
University of North Carolina School of Law

From the SelectedWorks of Andrew Chin

March 18, 2009

On Abstraction and Equivalence in Software
Patent Doctrine: A Reply to Bessen, Meurer and
Klemens
Andrew Chin

Available at: https://works.bepress.com/andrew_chin/1/

http://www.law.unc.edu/
https://works.bepress.com/andrew_chin/
https://works.bepress.com/andrew_chin/1/

ON ABSTRACTION AND EQUIVALENCE
IN SOFTWARE PATENT DOCTRINE:

A RESPONSE TO BESSEN, MEURER AND KLEMENS

Andrew Chin
*

ABSTRACT

Recent books by Professors James Bessen and Michael Meurer and by

economist Ben Klemens have argued that software warrants technology-
specific treatment in patent doctrine. This article argues that the authors'
categorical claims about software are unsupported by computer science, and
therefore cannot support their sweeping proposals regarding software
patents as a matter of law. Such proposals therefore remain subject to
empirical examination and critique as policy choices, and are unlikely to be
achieved through judicially developed doctrines.

INTRODUCTION

Two recent monographs currently stand at the center of the decades-old

controversy over whether software-related inventions should be considered
patentable subject matter under § 101 of the Patent Act, a controversy still
unresolved by the Federal Circuit’s recent en banc decision in In re Bilski.1
In 2006, Brookings Institution economist Ben Klemens published Math You

* Associate Professor, University of North Carolina School of Law.
In the course of writing to correct misinterpretations of the Karmarkar algorithm and

other results in computer science, the author wishes to note for the record his own
erroneous statement (at the age of 19) that Karmarkar had “apparently solved the
longstanding ‘traveling salesman’ problem.” See Andrew Chin, Math, At Its Best, Lives

On, THE DAILY TEXAN, Aug. 16, 1985, at 8 (reporting on Michael Saks’s plenary lecture
on the algorithm at the 1985 Joint Mathematics Meetings in Laramie, Wyo.). Any errors in
the present Article are solely the author’s responsibility, and he intends to acknowledge
them likewise in due course.

1 In re Bilski, 545 F.3d 943 (Fed. Cir. 2008) (en banc). For a brief discussion of
Bilski’s failure to resolve the controversy over software patents, see infra text
accompanying notes 159-170.

2 ON ABSTRACTION AND EQUIVALENCE [

Can’t Use: Patents, Copyright, and Software,2 in which he argued that
software (and general-purpose computers programmed with software)
should not be patentable.3 Klemens has subsequently clarified and
elaborated this argument in a law review article4 and founded the End
Software Patents Project, an organization seeking “to eliminate patents for
software and other designs with no physically innovative step.”5

In the 2008 book Patent Failure: How Judges, Bureaucrats, and

Lawyers Put Innovators at Risk,6 Boston University economics professor
James Bessen and law professor Michael J. Meurer document the failure of
patents to provide effective notice of their scope.7 Bessen and Meurer
single out software and business method patents for special criticism,8 and
conclude that “patent reform will not likely be successful unless these areas
are specifically addressed.”9 They argue for “modest” technology-specific
changes in patent doctrine;10 however, if these initial changes “fail to work
sufficiently well,” they would consider “more aggressive” reforms11 such as
restricting or eliminating the eligibility of software-related inventions.12

Both monographs provide detailed accounts of the symptoms of
software-related patent system dysfunction, including overwhelmed
examiners,13 high litigation costs,14 and structural distortions of software-
related industries.15 These observations, particularly in the context of
Bessen and Meurer’s extensive review of empirical law and economics
scholarship on the patent system, lend considerable support to the authors’
policy arguments. The authors of both books stand on shakier ground,
however, in their diagnoses of the patent system’s difficulties in dealing

2 BEN KLEMENS, MATH YOU CAN’T USE: PATENTS, COPYRIGHTS, AND SOFTWARE

(2006).
3 See id. at 63-64 & 158-60.
4 Ben Klemens, The Rise of the Information Processing Patent, 14 B.U. J. SCI. &

TECH. L. 1 (2008).
5 End Software Patents, ESP Releases Report on the State of Softpatents, News

Release (Feb. 28, 2008) <http://endsoftpatents.org/28-february-2008:esp-releases-report-
on-the-state-of-softpatents> (visited June 15, 2008).

6 JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE: HOW JUDGES,
BUREAUCRATS AND LAWYERS PUT INNOVATORS AT RISK (2008).

7 See id. at 46-72.
8 See id. at 187-214.
9 See id. at 247.
10 See id. at 244, 246.
11 See id. at 244.
12 See id. at 245.
13 See BESSEN & MEURER, supra note 6, at 192-93; KLEMENS, supra note 2, at 84-90.
14 See BESSEN & MEURER, supra note 6, at 191-93; KLEMENS, supra note 2, at 90-91

& 107; Klemens, supra note 4, at 27-32.
15 See BESSEN & MEURER, supra note 6, at 190-91; KLEMENS, supra note 2, at 92-107;

Klemens, supra note 4, at 21-27.

] IN SOFTWARE PATENT DOCTRINE 3

with software-related inventions.
In a section of their book entitled “Why Software Patents Are

Different,”16 Bessen and Meurer argue that “the abstractness of software
technology inherently makes it more difficult to place limits on abstract
claims in software patents.”17 Given that patent claim drafting is itself
largely an exercise in abstraction, however, it is not immediately clear why
the abstract nature of software should pose a special problem for the
determination of patent scope. In fact, computer scientists and software
engineers are accustomed to thinking and communicating precisely about
levels of abstraction in software and, as I have indicated previously18 and
will reemphasize herein,19 this precision can be brought to bear on the
problem of defining patent scope. Bessen and Meurer attempt to illustrate
the difficulties caused by the “abstractness of software technology” with
two examples of algorithms whose equivalents (in some mathematical
sense) may be prohibitively difficult to recognize during the examination or
term of a patent. Section I of this Article examines these examples and
demonstrates that neither of them actually supports Bessen and Meurer’s
stated concern.

Klemens finds fault with the Federal Circuit’s departure from
longstanding doctrine that has regarded mathematical formulas as “abstract
ideas” to be excluded from patentable subject matter.20 According to
Klemens, a claim to a programmed computer should be unpatentable
whenever the program is the only innovative element, because every
computer program is “nothing but a mathematical equation.”21 Klemens
attempts to support this characterization by loosely paraphrasing a classical
result in theoretical computer science, the Church-Turing Thesis,22 and
stating — without proof — sweeping and conclusory propositions that
supposedly follow as corollaries from Alonzo Church’s and Alan Turing’s
intricate mathematical theories of recursive functions.23 The ultimate effect,
if not the purpose, of Klemens’s appeal to deep theory is to dazzle the “non-

16 See BESSEN & MEURER, supra note 6, at 201-14.
17 See id. at 201.
18 See Andrew Chin, Computational Complexity and the Scope of Software Patents, 39

JURIMETRICS 17 (1999).
19 See infra text accompanying note 146.
20 See KLEMENS, supra note 2, at 53-69; Klemens, supra note 4, at 10-20.
21 See KLEMENS, supra note 2, at 65 (describing a programmed computer as a “state

machine”).
22 See KLEMENS, supra note 1, at 26 (introducing the Church-Turing thesis); Klemens,

supra note 4, at 9-10 (proceeding to discuss the implications of the thesis without stating
the thesis itself).

23 See infra Section II.C.

4 ON ABSTRACTION AND EQUIVALENCE [

geeks”24 rather than to prove any point. Section II of this Article shows that
the Church-Turing Thesis actually applies to relatively few software-related
inventions and does not speak to Klemens’s proposed doctrinal reforms.

In summary, Bessen and Meurer argue, through their examples, that
software inventions are inherently too abstract to describe their scope
reliably in a patent claim, and in this respect are different enough from other
inventions to require technology-specific treatment in patent doctrine.
Klemens argues, through theory, that software inventions should be deemed
so abstract to be unpatentable as a matter of law. Sections I and II of this
Article show that both of these categorical arguments were presented
without adequate factual support. These findings imply that the authors’
proposals for software technology-specific patent law reform are actually
grounded in empirical policy analyses, not categorical distinctions. The
proposals therefore remain subject to empirical examination and critique as
policy choices, and are unlikely to be achieved through judicially developed
doctrines. They also highlight the need for precise language in the ongoing
debate over patent reform, in which the meanings of legal, scientific and
economic concepts are accurately informed by the understandings of their
respective disciplines, rather than intuitions and analogies. Section III of
this Article concludes with additional comments and directions for further
work.

I. BESSEN AND MEURER

Without singling out any particular area of technology, courts and

scholars have long described the ambiguity of claim language as a pervasive
impediment to the notice function of patents.25 Even Bessen and Meurer

24 KLEMENS, supra note 1, at 24.
25 See, e.g., Autogiro Co. of Am. v. United States, 384 F.2d 391, 396-97 (Ct. Cl. 1967)

(describing claim drafting as a “conversion of machine to words [that] allows for
unintended idea gaps which cannot be satisfactorily filled”); Gretchen Ann Bender,
Uncertainty and Unpredictability in Patent Litigation: The Time is Ripe for a Consistent

Claim Construction Methodology, 8 J. INTELL. PROP. L. 175, 209 (2001) (arguing that
“claim language is often inherently ambiguous”); Michael Risch, The Failure of Public

Notice in Patent Prosecution, 21 HARV. J.L. & TECH. 179, 192 (2007) (citing 30%
appellate reversal rate of district court claim construction rulings); see also United Carbon
Co. v. Binney & Smith Co., 317 U.S. 228, 236 (1942) (“A zone of uncertainty which
enterprise and experimentation may enter only at the risk of infringement would discourage
invention only a little less than unequivocal foreclosure of the field.”); Merrill v. Yeomans,
94 U.S. 568, 573-74 (1877) (“The public should not be deprived of rights supposed to
belong to it, without being clearly told what it is that limits these rights. The genius of the
inventor, constantly making improvements in existing patents — a process which gives to
the patent system its greatest value — should not be restrained by vague and indefinite

] IN SOFTWARE PATENT DOCTRINE 5

acknowledge that the “problems of abstract patent claims clearly apply to a
broad range of technologies in addition to software.”26 Nevertheless, they
argue that “software patents are different” in that “the abstractness of
software technology inherently makes it more difficult to place limits on
abstract claims in software patents.”27

Specifically, Bessen and Meurer are concerned that computer
algorithms have “disparate representations” that may be impossible for even
computer scientists to recognize at the time a patent issues, thereby
“creat[ing] critically difficult problems for the notice function of the patent
system.”28

To illustrate this difficulty, Bessen and Meurer first discuss an
“equivalen[ce]” between two examples of a large class of apparently
intractable computational problems known as NP-complete problems.29
Stated informally, the traveling-salesman problem is to find the shortest
tour that visits each of a list of cities (in any order), given the known
distances between each pair of cities. The map-coloring problem is to paint
the regions of a given map with a minimal number of colors so that no two
adjacent regions are the same color. Bessen and Meurer write:

[T]he ‘traveling-salesman’ problem, which is used for
routing delivery trucks among other things, is more or less
equivalent to the ‘map-coloring’ problem and a whole range
of other problems. This means that an algorithm for solving
the traveling-salesman problem is also, if worded broadly
enough, an algorithm for doing map coloring.30

The authors’ concern here is that a patent claim directed specifically to a
algorithm for solving one NP-complete problem might eventually be
construed more abstractly as covering the “whole range” of algorithms for
solving NP-complete problems.

Bessen and Meurer’s second illustration concerns a patented linear
programming algorithm whose “equivalence” to prior art methods was only
discovered by other computer scientists in 1986, two years after the
algorithm was published:

The patent is sometimes cited as an example of what a
software patent should be: a highly specific, nontrivial
contribution to practical knowledge. Yet serious questions

descriptions of claims in existing patents from the salutary and necessary right of
improving on that which has already been invented.”).

26 BESSEN & MEURER, supra note 6, at 201.
27 Id.
28 Id. at 202.
29 Id.
30 Id. at 201-02.

6 ON ABSTRACTION AND EQUIVALENCE [

exist as to the boundaries of even this patent, questions as to
whether its claims are truly novel, and whether [the inventor
Narendra] Karmarkar actually “possessed” all the
technologies claimed. One problem is that Karmarkar’s
algorithm seemed similar to technologies developed during
the 1960s. In 1986, computer scientists demonstrated, in
fact, that Karmarkar’s algorithm is equivalent to a class of
techniques that was known and applied to linear problems
during the 1960s. Moreover, after this equivalence was
demonstrated, computer scientists began applying algorithms
based on these older techniques to linear programming
problems — some of these algorithms appeared to work
better than the Karmarkar-AT&T approach. . . .

Given these facts, consider the difficulty of determining
the boundaries of this patent. Would anyone have seen
Karmarkar’s algorithm as novel in light of the techniques
used in the 1960s? Certainly not after 1986, when their
equivalence was proved. But even in 1984, computer
scientists might well have had doubts, yet they would have
been unable to make a certain comparison. . . . Similarly,
would AT&T have been able to assert its patent successfully
against people who used linear-programming techniques
based on those used in the 1960s? Apparently, AT&T was
able to obtain a cross-license from IBM, which had used
these older techniques.

The abstractness of the patented algorithm means that
these determinations cannot be made with certainty.31

Here, the authors’ concern is essentially that Karmarkar’s claims, being
directed to an algorithm, were necessarily drafted in terms that were so
abstract that they obscured the relevance of certain prior art techniques to
the patentability analysis, thereby resulting in the patenting of an invention
of dubious novelty.

The basic problem with Bessen and Meurer’s illustrations is that in each
case the computational concept of “equivalence” does not correspond to the
relevant legal standard of equivalence pertaining to a claimed invention. As
the following technical discussion should make clear, it is highly
implausible that an algorithm for solving any particular NP-complete
problem would be patented under a claim that was only later understood to
cover solutions to the general class of NP-complete problems, either
literally or by equivalents. It should also become apparent that that the

31 Id. at 202-03.

] IN SOFTWARE PATENT DOCTRINE 7

aforementioned mathematical programming techniques from the 1960s
would not have sufficed as prior art to show that Karmarkar’s algorithm
was anticipated or obvious in 1984.

A. “Equivalences” Among Algorithms for NP-Complete Problems

The mathematical theory of computational complexity has historically

supplied computer science with the rigor necessary to study computational
problems and algorithms. One of the most important milestones in this field
came in 1971, with the publication by Stephen Cook of a set of results
concerning the apparent intractability of a large class of computational
problems.32 From Cook’s theory emerged the understanding that many
well-known problems, such as the traveling salesman and map coloring
problems, are nearly enough equivalent that each is equally resistant to
solution by an efficient (i.e., polynomial time) algorithm.33 To formalize
this notion of equivalence, it is necessary to understand three important
concepts from computational complexity theory, polynomial-time

algorithms, NP-completeness, and polynomial-time reductions.

1. Polynomial-Time Algorithms

The standard basis for measuring the computational complexity of an

algorithm is the Turing machine, an abstract model of computation. A
Turing machine consists of a read-write head, an infinite tape consisting of
spaces for symbols that can be read or written, and a finite state control that
can move the head one space to the left or right along the tape depending on
the machine’s state.34 A program for a Turing machine essentially consists
of a transition function that determines the machine’s next step (writing,
moving and changing state) depending on the machine’s current state and
the symbol currently being read.35 The program also specifies two final
states, “yes” and “no,” for which the machine’s next step is simply to halt
the computation.36 For a given program, whether the Turing machine
eventually halts in a “yes” state or a “no” state depends on the initial

32 See Stephen A. Cook, The Complexity of Theorem-Proving Procedures, PROC. 3RD

ANN. ACM SYMP. ON THEORY OF COMPUTING 151 (1971).
33 See MICHAEL R. GAREY & DAVID S. JOHNSON, COMPUTERS AND INTRACTABILITY: A

GUIDE TO THE THEORY OF NP-COMPLETENESS 1-14 (1979).
34 See id. at 23.
35 See id.
36 See id. at 23-24.

8 ON ABSTRACTION AND EQUIVALENCE [

content of the tape, when read relative to the initial position of the head.37
(A relatively simple example of a Turing machine program is provided in
the Appendix.)

A Turing machine is a relatively weak computational model, but
powerful enough to support a stable classification of problems as tractable
or intractable.38 For such a complexity analysis to proceed, the problem in
question must be restated as a decision problem that can be answered with a
“yes” or “no,” and there must be a system for encoding any instance of the
problem as a string of symbols that can be read from a Turing machine
tape.39 A decision problem Π is said to be tractable if there exists a
polynomial-time algorithm for solving it; i.e., there is a polynomial p such

that there exists a Turing machine program that halts with the correct
decision for each instance of Π in no more than)(np steps, where n is the

size of (i.e., the number of symbols in) the encoded instance.40 The class of
tractable problems is referred to simply as P. Π is said to be intractable if
there exists no polynomial-time algorithm for solving it.

The class P of tractable problems as defined here turns out to be the
same regardless of the underlying computational model,41 and corresponds
to a longstanding consensus among computer scientists about the feasibility
of solving increasingly large-scale problems on increasingly powerful real-
world machines.42 This consensus dates back to the 1960s, when papers by
computer scientists Alan Cobham43 and Jack Edmonds44 famously
highlighted the fundamental importance of the distinction between
polynomial-time (“good”) algorithms and less efficient (“bad”) algorithms.
Their basic point was that as the processing speed of available computers
increases exponentially over time — an empirical observation popularly
known as Moore’s Law — it is polynomial-time algorithms, and only
polynomial-time algorithms, that are capable of harnessing these
improvements to solve exponentially larger problem instances.45 For
example, following a 100-factor speedup in processing speed, an algorithm

37 See id.
38 See id. at 7-8.
39 See id. at 9-11.
40 See id. at 26-27.
41 See id. at 10 (“All the realistic models of computers studied so far . . . are equivalent

with respect to polynomial time complexity. . . .”).
42 See id. at 6-11.
43 Alan Cobham, The Intrinsic Computational Difficulty of Functions, in PROC. 1964

INT’L CONGRESS FOR LOGIC METHODOLOGY AND PHILOSOPHY OF SCIENCE (Y. Bar-Hillel,
ed. 1964), at 24.

44 Jack Edmonds, Paths, Trees, and Flowers, 17 CANADIAN J. MATH. 449 (1965).
45 See Andrew Chin, Computational Complexity and the Scope of Software Patents, 39

JURIMETRICS 17, 25-26 (1998).

] IN SOFTWARE PATENT DOCTRINE 9

that takes 2
n steps to solve instances of size n will be able to handle

instances 10 times as large as before, but an algorithm that takes n2 steps
will only be able to handle instances that are incrementally (i.e., an
additional 6.64 input symbols) larger.46

2. NP-Completeness

It is relatively straightforward to prove the complexity and correctness
of an efficient algorithm for solving a problem, and thereby to show that the
problem is tractable (i.e., in P). As is often the case, however, proving the
negative is considerably more difficult. The most that can be said about the
computational difficulty of solving many problems is that a polynomial-
time algorithm is very unlikely to exist.

Even without formal proofs of intractability, computer scientists have
managed to show that some computational problems are relatively difficult.
They have focused these efforts on the class NP, which consists of those
problems for which a polynomial-time algorithm might conceivably exist
(whether or not one has already been discovered).47 The hardest problems
in NP, including such familiar examples as the traveling-salesman and
graph-coloring problems, are known as NP-complete problems.

As illustrated in Figure 1, the class of NP-complete problems has the
special property that if any NP-complete problem is tractable, then all
problems in NP are tractable (i.e., P=NP). Thus a proof that a problem is
NP-complete serves to demonstrate that the problem is intractable, provided
that P≠NP. NP-complete problems are sometimes referred to as
“equivalent” because of this common property; it is in this sense that
Bessen and Meurer’s use of the term is apt.48

46 See id. at 8.
47 In the Turing machine model, the behavior of such a hypothetical polynomial-time

algorithm is formally equivalent to a nondeterministic algorithm in which a “guessed
structure” of polynomial size may be appended to the input to aid the computation, thereby
reducing the problem to one of verification. See GAREY & JOHNSON, supra note 33, at 27-
32.

48 See supra text accompanying note 33.

10 ON ABSTRACTION AND EQUIVALENCE [

Figure 1. Relationships among the complexity classes P, NP and NP-complete in

two alternative states of the world.

It is unknown whether P=NP or P≠NP; in fact, this has become one of

the most important open questions in mathematics and computer science.49
Until it is established that P≠NP, the traveling-salesman and map-coloring
problems and thousands of other NP-complete problems will lack an
efficient solution, yet will not be known to be intractable.

Failure to establish that P=NP, on the other hand, signifies the failure of
the entire scientific community to find a polynomial-time algorithm for
solving any one of the thousands of NP-complete problems. Even though
computer scientists are certainly well aware that “absence of evidence is not
evidence of absence,”50 many have viewed the absence of an efficient
solution to any NP-complete problem as evidence that none can exist (i.e.,
that P≠NP).51 This view was expressed in whimsical terms by Garey and
Johnson’s classic treatise on NP-completeness52 in 1979, which explained
that if tasked with designing an efficient algorithm for some new
computational problem, say, the “bandersnatch problem,”

you might be able to prove that the bandersnatch problem is
NP-complete and, hence, that it is equivalent to all these

49 See, e.g., Michael Sipser, The History and Status of the P versus NP Question, in

PROC. 24TH ANNUAL ACM SYMP. ON THEORY OF COMPUTING (1992), at 603 (describing it
as “one of the most important problems in contemporary mathematics and theoretical
computer science”); Clay Mathematics Institute, P vs. NP Problem,
<http://www.claymath.org/millennium/P_vs_NP/> (visited July 15, 2008) (describing it as
one of seven “Millennium Problems” for which the Institute offered a standing prize of $1
million in 2000).

50 See, e.g., Hall v. Baxter Healthcare Corp., 947 F. Supp. 1387, 1470-71 (D. Or. 1996)
(describing this as “one of the major tenets of science”).

51 See, e.g., William A. Gasarch, Guest Column: The P=?NP Poll, 33 SIGACT NEWS
34 (2002).

52 See GAREY & JOHNSON, supra note 33.

] IN SOFTWARE PATENT DOCTRINE 11

other hard problems. Then you could march into your boss’s
office and announce: “I can’t find an efficient algorithm, but
neither can all these famous people.” At the very least, this
would inform your boss that it would do no good to fire you
and hire another expert on algorithms.53

Three decades later, both the list of “famous people” and the universe of
NP-complete problems they have failed to conquer have grown
dramatically, further bolstering the case that P≠NP.

In the computer science research community, the view that the edifice of
NP-completeness has grown too formidable to collapse is dominant but not
universal. In a recent survey of prominent computer scientists, a substantial
majority (61%) predicted an eventual proof that P≠NP, while only a small
minority (9%) predicted that it will turn out that P=NP.54 Few (30%)
expected the question to be resolved by the year 2029.55

The P vs. NP problem appears from the survey to have humbled many
of the most accomplished computer scientists of our time. Turing Award
winner Richard Karp responded, “My intuitive belief is that P is unequal to
NP, but the only supporting arguments I can offer are the failure of all
efforts to place specific NP-complete problems in P by constructing
polynomial-time algorithms.”56 While taking a contrary view, Senior
Whitehead Prize winner Bela Bollobas was equally tentative, describing
himself as “on the loony fringe of the mathematical community” in
believing “not too strongly” that a proof that P=NP would appear within
twenty years.57 Jim Owings, an emeritus professor at the University of
Maryland, was more philosophical about the state of his knowledge: “It is
the greatest unsolved problem in mathematics. . . . It is the raison d’etre of
abstract computer science, and as long as it remains unsolved, its mystery
will ennoble the field.”58

Even respondents who expected an eventual proof that P=NP expressed
doubt that such a result would enable the solution of all NP-complete
problems in practice. Donald Knuth, the founder of the modern science of
algorithms, wrote that he expects P=NP to be the consequence of an indirect
proof, so that “we will never know” the complexity of an NP-complete
problem.59 Other respondents expected any proof of P=NP to result in

53 Id. at 1-3.
54 See Gasarch, supra note 51, at 36.
55 See id.; but see id. at 38 (noting John Conway’s opinion that “this shouldn’t really

be a hard problem; it’s just that we came late to this theory, and haven’t yet developed any
techniques for proving computations to be hard.”).

56 Id. at 41.
57 Id. at 37.
58 Id. at 43.
59 See id. at 41.

12 ON ABSTRACTION AND EQUIVALENCE [

polynomial time bounds for NP-complete problems whose degrees and/or
coefficients are too high to assure the existence of a practical algorithmic
solution.60

3. Polynomial-Time Reductions

The distinction between problems known and not known to have

polynomial-time algorithms has special significance because of Moore’s
Law and the theory of NP-completeness. Since polynomials with high
degrees or coefficients can grow very quickly, however, a problem may be
in P yet lack a practical algorithmic solution even for small inputs.
Computational complexity theory must therefore also be concerned with
achieving the lowest possible upper bounds on the time required to solve
tractable problems. An eventual proof that P=NP would imply that all NP-
complete problems could be solved by polynomial-time algorithms, but it
would not immediately imply the existence of practical algorithms for
solving all NP-complete problems. Instead, it would instigate a further
program of research into the complexity of individual NP-complete
problems.61

Much work on the complexity of specific NP-complete problems has
already been done. The typical procedure for proving a decision problem

NP∈Π to be NP-complete is to show that Π is at least as unlikely to be in

P as some other problem 0Π that has previously been shown to be NP-

complete. This involves constructing what is known as a polynomial-time

reduction from 0Π to Π, i.e., a polynomial-time computable function f

that maps each possible instance x of 0Π into a corresponding instance

)(xf of Π that yields the same yes-or-no decision.62 The idea is that any

polynomial-time algorithm that solves
Π

 could be used as a polynomial-

time solution for 0Π : given an input x to problem 0Π , simply calculate

the transformed value)(xf in polynomial time, and then solve Π in

polynomial time.63
Stephen Cook’s 1971 article64 laid the groundwork for this research by

identifying and proving the first problem to be NP-complete from first
principles. The problem, now known in the literature as SATISFIABILITY

60 See id. (noting comments of Vladik Kreinovich and Clyde Kruskal).
61 For example, see infra text accompanying notes 85-86 (discussing Karmarkar’s

improvement of Khachiyan’s upper bound for the complexity of linear programming).
62 See GAREY & JOHNSON, supra note 33, at 34.
63 See id. at 34-35.
64 See Cook, supra note 32.

] IN SOFTWARE PATENT DOCTRINE 13

(or SAT for short), is to determine whether a Boolean formula on n true-or-
false variables, given in disjunctive normal form (i.e., an AND of OR-
clauses on the n variables and their negations), can be made true by some
assignment of values to the variables.65 Cook’s result66 essentially
constructed a polynomial-time reduction from any problem in NP67 to
SATISFIABILITY.68 Cook’s article then went on to show, inter alia, a
polynomial-time reduction from SATISFIABILITY to a second NP-
complete problem, now referred to as SUBGRAPH ISOMORPHISM.69
Soon thereafter, Richard Karp published an article presenting proofs of the
NP-completeness of twenty-one well-known problems in computer science,
including 3SAT, a variant of SATISFIABILITY in which each OR-clause
consists of exactly three terms.70

Over the years, thousands of problems have been added to a growing
tree of NP-complete problems, each linked to a previous member of the
class by a polynomial-time reduction.71 Between any two NP-complete
problems on the tree, it is possible to trace a chain of polynomial-time
reductions that demonstrates their “equivalence,” in the sense that the two
problems are equally unlikely to be tractable.72 If used in practice,
however, polynomial-time reductions can generate significant overheads,
both in the time required to calculate the transformed inputs and in the size
of the transformed inputs themselves. Where several polynomial-time
reductions are applied in succession, these overheads will be compounded.

To illustrate the overheads that may result from a polynomial-time
reduction, consider another of Karp’s problems, known as VERTEX
COVER. The problem may be stated as follows: Given a graph of N
vertices and M edges and an integer Nn < , is there some subset of n
vertices that includes at least one endpoint of every edge in the graph?73
Garey and Johnson present a proof that VERTEX COVER is NP-complete
by presenting a polynomial-time reduction f from 3SAT to VERTEX

65 See GAREY & JOHNSON, supra note 33, at 39 (defining SATISFIABILITY).
66 See Cook, supra note 32, at 152-53 (proving Theorem 1).
67 See supra note 47.
68 See GAREY & JOHNSON, supra note 33, at 44 (restating Cook’s result as showing the

existence of a polynomial-time reduction Lf from a nondeterministic Turing machine

computation recognizing the language L to SAT).
69 See Cook, supra note 32, at 153-54 (proving Theorem 2).
70 See Richard M. Karp, Reducibility Among Combinatorial Problems, in COMPLEXITY

OF COMPUTER COMPUTATIONS 85 (R.E. Miller & J.W. Thatcher eds. 1972).
71 For early versions of this tree, see, e.g., GAREY & JOHNSON, supra note 33, at 47;

Karp, supra note 70, at 96.
72 See supra text accompanying notes 33 and 48.
73 See Karp, supra note 70, at 94 (referring to the problem as NODE COVER); GAREY

& JOHNSON, supra note 33, at 46.

14 ON ABSTRACTION AND EQUIVALENCE [

COVER. Figure 2 illustrates how the reduction f operates to convert the

3SAT instance () ()421431 uuuuuu ¬∨∨¬∧¬∨¬∨ into an instance of

VERTEX COVER with 8=n .74

Figure 2. VERTEX COVER instance resulting from the 3SAT instance

() ()421431 uuuuuu ¬∨∨¬∧¬∨¬∨ .

For each variable that appears in the 3SAT instance, the VERTEX COVER
instance has two vertices, representing the variable and its negation,
connected by an edge. Each clause in the 3SAT instance is represented by

three vertices][],[],[321 icicic , connected by three edges to form a triangle.

Finally, each of the three vertices representing each clause is connected to
the vertex that represents the corresponding variable (or its negation) as it
appears in the 3SAT instance.75

While this polynomial-time reduction from 3SAT to VERTEX COVER
is simple and even elegant, it requires some computational time and some
expansion in the instance size. A person in possession of an efficient
algorithm for VERTEX COVER might well wonder if there were a faster
way of solving 3SAT directly, instead of first having to convert each
instance of 3SAT to an instance of VERTEX COVER to be solved. This
concern about the overhead of polynomial-time reductions becomes even

74 The required size of the vertex cover (n=8) is determined by adding the number of

variables (four) to twice the number of clauses (two) in the given 3SAT instance. See
GAREY & JOHNSON, supra note 33, at 55.

75 See id. at 54-56.

] IN SOFTWARE PATENT DOCTRINE 15

more warranted when more distant problems on the tree of NP-complete
problems are considered.

4. Bessen and Meurer’s “Equivalence”

According to Bessen and Meurer, a software developer trying to solve

the map-coloring problem might inadvertently infringe a patent claim
directed to a traveling-salesman algorithm (or vice versa) because of the
“equivalence” between the two problems. This possibility, the authors
contend, is illustrative of an inherent and unique deficiency in the notice
function of software patent claims — at least those that are “worded broadly
enough.”76 Given the context provided above, however, it is difficult to
imagine that such a problematic ambiguity in the scope of a software patent
claim would ever arise.

In understanding the effect that the equivalence among NP-complete
problems might have on software patent scope, it is important to distinguish
between problems and algorithms. A chain of polynomial-time reductions
that demonstrates the equivalence between two NP-complete problems does
not thereby show that all algorithms for solving those problems are
equivalent. It shows only that given a hypothetical algorithm for solving
one problem, it is possible to derive a particular algorithm for solving the
other. Moreover, the derived algorithm provides only an indirect solution
that may be inefficient and even impractical.

As shown in Figure 3, the chains of polynomial-time reductions from
MAP COLORING to TRAVELING SALESMAN and vice versa both
involve several links.

76 See supra text accompanying notes 28-30.

16 ON ABSTRACTION AND EQUIVALENCE [

MAP COLORING ∝ SATISFIABILITY ∝ 3SAT ∝
VERTEX COVER ∝ HAMILTONIAN CIRCUIT ∝

TRAVELING SALESMAN

TRAVELING SALESMAN ∝ SATISFIABILITY ∝ 3SAT

∝ MAP COLORING

Figure 3. Chains of polynomial-time reductions proven between MAP

COLORING AND TRAVELING SALESMAN.

For Bessen and Meurer’s scenario to take place, it would require more than
the fact that a claim directed to a polynomial-time traveling-salesman
algorithm was “worded broadly enough.” It would require that an
independently discovered algorithm for the map-coloring problem correctly
implemented each of the detailed and intricate polynomial-time reductions
in the chain, as well as each of the steps recited in the claim to the traveling-
salesman algorithm. A more broadly worded claim to a traveling-salesman
algorithm might cover the use of the recited computational steps across a
wider range of fields, but it cannot widen the range of conditions under
which a polynomial-time reduction is logically correct. (From the
description above of one such reduction, from VERTEX COVER to
3SAT,77 it should be clear that these conditions are mathematically well-
defined and precise.) It seems most unlikely that an independent scientist,
seeking a direct and efficient solution to the map-coloring problem, would
in passing replicate the details (and assume the overhead) of the entire chain
of reductions to the traveling-salesman problem.

It is also worth noting here that the equivalence among NP-complete
problems due to polynomial-time reductions does not imply equivalence
between specific algorithms for solving those problems under patent law’s
doctrine of equivalents. Under the doctrine of equivalents, an accused
device that does not fall literally within the scope of a claim may
nevertheless be found to infringe “if it performs substantially the same
function in substantially the same way to obtain the same result”;78 this
“triple identity” determination is to be applied to a claim “as an objective
inquiry on an element-by-element basis.”79 A chain of polynomial-time
reductions, however, does not translate an algorithm for solving one
problem into an algorithm for solving another on a step-by-step or element-

77 See supra text accompanying note 75.
78 Graver Tank & Mfg. Co. v. Linde Air Products Co., 339 U.S. 605, 608 (1950)

(quoting Sanitary Refrigerator Co. v. Winters, 280 U.S. 30, 42 (1929)).
79 Warner-Jenkinson Co., Inc. v. Hilton Davis Chemical Co., 520 U.S. 17, 40 (1997).

] IN SOFTWARE PATENT DOCTRINE 17

by-element basis; rather, it converts an instance of one problem into an
instance of the other. By the time the steps of the original algorithm are to
be performed on the converted instance, all of the polynomial-time
reductions have already been completed, and can play no part in a step-by-
step analysis of equivalence to the original algorithm. Thus, in Bessen and
Meurer’s scenario, a correct implementation of the entire chain of
polynomial-time reductions by the accused algorithm would be a
prerequisite not only for a finding of literal infringement, but for a finding
of infringement by equivalents as well. As discussed above, it is highly
unlikely that an independently designed algorithm would happen to follow
this approach.

Finally, it should be remembered that the notion of “equivalence” via
polynomial-time reductions between a newly discovered map-coloring
algorithm and a previously claimed traveling-salesman algorithm (or vice
versa) presupposes a state of the world in which polynomial-time
algorithms for NP-complete problems are known to exist; i.e., that P=NP.
As we have seen, few computer scientists believe this to be the case.80
Moreover, it is almost unimaginable that anyone who discovered a
polynomial-time traveling-salesman algorithm, thereby proving that P=NP,
would simply patent the algorithm and fail to announce the broader result.
In sum, software developers have very little to fear from inadequately
noticed patents on polynomial-time algorithms for NP-complete problems.

B. Linear Programming and Karmarkar’s Algorithm

1. Karmarkar’s Contributions

Bessen and Meurer’s second illustration of the problematic

“abstractness of software technology” concerns Narendra Karmarkar’s
celebrated (and patented) algorithm for linear programming, which solves a
form of constrained optimization problem commonly used in operations
research and public policy analysis. The linear programming problem is to
maximize (or, alternatively, to minimize) the value of a given linear
function in real variables (the objective function), where the variables are
subject to a system of linear inequalities (the constraints).81 The more
general problem in which the objective function and constraints may be
nonlinear is referred to as mathematical programming; a mathematical
programming problem that is not a linear programming problem is known

80 See supra text accompanying note 54
81 See ANTHONY V. FIACCO & GARTH P. MCCORMICK, NONLINEAR PROGRAMMING:

SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUES 1 (1968).

18 ON ABSTRACTION AND EQUIVALENCE [

as a nonlinear programming problem.82
When Cook and Karp published their first results on the theory of NP-

completeness in 1971-72,83 linear programming had already been long
recognized as an important computational problem,84 but no one knew then
whether or not it could be solved in polynomial time. It was not until 1979
that Leonid Khachiyan showed linear programming to be tractable by

presenting an algorithm that required at most)(26
LnO time to solve a

problem with n variables and L input bits.85
Karmarkar announced his algorithm in May 1984 at the Association for

Computing Machinery’s annual symposium on theoretical computer
science86 and submitted a revised and extended exposition of the algorithm
to the mathematics journal Combinatorica in August 1984 for publication
later that year.87 While his results came too late to be credited with
resolving the question of linear programming’s tractability, they were
groundbreaking in other ways. Previous linear programming algorithms,
including Khachiyan’s, searched for possible solutions (known as
“iterates”) by moving from corner to corner around the boundary of the n-
dimensional region (known as a “polytope”) defined by the constraints of
the problem. Karmarkar’s insight was that interior points provide richer
information than boundary points on which direction will lead to the
greatest improvement in the objective function. A prior art “exterior-point”
method and Karmarkar’s “interior-point” method are contrasted in Figure 4.

82 See id.
83 See supra text accompanying notes 64-70.
84 See generally VERA RILEY & SAUL I. GASS, LINEAR PROGRAMMING AND

ASSOCIATED TECHNIQUES; A COMPREHENSIVE BIBLIOGRAPHY ON LINEAR, NONLINEAR,
AND DYNAMIC PROGRAMMING (1958) (reviewing research as of 1958).

85 See Leonid G. Khachiyan, A Polynomial Algorithm in Linear Programming, 244
DOKLADY AKADEMIIA NAUK. SSSR 1093 (1979), translated in 20 SOVIET MATH.
DOKLADY 191 (1979). The parameter L accounts for the complexity of real-number
calculations that may require an arbitrary degree of precision.

86 See Narendra Karmarkar, A New Polynomial-Time Algorithm for Linear

Programming, PROCEEDINGS 16TH ACM SYMP. ON THEORY OF COMPUTING 302 (1984).
87 See Narendra Karmarkar, A New Polynomial-Time Algorithm for Linear

Programming, 4 COMBINATORICA 373 (1984).

] IN SOFTWARE PATENT DOCTRINE 19

Figure 4. Comparison between George Dantzig’s simplex exterior-point

algorithm (left) and Karmarkar’s interior-point algorithm (right) for linear

programming. In the simplex method, the search proceeds entirely on the boundary

of the polytope (from the initial iterate (point 12) to the solution (point 21). In

Karmarkar’s method, the search proceeds within the interior of the polytope from the

initial iterate (point 51) until a solution is reached that satisfies the condition for

termination (point 53).
88

At each iteration, Karmarkar’s algorithm performs a projective

transformation on the polytope so that the previous iterate, a boundary
point, is mapped into the interior of the transformed polytope.89 From that
interior point, the algorithm finds the next iterate by moving along a line, in
the direction that maximizes the objective function, until it reaches the
boundary.90 By following this more efficient approach, Karmarkar’s

algorithm achieves a worst-case running time of)(25.3
LnO , a vast

improvement over Khachiyan’s algorithm for practical purposes.91
Karmarkar’s algorithm also has the virtue that it is relatively easy to
implement.92

Karmarkar filed a U.S. patent application on Apr. 19, 1985 titled
“Methods and Apparatus for Efficient Resource Allocation.”93 The patent

88 See U.S. Patent No. 4,744,028, at cols. 2-4.
89 See Michael J. Todd, The Many Facets of Linear Programming, 91 MATH.

PROGRAMMING SERIES B 417, 427 (2002).
90 See id.
91 See Karmarkar, supra note 86, at 302.
92 See, e.g., E.R. Swart, How I Implemented the Karmarkar Algorithm in One Evening,

15 APL QUOTE QUAD 13 (1985) (providing source code of a 92-line program
implementing the Karmarkar algorithm in Array Processing Language).

93 See U.S. Patent No. 4,744,028.

20 ON ABSTRACTION AND EQUIVALENCE [

issued on May 10, 1988 and was assigned to his employer, AT&T Bell
Laboratories.94

2. Doubts as to Karmarkar’s Contributions

According to Bessen and Meurer, the validity of Karmarkar’s patent is

called into doubt by both prior and subsequent developments. They
correctly note that the use of interior-point methods to solve linear
programming problems was not new in 1984, but (as Philip Gill et al.
documented in 1986) had a long and distinguished history dating back to
the 1940s and 1950s, including efforts by John von Neumann, Alan
Hoffman, Charles Tompkins, and Ragnar Frisch.95 In practice, these earlier
interior-point methods were not competitive with George Dantzig’s simplex
algorithm, an exterior-point method that was known to have worst-case
exponential running time96 but, because of its conceptual simplicity, was
considered acceptable for reasonably small problems.97 (They also did not
succeed in developing a polynomial-time algorithm for linear programming;
that achievement would be left to Khachiyan in 1979.98) Accordingly,
researchers found it more fruitful to investigate the application of interior-
point methods to nonlinear programming. By 1968, when operations
researchers Anthony Fiacco and Garth McCormick published their treatise
on nonlinear programming, their presentation of interior-point methods and
related results constituted one full chapter and parts of four others.99

In the years following the publication of Karmarkar’s algorithm, some
researchers began to identify connections between the earlier work focused
on nonlinear programming and Karmarkar’s more recent work on linear
programming.100 (It is worth noting that Karmarkar himself did not

94 See id.
95 See Philip E. Gill et al., On Projected Newton Barrier Methods for Linear

Programming and an Equivalence to Karmarkar’s Projective Method, 36 MATH.
PROGRAMMING 183, 184 (1986) (citations omitted).

96 See Victor Klee & George J. Minty, Jr., How Good is the Simplex Method?, in
INEQUALITIES III, at 159 (O. Sisha ed. 1972).

97 The simplex algorithm is still the only computational linear-programming method
presented in introductory operations research textbooks, see, e.g., David R. Anderson et al.,
AN INTRODUCTION TO MANAGEMENT SCIENCE: A QUANTITATIVE APPROACH TO DECISION

MAKING, chs. 17-18 (2007), and remains “the method of choice” for many applications.
See Roy Marsten et al., Interior Point Methods for Linear Programming: Just Call Newton,

Lagrange, and Fiacco and McCormick!, 20 INTERFACES 105, 115 (1990).
98 See supra note 85 and accompanying text.
99 See FIACCO & MCCORMICK, supra note 81, at chs. 3, 5-8.
100 See Marsten, supra note 97, at 105-06 (1990) (noting that shortly after 1984,

“[m]any others worked on bringing Karmarkar’s method, which at first appeared to be

] IN SOFTWARE PATENT DOCTRINE 21

acknowledge any such connections in his patent application or either of his
1984 publications.101) In their 1986 paper,102 Gill et al. note that Frisch’s
interior-point methods103 allow for a choice of the direction the search
algorithm is to take from one iterate to the next. One possible way of
determining this direction is to minimize a quadratic approximation to a
“barrier function”)(xF , defined by

∑
=

−=
n

j

j

T xxcxF
1

ln)(µ ,

that incorporates both the problem’s objective function and its
constraints.104 Gill et al. refer to this direction as the “Newton search
direction” in honor of Sir Isaac Newton, who is credited with discovering
this numerical approach to approximating the minima of differentiable
functions.105 Their main result is that for a particular value of the parameter

µ , the Newton search direction is the same as the direction prescribed by

Karmarkar’s algorithm.106 Gill et al. are careful to characterize their finding
as “an existence result, showing that a special case of the [Newton] barrier
method would follow the same path as the [Karmarkar] projective
method.”107 In the article’s introduction, however, they describe this result
more broadly as “a formal equivalence between the Newton search direction
and the direction associated with Karmarkar’s algorithm.”108 The title of
their article is broader still, suggesting equivalence not merely between the
search directions employed by the respective methods, but between the
methods themselves: “On Projected Newton Barrier Methods for Linear
Programming and an Equivalence to Karmarkar’s Projective Method.”109

A 1990 article by Roy Marsten et al. also describes Gill et al.’s
existence result in broad terms as “an equivalence between Karmarkar’s
method and projected Newton barrier methods.”110 In an elegant
exposition, Marsten et al. outline the respective contributions of Fiacco and

coming completely out of left field, into our classical framework of optimization”).

101 None of Karmarkar’s lists of references cites any of the literature on nonlinear
programming. See U.S. Patent No. 4,744,028; Karmarkar, supra note 86 at 311;
Karmarkar, supra note 87, at 395.

102 See Gill, supra note 95.
103 See K. Ragnar Frisch, The Logarithmic Potential Method of Convex Programming

(1955), unpublished manuscript, University Institute of Economics, Oslo, Norway, cited in
Gill, supra note 95.

104 See Gill, supra note 95, at 185-86.
105 See id. at 186.
106 See id. at 190-91.
107 Id. at 191.
108 Id. at 184.
109 Id. at 183.
110 Marsten, supra note 97, at 106.

22 ON ABSTRACTION AND EQUIVALENCE [

McCormick, Newton, and the eighteenth-century Italian mathematician
Joseph-Louis Lagrange to the “special case of the [Newton] barrier method”
identified by Gill et al.111 They do this not only to present Gill et al.’s
results to “a wider audience” in the operations research and management
science community,112 but to respond to what they saw as hubris on the part
of Karmarkar and AT&T:

In 1984, Narendra Karmarkar began the “new era of
mathematical programming” with the publication of his
landmark paper. Shortly thereafter his employer, AT&T,
invited the professional mathematical programming
community to roll over and die. Speaking as representatives
of this community, we took this as rather a challenge.113

Accordingly, Marsten et al.’s title and abstract suggest an account of the
“new era” in which Karmarkar’s contributions may be rightly omitted as
redundant:

Interior Point Methods for Linear Programming:

Just Call Newton, Lagrange, and Fiacco and McCormick!

Interior point methods are the right way to solve large
linear programs. They are also much easier to derive,
motivate, and understand than they at first appeared.
Lagrange told us how to convert a minimization with
equality constraints into an unconstrained minimization.
Fiacco and McCormick told us how to convert a
minimization with inequality constraints into a sequence of
unconstrained minimizations. Newton told us how to solve
unconstrained minimizations. Linear programs are
minimizations with equations and inequalities. Voila!114

Marsten et al.115 and other researchers (including Karmarkar himself116)
also sought to improve the performance of Karmarkar’s algorithm in cases
where its calculations involved sparse matrices; i.e., matrices that have very
few nonzero elements. By using fast sparse-matrix algorithms for
“Cholesky factorization,” an important subroutine used in the numerical
solution of systems of linear equations, Marsten et al. were able to
accelerate a procedure that accounts for about 90 percent of the running

111 See id. at 106-08.
112 See id. at 105.
113 Id. (quotation unattributed in original).
114 Id.
115 See id. at 110-15.
116 See Ilan Adler et al., An Implementation of Karmarkar's Algorithm for Linear

Programming, 44 MATHEMATICAL PROGRAMMING 297 (1989) (naming Karmarkar as co-
author); Ilan Adler et al., Data Structures and Programming Techniques for the

Implementation of Karmarkar's Algorithm, 1 ORSA J. COMPUT. 84 (1989) (same).

] IN SOFTWARE PATENT DOCTRINE 23

time of Karmarkar’s algorithm in practice,117 thereby addressing the
algorithm’s “main weakness.”118

In 1991, one of Marsten’s coauthors, Matthew Saltzman, addressed his
concerns about Karmarkar’s algorithm and patent to an even wider
community by posting a long message to the USENET discussion group
sci.math.num-analysis summarizing the points made in the Marsten et al.
article.119 Saltzman also goes on question the novelty of, and sufficiency of
disclosure in, Karmarkar’s patent, and opines: “IMHO, this patent has not
benefitted society. If faster LP [linear programming] algorithms are a
benefit to society, then the benefit has occurred despite, not because of the
patent.”120

Given Gill et al.’s self-styled “equivalence” result, Marsten et al.’s
apparent desire to write Karmarkar out of the mathematical programming
history books, and subsequent advances in sparse-matrix calculations, it is
easy to see how a casual reader of the technical literature might be left in
doubt as to Karmarkar’s contributions, and even be persuaded by a research
scientist’s uninformed legal opinion on the validity of Karmarkar’s patent.
For purposes of legal inquiry into the validity and scope of Karmarkar’s
patent, however, Bessen and Meurer need not have relied on these
scientists’ conclusory and somewhat misleading descriptions of “an
equivalence between Karmarkar’s method and projected Newton barrier
methods” when a precise statement of Gill et al.’s actual existence result
was already available.121

3. Karmarkar’s Contributions Relative to the Prior Art

Contrary to Bessen and Meurer’s assertion, Gill et al. did not

“demonstrate[], in fact, that Karmarkar’s algorithm is equivalent to a class

117 See Marsten, supra note 97, at 111.
118 See id. at 112.
119 See Matthew Saltzman, Re: The Karmarkar Algorithm (long), USENET (March 24,

1991), available via the Internet Archive <http://www.archive.org> at
<http://www.cs.uvic.ca/~wendym/courses/445/06/interiorpoint.txt> (visited July 15, 2008)
(cited by BESSEN & MEURER, supra note 6, at 312).

120 See BESSEN & MEURER, supra note 6, at 202-03.
121 See supra text accompanying note 31. Bessen and Meurer also appear to have been

influenced by a posting by one of Marsten’s co-authors to the USENET newsgroup
sci.math.num-analysis, which questions the validity of Karmarkar’s patent on novelty and
disclosure grounds and cites the Gill and Marsten articles. See Matthew Saltzman, Re: The

Karmarkar Algorithm (long), USENET (March 24, 1991), available at
<http://web.archive.org/web/20070223080354/http://www.cs.uvic.ca/~wendym/courses/44
5/06/interiorpoint.txt> (visited July 15, 2008) (cited by BESSEN & MEURER, supra note 6,
at 312).

24 ON ABSTRACTION AND EQUIVALENCE [

of techniques that was known and applied to linear problems during the
1960s.”122 Gill et al.’s existence result shows only that some of Frisch’s
and Fiacco and McCormick’s methods can be tailored so that the resulting
algorithm proceeds to search the same iterates as Karmarkar’s algorithm.
The necessary tailoring choices for this result, however, were not “known
and applied” during the 1960s, and the available evidence (discussed below)
strongly indicates that they were neither known nor obvious until
Karmarkar’s algorithm appeared. Thus, it would be blatant hindsight
reconstruction to cite these choices, first publicly embodied in Gill et al.’s
1986 results, as “prior art” against a 1984 invention as Bessen and
Meurer123 and Saltzman124 suggest.

In a 1994 treatise on interior point methods,125 Dick den Hertog
describes the range of design choices available to users of the
Frisch/Fiacco-McCormick methods. Specifically, he identifies the
following three “important elements in the design of such a method: (1) the
iterative method used to (approximately) minimize the logarithmic barrier
function; (2) the criterion for terminating the iterative minimizations; and
(3) the updating scheme for the barrier parameter µ.”126

Karmarkar’s algorithm provided significant new advances with respect
to all three of these design elements. First, as Michael Todd explains in a
2000 article,127 Karmarkar’s use of a projective transformation to
“normalize” or “center” each iterate128 represented a “very intriguing” new
idea at the time for minimizing the logarithmic barrier function.129 Second,
Todd writes, another new idea was the use of “a nonlinear potential
function, invariant under such transformations” to measure progress toward

122 BESSEN & MEURER, supra note 6, at 202.
123 See id. at 203 (“Would anyone have seen Karmarkar’s algorithm as novel in light of

the techniques used in the 1960s? Certainly not after 1986, when their equivalence was
proved.”).

124 See Saltzman, supra note 121 (“A case can be made for prior art, though. . . Gill, et
al. (1986) showed that in fact, Karmarkar’s method was equivalent to a projected Newton
barrier algorithm.”).

125 D. DEN HERTOG, INTERIOR POINT APPROACH TO LINEAR, QUADRATIC AND CONVEX

PROGRAMMING (1994).
126 Id. at 12.
127 Todd, supra note 89.
128 See U.S. Patent No. 4,744,028, at col. 10 (“This projective transformation can be

thought of as an orthogonal transformation into the unit simplex, thereby achieving the
normalizing or centering property.”).

129 See Todd, supra note 89, at 426-27. Todd adds that while “projective
transformations are not used much in interior-point methods nowadays[, t]he key concept
of making a transformation or changing the metric so that the current iterate is in some
sense far from the boundary remains highly valuable.” Id. at 427.

] IN SOFTWARE PATENT DOCTRINE 25

the termination condition.130
Finally, as Dave Bayer and Jeffrey Lagarias note, Karmarkar’s updating

scheme for µ differs from any method in which successive values of µ are
determined as a function of the current iterate y,131 such as that employed by
Fiacco and McCormick. 132 There is nothing in any of Bessen and Meurer’s
sources to suggest that Karmarkar’s scheme for µ was obvious prior to his

invention. Even Gill et al. do not suggest any motivation for their choice of
a particular value for µ beyond emulating the iterative behavior of

Karmarkar’s algorithm after the fact. In fact, in describing their main
theorem as “an existence result,” they note that “[t]his does not mean that
the [Frisch/Fiacco-McCormick] barrier method should be specialized” by
setting µ to this value.133

In the patent law context, the algorithm that results from Karmarkar’s
combination of design choices is most accurately characterized as a “range
or value of a particular variable” that is included within a wider range
disclosed in the prior art: namely, the entire class of Frisch/Fiacco-
McCormick barrier methods.134 An invention of this type is presumed
obvious,135 but this presumption may be rebutted by a showing that the
range “produces new and unexpected results.”136

As a general matter, there is ample evidence available to rebut the
presumption of obviousness raised by the Frisch/Fiacco-McCormick prior
art. Karmarkar’s results — an easily implemented linear algorithm with a

)(5.2
nO -factor speedup over the previous world record, and the first

interior-point algorithm to be shown to run in polynomial time — were, at
the time, as new and unexpected as any developments in all of applied

130 See id. at 427.
131 See D.A. Bayer & J.C. Lagarias, Karmarkar’s Algorithm and Newton’s Method, 50

MATH. PROGRAMMING 291, 293 (“[I]f)(yµ is considered to be a function of y then the

projected Newton method direction of [the barrier function] is usually not the projective
scaling direction.”).

132 In the Fiacco-McCormick method, successive values of the barrier parameter
(denoted therein by the variable r rather than µ) are chosen by a “computing rule” that

chooses values for r that minimize the norm of the gradient of the barrier function)(yV at

the point y. See FIACCO & MCCORMICK, supra note 81, at 116.
133 See Gill, supra note 95, at 191.
134 See, e.g., Haynes Int'l, Inc. v. Jessop Steel Co., 8 F.3d 1573, 1577 n. 3

(Fed.Cir.1993) (“[W]hen the difference between the claimed invention and the prior art is
the range or value of a particular variable, then a prima facie rejection is properly
established when the difference in range or value is minor.”) (emphasis omitted).

135 See id.
136 Ormco Corp. v. Align Technology, Inc., 463 F.3d 1299, 1311 (Fed. Cir. 2006); see

also Iron Grip Barbell Co. v. USA Sports, Inc., 392 F.3d 1317, 1322 (Fed.Cir.2004); In re
Geisler, 116 F.3d 1465, 1469 (Fed. Cir. 1997).

26 ON ABSTRACTION AND EQUIVALENCE [

mathematics.137 Bessen and Meurer’s observation that without Marsten et
al.’s later-developed sparse matrix techniques, “Karmarkar’s algorithm by
itself was not particularly efficient compared to the linear-programming
techniques of the 1940s” takes nothing away from the new and unexpected
nature of these achievements, particularly in the context of patent doctrine’s
minimalist approach to the general utility requirement.138

The idea of borrowing interior-point methods from nonlinear
programming to compete with advanced exterior-point methods for linear
programming was also unexpected, as Margaret Wright writes:

Prior to 1984, there was, to first order, no connection
between linear and nonlinear programming. For historical
reasons that seem puzzling in retrospect, these topics, one a
strict subset of the other, evolved along two essentially
disjoint paths. Even more remarkably, this separation was a
fully accepted part of the culture of optimization — indeed,
it was viewed by some as inherent and unavoidable.139

Wright concludes that Karmarkar’s algorithm catalyzed an “interior point
revolution,” uniting the two branches of mathematical programming in an
unexpected way.140

Of course, Bessen and Meurer’s validity concerns must be directed to
Karmarkar’s individual patent claims, each of which is subject to separate
novelty and nonobviousness determinations according to its scope. For this
reason, we turn now to address Bessen and Meurer’s concerns regarding the
scope of Karmarkar’s claims.

137 See, e.g., Chin, supra note * (describing presentation of Karmarkar’s algorithm to a

“packed audience of MAA [Mathematical Association of America] members” at the 1985
Joint Mathematics Meetings).

138 To be eligible for a patent, a claimed invention need not supersede or work better
than the prior art. See Lowell v. Lewis, 15 F. Cas. 1018, 1019 (C.C.D. Mass. 1817).
(rejecting argument that a claimed pump lacks general utility unless it is “for the public, a
better pump than the common pump”).

139 Margaret H. Wright, The Interior-Point Revolution in Optimization: History,

Recent Developments, and Lasting Consequences, 42 BULL. AM. MATH. SOC’Y 39, 40
(2004) (emphasis in original). As Saltzman has noted, supra note 119, Fiacco and
McCormick’s book does briefly discuss the application of interior-point methods to linear
programming. See FIACCO & MCCORMICK, supra note 81, at 111-12 & 180-83. The
book’s emphasis, however, is on examining special cases of the more general techniques
presented (in which linearity and/or convexity serve as simplifying assumptions), rather
than on presenting methods that are efficient in comparison with other linear programming
algorithms.

140 See Wright, supra note 139, at 39-40; see also Mark A. Paley, The Karmarkar

Patent: Why Congress Should “Open the Door” to Algorithms as Patentable Subject

Matter, 22 COMPUTER L. REPORTER 7 (1995) (describing Karmarkar’s algorithm as “a
revolutionary problem solving method”).

] IN SOFTWARE PATENT DOCTRINE 27

4. The Scope of Karmarkar’s Patent Claims

Bessen and Meurer express concern about “the difficulty of determining
the boundaries of [Karmarkar’s] patent,” specifically the possibility that
Karmarkar’s patent claims might read on “the techniques used in the
1960s.”141 Any such claim would be of questionable novelty in light of the
prior art, and might unjustly enrich AT&T by enabling it “to assert its
patent successfully against people who used linear-programming techniques
based on those used in the 1960s.”142 Bessen and Meurer do not identify
any particular claim language as giving rise to these concerns, but instead
appeal to what they view as software’s inherent and distinctive resistance to
linguistic line-drawing:

The abstractness of the patented algorithm means that
these determinations cannot be made with certainty. Patent
law assumes that two technologies can be unambiguously
determined to be equivalent or distinct; this sets the patent
boundaries. Yet for software, this assumption simply does
not hold. Although this assumption works for most other
technologies, it distinctly does not — or does so
insufficiently well — for software algorithms. And if
computer scientists cannot make these determinations with
any certainty, how can we expect judges and juries to do
so?143

Setting aside the fact that disputes over ambiguous claim scope arise in
every technological field, this is a circular argument. Ultimately, the full
extent of the Karmarkar example’s support for Bessen and Meurer’s
argument that “software patents are different” turns on this one-paragraph
blanket assertion that software “distinctly does not” satisfy the linguistic
assumptions that work “for most other technologies.”

A complete construction of all of Karmarkar’s patent claims is far
beyond the scope of this Article. It is relatively straightforward, however,
to address Bessen and Meurer’s concerns about overbreadth here.

As shown in Figure 5, Karmarkar’s patent has 36 claims, of which 22
are independent and 14 are dependent. Nine of the claims (19, 24, 25, 28-
31, 33, and 34), including three independent claims, expressly recite
mathematical terms that refer specifically to Karmarkar’s particular design
choices within the class of Frisch/Fiacco-McCormick methods as described

141 See BESSEN & MEURER, supra note 6, at 203.
142 See id. This is not a real-world concern, since Karmarkar’s patent expired in 2005.
143 See BESSEN & MEURER, supra note 6, at 203.

28 ON ABSTRACTION AND EQUIVALENCE [

in the patent specification.144
Each of the remaining independent claims recites the word “means” or

“step” in connection with at least one functional aspect of Karmarkar’s
projective transformation (indicated by the terms quoted in Figure 5)
without any “structure, material, or acts” to implement that function.
Accordingly, § 112, ¶ 6 provides that these means-plus-function and step-
plus function claims be limited in scope to algorithms that implement a
projective transformation as described in the specification.145

144 See U.S. Patent 4,744,028, at cols. 7-8 (describing the mathematical steps needed to

perform the projective transformation prior to the minimization step during each iteration).
145 See Aristocrat Technologies Australia Pty. Ltd. v. International Game Technology,

521 F.3d 1328, 1333-38 (Fed. Cir. 2008); Harris Corp. v. Ericsson Inc., 417 F.3d 1241,
1253 (Fed. Cir. 2005); WMS Gaming Inc. v. International Game Technology, 184 F.3d
1339, 1348-49 (Fed. Cir. 1999). The statute provides:

An element in a claim for a combination may be expressed as a
means or step for performing a specified function without the recital of
structure, material, or acts in support thereof, and such claim shall be
construed to cover the corresponding structure, material, or acts
described in the specification and equivalents thereof.

35 U.S.C. § 112, ¶ 6.

] IN SOFTWARE PATENT DOCTRINE 29

Figure 5. Each one of the 36 claims in Karmarkar’s patent appears to have at

least one express limitation or § 112, ¶ 6 functional element that narrows its scope

sufficiently to address Bessen and Meurer’s concerns.

It therefore appears that all 36 claims are limited in scope to the
disclosed implementation of Karmarkar’s projective transformation, and at
least eight of the claims are further limited in scope to the disclosed

30 ON ABSTRACTION AND EQUIVALENCE [

implementation of Karmarkar’s potential function. Far from exploiting the
ambiguity of language to attain overbroad claim scope, Karmarkar’s
software patent claims are cabined by express recitals and by § 112, ¶ 6 into
the very design choices that accurately represent his contributions relative
to the prior art.

C. Discussion

Apart from the failure of Bessen and Meurer’s illustrations to support

their claims about the unique linguistic unwieldiness of software-related
inventions, the claims themselves seem deeply counterintuitive. Perhaps
more than any other technological fields, the disciplines of computer
science and software engineering must rely on mathematically precise
specifications of the designs and behaviors of their creations. For this
reason, the pervasiveness of abstraction in software technology per se does
not doom the field to ambiguous line-drawing. Computer scientists are well
aware that their work involves abstraction; the best computer scientists are
able to express that abstraction with precision and rigor.146 The real
question for software patent doctrine is not how to drive abstraction out of
the patent system, but how the law can affirm and harness cognitive
abstraction skills to promote innovation, rather than allow their abuse to
evade otherwise generally applicable requirements for patentability.

II. KLEMENS

A. Klemens’s Proposal

Software-related inventions have historically created difficulties for the

courts in attempting to draw the line between patentable and unpatentable
subject matter. The long march from Benson

147 and Diehr
148 to Alappat,149

146 See generally Jeff Kramer, Is Abstraction the Key to Computing?, 50

COMMUNICATIONS OF THE ACM 37 (2007) (discussing the importance of abstraction skills
in the computer science profession).

147 Gottschalk v. Benson, 409 U.S. 63 (1972) (holding unpatentable claims to a method
for converting binary coded decimal number representations into binary number
representations).

148 Diamond v. Diehr, 450 U.S. 175 (1981) (holding patentable a claimed method of
operating a rubber-molding press reciting steps of a mathematical algorithm for calculating
the cure time based on the Arrhenius equation).

149 In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994) (holding a general-purpose machine
programmed to perform a series of computational steps patentable as a “new machine”).

] IN SOFTWARE PATENT DOCTRINE 31

State Street Bank,150 and Bilski
151 has been long and sinuous, and may not

be finished.152
Klemens argues that the line drawn by the Court of Customs and Patent

Appeals in the Freeman-Walter-Abele line of cases153 and repudiated by the
Federal Circuit in State Street Bank

154 should be restored. Klemens favors
the test because it effectively distinguishes between “bona fide physical
inventions” and “information processing algorithms with a trivial physical
step” such as operation of a standard I/O device155 and takes seriously the
Supreme Court’s dictum in Diehr that “insignificant postsolution activity
will not transform an unpatentable principle into a patentable process.”156
Specifically, Klemens’s proposal is to exclude from § 101 patentable
subject matter all combination claims of the following form:

Patent N
1. A useful computing machine, comprising
(a) a mathematical algorithm, which may be

creatively and painstakingly derived, but which is clearly
unpatentable by the mathematical algorithm exception,
and

(b) an obvious physical step such as loading the
algorithm onto a stock computer, which meets the
requirements for patentable subject matter but is
unpatentable because it is not novel.157

150 State Street Bank & Trust Company v. Signature Financial Group, Inc., 149 F.3d

1368 (Fed. Cir. 1998) (holding the transformation of financial data through a series of
mathematical calculations patentable as producing “a useful, concrete and tangible result”).

151 In re Bilski, 545 F.3d 943 (Fed. Cir. 2008) (en banc) (holding unpatentable a
claimed process for managing financial risks as neither tied to a particular machine nor
resulting in a physical transformation).

152 See id. at 994-95 (Fed. Cir. 2008) (en banc) (Newman, J., dissenting) (noting that
the majority decision leaves open the questions of whether “Alappat’s guidance that
software converts a general purpose computer into a special purpose machine remains
applicable” and whether the inventions in State Street Bank and AT&T v. Excel are
patentable subject matter).

153 In re Freeman, 573 F.2d 1237, 1245 (C.C.P.A. 1978); In re Walter, 618 F.2d 758,
767 (C.C.P.A. 1980); In re Abele, 684 F.2d 902 (C.C.P.A. 1982).

154 See State Street Bank, 149 F.3d at 1374 (“[T]he Freeman-Walter-Abele test has
little, if any, applicability to determining the presence of statutory subject matter”).

155 See Klemens, supra note 4, at 2-3 (describing test); id. at 35 (restating the paper’s
recommendation as a “regression” to the practice of “respecting the caveats about
postsolution activity in the Freeman-Walter-Abele test”).

156 450 U.S. at 191-92; see Klemens, supra note 4, at 36 (explaining importance of
“respecting the declaration” in Diehr).

157 This appears to be a refinement of Klemens’s earlier proposal that for a
programmed general-purpose computer to be patentable, “a machine would have to be built
that may rely on mathematics but does something innovative beyond it. . . . If the entire

32 ON ABSTRACTION AND EQUIVALENCE [

Klemens contends that “the great majority of software patent applications
are clearly of the form of Patent N: an algorithm loaded onto a stock
computing device.”158

The “machine-or-transformation” test articulated in the Federal Circuit’s
recent en banc decision in In re Bilski

159 calls for critical inquiries that
nominally address Klemens’s concerns; i.e., whether the claimed process
“is tied to a particular machine or apparatus”160 or “transforms a particular
article into a different state or thing,”161 (as opposed to the entire universe
of digital computers162 or insignificant post-solution or extra-solution
activity164). The decision is unlikely to satisfy Klemens, however, as it
applies only to process claims,165 rejects the Freeman-Walter-Abele
approach,166 and (as Klemens himself notes167) leaves open the question of
whether the act of loading an algorithm onto a stock computer produces a
“particular machine.”168 The Bilski court also took pains to state as settled
doctrine that the patentable subject matter inquiry is to be directed to the
claim as a whole169 and is to be completely independent of any novelty or

design [of the machine] consists of an equation, then there is nothing to be patented; if the
design consists of an equation and a trivial machine, then there is still nothing to be
patented; if the design is for a new and novel machine informed by mathematics, then there
is every reason to grant a patent on the machine’s design.” See KLEMENS, supra note 2, at
64. Even as such, Klemens’s conflation of “obvious” with “not novel” in paragraph (b)
suggests that further refinement is necessary. See 35 U.S.C. § 103 (stating that a claimed
invention may be novel yet obvious).

In his book, Klemens also proposes that “an inventive physical implementation of a
state machine (such as an FPGA [field-programmable gate array], a JVM [Java Virtual
Machine] on a chip, or a rubber-curing device) should be patentable, whereas the programs
loaded onto them (firmware, a data structure) should not.” See id. at 64-65. Klemens’s
reading of the Church-Turing thesis does not impinge on the merits of this proposal, and
this Article will not opine on them.

158 See Klemens, supra note 4 at 36.
159 545 F.3d 943 (Fed. Cir. 2008) (en banc).
160 Id. at 954.
161 Id. at 954.
162 See id. at 953-54 (contrasting Benson with Diehr).
164 See id. at 957 & n.14.
165 Id. at 951.
166 See id. at 958-59.
167 See Ben Klemens, In regards to In re Bilski, available at

http://ben.klemens.org/blog/arch/00000009.htm (visited Nov. 20, 2008) (stating Klemens’s
view, in a blog entry one day after the decision, that “the ruling does make progress” but
“won’t answer the key, central question”).

168 545 F.3d at 995 (Newman, J., dissenting) (“We aren’t told when, or if, software
instructions implemented on a general purpose computer are deemed ‘tied’ to a ‘particular
machine.’).

169 See id. at 958 (citations omitted) (“[T]he Court has made clear that it is
inappropriate to determine the patent-eligibility of a claim as a whole based on whether

Deleted:)

Deleted: or “transforms a particular
article into a different state or thing”163
(as opposed to

] IN SOFTWARE PATENT DOCTRINE 33

nonobviousness considerations,170 thereby making it clear that Klemens’s
approach to the validity of machine claims has no place in current § 101
jurisprudence.

Like Bessen and Meurer, Klemens supports his proposal for legal
change in large part with empirical research on the economic costs of the
status quo to both the patent system171 and the software industry.172 In the
context of a policy argument directed to Congress, this research might
prove to be highly useful and persuasive. The other part of Klemens’s case,
however, is based on an imprecise and superficial reading of the theoretical
computer science literature. Klemens repeatedly argues that a widely
adopted working hypothesis in computer science, known as the Church-

Turing thesis, compels a doctrinal change in the application of the § 101
patentable subject matter requirement to software generally and Patent N
specifically. It does not, and any courts to whom Klemens addresses this
argument173 should be informed accordingly.

B. The Church-Turing Thesis

The Church-Turing thesis is the outgrowth of contemporaneous efforts

by computer science pioneers Alonzo Church and Alan Turing to define the
class of mathematical problems that were amenable to solution by
computer.174 Turing’s theory developed around the Turing machine
model,175 while Church’s work focused on a notation for expressing
algorithms as functions known as the lambda calculus.176 The Turing
machine is described in detail elsewhere in this Article;177 what now follows

selected limitations constitute patent-eligible subject matter. . . . Thus, it is irrelevant that
any individual step or limitation of such processes by itself would be unpatentable under §
101.”).

170 See id. (citations omitted) (“[T]he Court has held that whether a claimed process is
novel or non-obvious is irrelevant to the § 101 analysis. Rather, such considerations are
governed by 35 U.S.C. § 102 (novelty) and § 103 (non-obviousness).”).

171 See KLEMENS, supra note 2, at 84, 90-91 & 107; Klemens, supra note 4, at 27-32.
172 See KLEMENS, supra note 2, at 92-107; Klemens, supra note 4, at 21-27.
173 See End Software Patents Project, End Software Patents: Resources for Lawyers

<http://endsoftpatents.org/resources-for-lawyers> (visited July 15, 2008) (describing
efforts by Klemens’s End Software Patents Project to engage the legal community).

174 See MARTIN DAVIS, THE UNIVERSAL COMPUTER: THE ROAD FROM LEIBNIZ TO

TURING 163-67 (2000) (providing a historical account of Turing’s and Church’s
independent work on David Hilbert’s famous Entscheidungsproblem).

175 See Alan M. Turing, On Computable Numbers with an Application to the

Entscheidungsproblem, 2 PROC. LONDON MATH. SOC. 230 (1936).
176 See ALONZO CHURCH, THE CALCULI OF LAMBDA-CONVERSION (1941).
177 A caveat: The Turing machine model described earlier, see supra text

34 ON ABSTRACTION AND EQUIVALENCE [

is a very brief introduction to a few of the concepts behind Church’s lambda
calculus.178

One reason for using the lambda calculus is the latent ambiguity that
may exist even in a simple mathematical expression like yx − .179 Is this a

function of x or of y (or both, or neither)? We could clarify the situation

by writing yxxf −=)(, but this forces another symbol, f , into the

discussion. This might seem a small complication, but it might be difficult
to keep track of such details over the course of a long computation.

Church’s solution is to use the special symbol λ to distinguish between
two kinds of variables that may appear in a mathematical expression. In
Church’s lambda calculus, the notation).(yxx −λ indicates that the

expression yx − is a function of x .180 A variable such as x that is

preceded by λ is known as a “bound variable”; a variable such as y that is

not preceded by λ is known as a “free variable.”181

The notation).(yxx −λ is treated as a function that can be evaluated for

specified values of the bound variable x by substitution; e.g.,

yyxx −=− 1)1)(.(λ .182

It is sometimes useful to make the act of substitution more explicit. The
lambda calculus provides a “bracket-slash” notation to do this. Thus, the
foregoing evaluation can also be written

yyxxyxx −=−=− 1)](/1[)1)(.(λ . The notation]/1[x indicates that in the

immediately following expression (i.e., yx −), each occurrence of x is to

be replaced by 1.183

accompanying notes 34-37, is limited to evaluating Boolean-valued (“yes” or “no”)
functions. It is straightforward (but uninteresting for present purposes) to extend the model
to evaluate more general functions, see JOHN E. HOPCROFT & JEFFREY D. ULLMAN,
INTRODUCTION TO AUTOMATA, LANGUAGES, AND COMPUTATION 151 (1979); see also infra
Appendix (presenting an example of a Turing machine that outputs a string of plus-signs),
and it is this unrestricted model that is the subject of the discussion in the sequel.

178 There are actually several varieties of “lambda calculi,” including “typed lambda
calculi” in which terms may be given one of a number of “type” designations, each of
which is subject to certain specified syntactic restrictions. See J. ROGER HINDLEY &

JONATHAN P. SELDIN, LAMBDA-CALCULUS AND COMBINATORS: AN INTRODUCTION 1
(2008) (discussing varieties of lambda calculus); id. at 107-219 (surveying various typed
varieties). As the discussion in this Article and in Klemens’s writings concerns only the
untyped lambda calculus, this Article hereinafter adopts Klemens’s practice of referring to
the untyped lambda calculus as simply “the lambda calculus.”

179 See HINDLEY & SELDIN, supra note 178, at 1.
180 See id. at 1-2.
181 See id. at 6-7.
182 See id. at 2.
183 See id. at 7.

] IN SOFTWARE PATENT DOCTRINE 35

The validity of replacing)1)(.(yxx −λ with)](/1[yxx − in the lambda

calculus is due to the fact that the lambda calculus includes a number of
defined rules for converting expressions. This particular conversion rule is
known as a β -reduction.184 β -reductions can be used iteratively to

dramatic effect, as the following example illustrates:

zvyvyzzyvyzyxyxvvzyxyx ====)](/[).()).]((/[))..((λλλλ .185

Space precludes a complete presentation of Church’s system here, but it
should already be apparent that the evaluation and conversion of
expressions in the lambda calculus generates a powerful set of
computational techniques. In fact, Church’s system is known to be as
powerful as the Turing machine model, because Turing proved in 1937 that
any function that could be computed on a Turing machine could also be
evaluated in the lambda calculus, and vice versa.186

Over time, Church and Turing’s work gave rise to a growing belief
among computer scientists that the class of Turing-computable (or lambda-
evaluable) functions includes every function that can be computed on any
plausible computing device. The assumption that this will continue to be
the case, i.e., that the class of Turing-computable functions is the same as
the class of all machine-computable functions, has become known as the
“Church-Turing thesis” (though sometimes referred to as “Church’s
hypothesis”).187

Since no one can claim to have envisioned every computing device that
will ever be invented, the notion of a “computable function” has never been
formalized. Meanwhile, however, computer scientists have been proving
equivalence (or “Turing-completeness”) results involving a wide range of
programming languages188 and abstract computational models,189 giving
credence to the Church-Turing thesis and further research that relies upon it
as a working hypothesis.190 As a famous theoretical computer science
textbook describes this ongoing research program, “While we cannot hope

184 See id. at 11-12.
185 See id. at 12.
186 See Alan M. Turing, Computability and λ -Definability, 2 J. SYMBOLIC LOGIC 153

(1937).
187 See JOHN E. HOPCROFT & JEFFREY D. ULLMAN, INTRODUCTION TO AUTOMATA,

LANGUAGES, AND COMPUTATION 166 (1979).
188 See, e.g., Robert S. Boyer & J. Strother Moore, A Mechanical Proof of the Turing

Completeness of Pure Lisp, in AUTOMATED THEOREM PROVING: AFTER 25 YEARS, at 133
(W.W. Bledsoe & D.W. Loveland eds. 1984)

189 See, e.g., HOPCROFT & ULLMAN, supra note 187, at 167-74 (presenting equivalence
results for various abstract computational models).

190 See, e.g., Arthur Charlesworth, Infinite Loops in Computer Programs, 52 Math.
Mag. 284, 287-88 (1979) (providing a new proof of one of Turing’s theorems, subject to
the assumption that the Church-Turing thesis is true).

36 ON ABSTRACTION AND EQUIVALENCE [

to ‘prove’ Church’s hypothesis as long as the informal notion of
‘computable’ remains an informal notion, we can give evidence for its
reasonableness.”191

C. Klemens’s Reading(s) of the Church-Turing Thesis

Apart from referring to an unproven hypothesis as a “theorem,”

Klemens’s description in Math You Can’t Use of the Church-Turing thesis
as “[t]he theorem central to this book”192 is more than apt. To Klemens, the
Church-Turing thesis is a panacea for the courts’ ill-conceived doctrines on
the patentability of software. In both his book and his article, he cites it in
support of a dizzying variety of propositions:

1. Anything a computer could possibly do can be done by a Turing

machine. Klemens introduces the Church-Turing thesis in the following
passage:

Theorem 1: The Church-Turing Thesis
All computable operations can be evaluated by a Turing

machine.

The exact meaning of computable is a technical matter

that I will not delve into here; roughly, it means “anything a
computer could possibly do.” The Church-Turing thesis
states that any computer program, written in any language,
can be rewritten as a Turing machine.193

2. The Church-Turing thesis “indicates that . . . there is a mechanical

means of translating any mathematical expression into a computable

program, and a means of translating any computable program into a

mathematical expression.”
194

3. Software is indistinguishable from pure mathematics. In his book,
Klemens reasons that “[s]ince any program in any Turing complete
programming language is identical to a system of equations in the lambda
calculus, the courts will be unable to draw” the line between pure
mathematics and software.195 In his article, Klemens simply states that the
Church-Turing thesis directly implies that “all software is mathematics.”196

191 See HOPCROFT & ULLMAN, supra note 187, at 166.
192 KLEMENS, supra note 1, at 47. Klemens introduces the Church-Turing thesis in his

subsequent article no less inaccurately as “a basic result of computer science.” Klemens,
supra note 4, at 9.

193 KLEMENS, supra note 1, at 35.
194 Klemens, supra note 4, at 9-10.
195 KLEMENS, supra note 1, at 35-36.
196 Klemens, supra note 4, at 10.

] IN SOFTWARE PATENT DOCTRINE 37

4. Every application of an algorithm is indistinguishable from pure

mathematics; therefore, claim 1 of Patent N should be held invalid. David
Gale and Lloyd Shapley conclude their 1962 American Mathematical
Monthly article197 announcing their algorithm for solving the “stable
marriage problem” with some reflections from the perspective of
economists working on a problem of more general interest to
mathematicians. They write: “In making the special assumptions needed in
order to analyze our problem mathematically, we necessarily moved further
away from the original college admission question, and eventually in
discussing the marriage problem, we abandoned reality altogether and
entered the world of mathematical make-believe.”198

Klemens first quotes and later paraphrases this comment as follows: “As
Gale and Shapley explained, there is no difference between an application
of an algorithm and the algorithm itself.”199 He then reminds the reader that
“as the Church-Turing thesis states, the algorithm and pure math are
entirely equivalent.”200 Klemens makes these points to imply that
examiners erroneously granted several patents that were directed to “a
general-purpose computer with a program loaded.”201

5. Owning a software patent is the same as “own[ing] a piece of

mathematics.” Klemens provides no explanation for this conclusion, but it
appears to follow from propositions 3 and 4.

6. If software had been patentable in the 1930s, the Church-Turing

thesis might not have been developed. Noting the contemporaneous
development of the lambda calculus by Church and the Turing machine by
Turing, Klemens reasons that “any such hyphenated theorem [sic] would be
a lawsuit in the making.”202

7. “It is impossible to write a section of the Manual of Patent

Examination Procedure (MPEP) that allows the patenting of software but

excludes from patentability the evaluation of purely mathematical

algorithms.”
203 Klemens states that “the proof” of this proposition is to be

found in “the formal Church-Turing thesis” and Donald Knuth’s comment
that “All data are numbers, and all numbers are data.”204

197 David Gale & Lloyd S. Shapley, College Admissions and the Stability of Marriage,

69 AM. MATH. MONTHLY 9 (1962).
198 See id. at 14 (quoted in KLEMENS, supra note 1, at 48-49).
199 See KLEMENS, supra note 1, at 63.
200 See id.
201 See id.
202 Id. at 47.
203 Klemens, supra note 4, at 10.
204 Id. at 9-10 (citing Letter from Donald Knuth, Professor Emeritus, to Commissioner

of Patents and Trademarks, Patent and Trademark Office, available via the Internet Archive
<http://www.archive.org> at <http://lpf.ai.mit.edu/Patents/knuth-to-pto.txt> (visited August

38 ON ABSTRACTION AND EQUIVALENCE [

D. Discussion

Read in context, Klemens’s repeated mischaracterizations of the

Church-Turing thesis as a proven theorem are not really that problematic.
Like computer scientists, the law can draw conclusions from unrebutted
presumptions, and it would be highly prudent to do so on the massive body
of evidence that now exists. An alternative interpretation, also in
Klemens’s favor, is that in citing the Church-Turing thesis he might actually
be referring instead to the body of evidence that supports the thesis; i.e.,
proven Turing-completeness results for numerous languages and machine
models. This, however, is the least serious of Klemens’s errors.

More serious is Klemens’s overstatement of the Church-Turing thesis.
As explained above, the Church-Turing thesis arises out of Turing’s proof
of an equivalence between Church’s lambda calculus and the Turing
machine. The precise nature of this equivalence is crucial. Specifically,
Turing showed that any function that could be computed on a Turing
machine could also be evaluated in the lambda calculus, and vice versa.
The Church-Turing thesis claims that this particular equivalence — between
the classes of functions that can be computed using the respective models
— can be extended even to the most powerful plausible models of
computation.205

In an article titled “The Church-Turing Thesis: Breaking the Myth,”206
computer scientists Dina Goldin and Peter Wegner address precisely the
same commonly held207 misunderstanding that informs much of Klemens’s
commentary. Goldin and Wegner state the Church-Turing thesis as follows:
“Whenever there is an effective method (algorithm) for obtaining the values
of a mathematical function, the function can be computed by a TM [Turing
machine].”208 They go on, however, to report that the thesis “has since been

15, 2008).

205 See supra text accompanying note 187.
206 Dina Goldin & Peter Wegner, The Church-Turing Thesis: Breaking the Myth, in

NEW COMPUTATIONAL PARADIGMS 152 (Springer-Verlag Lecture Notes in Computer
Science, vol. 3526, 2005).

207 See id. at 154 (opining that the myth “is dogmatically accepted by most computer
scientists). Goldin and Wegner state that at least one popular undergraduate textbook
contains the erroneous reinterpretation. See id. (citing MICHAEL SIPSER, INTRODUCTION TO

THE THEORY OF COMPUTATION (1997)). The allegedly offending textbook does not
actually offer a formal statement of the Church-Turing thesis, however, but says that the
term refers to the “connection between the informal notion of algorithm and the precise
definition” supplied by the lambda calculus and Turing machine models. SIPSER, supra, at
143.

208 Goldin & Wegner, supra note at 153.

] IN SOFTWARE PATENT DOCTRINE 39

reinterpreted to imply that Turing Machines model all computation, rather
than just functions,” to the effect that “[a] TM can do (compute) anything
that a computer can do.”209 They respond that “[i]t is a myth that the
original Church-Turing thesis is equivalent to this interpretation of it;
Turing himself would have denied it.”210

Goldin and Wegner’s insights rebut the first four of Klemens’s
propositions. With respect to the first, the Church-Turing thesis does not
imply that a Turing machine can emulate “anything a computer could
possibly do.” As Goldin and Wegner point out and every reasonably
sophisticated computer user should be able to recognize, modern computers
do much more than evaluate functions; they also interact with their users
and with their environments.211

Regarding Klemens’s second proposition, a proof that a particular
computational model or programming language is Turing-complete requires
only a showing that it can compute all Turing-computable functions; it does
not necessarily entail the construction of a “mechanical means of
translating” algorithms from one model to the other. Thus, the Church-
Turing thesis itself, and the Turing-completeness results that make up the
body of evidence supporting it, have nothing to say about the skill and
effort needed to write software in a given language for a given machine or
the computational resources (time, space, bandwidth, etc.) needed to run
the software.

The blindness of Turing-completeness proofs to computational resource
constraints highlights a key feature of the Turing machine and lambda
calculus models of calculation: they are endowed with infinite
computational resources, unlike every real-world computer. Software
developed for the real world must contend with scarce resources, and a
solution to a computational problem that conserves these resources (e.g.,
Karmarkar’s algorithm) can exhibit nonobvious differences over prior art
solutions to the same problem,212 as well as substantial differences in
function, way and result that might support a reverse doctrine of equivalents
defense.213 These legally cognizable differences between abstract

209 Id. at 153-54.
210 Id. at 154.
211 See id. at 156 (giving example of a robotic car); Peter Wegner & Dina Goldin,

Computation Beyond Turing Machines, 46 COMMUNICATIONS OF THE ACM 100, 101
(2003) (“The field of computing has greatly expanded since the 1960s, and it has been
increasingly recognized that artificial intelligence, graphics, and the Internet could not be
expressed by Turing machines. In each case, interaction between the program and the
world (environment) that takes place during computation plays a key role that cannot be
replaced by any set of inputs determined prior to the computation.”).

212 See supra text accompanying notes 122-140.
213 See Andrew Chin, Computational Complexity and the Scope of Software Patents,

40 ON ABSTRACTION AND EQUIVALENCE [

computational models and real-world computers present a further challenge
to Klemens’s essentially rhetorical efforts to extend Turing’s narrowly
defined, formal notions of equivalence into the realm of patent doctrine.

Klemens’s third and fourth propositions appeal specifically to the
mathematical form of the functions that can be expressed in Church’s
lambda calculus. As explained above, however, the proofs of equivalence
between the lambda calculus and other Turing-complete models of
calculation stop well short of constructing algorithms that are “identical” or
“entirely equivalent.” Klemens’s fourth proposition also relies on a dubious
interpretation of Gale and Shapley’s remarks.

Klemens’s fifth and sixth propositions are gross misstatement of patent
law. The Patent Act confers rights to exclude, not ownership rights to
mathematics or anything else,214 and precludes Church, Turing or anyone
else from obtaining (and, a fortiori, asserting in a “lawsuit in the making”)
any patent rights that could cover a scientific hypothesis such as the
Church-Turing thesis215 — particularly one so admittedly indefinite with
respect to the notion of “computable functions.”216

Finally, the original articles formulating the Church-Turing thesis are all
open to public examination, and one will search them in vain for a proof of
Klemens’s seventh proposition — Donald Knuth’s quip notwithstanding.

III. CONCLUSIONS

As surveys of the empirical patent law literature, Bessen and Meurer’s

and Klemens’s books both identify a host of symptoms — overwhelmed
examiners, high litigation costs, and structural distortions of software-
related industries — that strongly indicate an economic misalignment
between the patent system and the pursuit of software innovation. Their
diagnoses of the problem, however, suffer from factual errors and
misinterpretations of computer science concepts. Particularly problematic
are their various treatments of abstraction and equivalence in computer
science, which do not map directly or intuitively to notions of abstraction

39 JURIMETRICS 17 (1999). In the context of field-programmable gate arrays, Klemens
himself proposes an approach to infringement that would allow an imitator to take a “broad
algorithm” from a patented array provided that its implementation details were different
from those that “the designers worked to optimize” with respect to the array’s physical
resource constraints. See KLEMENS, supra note 2, at 67.

214 See 35 U.S.C. § 154.
215 See Tol-O-Matic, Inc. v. Proma Product-und Mktg. G.M.b.H., 945 F.2d 1546, 1552

(Fed. Cir. 1991) (“By § 101 there is excluded from the patent system such things as
scientific theories, pure mathematics, and laws of nature.”) (emphasis added).

216 See 35 U.S.C. § 112, ¶ 1.

] IN SOFTWARE PATENT DOCTRINE 41

and equivalence in legal reasoning and patent doctrine. At least as currently
presented, their arguments that software is different, and that this difference
compels technology-specific changes in patent doctrine, appear to be
without empirical support.

The factual corrections provided in this Article serve as a timely
reminder that an empirical approach to patent law reform calls for attention
not only to economic methods, but also to the scientific principles and
stakeholder perspectives that pervade patent law and practice. Scholars
interested in diagnosing the disconnect between the patent system and
software innovation should know what computer scientists have said on the
subject.

For example, European computer scientists Martin Campbell-Kelly and
Patrick Valduriez recently conducted a detailed technical review of the fifty
most-cited software patents issued since 1990.217 They found little evidence
that obvious or overbroad patents had been granted.218 Their main cause for
concern was that forty-four of the patents “had medium or low disclosure
that would make reproducing the invention either time-consuming or
problematic.”219 The scientists’ findings support a more modest approach
to software patent reform, which would aim to elaborate the enablement and
written description requirements in accordance with the standard practices
of software engineers for documenting and validating their inventions.220
They have also conducted a subsequent study in the area of anti-spam
software patents.221

While both of these studies are of considerable interest to the scientific
community,222 Campbell-Kelly and Valduriez have taken the exceptional
and commendable step of publishing their results in American student-
edited law reviews, rather than in peer-reviewed scientific journals.

217 Martin Campbell-Kelly & Patrick Valduriez, A Technical Critique of Fifty Softwaer

Patents, 9 MARQ. INTELL. PROP. L. REV. 249 (2005).
218 See id. at 281.
219 Id.
220 See supra text accompanying note 146; see also Jay P. Kesan, Carrots and Sticks to

Create a Better Patent System, 17 BERKELEY TECH. L.J. 145, 167-69 (2002) (arguing that
the Patent Office should require the use of standard modeling and representational
languages in software patent disclosures); but see Ajeet P. Pai, Note, The Low Written

Description Bar for Software Inventions, 94 VA. L. REV. 457, 490-93 (2008) (arguing that
patent law should continue to maintain a low written description requirement for software
inventions).

221 Martin Campbell-Kelly & Patrick Valduriez, An Empirical Study of the Patent

Prospect Theory: An Evaluation of Anti-Spam Patents, 11 VA. J. L & TECH. 10 (2006)
222 Cf. Wolfgang Emmerich et al., The Impact of Research on the Development of

Middleware Technology, ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND

METHODOLOGY, vol. 17, no. 4, art. 19 (Aug. 2008) (reporting, inter alia, findings regarding
the historical importance of patented inventions in the field of middleware technology).

42 ON ABSTRACTION AND EQUIVALENCE [

Interestingly, Bessen and Meurer’s book discusses at some length an earlier
historical article on software patents by Campbell-Kelly,223 but does not
mention any of his empirical studies.224 Bessen and Meurer may be right to
criticize Campbell-Kelly’s historical account of the software patent
controversy as too narrow, but their equally narrow view of empirical patent
law scholarship forecloses an important opportunity to acknowledge the
methods and perspectives that computer scientists can contribute to the
study of software patenting. Given the significant problems Bessen, Meurer
and Klemens have identified, the cause of software patent reform would be
better served by a deeper engagement between recognized scholars in the
fields of patent law, economics and computer science than has appeared to
date.

APPENDIX. A SIMPLE TURING MACHINE

This example of a Turing machine is designed to double the initial
number of + symbols on its tape. The Turing machine consists of an
infinite strip of tape partitioned into an infinite number of spaces, and a
head that can move in either direction along the tape and can print a symbol
taken from a finite alphabet into the space where it resides, replacing
whatever was in the space before. At any given time, the machine is in one
of a finite number of states. The head performs work on the tape through a
sequence of moves. During each move, the head may (a) perform a read,
write or erase operation, (b) change to any state (or remain in the current
state), and (c) move one space either to the left or to the right. The specific
move to be taken by the head at any given time is determined by a next
move function that depends on (i) the current state of the machine and (ii)
the current contents of the space where the head is located.

The table in Figure 6 describes the next move function for this Turing

machine. It has five states and uses the alphabet { }blank,+ .

Machine State If head reads a blank If head reads a +

State 1 STOP Write <blank>; change to
state 2; move left

State 2 Write +; change to state
3; move left

Remain in state 2; move left

State 3 Write +; change to state Remain in state 3; move left

223 Martin Campbell-Kelly, Not All Bad: An Historical Perspective on Software

Patents, 11 MICH. TELECOMM. & TECH. L. REV. 191 (2005).
224 See BESSEN & MEURER, supra note 6, at 188-91.

] IN SOFTWARE PATENT DOCTRINE 43

4; move right

State 4 Change to state 5; move
right

Remain in state 4; move
right

State 5 STOP Write <blank>; change to
state 2; move left

Figure 6. Next move function for a Turing machine that doubles the initial

number of + symbols on the tape.

As indicated in Figure 7, the initial content of the tape, or input, consists

of a single contiguous string of + symbols on an otherwise blank tape.
Initially (at time t=0), the head is initially in state 1 and is located at the
leftmost + symbol. Given this initial condition and the next move function
defined in Figure 6, it is possible to determine the sequence of all
subsequent moves. Figure 7 shows how this Turing machine continues for
14 steps and then stops in state 5.

44 ON ABSTRACTION AND EQUIVALENCE [

Figure 7. First 14 steps of a computation on a Turing machine with the next move

function defined in Figure 6.

	University of North Carolina School of Law
	From the SelectedWorks of Andrew Chin
	March 18, 2009

	On Abstraction and Equivalence in Software Patent Doctrine: A Reply to Bessen, Meurer and Klemens
	Microsoft Word - 157326-text.native.1237423486.doc

