
A Framework for Evaluating Managerial Styles
in Open Source Projects

Eugenio Capra

Department of Electronics and Information, Politecnico di Milano, Piazza Leonardo da Vinci
32, 20133 Milano, Italy, eugenio.capra@polimi.it

Anthony I. Wasserman

Center for Open Source Investigation, Carnegie Mellon West, Mountain View, CA 94035
USA, tonyw@west.cmu.edu

Abstract This paper presents the Software Project Governance
Framework (SPGF) for characterizing management of software projects,
based on mechanisms used for communication and collaboration, the
organizational structure of projects, and testing and quality assurance
procedures. The framework was developed and validated from interviews
and surveys with leaders of more than 70 commercial and community-
based software projects, including both closed and open source projects.

Keywords Management of OSS development; Working practices;
Industry contribution; Community contribution.

1 Introduction

Open source software and accompanying “open” development practices have had
a major impact on the software industry. “Open” software development
processes involve new managerial styles, governance and social models, working
practices and communication techniques (cf. [1], [4], [5], [9], and [10]).

Open source products fall into two major categories, which we term
“community” and “commercial”. Community Open Source projects are led by a
community of developers or stakeholders and are distributed under an approved
open source license, e.g., GPL, BSD, or Apache. Companies or institutions may
have a significant role in the governance of the project, and may contribute many
of the resources needed for the ongoing development of the project, but there are

2

few, if any, limitations on who may participate in the various aspects of the
project. Development is done “in the open” so that anyone may have complete,
no-cost access to the current state of the project. These projects, such as those
sponsored by the Apache Software Foundation, have established policies for
granting “commit rights” that allow individuals to modify the code base.

Commercial Open Source projects are led by a company, which has usually
developed most or all of the code, and then sells subscriptions and services for the
developed product. Commercial Open Source applications are very often
distributed with a dual license scheme, one offering unrestricted use of the
software (community version) and one intended for commercial use of the
software. In some cases, the two versions of the software differ, with the
commercial version including features that are not present in the unrestricted
version. In that situation, the commercial version of the software typically
includes some closed source code. Also, the license for the community version
may not be an “approved”, i.e., an OSI-listed, open source license.

These approaches are beginning to blend with traditional closed-source
software development. Numerous companies offer both closed and open source
products, and also participate in non-commercial open source projects. In many
cases, companies have completely different policies for each type of project.

While open source is technically a licensing model, its impact on software
development processes goes well beyond licensing. The open source phenomenon
has had a global impact on the way organizations and individuals create,
distribute, and use software, and has challenged the conventional wisdom of the
software engineering and software business communities. For this reason, we have
focused on managerial and governance approaches to open source projects with
the primary goal of creating a framework to characterize these different
managerial styles and to evaluate the “openness” of a software project (as opposed
to the software itself). The resulting framework allows potential users of the
project to identify well-managed projects and allows potential contributors to see
if there is a good opportunity to participate in the project.

Governance theory has been applied to software development in a number of
different approaches [6], and is defined as the complex process that is responsible
for the control of project scope, progress, and continuous commitment of
developers [8]. It would be very difficult to elaborate a framework able to
encompass all the possible governance dimensions of a software project. We
propose a governance framework that allows one to position a software project
along the continuum between “fully open” and “fully closed” approach.

This paper is organized as follows: Section 2 gives a brief overview of the

study we conducted to define the framework. Section 3 presents the framework
with some quantitative and qualitative metrics to evaluate software projects along
several dimensions. Section 4 describes some existing open source projects and
discusses how they can be classified according to our framework as an example.
Section 5 briefly discusses how the framework was applied to our sample. Finally,
Section 6 gives preliminary conclusions and topics for further study.

3

2 Methodology

Our framework aims at positioning a software project along the continuum
between fully open and fully closed governance practices. It was developed
through preliminary empirical analysis based on individual face-to-face interviews
with 25 project managers of major software projects along the continuum,
including traditional closed source development projects (packaged software and
software as a service), Commercial Open Source and Community Open Source
projects. Project managers were asked which governance dimensions were most
significant to measure the degree of openness of a software project. We identified
four fundamental governance dimensions: contribution, project leadership,
working practices, and testing. These dimensions were chosen since they were
widely cited by the project managers, and since they had the highest ranking of all
of the cited dimensions.

Subsequently, we refined and validated our framework through a continuing
study of more than 70 software projects. We included projects from
SourceForge.org, Apache.org, Tigris and Java.net that met the following criteria:

 Mature status (according to the classification provided by the
repositories, when available, or to common sense for major projects);

 At least 2 administrators (committers);
 At least 2 developers or contributors.

We have focused on large and well-known projects, rather than those

developed by small teams, because these projects had developed and evolved their
managerial and governance approaches. Our goal was to identify the dimensions
that best illustrate the continuum between open and closed governance
approaches. Our research approach has been informal, aimed at identifying the
key dimensions and differentiators among projects of varying age, size, diffusion
and domain.

Table 1 describes how these parameters vary across the sample.

Variable Minimum
value

Average
value

Maximum
value

Age [year] <1 8 30
Size [core
developers] 10 100 1,000

Size [kSLOC] 40 1,000 6,000
Diffusion
[downloads or users] 2 25,000 200,000

Table 1 – Description of age, size and diffusion of the projects analyzed.

4

Data was collected through interviews with and surveys of key project
personnel, namely community managers, QA managers, VPs of engineering,
committers, and project leaders, with follow-up calls made as needed for
clarification and consistency.

 The interviews focused on the following topics:

• Governance and organization: Is the project more similar to a “benevolent
dictatorship” or to a democracy? Is it self-organizing or centrally controlled?
What is the role of the internal community versus the external community?
How many developers are paid?

• Work practices and tools: How is the right to commit code granted? How is
code reviewed? How important is automated testing? How many management
tasks and non-code-developing tasks are shared in the community?

• Communication and social culture: Which tools (cvs, bug tracking, IRC, wiki,
etc.) are used? How frequent is face-to-face communication? How open are
discussions? How is consensus reached?

• Comparison between open and traditional projects: How do closed and open
projects differ in management practice? What are the relative advantages of
open source development compared with traditional closed development?

The results of these interviews formed the basis for our framework, which we call
the Software Project Governance Framework (SPGF). The methodology we
adopted to formalize the evidence we gathered is based on three major steps. First,
we identified and characterized two hypothetical projects representing the two
extremes of the spectrum, i.e. a completely traditional closed software project and
a completely open source community-based project (see also [3]). Second, we
defined dimensions along which these projects can be evaluated, eventually
selecting four dimensions that gave the most accurate picture of governance.
Third, we scored each dimension of each project from 1 to 4, where 1 indicates a
closed-style approach and 4 signifies an open-style approach. We show the detail
of the scoring for each dimension below. Note that neither licensing nor the
distribution model are part of the framework.

The SPGF framework provides a qualitative assessment of the degree of open-
ness and, accordingly, scales are ordinal. Assessing governance by means of ratio
variables not only is difficult, but may also be misleading [5], [11]. The SPGF
framework is intended for comparing projects rather than providing absolute as-
sessments. Moreover, the output of our framework may be employed within quan-
titative methodology according to the approach discussed by Briand et al. in [1].

We would also note that the interviews covered a wide range of topics, and our
dimensions have been extracted as the most important factors to distinguish
different approaches to project governance. Some of the interviews ranged
beyond the specific issues of the framework and helped us to validate the overall
approach.

5

3 The Framework

This section presents our framework. First, we characterize the properties of a
completely closed and a completely open project. Then we describe the four
dimensions at the base of the framework and provide a graphical representation
methodology.

3.1 A traditional closed source project

A “traditional” software project is led by a company or an organization which
strictly controls the development process. The proprietary code is closed and is
developed by paid staff, possibly including contractors or outsourced teams. Most
projects have a well-defined organizational structure following a development
process aimed at producing a high quality product (or service) on a predictable
schedule. Members of the team “meet” regularly, and report their progress through
their organization’s management structure.

Many companies have user groups, advisory boards, forums, and other ways
for users to interact with the development team, but the final decisions are all
made by the company, which has responsibility for all of the code and
documentation. In general, the development team has its own communication
mechanism, which is not open to outsiders.

The company does most of its own testing and fixes problems even before
releasing a beta version to users. Many make their beta versions available to a
broad community of users, providing mechanisms for reporting issues and
problems in functionality, performance, installation, usability, stability, and/or
security.

3.2 A completely open software project

At the opposite end of the spectrum are the thousands of Community Open Source
projects, each with its own community, open to anyone who is interested in the
project. The work is done entirely in the open, and is typically hosted in such
repositories as SourceForge, Tigris.org, Apache Software Foundation, and
Java.net. The software can be acquired and used by anyone, subject to the terms
of the project’s license agreement.

In an open source project, a project lead (or leadership group) is responsible for
overall project management, such as determining when a version of the software is
ready (stable version), selecting the license to be used with the software release,
and deciding who can have “commit rights” to the code.

6

 Some projects are very informal, without formal organization and governance
bodies. Decisions are usually made by informally discussing issues within forums,
mailing lists or IRC channels. Some communities may have a voting mechanism
for resolving issues.

 Project participation is open to all, independent of organizational affiliation.
Many projects include both volunteers, who have another job and work on the
project in their spare time, as well as people who are paid by companies to work
on the project.

Since project participation is often a volunteer activity, the project leadership
cannot easily compel someone to work on a specific task or to adhere to a
schedule, as is the case in a commercial software project. Participants in these
community-based projects rarely meet in person. Instead, they communicate by
mechanisms such as forums, mailing lists, IRC channels, instant messaging
systems, wikis, blogs, online shared task lists or similar devices. Each community
relies on one or more of these tools according to its tradition and habits.

A Community Open Source project doesn’t have formal testing or quality
assurance processes, but instead relies upon individual developers to test their own
code, and for community members to test the software and post issues (and
possibly fixes) using the project’s issue tracking system. Well-managed projects
respond quickly to posted bugs, relying on individual committers to make any
needed changes or enhancements to their code. While commercial projects
control the number of releases and offer customer support for those releases, no
comparable support mechanism is in place for community-based open source
projects.

3.3 Dimensions of the SPGF

Using these typical approaches for project management, we defined the following
dimensions along which software projects can be evaluated.

3.3.1 Contributions

This dimension measures the relative amount of voluntary code development.
Most Commercial Open Source companies resemble proprietary software
companies in their reliance on paid development.

In a community-based open source project, code is usually developed on a
voluntary basis. However, contributors may be employed or hired by a company
or an organization that wants to lead the project or to accomplish specific tasks
(e.g., to implement a new feature or to fix a specific bug).

A significant difference between hired and voluntary developers is that the
former have to follow the guidelines and deadlines imposed by their employers,
whereas the latter are really free to work according to their will and inclination.

7

Table 2 provides a quantitative metric for this dimension.
Please note that we use the term hired developer rather than employee as a way

to distinguish volunteers from people who receive regular compensation for their
contributions to a software project. Whoever is the employer and whatever the
form of contract, a person who is paid to develop an application will behave
differently from a person who writes code in his spare time just for personal
satisfaction. Some companies pay a nominal “bounty” to individuals for small
contributions; we do not consider them to be hired developers.

We used 80% as a threshold since the percentage of code committed by
volunteers on commercial projects is typically below 10%. In community-based
projects, less than 50% of the code is developed by hired employees.

Value Description
1 100% of the code is developed by hired developers
2 >80% of the code is developed by hired developers
3 >50% of the code is developed by hired developers
4 Most of the code is developed by volunteers

Table 2 - Evaluation of contributions dimension.

3.3.2 Project leadership

This dimension indicates the degree to which the leadership of a project is
hierarchical. Commercial Open Source projects are led by a company, which
usually defines a roadmap and sets schedules. Companies might also play a
significant role in guiding and managing community projects. Some Community
Open Source projects are indirectly governed by a predominant company, which
defines the roadmap of the project and leverages the community to reach its goals.
Communities may be led not only by a company, but also by a foundation or by an
independent committee. Some projects are managed by a “benevolent dictator”:
participation and discussion are fostered, but final decisions are made by the
project leader or an entrusted committee. The Linux Kernel project is an example
this style of governance. On the other hand, fully open communities often lack a
formal organization. Decisions are made by voting or by governance bodies which
are directly elected by active contributors. Less formal communities adopt the lazy
consensus approach, i.e., issues are discussed within forums and mailing lists and
decisions are made when nobody has anything more to add.

It is very difficult to provide a quantitative metric to evaluate this dimension.
For the cases we analyzed, we developed a qualitative scale, shown in Table 3.

8

Value Description
1 Roadmap and development process are led by one company

or organization which has a predominant leadership role,
makes decisions and sets schedules.

2 Roadmap and development process are led by one company
or organization. However, free discussion and participation
to the governance of the project is fostered.

3 The community is ruled by some formal rules and
principles. Decisions are made mainly by voting or by
governance bodies directly elected by contributors.

4 The community completely lacks a formal organization and
governance bodies. Decisions are made by informally
discussing issues.

Table 3 - Evaluation of Project leadership dimension.

3.3.3 Working practices

This dimension indicates the degree to which the working and communication
practices of a project are geographically distributed and virtual.

Proprietary software projects and many Commercial Open Source projects rely
primarily on a closed community working for a single employer, often in close
physical proximity. A Community Open Source project, by contrast, often has a
geographically dispersed membership. With little funding to support physical
meetings of the project team, these projects rely heavily on collaborative tools.
Note that such tools may also be used by those in close proximity to each other.

Table 4 presents a qualitative scale for this dimension.

Value Description
1 Developers work on the same site, communicate in

traditional ways and have regular physical meetings.
2 Most developers work on the same site and have regular

physical meetings, with some remote participants
3 The community is dispersed and most developers are

remote. Some subsets of developers, however, work at the
same location and meet regularly.

9

Value Description
4 The community is widely dispersed and all the developers

communicate through virtual tools. Physical meetings are
totally absent or very rare (1-2 per year).

Table 4 – Evaluation of working practices dimension.

3.3.4 Testing

This dimension aims at describing the testing process, as well as the presence and
role of a Quality Assurance department (or resources) within the project.

As noted in Section 3.1, commercial software development organizations
typically have Quality Assurance departments that define formal test processes
and are responsible for the quality of the application. A Quality Assurance
department also defines quality standards, including those for contributions
submitted for inclusion in the code base.

By contrast, Community Open Source projects rely on their own developers
and their user community for testing, with relatively few formal processes or tools.
In general, open source projects tend not to have specific QA roles, even though
some open source projects have very strict pair reviewing rules that determine
when new code or patches can be committed to the code base.

 Table 5 provides a qualitative scale for this dimension. Please note that by
“internally” we also mean testing done by the committers or the core developers
of a project. The word “community” in this context refers to users or casual
contributors.

Value Description
1 All the testing is controlled internally by specific QA

roles. New versions of the application are released only
after being thoroughly tested.

2 Most testing (>50%) is performed internally before new
versions of the application are released. The user
community is leveraged as a broader testing platform, for
example by releasing beta versions and then collecting
feedback and bug notifications.

3 Some testing (<=50%) is performed internally, but most of
it is left to the community of users.

4 Testing is completely left to the community of users.

Table 5 – Evaluation of testing dimension.

10

3.3.5 Graphical representation

We use a diamond graph to show where projects fall on the spectrum for each
dimension. Figure 1 shows the extreme cases of a traditional closed source and a
completely open software projects.

0

1

2

3

4

Contribution

Project

leadership

Working

practices

Testing

Traditional closed source

Completely open software

Fig. 1 – Graphical representation of project management dimensions.

4 Case Studies

In this section we provide some examples on how the SPGF may be applied to
real projects. We apply the SPGF to three open source projects: OpenOffice.org,
MySQL and SugarCRM. We chose these since they are well known applications,
and show differences among the dimensions of the framework.

Figure 2 presents a graphical representation of the positioning of these projects. A
first glance at the picture shows that OpenOffice.org and MySQL are closer to the
completely open source approach, while SugarCRM is closer to closed software
projects.

11

0

1

2

3

4

Contribution

Project leadership

Working practices

Testing

OpenOffice

MySQL

SugarCRM

Fig. 2 Graphical representation of the assessment of a project according to the framework.

4.1 OpenOffice

OpenOffice (OpenOffice.org) is a widely used open source office suite with more
than 100 million downloads.

OpenOffice is quite a monolithic project. Although everybody can contribute to
the project and can earn commit right, Sun Microsystems and IBM have
historically contributed almost 90% of the code, paying more than 90 developers
for their work. Other companies, such as RedHat and Novell, also contribute to the
code. This accounts for the score 2 on contribution dimension.

The community has a very structured governance model, based on a
Community Council and an Engineering Steering Committee. The Community
Council is constituted by members of the community but is deeply influenced by
Sun and IBM. The project has a clear and shared roadmap, which probably could
not exist without a corporate structure in the background. All these factors lead to
score 2 on the project leadership dimension.

Communication within the community mainly takes place on mailing lists and
on IRC channels. However, most of Sun’s developers work in Hamburg and meet
daily. As a result, issues are often discussed in person and then conclusions are
posted on mailing lists, so that remote community members can be informed.

12

Moreover, occasional cross-corporation meetings are held several times a year.
Consequently, working practices score 3.

OpenOffice began as StarOffice with Sun, and the QA team that worked on
StarOffice now works on OpenOffice. There are currently about 550 QA members
with canconfirm privilege, i.e. the ability to approve some feature before it is
issued. In this particular aspect, OpenOffice is very similar to a traditional
software house. Testing is also managed in a very structured way. Specific test
suites have been written, integration and system testing are carried out regularly,
daily smoke tests, regression testing and code coverage tools are adopted on a
regular basis. Every developer is responsible for testing his code, but pair review
is applied, too, and the QA team has to confirm the validity of new code.
Feedback and bug notifications from users are also accepted and encouraged. This
behavior accounts for score 2 on testing dimension.

4.2 MySQL

MySQL (www.MySQL.com) is distributed by MySQL, AB (now part of Sun
Microsystems). Even though the code is open, it is mainly developed (99%) by
employees of the company. The community is invited to submit new code, which
is reviewed according to strict and documented internal standards before it is
accepted. However, this is quite rare, given the size and complexity of the code
base. This accounts for the score 1 on contribution dimension.

MySQL (the company) controls governance of the project. The corporate
culture is very open to discussion, which is fostered by means of online
communication tools, such as blogs, wikis, and forums, but MySQL, as a
traditional software house, makes the final decisions. Thus, we assign a score of 1
to project leadership dimension.

The real value of the community is mainly to create a broad marketing platform
and to provide extensive testing that augments the internal MySQL QA
department. Functional tests and cross-platform tests are usually done by the
internal development team, then QA tests the alpha versionusing their own scripts.
Once the code is released, more than 50% of testing is left to the community,
which also performs most of the integration tests. This combination of internal QA
and external testing explains the scores 3 on the testing dimension.

Although MySQL is managed as a traditional company, many of its working
practices resemble those of community projects. Developers are located in 26
countries around the world, and work from home, meeting only once or twice a
year. They mainly communicate through asynchronous tools, such as highly
specific internal IRC channels, shared task lists and e-mails, to overcome time
zone differences. Telephone conference calls and video chats are also organized,
but they are always combined with e-mails or forum posts. This accounts for the
score of 4 on the working practices dimension.

13

4.3 SugarCRM

SugarCRM (www.SugarCRM.com) is another Commercial Open Source project.
Similarly to MySQL, most of the code is open, but it is developed by internal
employees only. The core application is centrally controlled by the company,
while the community is involved in the creation of new projects, such as
extensions and plug-ins, which are hosted on the SugarForge website.
Consequently, the score for contribution and project leadership dimensions is the
same as MySQL.

On the other hand, most of the developers work in the same location and have
regular meetings. Forums and mailing lists are used, but by external community
members rather than internal developers. VoIP phone conferences are frequent,
but this happens even in very traditional closed source projects. Consequently, it
scores 1 on the working practices dimension.

Most quality assurance and testing is performed by the internal QA department,
which is also responsible for bug fixing. This accounts for score 1 on the testing
dimension.

SugarCRM governance and managerial styles are actually very similar to those
of a traditional closed software project, with the only exceptions that most of the
code is open and that external people can contribute code.

5 Application of the framework to the sample

After defining the framework, we applied it to our sample of Community Open
Source projects.

Table 6 shows the distribution of the scoring of the projects in the sample along
the four dimensions of the framework.

Dimension x x<3 3<=x<4 x=4
Contribution 43% 10% 47%
Project Leadership 30% 48% 22%
Working Practice 7% 37% 57%
Testing 33% 44% 15%

Table 6 – Distribution of SPGF scores across the sample.

Most of the communities have some kind of organization and governance

bodies, which control new contributions and part of the testing. In particular, the
survey showed that approximately 50% of the code of the applications in the

14

sample is developed by hired developers and that physical meeting are held in
35% of projects.

6 Conclusions and Future Work

The Software Project Governance Framework provides a consistent way to
analyze projects based on their governance and managerial styles. The central idea
behind the framework is that open source has a deep impact on the governance of
a software project and, consequently, may impact its quality and costs. The
empirical analyses we conducted allowed us to study and embrace a wide range of
different software projects. The SPGF provides a structured methodology to
analyze managerial and governance models, and to categorize these projects
according to the dimensions that are regarded as the most significant by the
project leaders. We think that the SPGF may enable a deeper comprehension of
software projects and may be useful to a wide range of users.

First, it may be used by researchers to quickly assess and cluster projects. This
allows one to select a homogenous sample of projects from a governance point of
view before performing further surveys and analysis. We are working on a
research project that seeks correlations between the SPGF dimensions and quality
of design and development effort of a software project. Second, this framework is
valuable to end users seeking information about the structure of various open
source projects. For example, a company which is evaluating the adoption of an
open source application may want to know and classify the governance approach
behind the development of that application. Third, this framework may be used as
a reference by developers and project leaders who want to position their products
among the different typologies of open source projects and clearly present their
managerial style to the public.

In the future, we are planning to further validate and potentially extend this
framework. We will expand our sample through additional interviews and surveys,
and also seek correlations between these dimensions and project success.

Acknowledgments

We are grateful to the project managers who provided data to us. For the projects identified in
this paper, we specifically acknowledge the participation of Louis Suarez-Potts (OpenOffice),
Kaj Arnö and Omer BarNir (MySQL), and Jacob Taylor (SugarCRM). We also thank Professor
Chiara Francalanci and Francesco Merlo (Politecnico di Milano) for their support and advice.

15

References

[1] L.C. Briand, K. El Emam, and S. Morasca, “On the application of measurement theory in

software engineering”, Journal of Empirical Software Engineering, vol. 1, no. 1, pp. 61-
88, 1996

[2] B. Fitzgerald, “The Transformation of Open Source Software, MIS Quarterly, vol. 30, no.
3, 2006.

[3] K. Fogel, “Producing Open Source Software”, O’Reilly, Sebastopol (CA), 2006.

[4] G. Goth, “Open Source Business Models: Ready for Prime Tim”, IEEE Software,
Nov/Dec 2005, pp. 99-100.

[5] M. Griffiths. (2006, Oct. 5). Most software development metrics are misleading and
counterproductive [Online]. Agile Journal, Available:
http://www.agilejournal.com/content/view/107

[6] L.J. Kirsch, “The management of complex tasks in organizations: controlling the systems
development process”, Organization Science, vol. 7, no. 1, pp. 1-21, 1996.

[7] A. MacCormack, J. Rusnak, and C.Y. Baldwin, “Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and Proprietary Code”,
Management Science (forthcoming).

[8] P.S. Renz, Project governance: implementing corporate governance and business ethics in
nonprofit organizations, Heidelber, Physica-Verl, 2007.

[9] S. Slaughter, J. Roberts, and I. Hann, “Communication Networks in an Open Source
Software Project”, Proc. of 2nd Conference on Open Source Systems, Italy, Jun 2006.

[10] S. Slaughter, J. Roberts, and I. Hann, “Motivations, Participation and Performance in
Open Source Software Development”, Management Science, (forthcoming).

[11] J. Sonnenfeld, “Good governance and the misleading myths of bad metrics”, Academy of
Management Executives, vol. 18, no. 1, pp. 108-113, 2004.

