       100    .7495019    .0036051   .7406389   .7586843 

         mx2 |       100   -1.250206    .0043555  -1.258774  -1.239371 

         mxc |       100    1.999624    .0036468   1.989279   2.007741 

        pdis |       100      .99991    .0047734    .989656   1.011759 

       alpha |       100    .5003388    .0041727   .4910004   .5130489 

 

 

 

Note the range of parameter and dispersion values. The code for constructing synthetic data 
sets produce quite good values; i.e. they have a narrow range of values. This is exactly what we 
want from an algorithm that creates synthetic data.  
     We may employ an offset into the NB2 algorithm in the same manner as we did for the 
Poisson. Since the mean of the Poisson and NB2 are both exp(xb), we may use the same 
method. The synthetic NB2 data and model with offset is in the nb2o_rng.do file.  
     Incorporating a cluster or longitudinal effect into the algorithm takes a different tactic. For 
simplicity I used the same variable for a cluster effect that was used for an offset. Note that the 
cluster variable is not logged, nor is it added to the linear predictor. It simply adjusts the 
standard errors of the predictors. The command to model the cluster effect is done using the 
following command code: 
 
 . nbreg nby x1 x2 x3, nolog cluster(off) 

 

The code is in nb2re_rng.do. 
     The linear negative binomial model, NB1, is also based on a Poisson-gamma mixture 
distribution. Space limitations prohibit me from describing it further in this article, but 
construction of synthetic data and models for the NB1 is done using close to the same code as 
used for NB2.  
 



 

 

     The canonical negative binomial (NB-C), however, must be constructed in an entirely 
different manner from NB2, NB1, or from Poisson.  NB-C is not a Poisson-gamma mixture, and is 
based on the negative binomial PDF. Stata’s rnbinomial(a,b) function can be used to construct 
NB-C data. Other options such as offsets, non-random variance adjusters, and so forth, are 
easily adaptable for the nbc_rng.do function.  
 
 

SYNTHETIC CANONICAL NEGATIVE BINOMIAL (NB-C)  DATA 
* Joseph Hilbe  22Jan2009  : nbc_rng.do 

clear 

set obs 50000 

set seed 7787 

gen x1 = runiform() 

gen x2 = runiform() 

gen xb = 1.25*x1 + .1*x2 -1.5 

gen a =  1.15 

gen mu = 1/((exp(-xb)-1)*a)         // inverse link function 

gen p = 1/(1+a*mu)                  // probability 

gen r = 1/a 

gen y = rnbinomial(r, p) 

cnbreg y x1 x2, nolog 

 

I wrote a maximum likelihood canonical negative binomial command in 2005, which was posted 
to the SSC site, and have posted an amendment in late February, 2009. The statistical results 
are the same in the original and amended version, but the amendment is more efficient, and 
pedagogically easier to understand.  Rather than simply inserting the NB-C inverse link function 
in terms of xb for each instance of μ in the log-likelihood function, I have reduced the formula 
for the NB-C log-likelihood to  
 
            LLNB-C = Σ {y(xb) + (1/α)ln(1-exp(xb)) + lnΓ(y+1/α) -  lnΓ(y+1) – lnΓ(1/α) } 
 
Also posted to the site is a heterogeneous NB-C regression command that allows 
parameterization of the heterogeneity parameter, alpha. Stata calls the NB2 version of this a 
generalized negative binomial. However, as I discuss in Hilbe (2007), there are previously 
implemented generalized negative binomial models with entirely different parameterizations. 
Some are discussed in that source. Moreover, Limdep has offered a heterogeneous negative 
binomial for many years, which is the same model as is the generalized NB in Stata. For these 
reasons I prefer labeling Stata’s gnbreg command a heterogeneous model. A hcnbreg 
command was also posted to SSC in 2005.  
     The synthetic NB-C model of the above created data is displayed below. Note that I had 
specified values of x1 and x2 as 1.25 and .1 respectively, and an intercept value of -1.5. alpha 
was given as 1.15. The model closely reflects the user specified parameters.  
 

 

Canonical Negative Binomial Regression            Number of obs   =      50000 

                                                  Wald chi2(2)    =    6386.70 

Log likelihood = -62715.384                       Prob > chi2     =     0.0000 

------------------------------------------------------------------------------ 

           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |   1.252674    .015776    79.40   0.000     1.221754    1.283595 



 

 

          x2 |   .1009038   .0091313    11.05   0.000     .0830067    .1188008 

       _cons |  -1.504659   .0177159   -84.93   0.000    -1.539381   -1.469936 

-------------+---------------------------------------------------------------- 

    /lnalpha |   .1336433   .0153947     8.68   0.000     .1034702    .1638164 

-------------+---------------------------------------------------------------- 

       alpha |   1.142985   .0175959                      1.109013    1.177998 

------------------------------------------------------------------------------ 

AIC Statistic   =        2.509                       
 
 
 

2: SYNTHETIC BINOMIAL MODELS 

 
Synthetic binomial models are constructed in the same manner as synthetic Poisson data and 
models. The key lines are those that generate pseudo-random variates, a line creating the 
linear predictor with user defined parameters, a line using the inverse link function to generate 
the mean, and a line using the mean to generate random variates appropriate to the 
distribution.  
     A Bernoulli distribution consists entirely of binary values, 1/0. y is binary and is considered 
here to be the response variable which is explained by the values of x1 and x2. Data such as this 
is typically modeled using a logistic regression. A probit or complementary loglog model can 
also be used to model the data.  
 

  y      x1    x2 
1:      1       1      1 
2:      0       1      1 
3:      1       0      1 
4:      1       1      0 
5:      1       0      1 
6:      0       0      1 
 
The above data may be grouped by covariate patterns. The covariates here are, of course, x1 
and x2.  With y now the number of successes, i.e. a count of 1’s, and m the number of 
observations having the same covariate pattern, the above data may be grouped as: 
 

  y     m    x1    x2 
1:      1     2     1      1 
2:      2     3     0      1 
3:      1     1     1      0 
 
The distribution of y/m is binomial. y is a count of observations having a value of y=1 for a 
specific covariate pattern, and m is the number of observations having the same covariate 
pattern. One can see that the Bernoulli distribution is a subset of the binomial, i.e. a binomial 
distribution where m=1. In actuality, a logistic regression models the top data as if there were 
no m, regardless of the number of separate covariate patterns. Grouped logistic, or binomial-
logit, regression assumes appropriate values of y and m. In Stata, grouped data such as the 



 

 

above can be modeled as a logistic regression using the blogit or glm commands. I recommend 
using the glm command since glm is accompanied with a wide variety of test statistics.    
     Algorithms for constructing synthetic Bernoulli models differ little from creating synthetic 
binomial models. The only difference is that for the binomial, m needs to be accommodated.   I 
shall demonstrate the difference – and similarity – of the Bernoulli and binomial by generating 
data using the same parameters. First the Bernoilli-logit model, or logistic regression: 
 
 SYNTHETIC BERNOULLI-LOGIT DATA   
 

* Joseph Hilbe 5Feb2009 berl_rng.do 

* x1=.75, x2=-1.25, _cons=2 

clear 

set obs 50000 

set seed 13579 

gen x1 = invnorm(runiform()) 

gen x2 = invnorm(runiform()) 

gen xb = 2 + 0.75*x1 - 1.25*x2 

gen exb = 1/(1+exp(-xb))                  // inverse logit link 

gen by = rbinomial(1, exb)                // specify m=1 in function 

logit by x1 x2, nolog  

 

The output is displayed as: 
 

Logistic regression                               Number of obs   =      50000 

                                                  LR chi2(2)      =   10861.44 

                                                  Prob > chi2     =     0.0000 

Log likelihood =   -18533.1                       Pseudo R2       =     0.2266 

------------------------------------------------------------------------------ 

          by |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |   .7555715   .0143315    52.72   0.000     .7274822    .7836608 

          x2 |  -1.256906    .016125   -77.95   0.000     -1.28851   -1.225301 

       _cons |   2.018775   .0168125   120.08   0.000     1.985823    2.051727 

------------------------------------------------------------------------------ 

 

Secondly, the code for constructing a synthetic binomial model: 
 

SYNTHETIC BINOMIAL-LOGIT DATA   
* Joseph Hilbe 5feb2009  binl_rng.do 

* x1=.75, x2=-1.25, _cons=2 

clear 

set obs 50000 

set seed 13579 

gen x1 = invnorm(runiform()) 

gen x2 = invnorm(runiform()) 

* ================================= 

* Select either User Specified or Random  

*  denominator.  

* gen d = 100+100*int((_n-1)/10000) 

gen d = ceil(10*runiform())            // integers 1-10, mean of ~5.5 

* ================================= 

gen xb = 2 + 0.75*x1 - 1.25*x2 

gen exb = 1/(1+exp(-xb)) 

gen by = rbinomial(d, exb) 

glm by x1 x2, nolog fam(bin d) 

 

The final line calculates and displays the output below: 



 

 

 

Generalized linear models                          No. of obs      =     50000 

Optimization     : ML                              Residual df     =     49997 

                                                   Scale parameter =         1 

Deviance         =  47203.16385                    (1/df) Deviance =  .9441199 

Pearson          =   50135.2416                    (1/df) Pearson  =  1.002765 

 

Variance function: V(u) = u*(1-u/d)                [Binomial] 

Link function    : g(u) = ln(u/(d-u))              [Logit] 

 

                                                   AIC             =  1.854676 

Log likelihood   = -46363.90908                    BIC             = -493753.3 

------------------------------------------------------------------------------ 

             |                 OIM 

          by |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |   .7519113   .0060948   123.37   0.000     .7399657    .7638569 

          x2 |  -1.246277   .0068415  -182.16   0.000    -1.259686   -1.232868 

       _cons |    2.00618   .0071318   281.30   0.000     1.992202    2.020158 

------------------------------------------------------------------------------ 

 

The only difference between the two is the code between the lines, and the use of d rather 
than 1 in the rbinomial() function.  I show code for generating a random denominator, and code 
for specifying the same values as were earlier used for the Poisson and negative binomial 
offsets. Cameron & Trivedi (2009) have a nice discussion of generating binomial data. Their 
focus, however, differs from the one taken here. I nevertheless recommend reading Chapter 4 
of their book.  
     Note the similarity of parameter values. Use of Monte Carlo simulation shows that both 
produce identical results. I should mention that the dispersion statistic is only appropriate for 
binomial models, not for Bernoulli. The binomial-logit model above has a dispersion of 
1.002765, which is as we would expect. This relationship is discussed in detail in Hilbe (2009).  
     It is easy to amend the above code to construct synthetic probit or complementary loglog 
data.  
Assuming the identical first six lines of the Bernoulli-logit code, the synthetic binary probit data 
may be generated using the following: 
 
gen double exb = normprob(xb) 

* replace exb=.99999999 if exb>.99999999  // add if need 50000 obs 

gen double py = rbinomial(1, exb) 

 

The normprob() function is the inverse probit link, and replaces the inverse logit link. The 
problem is that the function typically drops 100-400 observations in a 50000 observation data 
set. This occurs when exb=1. I have created a partial fix so that the full number of user specified 
synthetic observations are created, but it does bias the data slightly – very slightly, as seen from 
the results of a 100 repetition Monte Carlo simulation.  
 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         mx1 |       100    .7480579    .0107474   .7219242    .777306 

         mx2 |       100   -1.250415    .0149592  -1.278488  -1.212393 

        mcon |       100    2.001031    .0103345   1.980775   2.021287 

 
 



 

 

If you wish to keep the full 50,000 (or whatever number you desire) synthetic probit 
observations, be aware of the slight bias.   
 

3: SYNTHETIC CATEGORICAL RESPONSE MODELS 
 

I have previously discussed in detail the creation of synthetic ordered logit, or proportional 
odds, data in Hilbe (2009), and refer to that source for a more thorough examination of the 
subject. Multinomial logit data is also examined in the same source. Because of the complexity 
of the model, the generated data is a bit more variable than with synthetic logit, Poisson, or 
negative binomial models. However, Monte Carlo simulation (not shown) proves that the mean 
values closely approximate the user supplied parameters and cut points.  
     I display code for generating synthetic ordered probit data below.  

 
* SYNTHETIC ORDERED PROBIT DATA AND MODEL 
* Hilbe, Joseph 19Feb 2008  : oprobit_rng.do 

di in ye "b1 = .75; b2 = 1.25" 

di in ye "Cut1=2; Cut2=3,; Cut3=4" 

drop _all 

set obs 50000 

set seed 12345 

gen double x1 = 3*uniform()+1 

gen double x2 = 2*uniform()-1 

gen double y = .75*x1 + 1.25*x2 + invnorm(uniform()) 

gen int ys = 1 if y<=2 

replace ys=2 if y<=3 & y>2 

replace ys=3 if y<=4 & y>3 

replace ys=4 if  y>4 

oprobit ys x1 x2, nolog 

* predict double (olpr1 olpr2 olpr3 olpr4), pr 

 

The modeled data appears as: 
 

Ordered probit regression                         Number of obs   =      50000 

                                                  LR chi2(2)      =   24276.71 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -44938.779                       Pseudo R2       =     0.2127 

------------------------------------------------------------------------------ 

          ys |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |   .7461112    .006961   107.18   0.000     .7324679    .7597544 

          x2 |   1.254821   .0107035   117.23   0.000     1.233842    1.275799 

-------------+---------------------------------------------------------------- 

       /cut1 |   1.994369   .0191205                      1.956894    2.031845 

       /cut2 |   2.998502   .0210979                      2.957151    3.039853 

       /cut3 |   3.996582   .0239883                      3.949566    4.043599 

------------------------------------------------------------------------------ 

 

The user specified slopes were .75 and 1.25, which are closely approximated above. Likewise, 
the specified cuts of 2, 3, and 4 are nearly identical to the synthetic values, which are the same 
to the thousandths place.  
     The proportional slopes code is created by adjusting the linear predictor. Unlike the ordered 
probit, we need to generate pseudo-random uniform variates, called err, which are then used 
in the logistic link function, as attached to the end of the linear predictor. The remainder of the 



 

 

code is the same for both algorithms. The lines required to create synthetic proportional odds 
data are the following: 
 
gen err = runiform() 

gen y = .75*x1 + 1.25*x2 + log(err/(1-err)) 

 

Synthetic multinomial logit data may be constructed using the following code: 
 

 SYNTHETIC MULTINOMIAL LOGIT DATA AND MODEL 
. Joseph Hilbe 15Feb2008  mlogit_rng.do 
. y=2: x1= 0.4, x2=-0.5, _cons=1.0 

. y=3: x1=-3.0, x2=0.25, _cons=2.0 

. qui { 

. clear 

. set mem 50m 

. set seed 111322 

. set obs 100000 

. gen x1 = runiform()  

. gen x2 = runiform()  

. gen denom = 1+exp(.4*x1 - .5*x2 +1 ) + exp(-.3*x1+.25*x2 +2) 

. gen p1 = 1/denom  

. gen p2 = exp(.4*x1-.5*x2 + 1) / denom   

. gen p3 = exp(-.3*x1+.25*x2 + 2) / denom  

. gen u = runiform() 

. gen y = 1 if u <= p1 

. gen p12 = p1 + p2 

. replace y = 2 if y==. & u<=p12 

. replace y = 3 if y==. 

. } 

. mlogit y x1 x2,  baseoutcome(1) nolog 

 

Note that I have amended the uniform() function that was in the original code to runiform(), 
which is Stata’s newest version of the pseudo-random uniform generator.  The logic of the code 
is examined in Hilbe (2009), to which I refer the reader. However, given the nature of the 
multinomial probability function, the above code is rather self-explanatory. The code may be 
expanded to have more than three levels. New coefficients need to be defined and the 
probability levels expanded. See the above reference for advice on coding for more levels.  
     The output of the above mlogit_rng do file is displayed as: 
 

Multinomial logistic regression                   Number of obs   =     100000 

                                                  LR chi2(4)      =    1652.17 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -82511.593                       Pseudo R2       =     0.0099 

------------------------------------------------------------------------------ 

           y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

2            | 

          x1 |   .4245588   .0427772     9.92   0.000     .3407171    .5084005 

          x2 |  -.5387675   .0426714   -12.63   0.000    -.6224019    -.455133 

       _cons |   1.002834   .0325909    30.77   0.000     .9389565    1.066711 

-------------+---------------------------------------------------------------- 

3            | 

          x1 |  -.2953721    .038767    -7.62   0.000     -.371354   -.2193902 

          x2 |   .2470191   .0386521     6.39   0.000     .1712625    .3227757 

       _cons |   2.003673   .0295736    67.75   0.000      1.94571    2.061637 

------------------------------------------------------------------------------ 

(y==1 is the base outcome) 

 



 

 

 

By amending the mlogit_rng.do code to an rclass ado program, with the following lines added 
to the end: 
 

return scalar x1_2 = [2]_b[x1] 

return scalar x2_2 = [2]_b[x2] 

return scalar _c_2 = [2]_b[_cons] 

return scalar x1_3 = [3]_b[x1] 

return scalar x2_3 = [3]_b[x2] 

return scalar _c_3 = [3]_b[_cons] 

end 

 

the following Monte Carlo simulation may be run, verifying the parameters displayed from the 
do file. The ado file is named mlogit_sim. 
 

. simulate mx12 = r(x1_2)  mx22 = r(x2_2)  mc2 = r(_c_2) mx13 = r(x1_3) mx23 = r(x2_3) 

mc3 = r(_c_3) , reps(100) : mlogit_sim 

 

.  .  . 

 

. su 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

        mx12 |       100    .4012335    .0389845   .2992371   .4943814 

        mx22 |       100   -.4972758    .0449005  -.6211451  -.4045792 

         mc2 |       100    .9965573    .0300015    .917221     1.0979 

        mx13 |       100   -.2989224    .0383149  -.3889697  -.2115128 

        mx23 |       100    .2503969    .0397617   .1393684   .3484274 

         mc3 |       100    1.998332    .0277434   1.924436   2.087736 

 

It is observed that the user specified values are reproduced by the synthetic multinomial 
program.  

 

4:  SYNTHETIC HURDLE MODELS 
 

Lastly, I show an example of how one can expand the above synthetic data generators to 
construct synthetic negative binomial-logit hurdle data. The code may be easily amended to 
construct Poisson-logit, Poisson-probit, Poisson-cloglog, NB2—probit, and NB2-cloglog models. 
In 2005 I published a number of hurdle models, which are currently on the SSC site. I show this 
example to demonstrate how similar synthetic models may be created for zero-truncated and 
zero-inflated models, as well as a variety of different types of panel models. Synthetic models 
and correlation structures are found in Hardin & Hilbe (2003) for GEE models.  
     Hurdle models are discussed in Hilbe (2007), Cameron & Trivedi (2009), and Long & Freese 
(2006). The traditional method of parameterizing hurdle models is to have both binary and 
count models be of equal length. Hurdle models having constituent models of differing 
predictors is discussed in Cameron & Trivedi (2009), For reasons to be discussed elsewhere, I 
believe equal length hurdle models are preferred.  
     Note that a hurdle model is a combination of a 1/0 binary model and a zero-truncated count 
model. There is no estimation overlap in response values of 1, as is the case for zero-inflated 
models.  
 



 

 

 SYNTHETIC NB2-LOGIT HURDLE DATA 
 

* Joseph Hilbe  26Sep2005; Mod 4Feb2009.  

* nb2logit_hurdle.do   

* LOGIT: x1=-.9, x2=-.1, _c=-.2 

* NB2  : x1=.75, n2=-1.25, _c=2, alpha=.5 

clear 

set obs 50000 

set seed 1000 

gen x1 = invnorm(runiform()) 

gen x2 = invnorm(runiform()) 

* NEGATIVE BINOMIAL- NB2 

gen xb = 2 + 0.75*x1 - 1.25*x2 

gen a = .5 

gen ia = 1/a 

gen exb = exp(xb) 

gen xg = rgamma(ia, a) 

gen xbg = exb * xg 

gen nby = rpoisson(xbg) 

* BERNOULLI 

drop if nby==0 

gen pi =1/(1+exp(-(.9*x1 + .1*x2+.2))) 

gen bernoulli = runiform()>pi 

replace nby=0 if bernoulli==0 

rename nby y 

* logit bernoulli x1 x2, nolog /// test 

* ztnb y x1 x2 if y>0, nolog   /// test 

* NB2-LOGIT HURDLE 

hnblogit y x1 x2, nolog 

 

Output for the above synthetic NB2-logit hurdle model is displayed as 
 

Negative Binomial-Logit  Hurdle Regression        Number of obs   =      43443 

                                                  Wald chi2(2)    =    5374.14 

Log likelihood = -84654.938                       Prob > chi2     =     0.0000 

------------------------------------------------------------------------------ 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

logit        | 

          x1 |  -.8987393   .0124338   -72.28   0.000    -.9231091   -.8743695 

          x2 |  -.0904395    .011286    -8.01   0.000    -.1125597   -.0683194 

       _cons |  -.2096805   .0106156   -19.75   0.000    -.2304867   -.1888742 

-------------+---------------------------------------------------------------- 

negbinomial  | 

          x1 |    .743936   .0069378   107.23   0.000     .7303381    .7575339 

          x2 |  -1.252363   .0071147  -176.02   0.000    -1.266307   -1.238418 

       _cons |   2.003677   .0070987   282.26   0.000     1.989764     2.01759 

-------------+---------------------------------------------------------------- 

    /lnalpha |  -.6758358   .0155149   -43.56   0.000    -.7062443   -.6454272 

-------------+---------------------------------------------------------------- 

       alpha |   .5087311   .0078929                      .4934941    .5244384 

------------------------------------------------------------------------------ 

AIC Statistic =     3.897 

 
SUMMARY REMARKS 
 
Synthetic data can be used with substantial efficacy for the evaluation of of statistical models. 
In this article I have presented algorithm code that can be used to create a number of different 



 

 

types of synthetic models. The code may be extended to use for the generation of yet other 
synthetic models.  
     I am a strong advocate of using these types of models to better understand the models we 
apply to real data.  With computers gaining in memory and speed, it is possible to construct for 
more complex synthetic data than we have here. This has been accomplished in a number of 
different disciplines. I hope that the ones discussed in this article will encourage further use and 
construction of artificial data.  
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