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ABSTRACT 
 
 
Recent books by Professors James Bessen and Michael Meurer and by 

economist Ben Klemens have argued that software warrants technology-
specific treatment in patent doctrine.  This article argues that the authors' 
categorical claims about software are unsupported by computer science, and 
therefore cannot support their sweeping proposals regarding software 
patents as a matter of law.  Such proposals therefore remain subject to 
empirical examination and critique as policy choices, and are unlikely to be 
achieved through judicially developed doctrines.   

 
 
 

INTRODUCTION 
 
 
Two recent monographs currently stand at the center of the decades-old 

controversy over whether software-related inventions should be considered 
patentable subject matter under § 101 of the Patent Act, a controversy still 
unresolved by the Federal Circuit’s recent en banc decision in In re Bilski.1  
In 2006, Brookings Institution economist Ben Klemens published Math You 

 
* Associate Professor, University of North Carolina School of Law.   
In the course of writing to correct misinterpretations of the Karmarkar algorithm and 

other results in computer science, the author wishes to note for the record his own 
erroneous statement (at the age of 19) that Karmarkar had “apparently solved the 
longstanding ‘traveling salesman’ problem.”  See Andrew Chin, Math, At Its Best, Lives 

On, THE DAILY TEXAN, Aug. 16, 1985, at 8 (reporting on Michael Saks’s plenary lecture 
on the algorithm at the 1985 Joint Mathematics Meetings in Laramie, Wyo.).  Any errors in 
the present Article are solely the author’s responsibility, and he intends to acknowledge 
them likewise in due course. 

1 In re Bilski, 545 F.3d 943 (Fed. Cir. 2008) (en banc).  For a brief discussion of 
Bilski’s failure to resolve the controversy over software patents, see infra text 
accompanying notes 159-170. 
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Can’t Use: Patents, Copyright, and Software,2 in which he argued that 
software (and general-purpose computers programmed with software) 
should not be patentable.3  Klemens has subsequently clarified and 
elaborated this argument in a law review article4 and founded the End 
Software Patents Project, an organization seeking “to eliminate patents for 
software and other designs with no physically innovative step.”5 

In the 2008 book Patent Failure: How Judges, Bureaucrats, and 

Lawyers Put Innovators at Risk,6 Boston University economics professor 
James Bessen and law professor Michael J. Meurer document the failure of 
patents to provide effective notice of their scope.7  Bessen and Meurer 
single out software and business method patents for special criticism,8 and 
conclude that “patent reform will not likely be successful unless these areas 
are specifically addressed.”9  They argue for “modest” technology-specific 
changes in patent doctrine;10 however, if these initial changes “fail to work 
sufficiently well,” they would consider “more aggressive” reforms11 such as 
restricting or eliminating the eligibility of software-related inventions.12 

Both monographs provide detailed accounts of the symptoms of 
software-related patent system dysfunction, including overwhelmed 
examiners,13 high litigation costs,14 and structural distortions of software-
related industries.15  These observations, particularly in the context of 
Bessen and Meurer’s extensive review of empirical law and economics 
scholarship on the patent system, lend considerable support to the authors’ 
policy arguments.  The authors of both books stand on shakier ground, 
however, in their diagnoses of the patent system’s difficulties in dealing 

 
2 BEN KLEMENS, MATH YOU CAN’T USE: PATENTS, COPYRIGHTS, AND SOFTWARE 

(2006). 
3 See id. at 63-64 & 158-60. 
4 Ben Klemens, The Rise of the Information Processing Patent, 14 B.U. J. SCI. & 

TECH. L. 1 (2008). 
5 End Software Patents, ESP Releases Report on the State of Softpatents, News 

Release (Feb. 28, 2008) <http://endsoftpatents.org/28-february-2008:esp-releases-report-
on-the-state-of-softpatents> (visited June 15, 2008). 

6 JAMES BESSEN & MICHAEL J. MEURER, PATENT FAILURE: HOW JUDGES, 
BUREAUCRATS AND LAWYERS PUT INNOVATORS AT RISK (2008). 

7 See id. at 46-72. 
8 See id. at 187-214. 
9 See id. at 247. 
10 See id. at 244, 246. 
11 See id. at 244. 
12 See id. at 245. 
13 See BESSEN & MEURER, supra note 6, at 192-93; KLEMENS, supra note 2, at 84-90. 
14 See BESSEN & MEURER, supra note 6, at 191-93; KLEMENS, supra note 2, at 90-91 

& 107; Klemens, supra note 4, at 27-32. 
15 See BESSEN & MEURER, supra note 6, at 190-91; KLEMENS, supra note 2, at 92-107; 

Klemens, supra note 4, at 21-27. 
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with software-related inventions. 
In a section of their book entitled “Why Software Patents Are 

Different,”16 Bessen and Meurer argue that “the abstractness of software 
technology inherently makes it more difficult to place limits on abstract 
claims in software patents.”17  Given that patent claim drafting is itself 
largely an exercise in abstraction, however, it is not immediately clear why 
the abstract nature of software should pose a special problem for the 
determination of patent scope.  In fact, computer scientists and software 
engineers are accustomed to thinking and communicating precisely about 
levels of abstraction in software and, as I have indicated previously18 and 
will reemphasize herein,19 this precision can be brought to bear on the 
problem of defining patent scope.  Bessen and Meurer attempt to illustrate 
the difficulties caused by the “abstractness of software technology” with 
two examples of algorithms whose equivalents (in some mathematical 
sense) may be prohibitively difficult to recognize during the examination or 
term of a patent.  Section I of this Article examines these examples and 
demonstrates that neither of them actually supports Bessen and Meurer’s 
stated concern. 

Klemens finds fault with the Federal Circuit’s departure from 
longstanding doctrine that has regarded mathematical formulas as “abstract 
ideas” to be excluded from patentable subject matter.20  According to 
Klemens, a claim to a programmed computer should be unpatentable 
whenever the program is the only innovative element, because every 
computer program is “nothing but a mathematical equation.”21  Klemens 
attempts to support this characterization by loosely paraphrasing a classical 
result in theoretical computer science, the Church-Turing Thesis,22 and 
stating — without proof — sweeping and conclusory propositions that 
supposedly follow as corollaries from Alonzo Church’s and Alan Turing’s 
intricate mathematical theories of recursive functions.23  The ultimate effect, 
if not the purpose, of Klemens’s appeal to deep theory is to dazzle the “non-

 
16 See BESSEN & MEURER, supra note 6, at 201-14. 
17 See id. at 201. 
18 See Andrew Chin, Computational Complexity and the Scope of Software Patents, 39 

JURIMETRICS 17 (1999). 
19 See infra text accompanying note 146. 
20 See KLEMENS, supra note 2, at 53-69; Klemens, supra note 4, at 10-20. 
21 See KLEMENS, supra note 2, at 65 (describing a programmed computer as a “state 

machine”). 
22 See KLEMENS, supra note 1, at 26 (introducing the Church-Turing thesis); Klemens, 

supra note 4, at 9-10 (proceeding to discuss the implications of the thesis without stating 
the thesis itself). 

23 See infra Section II.C. 
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geeks”24 rather than to prove any point.  Section II of this Article shows that 
the Church-Turing Thesis actually applies to relatively few software-related 
inventions and does not speak to Klemens’s  proposed doctrinal reforms. 

In summary, Bessen and Meurer argue, through their examples, that 
software inventions are inherently too abstract to describe their scope 
reliably in a patent claim, and in this respect are different enough from other 
inventions to require technology-specific treatment in patent doctrine.  
Klemens argues, through theory, that software inventions should be deemed 
so abstract to be unpatentable as a matter of law.  Sections I and II of this 
Article show that both of these categorical arguments were presented 
without adequate factual support.  These findings imply that the authors’ 
proposals for software technology-specific patent law reform are actually 
grounded in empirical policy analyses, not categorical distinctions.  The 
proposals therefore remain subject to empirical examination and critique as 
policy choices, and are unlikely to be achieved through judicially developed 
doctrines.  They also highlight the need for precise language in the ongoing 
debate over patent reform, in which the meanings of legal, scientific and 
economic concepts are accurately informed by the understandings of their 
respective disciplines, rather than intuitions and analogies.  Section III of 
this Article concludes with additional comments and directions for further 
work. 

 
 

I.  BESSEN AND MEURER 
 
Without singling out any particular area of technology, courts and 

scholars have long described the ambiguity of claim language as a pervasive 
impediment to the notice function of patents.25  Even Bessen and Meurer 

 
24 KLEMENS, supra note 1, at 24. 
25 See, e.g., Autogiro Co. of Am. v. United States, 384 F.2d 391, 396-97 (Ct. Cl. 1967) 

(describing claim drafting as a “conversion of machine to words [that] allows for 
unintended idea gaps which cannot be satisfactorily filled”); Gretchen Ann Bender, 
Uncertainty and Unpredictability in Patent Litigation: The Time is Ripe for a Consistent 

Claim Construction Methodology, 8 J. INTELL. PROP. L. 175, 209 (2001) (arguing that 
“claim language is often inherently ambiguous”); Michael Risch, The Failure of Public 

Notice in Patent Prosecution, 21 HARV. J.L. & TECH. 179, 192 (2007) (citing 30% 
appellate reversal rate of district court claim construction rulings); see also United Carbon 
Co. v. Binney & Smith Co., 317 U.S. 228, 236 (1942) (“A zone of uncertainty which 
enterprise and experimentation may enter only at the risk of infringement would discourage 
invention only a little less than unequivocal foreclosure of the field.”); Merrill v. Yeomans, 
94 U.S. 568, 573-74 (1877) (“The public should not be deprived of rights supposed to 
belong to it, without being clearly told what it is that limits these rights. The genius of the 
inventor, constantly making improvements in existing patents — a process which gives to 
the patent system its greatest value — should not be restrained by vague and indefinite 
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acknowledge that the “problems of abstract patent claims clearly apply to a 
broad range of technologies in addition to software.”26  Nevertheless, they 
argue that “software patents are different” in that “the abstractness of 
software technology inherently makes it more difficult to place limits on 
abstract claims in software patents.”27   

Specifically, Bessen and Meurer are concerned that computer 
algorithms have “disparate representations” that may be impossible for even 
computer scientists to recognize at the time a patent issues, thereby 
“creat[ing] critically difficult problems for the notice function of the patent 
system.”28 

To illustrate this difficulty, Bessen and Meurer first discuss an 
“equivalen[ce]” between two examples of a large class of apparently 
intractable computational problems known as NP-complete problems.29  
Stated informally, the traveling-salesman problem is to find the shortest 
tour that visits each of a list of cities (in any order), given the known 
distances between each pair of cities.  The map-coloring problem is to paint 
the regions of a given map with a minimal number of colors so that no two 
adjacent regions are the same color.  Bessen and Meurer write: 

[T]he ‘traveling-salesman’ problem, which is used for 
routing delivery trucks among other things, is more or less 
equivalent to the ‘map-coloring’ problem and a whole range 
of other problems.  This means that an algorithm for solving 
the traveling-salesman problem is also, if worded broadly 
enough, an algorithm for doing map coloring.30  

The authors’ concern here is that a patent claim directed specifically to a 
algorithm for solving one NP-complete problem might eventually be 
construed more abstractly as covering the “whole range” of algorithms for 
solving NP-complete problems. 

Bessen and Meurer’s second illustration concerns a patented linear 
programming algorithm whose “equivalence” to prior art methods was only 
discovered by other computer scientists in 1986, two years after the 
algorithm was published: 

The patent is sometimes cited as an example of what a 
software patent should be: a highly specific, nontrivial 
contribution to practical knowledge.  Yet serious questions 

 
descriptions of claims in existing patents from the salutary and necessary right of 
improving on that which has already been invented.”). 

26 BESSEN & MEURER, supra note 6, at 201. 
27 Id. 
28 Id. at 202. 
29 Id. 
30 Id. at 201-02. 
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exist as to the boundaries of even this patent, questions as to 
whether its claims are truly novel, and whether [the inventor 
Narendra] Karmarkar actually “possessed” all the 
technologies claimed.  One problem is that Karmarkar’s 
algorithm seemed similar to technologies developed during 
the 1960s.  In 1986, computer scientists demonstrated, in 
fact, that Karmarkar’s algorithm is equivalent to a class of 
techniques that was known and applied to linear problems 
during the 1960s.  Moreover, after this equivalence was 
demonstrated, computer scientists began applying algorithms 
based on these older techniques to linear programming 
problems — some of these algorithms appeared to work 
better than the Karmarkar-AT&T approach. . . . 

Given these facts, consider the difficulty of determining 
the boundaries of this patent.  Would anyone have seen 
Karmarkar’s algorithm as novel in light of the techniques 
used in the 1960s?  Certainly not after 1986, when their 
equivalence was proved.  But even in 1984, computer 
scientists might well have had doubts, yet they would have 
been unable to make a certain comparison. . . .  Similarly, 
would AT&T have been able to assert its patent successfully 
against people who used linear-programming techniques 
based on those used in the 1960s?  Apparently, AT&T was 
able to obtain a cross-license from IBM, which had used 
these older techniques. 

The abstractness of the patented algorithm means that 
these determinations cannot be made with certainty.31 

Here, the authors’ concern is essentially that Karmarkar’s claims, being 
directed to an algorithm, were necessarily drafted in terms that were so 
abstract that they obscured the relevance of certain prior art techniques to 
the patentability analysis, thereby resulting in the patenting of an invention 
of dubious novelty. 

The basic problem with Bessen and Meurer’s illustrations is that in each 
case the computational concept of “equivalence” does not correspond to the 
relevant legal standard of equivalence pertaining to a claimed invention.  As 
the following technical discussion should make clear, it is highly 
implausible that an algorithm for solving any particular NP-complete 
problem would be patented under a claim that was only later understood to 
cover solutions to the general class of NP-complete problems, either 
literally or by equivalents.  It should also become apparent that that the 

 
31 Id. at 202-03. 
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aforementioned mathematical programming techniques from the 1960s 
would not have sufficed as prior art to show that Karmarkar’s algorithm 
was anticipated or obvious in 1984. 
 
 

A.  “Equivalences” Among Algorithms for NP-Complete Problems 

 
The mathematical theory of computational complexity has historically 

supplied computer science with the rigor necessary to study computational 
problems and algorithms.  One of the most important milestones in this field 
came in 1971, with the publication by Stephen Cook of a set of results 
concerning the apparent intractability of a large class of computational 
problems.32  From Cook’s theory emerged the understanding that many 
well-known problems, such as the traveling salesman and map coloring 
problems, are nearly enough equivalent that each is equally resistant to 
solution by an efficient (i.e., polynomial time) algorithm.33  To formalize 
this notion of equivalence, it is necessary to understand three important 
concepts from computational complexity theory, polynomial-time 

algorithms, NP-completeness, and polynomial-time reductions. 
 

 
1. Polynomial-Time Algorithms 

 
The standard basis for measuring the computational complexity of an 

algorithm is the Turing machine, an abstract model of computation.  A 
Turing machine consists of a read-write head, an infinite tape consisting of 
spaces for symbols that can be read or written, and a finite state control that 
can move the head one space to the left or right along the tape depending on 
the machine’s state.34  A program for a Turing machine essentially consists 
of a transition function that determines the machine’s next step (writing, 
moving and changing state) depending on the machine’s current state and 
the symbol currently being read.35  The program also specifies two final 
states, “yes” and “no,” for which the machine’s next step is simply to halt 
the computation.36  For a given program, whether the Turing machine 
eventually halts in a “yes” state or a “no” state depends on the initial 

 
32 See Stephen A. Cook, The Complexity of Theorem-Proving Procedures, PROC. 3RD 

ANN. ACM SYMP. ON THEORY OF COMPUTING 151 (1971). 
33 See MICHAEL R. GAREY & DAVID S. JOHNSON, COMPUTERS AND INTRACTABILITY: A 

GUIDE TO THE THEORY OF NP-COMPLETENESS 1-14 (1979). 
34 See id. at 23. 
35 See id. 
36 See id. at 23-24. 
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content of the tape, when read relative to the initial position of the head.37  
(A relatively simple example of a Turing machine program is provided in 
the Appendix.) 

A Turing machine is a relatively weak computational model, but 
powerful enough to support a stable classification of problems as tractable 
or intractable.38  For such a complexity analysis to proceed, the problem in 
question must be restated as a decision problem that can be answered with a 
“yes” or “no,” and there must be a system for encoding any instance of the 
problem as a string of symbols that can be read from a Turing machine 
tape.39  A decision problem Π  is said to be tractable if there exists a 
polynomial-time algorithm for solving it; i.e., there is a polynomial p  such 

that there exists a Turing machine program that halts with the correct 
decision for each instance of Π  in no more than )(np  steps, where n  is the 

size of (i.e., the number of symbols in) the encoded instance.40  The class of 
tractable problems is referred to simply as P.  Π  is said to be intractable if 
there exists no polynomial-time algorithm for solving it. 

The class P of tractable problems as defined here turns out to be the 
same regardless of the underlying computational model,41 and corresponds 
to a longstanding consensus among computer scientists about the feasibility 
of solving increasingly large-scale problems on increasingly powerful real-
world machines.42  This consensus dates back to the 1960s, when papers by 
computer scientists Alan Cobham43 and Jack Edmonds44 famously 
highlighted the fundamental importance of the distinction between 
polynomial-time (“good”) algorithms and less efficient (“bad”) algorithms.  
Their basic point was that as the processing speed of available computers 
increases exponentially over time — an empirical observation popularly 
known as Moore’s Law — it is polynomial-time algorithms, and only 
polynomial-time algorithms, that are capable of harnessing these 
improvements to solve exponentially larger problem instances.45  For 
example, following a 100-factor speedup in processing speed, an algorithm 

 
37 See id. 
38 See id. at 7-8. 
39 See id. at 9-11. 
40 See id. at 26-27. 
41 See id. at 10 (“All the realistic models of computers studied so far . . . are equivalent 

with respect to polynomial time complexity. . . .”). 
42 See id. at 6-11. 
43 Alan Cobham, The Intrinsic Computational Difficulty of Functions, in PROC. 1964 

INT’L CONGRESS FOR LOGIC METHODOLOGY AND PHILOSOPHY OF SCIENCE (Y. Bar-Hillel, 
ed. 1964), at 24. 

44 Jack Edmonds, Paths, Trees, and Flowers, 17 CANADIAN J. MATH. 449 (1965). 
45 See Andrew Chin, Computational Complexity and the Scope of Software Patents, 39 

JURIMETRICS 17, 25-26 (1998). 
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that takes 2
n  steps to solve instances of size n  will be able to handle 

instances 10 times as large as before, but an algorithm that takes n2  steps 
will only be able to handle instances that are incrementally (i.e., an 
additional 6.64 input symbols) larger.46  
  

 
2. NP-Completeness 
 

It is relatively straightforward to prove the complexity and correctness 
of an efficient algorithm for solving a problem, and thereby to show that the 
problem is tractable (i.e., in P).  As is often the case, however, proving the 
negative is considerably more difficult.  The most that can be said about the 
computational difficulty of solving many problems is that a polynomial-
time algorithm is very unlikely to exist. 

Even without formal proofs of intractability, computer scientists have 
managed to show that some computational problems are relatively difficult.  
They have focused these efforts on the class NP, which consists of those 
problems for which a polynomial-time algorithm might conceivably exist 
(whether or not one has already been discovered).47  The hardest problems 
in NP, including such familiar examples as the traveling-salesman and 
graph-coloring problems, are known as NP-complete problems. 

As illustrated in Figure 1, the class of NP-complete problems has the 
special property that if any NP-complete problem is tractable, then all 
problems in NP are tractable (i.e., P=NP).  Thus a proof that a problem is 
NP-complete serves to demonstrate that the problem is intractable, provided 
that P≠NP.  NP-complete problems are sometimes referred to as 
“equivalent” because of this common property; it is in this sense that 
Bessen and Meurer’s use of the term is apt.48 

 

 
46 See id. at 8. 
47 In the Turing machine model, the behavior of such a hypothetical polynomial-time 

algorithm is formally equivalent to a nondeterministic algorithm in which a “guessed 
structure” of polynomial size may be appended to the input to aid the computation, thereby 
reducing the problem to one of verification.  See GAREY & JOHNSON, supra note 33, at 27-
32. 

48 See supra text accompanying note 33. 
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Figure 1.  Relationships among the complexity classes P, NP and NP-complete in 

two alternative states of the world. 

 
It is unknown whether P=NP or P≠NP; in fact, this has become one of 

the most important open questions in mathematics and computer science.49  
Until it is established that P≠NP, the traveling-salesman and map-coloring 
problems and thousands of other NP-complete problems will lack an 
efficient solution, yet will not be known to be intractable. 

Failure to establish that P=NP, on the other hand, signifies the failure of 
the entire scientific community to find a polynomial-time algorithm for 
solving any one of the thousands of NP-complete problems.  Even though 
computer scientists are certainly well aware that “absence of evidence is not 
evidence of absence,”50 many have viewed the absence of an efficient 
solution to any NP-complete problem as evidence that none can exist (i.e., 
that P≠NP).51  This view was expressed in whimsical terms by Garey and 
Johnson’s classic treatise on NP-completeness52 in 1979, which explained 
that if tasked with designing an efficient algorithm for some new 
computational problem, say, the “bandersnatch problem,” 

you might be able to prove that the bandersnatch problem is 
NP-complete and, hence, that it is equivalent to all these 

 
49 See, e.g., Michael Sipser, The History and Status of the P versus NP Question, in 

PROC. 24TH ANNUAL ACM SYMP. ON THEORY OF COMPUTING (1992), at 603 (describing it 
as “one of the most important problems in contemporary mathematics and theoretical 
computer science”); Clay Mathematics Institute, P vs. NP Problem, 
<http://www.claymath.org/millennium/P_vs_NP/> (visited July 15, 2008) (describing it as 
one of seven “Millennium Problems” for which the Institute offered a standing prize of $1 
million in 2000). 

50 See, e.g., Hall v. Baxter Healthcare Corp., 947 F. Supp. 1387, 1470-71 (D. Or. 1996) 
(describing this as “one of the major tenets of science”). 

51 See, e.g., William A. Gasarch, Guest Column: The P=?NP Poll, 33 SIGACT NEWS 
34 (2002). 

52 See GAREY & JOHNSON, supra note 33. 
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other hard problems.  Then you could march into your boss’s 
office and announce: “I can’t find an efficient algorithm, but 
neither can all these famous people.”  At the very least, this 
would inform your boss that it would do no good to fire you 
and hire another expert on algorithms.53 

Three decades later, both the list of “famous people” and the universe of 
NP-complete problems they have failed to conquer have grown 
dramatically, further bolstering the case that P≠NP. 

In the computer science research community, the view that the edifice of 
NP-completeness has grown too formidable to collapse is dominant but not 
universal.  In a recent survey of prominent computer scientists, a substantial 
majority (61%) predicted an eventual proof that P≠NP, while only a small 
minority (9%) predicted that it will turn out that P=NP.54  Few (30%) 
expected the question to be resolved by the year 2029.55 

The P vs. NP problem appears from the survey to have humbled many 
of the most accomplished computer scientists of our time.  Turing Award 
winner Richard Karp responded, “My intuitive belief is that P is unequal to 
NP, but the only supporting arguments I can offer are the failure of all 
efforts to place specific NP-complete problems in P by constructing 
polynomial-time algorithms.”56  While taking a contrary view, Senior 
Whitehead Prize winner Bela Bollobas was equally tentative, describing 
himself as “on the loony fringe of the mathematical community” in 
believing “not too strongly” that a proof that P=NP would appear within 
twenty years.57  Jim Owings, an emeritus professor at the University of 
Maryland, was more philosophical about the state of his knowledge: “It is 
the greatest unsolved problem in mathematics. . . .  It is the raison d’etre of 
abstract computer science, and as long as it remains unsolved, its mystery 
will ennoble the field.”58 

Even respondents who expected an eventual proof that P=NP expressed 
doubt that such a result would enable the solution of all NP-complete 
problems in practice.  Donald Knuth, the founder of the modern science of 
algorithms, wrote that he expects P=NP to be the consequence of an indirect 
proof, so that “we will never know” the complexity of an NP-complete 
problem.59  Other respondents expected any proof of P=NP to result in 

 
53 Id. at 1-3. 
54 See Gasarch, supra note 51, at 36. 
55 See id.; but see id. at 38 (noting John Conway’s opinion that “this shouldn’t really 

be a hard problem; it’s just that we came late to this theory, and haven’t yet developed any 
techniques for proving computations to be hard.”). 

56 Id. at 41. 
57 Id. at 37. 
58 Id. at 43. 
59 See id. at 41. 
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polynomial time bounds for NP-complete problems whose degrees and/or 
coefficients are too high to assure the existence of a practical algorithmic 
solution.60 

 
 

3. Polynomial-Time Reductions 
 
The distinction between problems known and not known to have 

polynomial-time algorithms has special significance because of Moore’s 
Law and the theory of NP-completeness.  Since polynomials with high 
degrees or coefficients can grow very quickly, however, a problem may be 
in P yet lack a practical algorithmic solution even for small inputs.  
Computational complexity theory must therefore also be concerned with 
achieving the lowest possible upper bounds on the time required to solve 
tractable problems.  An eventual proof that P=NP would imply that all NP-
complete problems could be solved by polynomial-time algorithms, but it 
would not immediately imply the existence of practical algorithms for 
solving all NP-complete problems.  Instead, it would instigate a further 
program of research into the complexity of individual NP-complete 
problems.61 

Much work on the complexity of specific NP-complete problems has 
already been done.  The typical procedure for proving a decision problem 

NP∈Π  to be NP-complete is to show that Π  is at least as unlikely to be in 

P as some other problem 0Π  that has previously been shown to be NP-

complete.  This involves constructing what is known as a polynomial-time 

reduction from 0Π  to Π, i.e., a polynomial-time computable function f  

that maps each possible instance x  of 0Π  into a corresponding instance 

)(xf  of Π  that yields the same yes-or-no decision.62  The idea is that any 

polynomial-time algorithm that solves 
Π

 could be used as a polynomial-

time solution for 0Π : given an input x  to problem 0Π , simply calculate 

the transformed value )(xf  in polynomial time, and then solve Π  in 

polynomial time.63 
Stephen Cook’s 1971 article64 laid the groundwork for this research by 

identifying and proving the first problem to be NP-complete from first 
principles.  The problem, now known in the literature as SATISFIABILITY 

 
60 See id. (noting comments of Vladik Kreinovich and Clyde Kruskal). 
61 For example, see infra text accompanying notes 85-86 (discussing Karmarkar’s 

improvement of Khachiyan’s upper bound for the complexity of linear programming). 
62 See GAREY & JOHNSON, supra note 33, at 34. 
63 See id. at 34-35. 
64 See Cook, supra note 32. 
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(or SAT for short), is to determine whether a Boolean formula on n  true-or-
false variables, given in disjunctive normal form (i.e., an AND of OR-
clauses on the n  variables and their negations), can be made true by some 
assignment of values to the variables.65  Cook’s result66 essentially 
constructed a polynomial-time reduction from any problem in NP67 to 
SATISFIABILITY.68  Cook’s article then went on to show, inter alia, a 
polynomial-time reduction from SATISFIABILITY to a second NP-
complete problem, now referred to as SUBGRAPH ISOMORPHISM.69  
Soon thereafter, Richard Karp published an article presenting proofs of the 
NP-completeness of twenty-one well-known problems in computer science, 
including 3SAT, a variant of SATISFIABILITY in which each OR-clause 
consists of exactly three terms.70 

Over the years, thousands of problems have been added to a growing 
tree of NP-complete problems, each linked to a previous member of the 
class by a polynomial-time reduction.71  Between any two NP-complete 
problems on the tree, it is possible to trace a chain of polynomial-time 
reductions that demonstrates their “equivalence,” in the sense that the two 
problems are equally unlikely to be tractable.72  If used in practice, 
however, polynomial-time reductions can generate significant overheads, 
both in the time required to calculate the transformed inputs and in the size 
of the transformed inputs themselves.  Where several polynomial-time 
reductions are applied in succession, these overheads will be compounded. 

To illustrate the overheads that may result from a polynomial-time 
reduction, consider another of Karp’s problems, known as VERTEX 
COVER.  The problem may be stated as follows:  Given a graph of N 
vertices and M edges and an integer Nn < , is there some subset of n 
vertices that includes at least one endpoint of every edge in the graph?73  
Garey and Johnson present a proof that VERTEX COVER is NP-complete 
by presenting a polynomial-time reduction f  from 3SAT to VERTEX 

 
65 See GAREY & JOHNSON, supra note 33, at 39 (defining SATISFIABILITY). 
66 See Cook, supra note 32, at 152-53 (proving Theorem 1). 
67 See supra note 47. 
68 See GAREY & JOHNSON, supra note 33, at 44 (restating Cook’s result as showing the 

existence of a polynomial-time reduction Lf  from a nondeterministic Turing machine 

computation recognizing the language L  to SAT). 
69 See Cook, supra note 32, at 153-54 (proving Theorem 2). 
70 See Richard M. Karp, Reducibility Among Combinatorial Problems, in COMPLEXITY 

OF COMPUTER COMPUTATIONS 85 (R.E. Miller & J.W. Thatcher eds. 1972). 
71 For early versions of this tree, see, e.g., GAREY & JOHNSON, supra note 33, at 47; 

Karp, supra note 70, at 96. 
72 See supra text accompanying notes 33 and 48. 
73 See Karp, supra note 70, at 94 (referring to the problem as NODE COVER); GAREY 

& JOHNSON, supra note 33, at 46. 
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COVER.  Figure 2 illustrates how the reduction f  operates to convert the 

3SAT instance ( ) ( )421431 uuuuuu ¬∨∨¬∧¬∨¬∨  into an instance of 

VERTEX COVER with 8=n .74 
 

 

Figure 2.  VERTEX COVER instance resulting from the 3SAT instance 

( ) ( )421431 uuuuuu ¬∨∨¬∧¬∨¬∨ . 

 
For each variable that appears in the 3SAT instance, the VERTEX COVER 
instance has two vertices, representing the variable and its negation, 
connected by an edge.  Each clause in the 3SAT instance is represented by 

three vertices ][],[],[ 321 icicic , connected by three edges to form a triangle.  

Finally, each of the three vertices representing each clause is connected to 
the vertex that represents the corresponding variable (or its negation) as it 
appears in the 3SAT instance.75 

While this polynomial-time reduction from 3SAT to VERTEX COVER 
is simple and even elegant, it requires some computational time and some 
expansion in the instance size.  A person in possession of an efficient 
algorithm for VERTEX COVER might well wonder if there were a faster 
way of solving 3SAT directly, instead of first having to convert each 
instance of 3SAT to an instance of VERTEX COVER to be solved.  This 
concern about the overhead of polynomial-time reductions becomes even 

 
74 The required size of the vertex cover (n=8) is determined by adding the number of 

variables (four) to twice the number of clauses (two) in the given 3SAT instance.  See 
GAREY & JOHNSON, supra note 33, at 55. 

75 See id. at 54-56. 
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more warranted when more distant problems on the tree of NP-complete 
problems are considered. 

 
 

4. Bessen and Meurer’s “Equivalence” 
 
According to Bessen and Meurer, a software developer trying to solve 

the map-coloring problem might inadvertently infringe a patent claim 
directed to a traveling-salesman algorithm (or vice versa) because of the 
“equivalence” between the two problems.  This possibility, the authors 
contend, is illustrative of an inherent and unique deficiency in the notice 
function of software patent claims — at least those that are “worded broadly 
enough.”76  Given the context provided above, however, it is difficult to 
imagine that such a problematic ambiguity in the scope of a software patent 
claim would ever arise.  

In understanding the effect that the equivalence among NP-complete 
problems might have on software patent scope, it is important to distinguish 
between problems and algorithms.  A chain of polynomial-time reductions 
that demonstrates the equivalence between two NP-complete problems does 
not thereby show that all algorithms for solving those problems are 
equivalent.  It shows only that given a hypothetical algorithm for solving 
one problem, it is possible to derive a particular algorithm for solving the 
other.  Moreover, the derived algorithm provides only an indirect solution 
that may be inefficient and even impractical. 

As shown in Figure 3, the chains of polynomial-time reductions from 
MAP COLORING to TRAVELING SALESMAN and vice versa both 
involve several links. 

 
76 See supra text accompanying notes 28-30. 
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MAP COLORING ∝  SATISFIABILITY ∝  3SAT ∝  
VERTEX COVER ∝  HAMILTONIAN CIRCUIT ∝  

TRAVELING SALESMAN 
 

TRAVELING SALESMAN ∝  SATISFIABILITY ∝  3SAT 

∝  MAP COLORING  

Figure 3.  Chains of polynomial-time reductions proven between MAP 

COLORING AND TRAVELING SALESMAN. 

 
For Bessen and Meurer’s scenario to take place, it would require more than 
the fact that a claim directed to a polynomial-time traveling-salesman 
algorithm was “worded broadly enough.”  It would require that an 
independently discovered algorithm for the map-coloring problem correctly 
implemented each of the detailed and intricate polynomial-time reductions 
in the chain, as well as each of the steps recited in the claim to the traveling-
salesman algorithm.  A more broadly worded claim to a traveling-salesman 
algorithm might cover the use of the recited computational steps across a 
wider range of fields, but it cannot widen the range of conditions under 
which a polynomial-time reduction is logically correct.  (From the 
description above of one such reduction, from VERTEX COVER to 
3SAT,77 it should be clear that these conditions are mathematically well-
defined and precise.)  It seems most unlikely that an independent scientist, 
seeking a direct and efficient solution to the map-coloring problem, would 
in passing replicate the details (and assume the overhead) of the entire chain 
of reductions to the traveling-salesman problem. 

It is also worth noting here that the equivalence among NP-complete 
problems due to polynomial-time reductions does not imply equivalence 
between specific algorithms for solving those problems under patent law’s 
doctrine of equivalents.  Under the doctrine of equivalents, an accused 
device that does not fall literally within the scope of a claim may 
nevertheless be found to infringe “if it performs substantially the same 
function in substantially the same way to obtain the same result”;78 this 
“triple identity” determination is to be applied to a claim “as an objective 
inquiry on an element-by-element basis.”79  A chain of polynomial-time 
reductions, however, does not translate an algorithm for solving one 
problem into an algorithm for solving another on a step-by-step or element-

 
77 See supra text accompanying note 75. 
78 Graver Tank & Mfg. Co. v. Linde Air Products Co., 339 U.S. 605, 608 (1950) 

(quoting Sanitary Refrigerator Co. v. Winters, 280 U.S. 30, 42 (1929)). 
79 Warner-Jenkinson Co., Inc. v. Hilton Davis Chemical Co., 520 U.S. 17, 40 (1997). 



] IN SOFTWARE PATENT DOCTRINE 17 

by-element basis; rather, it converts an instance of one problem into an 
instance of the other.  By the time the steps of the original algorithm are to 
be performed on the converted instance, all of the polynomial-time 
reductions have already been completed, and can play no part in a step-by-
step analysis of equivalence to the original algorithm.  Thus, in Bessen and 
Meurer’s scenario, a correct implementation of the entire chain of 
polynomial-time reductions by the accused algorithm would be a 
prerequisite not only for a finding of literal infringement, but for a finding 
of infringement by equivalents as well.  As discussed above, it is highly 
unlikely that an independently designed algorithm would happen to follow 
this approach. 

Finally, it should be remembered that the notion of “equivalence” via 
polynomial-time reductions between a newly discovered map-coloring 
algorithm and a previously claimed traveling-salesman algorithm (or vice 
versa) presupposes a state of the world in which polynomial-time 
algorithms for NP-complete problems are known to exist; i.e., that P=NP.  
As we have seen, few computer scientists believe this to be the case.80  
Moreover, it is almost unimaginable that anyone who discovered a 
polynomial-time traveling-salesman algorithm, thereby proving that P=NP, 
would simply patent the algorithm and fail to announce the broader result.  
In sum, software developers have very little to fear from inadequately 
noticed patents on polynomial-time algorithms for NP-complete problems. 

 
 

B.  Linear Programming and Karmarkar’s Algorithm 

 
1. Karmarkar’s Contributions 

 
Bessen and Meurer’s second illustration of the problematic 

“abstractness of software technology” concerns Narendra Karmarkar’s 
celebrated (and patented) algorithm for linear programming, which solves a 
form of constrained optimization problem commonly used in operations 
research and public policy analysis.  The linear programming problem is to 
maximize (or, alternatively, to minimize) the value of a given linear 
function in real variables (the objective function), where the variables are 
subject to a system of linear inequalities (the constraints).81  The more 
general problem in which the objective function and constraints may be 
nonlinear is referred to as mathematical programming; a mathematical 
programming problem that is not a linear programming problem is known 

 
80 See supra text accompanying note 54 
81 See ANTHONY V. FIACCO & GARTH P. MCCORMICK, NONLINEAR PROGRAMMING: 

SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUES 1 (1968). 
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as a nonlinear programming problem.82 
When Cook and Karp published their first results on the theory of NP-

completeness in 1971-72,83 linear programming had already been long 
recognized as an important computational problem,84 but no one knew then 
whether or not it could be solved in polynomial time.  It was not until 1979 
that Leonid Khachiyan showed linear programming to be tractable by 

presenting an algorithm that required at most )( 26
LnO  time to solve a 

problem with n variables and L input bits.85 
Karmarkar announced his algorithm in May 1984 at the Association for 

Computing Machinery’s annual symposium on theoretical computer 
science86 and submitted a revised and extended exposition of the algorithm 
to the mathematics journal Combinatorica in August 1984 for publication 
later that year.87  While his results came too late to be credited with 
resolving the question of linear programming’s tractability, they were 
groundbreaking in other ways.  Previous linear programming algorithms, 
including Khachiyan’s, searched for possible solutions (known as 
“iterates”) by moving from corner to corner around the boundary of the n-
dimensional region (known as a “polytope”) defined by the constraints of 
the problem.  Karmarkar’s insight was that interior points provide richer 
information than boundary points on which direction will lead to the 
greatest improvement in the objective function.  A prior art “exterior-point” 
method and Karmarkar’s “interior-point” method are contrasted in Figure 4. 

 

 
82 See id. 
83 See supra text accompanying notes 64-70. 
84 See generally VERA RILEY & SAUL I. GASS, LINEAR PROGRAMMING AND 

ASSOCIATED TECHNIQUES; A COMPREHENSIVE BIBLIOGRAPHY ON LINEAR, NONLINEAR, 
AND DYNAMIC PROGRAMMING (1958) (reviewing research as of 1958). 

85 See Leonid G. Khachiyan, A Polynomial Algorithm in Linear Programming, 244 
DOKLADY AKADEMIIA NAUK. SSSR 1093 (1979), translated in 20 SOVIET MATH. 
DOKLADY 191 (1979).  The parameter L accounts for the complexity of real-number 
calculations that may require an arbitrary degree of precision. 

86 See Narendra Karmarkar, A New Polynomial-Time Algorithm for Linear 

Programming, PROCEEDINGS 16TH ACM SYMP. ON THEORY OF COMPUTING 302 (1984). 
87 See Narendra Karmarkar, A New Polynomial-Time Algorithm for Linear 

Programming, 4 COMBINATORICA 373 (1984). 
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Figure 4.  Comparison between George Dantzig’s simplex exterior-point 

algorithm (left) and Karmarkar’s interior-point algorithm (right) for linear 

programming.  In the simplex method, the search proceeds entirely on the boundary 

of the polytope (from the initial iterate (point 12) to the solution (point 21).  In 

Karmarkar’s method, the search proceeds within the interior of the polytope from the 

initial iterate (point 51) until a solution is reached that satisfies the condition for 

termination (point 53).
88

 

 
At each iteration, Karmarkar’s algorithm performs a projective 

transformation on the polytope so that the previous iterate, a boundary 
point, is mapped into the interior of the transformed polytope.89  From that 
interior point, the algorithm finds the next iterate by moving along a line, in 
the direction that maximizes the objective function, until it reaches the 
boundary.90  By following this more efficient approach, Karmarkar’s 

algorithm achieves a worst-case running time of )( 25.3
LnO , a vast 

improvement over Khachiyan’s algorithm for practical purposes.91  
Karmarkar’s algorithm also has the virtue that it is relatively easy to 
implement.92 

Karmarkar filed a U.S. patent application on Apr. 19, 1985 titled 
“Methods and Apparatus for Efficient Resource Allocation.”93  The patent 

 
88 See U.S. Patent No. 4,744,028, at cols. 2-4. 
89 See Michael J. Todd, The Many Facets of Linear Programming, 91 MATH. 

PROGRAMMING SERIES B 417, 427 (2002). 
90 See id. 
91 See Karmarkar, supra note 86, at 302. 
92 See, e.g., E.R. Swart, How I Implemented the Karmarkar Algorithm in One Evening, 

15 APL QUOTE QUAD 13 (1985) (providing source code of a 92-line program 
implementing the Karmarkar algorithm in Array Processing Language). 

93 See U.S. Patent No. 4,744,028. 
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issued on May 10, 1988 and was assigned to his employer, AT&T Bell 
Laboratories.94 
 

 
2. Doubts as to Karmarkar’s Contributions 

 
According to Bessen and Meurer, the validity of Karmarkar’s patent is 

called into doubt by both prior and subsequent developments.  They 
correctly note that the use of interior-point methods to solve linear 
programming problems was not new in 1984, but (as Philip Gill et al. 
documented in 1986) had a long and distinguished history dating back to 
the 1940s and 1950s, including efforts by John von Neumann, Alan 
Hoffman, Charles Tompkins, and Ragnar Frisch.95  In practice, these earlier 
interior-point methods were not competitive with George Dantzig’s simplex 
algorithm, an exterior-point method that was known to have worst-case 
exponential running time96 but, because of its conceptual simplicity, was 
considered acceptable for reasonably small problems.97  (They also did not 
succeed in developing a polynomial-time algorithm for linear programming; 
that achievement would be left to Khachiyan in 1979.98)  Accordingly, 
researchers found it more fruitful to investigate the application of interior-
point methods to nonlinear programming.  By 1968, when operations 
researchers Anthony Fiacco and Garth McCormick published their treatise 
on nonlinear programming, their presentation of interior-point methods and 
related results constituted one full chapter and parts of four others.99 

In the years following the publication of Karmarkar’s algorithm, some 
researchers began to identify connections between the earlier work focused 
on nonlinear programming and Karmarkar’s more recent work on linear 
programming.100  (It is worth noting that Karmarkar himself did not 

 
94 See id. 
95 See Philip E. Gill et al., On Projected Newton Barrier Methods for Linear 

Programming and an Equivalence to Karmarkar’s Projective Method, 36 MATH. 
PROGRAMMING 183, 184 (1986) (citations omitted). 

96 See Victor Klee & George J. Minty, Jr., How Good is the Simplex Method?, in 
INEQUALITIES III, at 159 (O. Sisha ed. 1972). 

97 The simplex algorithm is still the only computational linear-programming method 
presented in introductory operations research textbooks, see, e.g., David R. Anderson et al., 
AN INTRODUCTION TO MANAGEMENT SCIENCE: A QUANTITATIVE APPROACH TO DECISION 

MAKING, chs. 17-18 (2007), and remains “the method of choice” for many applications.  
See Roy Marsten et al., Interior Point Methods for Linear Programming: Just Call Newton, 

Lagrange, and Fiacco and McCormick!, 20 INTERFACES 105, 115 (1990). 
98 See supra note 85 and accompanying text. 
99 See FIACCO & MCCORMICK, supra note 81, at chs. 3, 5-8. 
100 See Marsten, supra note 97, at 105-06 (1990) (noting that shortly after 1984, 

“[m]any others worked on bringing Karmarkar’s method, which at first appeared to be 
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acknowledge any such connections in his patent application or either of his 
1984 publications.101)  In their 1986 paper,102 Gill et al. note that Frisch’s 
interior-point methods103 allow for a choice of the direction the search 
algorithm is to take from one iterate to the next.  One possible way of 
determining this direction is to minimize a quadratic approximation to a 
“barrier function” )(xF , defined by 

∑
=

−=
n

j

j

T xxcxF
1

ln)( µ , 

that incorporates both the problem’s objective function and its 
constraints.104  Gill et al. refer to this direction as the “Newton search 
direction” in honor of Sir Isaac Newton, who is credited with discovering 
this numerical approach to approximating the minima of differentiable 
functions.105  Their main result is that for a particular value of the parameter 

µ , the Newton search direction is the same as the direction prescribed by 

Karmarkar’s algorithm.106  Gill et al. are careful to characterize their finding 
as “an existence result, showing that a special case of the [Newton] barrier 
method would follow the same path as the [Karmarkar] projective 
method.”107  In the article’s introduction, however, they describe this result 
more broadly as “a formal equivalence between the Newton search direction 
and the direction associated with Karmarkar’s algorithm.”108  The title of 
their article is broader still, suggesting equivalence not merely between the 
search directions employed by the respective methods, but between the 
methods themselves: “On Projected Newton Barrier Methods for Linear 
Programming and an Equivalence to Karmarkar’s Projective Method.”109 

A 1990 article by Roy Marsten et al. also describes Gill et al.’s 
existence result in broad terms as “an equivalence between Karmarkar’s 
method and projected Newton barrier methods.”110  In an elegant 
exposition, Marsten et al. outline the respective contributions of Fiacco and 

 
coming completely out of left field, into our classical framework of optimization”). 

101 None of Karmarkar’s lists of references cites any of the literature on nonlinear 
programming.  See U.S. Patent No. 4,744,028; Karmarkar, supra note 86 at 311; 
Karmarkar, supra note 87, at 395. 

102 See Gill, supra note 95. 
103 See K. Ragnar Frisch, The Logarithmic Potential Method of Convex Programming 

(1955), unpublished manuscript, University Institute of Economics, Oslo, Norway, cited in 
Gill, supra note 95. 

104 See Gill, supra note 95, at 185-86. 
105 See id. at 186. 
106 See id. at 190-91. 
107 Id. at 191. 
108 Id. at 184. 
109 Id. at 183. 
110 Marsten, supra note 97, at 106. 
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McCormick, Newton, and the eighteenth-century Italian mathematician 
Joseph-Louis Lagrange to the “special case of the [Newton] barrier method” 
identified by Gill et al.111  They do this not only to present Gill et al.’s 
results to “a wider audience” in the operations research and management 
science community,112 but to respond to what they saw as hubris on the part 
of Karmarkar and AT&T: 

In 1984, Narendra Karmarkar began the “new era of 
mathematical programming” with the publication of his 
landmark paper.  Shortly thereafter his employer, AT&T, 
invited the professional mathematical programming 
community to roll over and die.  Speaking as representatives 
of this community, we took this as rather a challenge.113 

Accordingly, Marsten et al.’s title and abstract suggest an account of the 
“new era” in which Karmarkar’s contributions may be rightly omitted as 
redundant: 

Interior Point Methods for Linear Programming: 

Just Call Newton, Lagrange, and Fiacco and McCormick! 

Interior point methods are the right way to solve large 
linear programs.  They are also much easier to derive, 
motivate, and understand than they at first appeared.  
Lagrange told us how to convert a minimization with 
equality constraints into an unconstrained minimization.  
Fiacco and McCormick told us how to convert a 
minimization with inequality constraints into a sequence of 
unconstrained minimizations.  Newton told us how to solve 
unconstrained minimizations.  Linear programs are 
minimizations with equations and inequalities.  Voila!114 

Marsten et al.115 and other researchers (including Karmarkar himself116) 
also sought to improve the performance of Karmarkar’s algorithm in cases 
where its calculations involved sparse matrices; i.e., matrices that have very 
few nonzero elements.   By using fast sparse-matrix algorithms for 
“Cholesky factorization,” an important subroutine used in the numerical 
solution of systems of linear equations, Marsten et al. were able to 
accelerate a procedure that accounts for about 90 percent of the running 

 
111 See id. at 106-08. 
112 See id. at 105. 
113 Id. (quotation unattributed in original). 
114 Id. 
115 See id. at 110-15. 
116 See Ilan Adler et al., An Implementation of Karmarkar's Algorithm for Linear 

Programming, 44 MATHEMATICAL PROGRAMMING 297 (1989) (naming Karmarkar as co-
author); Ilan Adler et al., Data Structures and Programming Techniques for the 

Implementation of Karmarkar's Algorithm, 1 ORSA J. COMPUT. 84 (1989) (same). 
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time of Karmarkar’s algorithm in practice,117 thereby addressing the 
algorithm’s “main weakness.”118 

In 1991, one of Marsten’s coauthors, Matthew Saltzman, addressed his 
concerns about Karmarkar’s algorithm and patent to an even wider 
community by posting a long message to the USENET discussion group 
sci.math.num-analysis summarizing the points made in the Marsten et al. 
article.119  Saltzman also goes on question the novelty of, and sufficiency of 
disclosure in, Karmarkar’s patent, and opines: “IMHO, this patent has not 
benefitted society.  If faster LP [linear programming] algorithms are a 
benefit to society, then the benefit has occurred despite, not because of the 
patent.”120 

Given Gill et al.’s self-styled “equivalence” result, Marsten et al.’s 
apparent desire to write Karmarkar out of the mathematical programming 
history books, and subsequent advances in sparse-matrix calculations, it is 
easy to see how a casual reader of the technical literature might be left in 
doubt as to Karmarkar’s contributions, and even be persuaded by a research 
scientist’s uninformed legal opinion on the validity of Karmarkar’s patent.  
For purposes of legal inquiry into the validity and scope of Karmarkar’s 
patent, however, Bessen and Meurer need not have relied on these 
scientists’ conclusory and somewhat misleading descriptions of “an 
equivalence between Karmarkar’s method and projected Newton barrier 
methods” when a precise statement of Gill et al.’s actual existence result 
was already available.121 

 
 

3. Karmarkar’s Contributions Relative to the Prior Art 
 
Contrary to Bessen and Meurer’s assertion, Gill et al. did not 

“demonstrate[], in fact, that Karmarkar’s algorithm is equivalent to a class 

 
117 See Marsten, supra note 97, at 111. 
118 See id. at 112. 
119 See Matthew Saltzman, Re: The Karmarkar Algorithm (long), USENET (March 24, 

1991), available via the Internet Archive <http://www.archive.org> at 
<http://www.cs.uvic.ca/~wendym/courses/445/06/interiorpoint.txt>  (visited July 15, 2008) 
(cited by BESSEN & MEURER, supra note 6, at 312). 

120 See BESSEN & MEURER, supra note 6, at 202-03. 
121 See supra text accompanying note 31.  Bessen and Meurer also appear to have been 

influenced by a posting by one of Marsten’s co-authors to the USENET newsgroup 
sci.math.num-analysis, which questions the validity of Karmarkar’s patent on novelty and 
disclosure grounds and cites the Gill and Marsten articles.  See Matthew Saltzman, Re: The 

Karmarkar Algorithm (long), USENET (March 24, 1991), available at 
<http://web.archive.org/web/20070223080354/http://www.cs.uvic.ca/~wendym/courses/44
5/06/interiorpoint.txt> (visited July 15, 2008) (cited by BESSEN & MEURER, supra note 6, 
at 312). 
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of techniques that was known and applied to linear problems during the 
1960s.”122  Gill et al.’s existence result shows only that some of Frisch’s 
and Fiacco and McCormick’s methods can be tailored so that the resulting 
algorithm proceeds to search the same iterates as Karmarkar’s algorithm.  
The necessary tailoring choices for this result, however, were not “known 
and applied” during the 1960s, and the available evidence (discussed below) 
strongly indicates that they were neither known nor obvious until 
Karmarkar’s algorithm appeared.  Thus, it would be blatant hindsight 
reconstruction to cite these choices, first publicly embodied in Gill et al.’s 
1986 results, as “prior art” against a 1984 invention as Bessen and 
Meurer123 and Saltzman124 suggest. 

In a 1994 treatise on interior point methods,125 Dick den Hertog 
describes the range of design choices available to users of the 
Frisch/Fiacco-McCormick methods.  Specifically, he identifies the 
following three “important elements in the design of such a method:  (1) the 
iterative method used to (approximately) minimize the logarithmic barrier 
function; (2) the criterion for terminating the iterative minimizations; and 
(3) the updating scheme for the barrier parameter µ.”126 

Karmarkar’s algorithm provided significant new advances with respect 
to all three of these design elements.  First, as Michael Todd explains in a 
2000 article,127 Karmarkar’s use of a projective transformation to 
“normalize” or “center” each iterate128 represented a “very intriguing” new 
idea at the time for minimizing the logarithmic barrier function.129  Second, 
Todd writes, another new idea was the use of “a nonlinear potential 
function, invariant under such transformations” to measure progress toward 

 
122 BESSEN & MEURER, supra note 6, at 202. 
123 See id. at 203 (“Would anyone have seen Karmarkar’s algorithm as novel in light of 

the techniques used in the 1960s?  Certainly not after 1986, when their equivalence was 
proved.”). 

124 See Saltzman, supra note 121 (“A case can be made for prior art, though. . .  Gill, et 
al. (1986) showed that in fact, Karmarkar’s method was equivalent to a projected Newton 
barrier algorithm.”). 

125 D. DEN HERTOG, INTERIOR POINT APPROACH TO LINEAR, QUADRATIC AND CONVEX 

PROGRAMMING (1994). 
126 Id. at 12. 
127 Todd, supra note 89. 
128 See U.S. Patent No. 4,744,028, at col. 10 (“This projective transformation can be 

thought of as an orthogonal transformation into the unit simplex, thereby achieving the 
normalizing or centering property.”). 

129 See Todd, supra note 89, at 426-27.  Todd adds that while “projective 
transformations are not used much in interior-point methods nowadays[, t]he key concept 
of making a transformation or changing the metric so that the current iterate is in some 
sense far from the boundary remains highly valuable.”  Id. at 427. 
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the termination condition.130 
Finally, as Dave Bayer and Jeffrey Lagarias note, Karmarkar’s updating 

scheme for µ differs from any method in which successive values of µ are 
determined as a function of the current iterate y,131 such as that employed by 
Fiacco and McCormick. 132  There is nothing in any of Bessen and Meurer’s 
sources to suggest that Karmarkar’s scheme for µ  was obvious prior to his 

invention.  Even Gill et al. do not suggest any motivation for their choice of 
a particular value for µ  beyond emulating the iterative behavior of 

Karmarkar’s algorithm after the fact.  In fact, in describing their main 
theorem as “an existence result,” they note that “[t]his does not mean that 
the [Frisch/Fiacco-McCormick] barrier method should be specialized” by 
setting µ  to this value.133 

In the patent law context, the algorithm that results from Karmarkar’s 
combination of design choices is most accurately characterized as a “range 
or value of a particular variable” that is included within a wider range 
disclosed in the prior art: namely, the entire class of Frisch/Fiacco-
McCormick barrier methods.134  An invention of this type is presumed 
obvious,135 but this presumption may be rebutted by a showing that the 
range “produces new and unexpected results.”136 

As a general matter, there is ample evidence available to rebut the 
presumption of obviousness raised by the Frisch/Fiacco-McCormick prior 
art.  Karmarkar’s results — an easily implemented linear algorithm with a 

)( 5.2
nO -factor speedup over the previous world record, and the first 

interior-point algorithm to be shown to run in polynomial time — were, at 
the time, as new and unexpected as any developments in all of applied 

 
130 See id. at 427. 
131 See D.A. Bayer & J.C. Lagarias, Karmarkar’s Algorithm and Newton’s Method, 50 

MATH. PROGRAMMING 291, 293 (“[I]f )( yµ is considered to be a function of y then the 

projected Newton method direction of [the barrier function] is usually not the projective 
scaling direction.”). 

132 In the Fiacco-McCormick method, successive values of the barrier parameter 
(denoted therein by the variable r rather than µ) are chosen by a “computing rule” that 

chooses values for r that minimize the norm of the gradient of the barrier function )( yV at 

the point y.  See FIACCO & MCCORMICK, supra note 81, at 116. 
133 See Gill, supra note 95, at 191. 
134 See, e.g., Haynes Int'l, Inc. v. Jessop Steel Co., 8 F.3d 1573, 1577 n. 3 

(Fed.Cir.1993) (“[W]hen the difference between the claimed invention and the prior art is 
the range or value of a particular variable, then a prima facie rejection is properly 
established when the difference in range or value is minor.”) (emphasis omitted). 

135 See id. 
136 Ormco Corp. v. Align Technology, Inc., 463 F.3d 1299, 1311 (Fed. Cir. 2006); see 

also Iron Grip Barbell Co. v. USA Sports, Inc., 392 F.3d 1317, 1322 (Fed.Cir.2004); In re 
Geisler, 116 F.3d 1465, 1469 (Fed. Cir. 1997). 
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mathematics.137  Bessen and Meurer’s observation that without Marsten et 
al.’s later-developed sparse matrix techniques, “Karmarkar’s algorithm by 
itself was not particularly efficient compared to the linear-programming 
techniques of the 1940s” takes nothing away from the new and unexpected 
nature of these achievements, particularly in the context of patent doctrine’s 
minimalist approach to the general utility requirement.138 

The idea of borrowing interior-point methods from nonlinear 
programming to compete with advanced exterior-point methods for linear 
programming was also unexpected, as Margaret Wright writes: 

Prior to 1984, there was, to first order, no connection 
between linear and nonlinear programming.  For historical 
reasons that seem puzzling in retrospect, these topics, one a 
strict subset of the other, evolved along two essentially 
disjoint paths.  Even more remarkably, this separation was a 
fully accepted part of the culture of optimization — indeed, 
it was viewed by some as inherent and unavoidable.139 

Wright concludes that Karmarkar’s algorithm catalyzed an “interior point 
revolution,” uniting the two branches of mathematical programming in an 
unexpected way.140 

Of course, Bessen and Meurer’s validity concerns must be directed to 
Karmarkar’s individual patent claims, each of which is subject to separate 
novelty and nonobviousness determinations according to its scope.  For this 
reason, we turn now to address Bessen and Meurer’s concerns regarding the 
scope of Karmarkar’s claims. 
 

 
137 See, e.g., Chin, supra note * (describing presentation of Karmarkar’s algorithm to a 

“packed audience of MAA [Mathematical Association of America] members” at the 1985 
Joint Mathematics Meetings). 

138 To be eligible for a patent, a claimed invention need not supersede or work better 
than the prior art.  See Lowell v. Lewis, 15 F. Cas. 1018, 1019 (C.C.D. Mass. 1817). 
(rejecting argument that a claimed pump lacks general utility unless it is “for the public, a 
better pump than the common pump”). 

139 Margaret H. Wright, The Interior-Point Revolution in Optimization: History, 

Recent Developments, and Lasting Consequences, 42 BULL. AM. MATH. SOC’Y 39, 40 
(2004) (emphasis in original).  As Saltzman has noted, supra note 119, Fiacco and 
McCormick’s book does briefly discuss the application of interior-point methods to linear 
programming.  See FIACCO & MCCORMICK, supra note 81, at 111-12 & 180-83.  The 
book’s emphasis, however, is on examining special cases of the more general techniques 
presented (in which linearity and/or convexity serve as simplifying assumptions), rather 
than on presenting methods that are efficient in comparison with other linear programming 
algorithms. 

140 See Wright, supra note 139, at 39-40; see also Mark A. Paley, The Karmarkar 

Patent: Why Congress Should “Open the Door” to Algorithms as Patentable Subject 

Matter, 22 COMPUTER L. REPORTER 7 (1995) (describing Karmarkar’s algorithm as “a 
revolutionary problem solving method”). 
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4. The Scope of Karmarkar’s Patent Claims 
 

Bessen and Meurer express concern about “the difficulty of determining 
the boundaries of [Karmarkar’s] patent,” specifically the possibility that 
Karmarkar’s patent claims might read on “the techniques used in the 
1960s.”141  Any such claim would be of questionable novelty in light of the 
prior art, and might unjustly enrich AT&T by enabling it “to assert its 
patent successfully against people who used linear-programming techniques 
based on those used in the 1960s.”142  Bessen and Meurer do not identify 
any particular claim language as giving rise to these concerns, but instead 
appeal to what they view as software’s inherent and distinctive resistance to 
linguistic line-drawing: 

The abstractness of the patented algorithm means that 
these determinations cannot be made with certainty.  Patent 
law assumes that two technologies can be unambiguously 
determined to be equivalent or distinct; this sets the patent 
boundaries.  Yet for software, this assumption simply does 
not hold.  Although this assumption works for most other 
technologies, it distinctly does not — or does so 
insufficiently well — for software algorithms.  And if 
computer scientists cannot make these determinations with 
any certainty, how can we expect judges and juries to do 
so?143 

Setting aside the fact that disputes over ambiguous claim scope arise in 
every technological field, this is a circular argument.  Ultimately, the full 
extent of the Karmarkar example’s support for Bessen and Meurer’s 
argument that “software patents are different” turns on this one-paragraph 
blanket assertion that software “distinctly does not” satisfy the linguistic 
assumptions that work “for most other technologies.”  

A complete construction of all of Karmarkar’s patent claims is far 
beyond the scope of this Article.  It is relatively straightforward, however, 
to address Bessen and Meurer’s concerns about overbreadth here. 

As shown in Figure 5, Karmarkar’s patent has 36 claims, of which 22 
are independent and 14 are dependent.  Nine of the claims (19, 24, 25, 28-
31, 33, and 34), including three independent claims, expressly recite 
mathematical terms that refer specifically to Karmarkar’s particular design 
choices within the class of Frisch/Fiacco-McCormick methods as described 

 
141 See BESSEN & MEURER, supra note 6, at 203. 
142 See id.  This is not a real-world concern, since Karmarkar’s patent expired in 2005. 
143 See BESSEN & MEURER, supra note 6, at 203. 
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in the patent specification.144   
Each of the remaining independent claims recites the word “means” or 

“step” in connection with at least one functional aspect of Karmarkar’s 
projective transformation (indicated by the terms quoted in Figure 5) 
without any “structure, material, or acts” to implement that function.  
Accordingly, § 112, ¶ 6 provides that these means-plus-function and step-
plus function claims be limited in scope to algorithms that implement a 
projective transformation as described in the specification.145 

 
144 See U.S. Patent 4,744,028, at cols. 7-8 (describing the mathematical steps needed to 

perform the projective transformation prior to the minimization step during each iteration). 
145 See Aristocrat Technologies Australia Pty. Ltd. v. International Game Technology, 

521 F.3d 1328, 1333-38 (Fed. Cir. 2008); Harris Corp. v. Ericsson Inc., 417 F.3d 1241, 
1253 (Fed. Cir. 2005); WMS Gaming Inc. v. International Game Technology, 184 F.3d 
1339, 1348-49 (Fed. Cir. 1999).  The statute provides: 

An element in a claim for a combination may be expressed as a 
means or step for performing a specified function without the recital of 
structure, material, or acts in support thereof, and such claim shall be 
construed to cover the corresponding structure, material, or acts 
described in the specification and equivalents thereof. 

35 U.S.C. § 112, ¶ 6.  
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Figure 5.  Each one of the 36 claims in Karmarkar’s patent appears to have at 

least one express limitation or § 112, ¶ 6 functional element that narrows its scope 

sufficiently to address Bessen and Meurer’s concerns. 

It therefore appears that all 36 claims are limited in scope to the 
disclosed implementation of Karmarkar’s projective transformation, and at 
least eight of the claims are further limited in scope to the disclosed 
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implementation of Karmarkar’s potential function.  Far from exploiting the 
ambiguity of language to attain overbroad claim scope, Karmarkar’s 
software patent claims are cabined by express recitals and by § 112, ¶ 6 into 
the very design choices that accurately represent his contributions relative 
to the prior art. 

 
 

C.  Discussion 

 
Apart from the failure of Bessen and Meurer’s illustrations to support 

their claims about the unique linguistic unwieldiness of software-related 
inventions, the claims themselves seem deeply counterintuitive.  Perhaps 
more than any other technological fields, the disciplines of computer 
science and software engineering must rely on mathematically precise 
specifications of the designs and behaviors of their creations.  For this 
reason, the pervasiveness of abstraction in software technology per se does 
not doom the field to ambiguous line-drawing.  Computer scientists are well 
aware that their work involves abstraction; the best computer scientists are 
able to express that abstraction with precision and rigor.146  The real 
question for software patent doctrine is not how to drive abstraction out of 
the patent system, but how the law can affirm and harness cognitive 
abstraction skills to promote innovation, rather than allow their abuse to 
evade otherwise generally applicable requirements for patentability. 

  
 

II.  KLEMENS 
 

A.  Klemens’s Proposal 

 
Software-related inventions have historically created difficulties for the 

courts in attempting to draw the line between patentable and unpatentable 
subject matter.  The long march from Benson

147 and Diehr
148 to Alappat,149 

 
146 See generally Jeff Kramer, Is Abstraction the Key to Computing?, 50 

COMMUNICATIONS OF THE ACM 37 (2007) (discussing the importance of abstraction skills 
in the computer science profession). 

147 Gottschalk v. Benson, 409 U.S. 63 (1972) (holding unpatentable claims to a method 
for converting binary coded decimal number representations into binary number 
representations). 

148 Diamond v. Diehr, 450 U.S. 175 (1981) (holding patentable a claimed method of 
operating a rubber-molding press reciting steps of a mathematical algorithm for calculating 
the cure time based on the Arrhenius equation). 

149 In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994) (holding a general-purpose machine 
programmed to perform a series of computational steps patentable as a “new machine”). 
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State Street Bank,150 and Bilski
151 has been long and sinuous, and may not 

be finished.152 
Klemens argues that the line drawn by the Court of Customs and Patent 

Appeals in the Freeman-Walter-Abele line of cases153 and repudiated by the 
Federal Circuit in State Street Bank

154 should be restored.  Klemens favors 
the test because it effectively distinguishes between “bona fide physical 
inventions” and “information processing algorithms with a trivial physical 
step” such as operation of a standard I/O device155 and takes seriously the 
Supreme Court’s dictum in Diehr that “insignificant  postsolution  activity  
will  not  transform  an  unpatentable principle into a patentable process.”156  
Specifically, Klemens’s proposal is to exclude from § 101 patentable 
subject matter all combination claims of the following form: 

Patent N 
1.  A useful computing machine, comprising 
(a)  a  mathematical  algorithm,  which  may  be  

creatively  and  painstakingly derived,  but  which  is  clearly  
unpatentable  by  the  mathematical  algorithm exception, 
and  

(b)  an  obvious  physical  step  such  as  loading  the  
algorithm  onto  a  stock computer, which meets the 
requirements for patentable subject matter but is 
unpatentable because it is not novel.157 

 
150 State Street Bank & Trust Company v. Signature Financial Group, Inc., 149 F.3d 

1368 (Fed. Cir. 1998) (holding the transformation of financial data through a series of 
mathematical calculations patentable as producing “a useful, concrete and tangible result”). 

151 In re Bilski, 545 F.3d 943 (Fed. Cir. 2008) (en banc) (holding unpatentable a 
claimed process for managing financial risks as neither tied to a particular machine nor 
resulting in a physical transformation). 

152 See id. at 994-95 (Fed. Cir. 2008) (en banc) (Newman, J., dissenting) (noting that 
the majority decision leaves open the questions of whether “Alappat’s guidance that 
software converts a general purpose computer into a special purpose machine remains 
applicable” and whether the inventions in State Street Bank and AT&T v. Excel are 
patentable subject matter). 

153 In re Freeman, 573 F.2d 1237, 1245 (C.C.P.A. 1978); In re Walter, 618 F.2d 758, 
767 (C.C.P.A. 1980); In re Abele, 684 F.2d 902 (C.C.P.A. 1982). 

154 See State Street Bank, 149 F.3d at 1374 (“[T]he Freeman-Walter-Abele test has 
little, if any, applicability to determining the presence of statutory subject matter”). 

155 See Klemens, supra note 4, at 2-3 (describing test); id. at 35 (restating the paper’s 
recommendation as a “regression” to the practice of “respecting the caveats about 
postsolution activity in the Freeman-Walter-Abele test”). 

156 450 U.S. at 191-92; see Klemens, supra note 4, at 36 (explaining importance of 
“respecting the declaration” in Diehr). 

157 This appears to be a refinement of Klemens’s earlier proposal that for a 
programmed general-purpose computer to be patentable, “a machine would have to be built 
that may rely on mathematics but does something innovative beyond it. . . .  If the entire 



32 ON ABSTRACTION AND EQUIVALENCE [ 

Klemens contends that “the great majority of software patent applications 
are clearly of the form of Patent N: an algorithm loaded onto a stock 
computing device.”158 

The “machine-or-transformation” test articulated in the Federal Circuit’s 
recent en banc decision in In re Bilski

159 calls for critical inquiries that 
nominally address Klemens’s concerns; i.e., whether the claimed process 
“is tied to a particular machine or apparatus”160 or “transforms a particular 
article into a different state or thing,”161 (as opposed to the entire universe 
of digital computers162 or insignificant post-solution or extra-solution 
activity164).  The decision is unlikely to satisfy Klemens, however, as it 
applies only to process claims,165 rejects the Freeman-Walter-Abele 
approach,166 and (as Klemens himself notes167) leaves open the question of 
whether the act of loading an algorithm onto a stock computer produces a 
“particular machine.”168  The Bilski court also took pains to state as settled 
doctrine that the patentable subject matter inquiry is to be directed to the 
claim as a whole169 and is to be completely independent of any novelty or 

 
design [of the machine] consists of an equation, then there is nothing to be patented; if the 
design consists of an equation and a trivial machine, then there is still nothing to be 
patented; if the design is for a new and novel machine informed by mathematics, then there 
is every reason to grant a patent on the machine’s design.”  See KLEMENS, supra note 2, at 
64.  Even as such, Klemens’s conflation of “obvious” with “not novel” in paragraph (b) 
suggests that further refinement is necessary.  See 35 U.S.C. § 103 (stating that a claimed 
invention may be novel yet obvious). 

In his book, Klemens also proposes that “an inventive physical implementation of a 
state machine (such as an FPGA [field-programmable gate array], a JVM [Java Virtual 
Machine] on a chip, or a rubber-curing device) should be patentable, whereas the programs 
loaded onto them (firmware, a data structure) should not.”  See id. at 64-65.  Klemens’s 
reading of the Church-Turing thesis does not impinge on the merits of this proposal, and 
this Article will not opine on them. 

158 See Klemens, supra note 4 at 36. 
159 545 F.3d 943 (Fed. Cir. 2008) (en banc). 
160 Id. at 954. 
161 Id. at 954. 
162 See id. at 953-54 (contrasting Benson with Diehr). 
164 See id. at 957 & n.14. 
165 Id. at 951. 
166 See id. at 958-59. 
167 See Ben Klemens, In regards to In re Bilski, available at 

http://ben.klemens.org/blog/arch/00000009.htm (visited Nov. 20, 2008) (stating Klemens’s 
view, in a blog entry one day after the decision, that “the ruling does make progress” but 
“won’t answer the key, central question”). 

168 545 F.3d at 995 (Newman, J., dissenting) (“We aren’t told when, or if, software 
instructions implemented on a general purpose computer are deemed ‘tied’ to a ‘particular 
machine.’). 

169 See id. at 958 (citations omitted) (“[T]he Court has made clear that it is 
inappropriate to determine the patent-eligibility of a claim as a whole based on whether 

Deleted: )

Deleted: or “transforms a particular 
article into a different state or thing”163 
(as opposed to 
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nonobviousness considerations,170 thereby making it clear that Klemens’s 
approach to the validity of machine claims has no place in current § 101 
jurisprudence. 

Like Bessen and Meurer, Klemens supports his proposal for legal 
change in large part with empirical research on the economic costs of the 
status quo to both the patent system171 and the software industry.172  In the 
context of a policy argument directed to Congress, this research might 
prove to be highly useful and persuasive.  The other part of Klemens’s case, 
however, is based on an imprecise and superficial reading of the theoretical 
computer science literature.  Klemens repeatedly argues that a widely 
adopted working hypothesis in computer science, known as the Church-

Turing thesis, compels a doctrinal change in the application of the § 101 
patentable subject matter requirement to software generally and Patent N 
specifically.  It does not, and any courts to whom Klemens addresses this 
argument173 should be informed accordingly. 

 
 

B.  The Church-Turing Thesis 

 
The Church-Turing thesis is the outgrowth of contemporaneous efforts 

by computer science pioneers Alonzo Church and Alan Turing to define the 
class of mathematical problems that were amenable to solution by 
computer.174  Turing’s theory developed around the Turing machine 
model,175 while Church’s work focused on a notation for expressing 
algorithms as functions known as the lambda calculus.176   The Turing 
machine is described in detail elsewhere in this Article;177 what now follows 

 
selected limitations constitute patent-eligible subject matter. . . .  Thus, it is irrelevant that 
any individual step or limitation of such processes by itself would be unpatentable under § 
101.”). 

170 See id. (citations omitted) (“[T]he Court has held that whether a claimed process is 
novel or non-obvious is irrelevant to the § 101 analysis.  Rather, such considerations are 
governed by 35 U.S.C. § 102 (novelty) and § 103 (non-obviousness).”). 

171 See KLEMENS, supra note 2, at 84, 90-91 & 107; Klemens, supra note 4, at 27-32. 
172 See KLEMENS, supra note 2, at 92-107; Klemens, supra note 4, at 21-27. 
173 See End Software Patents Project, End Software Patents: Resources for Lawyers 

<http://endsoftpatents.org/resources-for-lawyers> (visited July 15, 2008) (describing  
efforts by Klemens’s End Software Patents Project to engage the legal community). 

174 See MARTIN DAVIS, THE UNIVERSAL COMPUTER: THE ROAD FROM LEIBNIZ TO 

TURING 163-67 (2000) (providing a historical account of Turing’s and Church’s 
independent work on David Hilbert’s famous Entscheidungsproblem). 

175 See Alan M. Turing, On Computable Numbers with an Application to the 

Entscheidungsproblem, 2 PROC. LONDON MATH. SOC. 230 (1936). 
176 See ALONZO CHURCH, THE CALCULI OF LAMBDA-CONVERSION (1941). 
177 A caveat:  The Turing machine model described earlier, see supra text 
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is a very brief introduction to a few of the concepts behind Church’s lambda 
calculus.178 

One reason for using the lambda calculus is the latent ambiguity that 
may exist even in a simple mathematical expression like yx − .179  Is this a 

function of x  or of y  (or both, or neither)?  We could clarify the situation 

by writing yxxf −=)( , but this forces another symbol, f , into the 

discussion.  This might seem a small complication, but it might be difficult 
to keep track of such details over the course of a long computation. 

Church’s solution is to use the special symbol λ  to distinguish between 
two kinds of variables that may appear in a mathematical expression.  In 
Church’s lambda calculus, the notation ).( yxx −λ  indicates that the 

expression yx −  is a function of x .180  A variable such as x  that is 

preceded by λ  is known as a “bound variable”; a variable such as y  that is 

not preceded by λ  is known as a “free variable.”181 

The notation ).( yxx −λ  is treated as a function that can be evaluated for 

specified values of the bound variable x  by substitution; e.g., 

yyxx −=− 1)1)(.(λ .182 

It is sometimes useful to make the act of substitution more explicit.  The 
lambda calculus provides a “bracket-slash” notation to do this.  Thus, the 
foregoing evaluation can also be written 

yyxxyxx −=−=− 1)](/1[)1)(.(λ .  The notation ]/1[ x  indicates that in the 

immediately following expression (i.e., yx − ), each occurrence of x  is to 

be replaced by 1.183 

 
accompanying notes 34-37, is limited to evaluating Boolean-valued (“yes” or “no”) 
functions.  It is straightforward (but uninteresting for present purposes) to extend the model 
to evaluate more general functions, see JOHN E. HOPCROFT & JEFFREY D. ULLMAN, 
INTRODUCTION TO AUTOMATA, LANGUAGES, AND COMPUTATION 151 (1979); see also infra 
Appendix (presenting an example of a Turing machine that outputs a string of plus-signs), 
and it is this unrestricted model that is the subject of the discussion in the sequel. 

178 There are actually several varieties of “lambda calculi,” including “typed lambda 
calculi” in which terms may be given one of a number of “type” designations, each of 
which is subject to certain specified syntactic restrictions.  See J. ROGER HINDLEY & 

JONATHAN P. SELDIN, LAMBDA-CALCULUS AND COMBINATORS: AN INTRODUCTION  1 
(2008) (discussing varieties of lambda calculus); id. at 107-219 (surveying various typed 
varieties).  As the discussion in this Article and in Klemens’s writings concerns only the 
untyped lambda calculus, this Article hereinafter adopts Klemens’s practice of referring to 
the untyped lambda calculus as simply “the lambda calculus.” 

179 See HINDLEY & SELDIN, supra note 178, at 1. 
180 See id. at 1-2. 
181 See id. at 6-7. 
182 See id. at 2. 
183 See id. at 7. 
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The validity of replacing )1)(.( yxx −λ  with )](/1[ yxx −  in the lambda 

calculus is due to the fact that the lambda calculus includes a number of 
defined rules for converting expressions.  This particular conversion rule is 
known as a β -reduction.184  β -reductions can be used iteratively to 

dramatic effect, as the following example illustrates: 

zvyvyzzyvyzyxyxvvzyxyx ==== )](/[).()).]((/[))..(( λλλλ .185 

Space precludes a complete presentation of Church’s system here, but it 
should already be apparent that the evaluation and conversion of 
expressions in the lambda calculus generates a powerful set of 
computational techniques.  In fact, Church’s system is known to be as 
powerful as the Turing machine model, because Turing proved in 1937 that 
any function that could be computed on a Turing machine could also be 
evaluated in the lambda calculus, and vice versa.186 

Over time, Church and Turing’s work gave rise to a growing belief 
among computer scientists that the class of Turing-computable (or lambda-
evaluable) functions includes every function that can be computed on any 
plausible computing device.  The assumption that this will continue to be 
the case, i.e., that the class of Turing-computable functions is the same as 
the class of all machine-computable functions, has become known as the 
“Church-Turing thesis” (though sometimes referred to as “Church’s 
hypothesis”).187 

Since no one can claim to have envisioned every computing device that 
will ever be invented, the notion of a “computable function” has never been 
formalized.  Meanwhile, however, computer scientists have been proving 
equivalence (or “Turing-completeness”) results involving a wide range of 
programming languages188 and abstract computational models,189 giving 
credence to the Church-Turing thesis and further research that relies upon it 
as a working hypothesis.190  As a famous theoretical computer science 
textbook describes this ongoing research program, “While we cannot hope 

 
184 See id. at 11-12. 
185 See id. at 12. 
186 See Alan M. Turing, Computability and λ -Definability, 2 J. SYMBOLIC LOGIC 153 

(1937). 
187 See JOHN E. HOPCROFT & JEFFREY D. ULLMAN, INTRODUCTION TO AUTOMATA, 

LANGUAGES, AND COMPUTATION 166 (1979). 
188 See, e.g., Robert S. Boyer & J. Strother Moore, A Mechanical Proof of the Turing 

Completeness of Pure Lisp, in AUTOMATED THEOREM PROVING: AFTER 25 YEARS, at 133 
(W.W. Bledsoe & D.W. Loveland eds. 1984) 

189 See, e.g., HOPCROFT & ULLMAN, supra note 187, at 167-74 (presenting equivalence 
results for various abstract computational models). 

190 See, e.g., Arthur Charlesworth, Infinite Loops in Computer Programs, 52 Math. 
Mag. 284, 287-88 (1979) (providing a new proof of one of Turing’s theorems, subject to 
the assumption that the Church-Turing thesis is true). 
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to ‘prove’ Church’s hypothesis as long as the informal notion of 
‘computable’ remains an informal notion, we can give evidence for its 
reasonableness.”191 

 
 

C.  Klemens’s Reading(s) of the Church-Turing Thesis 

 
Apart from referring to an unproven hypothesis as a “theorem,” 

Klemens’s description in Math You Can’t Use of the Church-Turing thesis 
as “[t]he theorem central to this book”192 is more than apt.  To Klemens, the 
Church-Turing thesis is a panacea for the courts’ ill-conceived doctrines on 
the patentability of software.  In both his book and his article, he cites it in 
support of a dizzying variety of propositions: 

1. Anything a computer could possibly do can be done by a Turing 

machine.  Klemens introduces the Church-Turing thesis in the following 
passage: 

Theorem 1:  The Church-Turing Thesis 
All computable operations can be evaluated by a Turing 

machine. 
 
The exact meaning of computable is a technical matter 

that I will not delve into here; roughly, it means “anything a 
computer could possibly do.”  The Church-Turing thesis 
states that any computer program, written in any language, 
can be rewritten as a Turing machine.193 

2. The Church-Turing thesis “indicates that . . . there is a mechanical 

means of translating any mathematical expression into a computable 

program, and a means of translating any computable program into a 

mathematical expression.”
194 

3. Software is indistinguishable from pure mathematics.  In his book, 
Klemens reasons that “[s]ince any program in any Turing complete 
programming language is identical to a system of equations in the lambda 
calculus, the courts will be unable to draw” the line between pure 
mathematics and software.195  In his article, Klemens simply states that the 
Church-Turing thesis directly implies that “all software is mathematics.”196 

 
191 See HOPCROFT & ULLMAN, supra note 187, at 166. 
192 KLEMENS, supra note 1, at 47.  Klemens introduces the Church-Turing thesis in his 

subsequent article no less inaccurately as “a basic result of computer science.” Klemens, 
supra note 4, at 9.  

193 KLEMENS, supra note 1, at 35. 
194 Klemens, supra note 4, at 9-10. 
195 KLEMENS, supra note 1, at 35-36. 
196 Klemens, supra note 4, at 10. 
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4. Every application of an algorithm is indistinguishable from pure 

mathematics; therefore, claim 1 of Patent N should be held invalid.  David 
Gale and Lloyd Shapley conclude their 1962 American Mathematical 
Monthly article197 announcing their algorithm for solving the “stable 
marriage problem” with some reflections from the perspective of 
economists working on a problem of more general interest to 
mathematicians.  They write: “In making the special assumptions needed in 
order to analyze our problem mathematically, we necessarily moved further 
away from the original college admission question, and eventually in 
discussing the marriage problem, we abandoned reality altogether and 
entered the world of mathematical make-believe.”198   

Klemens first quotes and later paraphrases this comment as follows: “As 
Gale and Shapley explained, there is no difference between an application 
of an algorithm and the algorithm itself.”199  He then reminds the reader that 
“as the Church-Turing thesis states, the algorithm and pure math are 
entirely equivalent.”200  Klemens makes these points to imply that 
examiners erroneously granted several patents that were directed to “a 
general-purpose computer with a program loaded.”201 

5. Owning a software patent is the same as “own[ing] a piece of 

mathematics.”  Klemens provides no explanation for this conclusion, but it 
appears to follow from propositions 3 and 4. 

6. If software had been patentable in the 1930s, the Church-Turing 

thesis might not have been developed.  Noting the contemporaneous 
development of the lambda calculus by Church and the Turing machine by 
Turing, Klemens reasons that “any such hyphenated theorem [sic] would be 
a lawsuit in the making.”202 

7. “It is impossible to write a section of the Manual of Patent 

Examination Procedure (MPEP) that allows the patenting of software but 

excludes from patentability the evaluation of purely mathematical 

algorithms.”
203  Klemens states that “the proof” of this proposition is to be 

found in “the formal Church-Turing thesis” and Donald Knuth’s comment 
that “All data are numbers, and all numbers are data.”204 

 
197 David Gale & Lloyd S. Shapley, College Admissions and the Stability of Marriage, 

69 AM. MATH. MONTHLY 9 (1962). 
198 See id. at 14 (quoted in KLEMENS, supra note 1, at 48-49). 
199 See KLEMENS, supra note 1, at 63. 
200 See id. 
201 See id. 
202 Id. at 47. 
203 Klemens, supra note 4, at 10. 
204 Id. at 9-10 (citing Letter from Donald Knuth, Professor Emeritus, to Commissioner 

of Patents and Trademarks, Patent and Trademark Office, available via the Internet Archive 
<http://www.archive.org> at <http://lpf.ai.mit.edu/Patents/knuth-to-pto.txt> (visited August 
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D.  Discussion 

 
Read in context, Klemens’s repeated mischaracterizations of the 

Church-Turing thesis as a proven theorem are not really that problematic.  
Like computer scientists, the law can draw conclusions from unrebutted 
presumptions, and it would be highly prudent to do so on the massive body 
of evidence that now exists.  An alternative interpretation, also in 
Klemens’s favor, is that in citing the Church-Turing thesis he might actually 
be referring instead to the body of evidence that supports the thesis; i.e., 
proven Turing-completeness results for numerous languages and machine 
models.  This, however, is the least serious of Klemens’s errors. 

More serious is Klemens’s overstatement of the Church-Turing thesis.  
As explained above, the Church-Turing thesis arises out of Turing’s proof 
of an equivalence between Church’s lambda calculus and the Turing 
machine.  The precise nature of this equivalence is crucial.  Specifically, 
Turing showed that any function that could be computed on a Turing 
machine could also be evaluated in the lambda calculus, and vice versa.  
The Church-Turing thesis claims that this particular equivalence — between 
the classes of functions that can be computed using the respective models 
— can be extended even to the most powerful plausible models of 
computation.205 

In an article titled “The Church-Turing Thesis: Breaking the Myth,”206 
computer scientists Dina Goldin and Peter Wegner address precisely the 
same commonly held207 misunderstanding that informs much of Klemens’s 
commentary.  Goldin and Wegner state the Church-Turing thesis as follows:  
“Whenever there is an effective method (algorithm) for obtaining the values 
of a mathematical function, the function can be computed by a TM [Turing 
machine].”208  They go on, however, to report that the thesis “has since been 

 
15, 2008). 

205 See supra text accompanying note 187. 
206 Dina Goldin & Peter Wegner, The Church-Turing Thesis: Breaking the Myth, in 

NEW COMPUTATIONAL PARADIGMS 152 (Springer-Verlag Lecture Notes in Computer 
Science, vol. 3526, 2005). 

207 See id. at 154 (opining that the myth “is dogmatically accepted by most computer 
scientists).  Goldin and Wegner state that at least one popular undergraduate textbook 
contains the erroneous reinterpretation.  See id. (citing MICHAEL SIPSER, INTRODUCTION TO 

THE THEORY OF COMPUTATION (1997)).  The allegedly offending textbook does not 
actually offer a formal statement of the Church-Turing thesis, however, but says that the 
term refers to the “connection between the informal notion of algorithm and the precise 
definition” supplied by the lambda calculus and Turing machine models.  SIPSER, supra, at 
143. 

208 Goldin & Wegner, supra note at 153. 
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reinterpreted to imply that Turing Machines model all computation, rather 
than just functions,” to the effect that “[a] TM can do (compute) anything 
that a computer can do.”209  They respond that “[i]t is a myth that the 
original Church-Turing thesis is equivalent to this interpretation of it; 
Turing himself would have denied it.”210 

Goldin and Wegner’s insights rebut the first four of Klemens’s 
propositions.  With respect to the first, the Church-Turing thesis does not 
imply that a Turing machine can emulate “anything a computer could 
possibly do.”  As Goldin and Wegner point out and every reasonably 
sophisticated computer user should be able to recognize, modern computers 
do much more than evaluate functions; they also interact with their users 
and with their environments.211 

Regarding Klemens’s second proposition, a proof that a particular 
computational model or programming language is Turing-complete requires 
only a showing that it can compute all Turing-computable functions; it does 
not necessarily entail the construction of a “mechanical means of 
translating” algorithms from one model to the other.  Thus, the Church-
Turing thesis itself, and the Turing-completeness results that make up the 
body of evidence supporting it, have nothing to say about the skill and 
effort needed to write software in a given language for a given machine or 
the computational resources (time, space, bandwidth, etc.)  needed to run 
the software.  

The blindness of Turing-completeness proofs to computational resource 
constraints highlights a key feature of the Turing machine and lambda 
calculus models of calculation: they are endowed with infinite 
computational resources, unlike every real-world computer.  Software 
developed for the real world must contend with scarce resources, and a 
solution to a computational problem that conserves these resources (e.g., 
Karmarkar’s algorithm) can exhibit nonobvious differences over prior art 
solutions to the same problem,212 as well as substantial differences in 
function, way and result that might support a reverse doctrine of equivalents 
defense.213  These legally cognizable differences between abstract 

 
209 Id. at 153-54. 
210 Id. at 154. 
211 See id. at 156 (giving example of a robotic car); Peter Wegner & Dina Goldin, 

Computation Beyond Turing Machines, 46 COMMUNICATIONS OF THE ACM 100, 101 
(2003) (“The field of computing has greatly expanded since the 1960s, and it has been 
increasingly recognized that artificial intelligence, graphics, and the Internet could not be 
expressed by Turing machines.  In each case, interaction between the program and the 
world (environment) that takes place during computation plays a key role that cannot be 
replaced by any set of inputs determined prior to the computation.”). 

212 See supra text accompanying notes 122-140. 
213 See Andrew Chin, Computational Complexity and the Scope of Software Patents, 
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computational models and real-world computers present a further challenge 
to Klemens’s essentially rhetorical efforts to extend Turing’s narrowly 
defined, formal notions of equivalence into the realm of patent doctrine. 

Klemens’s third and fourth propositions appeal specifically to the 
mathematical form of the functions that can be expressed in Church’s 
lambda calculus.  As explained above, however, the proofs of equivalence 
between the lambda calculus and other Turing-complete models of 
calculation stop well short of constructing algorithms that are “identical” or 
“entirely equivalent.”  Klemens’s fourth proposition also relies on a dubious 
interpretation of Gale and Shapley’s remarks. 

Klemens’s fifth and sixth propositions are gross misstatement of patent 
law.  The Patent Act confers rights to exclude, not ownership rights to 
mathematics or anything else,214 and precludes Church, Turing or anyone 
else from obtaining (and, a fortiori, asserting in a “lawsuit in the making”) 
any patent rights that could cover a scientific hypothesis such as the 
Church-Turing thesis215 — particularly one so admittedly indefinite with 
respect to the notion of “computable functions.”216 

Finally, the original articles formulating the Church-Turing thesis are all 
open to public examination, and one will search them in vain for a proof of 
Klemens’s seventh proposition — Donald Knuth’s quip notwithstanding. 

 
 

III.   CONCLUSIONS 
 
As surveys of the empirical patent law literature, Bessen and Meurer’s 

and Klemens’s books both identify a host of symptoms — overwhelmed 
examiners, high litigation costs, and structural distortions of software-
related industries — that strongly indicate an economic misalignment 
between the patent system and the pursuit of software innovation.  Their 
diagnoses of the problem, however, suffer from factual errors and 
misinterpretations of computer science concepts.  Particularly problematic 
are their various treatments of abstraction and equivalence in computer 
science, which do not map directly or intuitively to notions of abstraction 

 
39 JURIMETRICS 17 (1999).  In the context of field-programmable gate arrays, Klemens 
himself proposes an approach to infringement that would allow an imitator to take a “broad 
algorithm” from a patented array provided that its implementation details were different 
from those that “the designers worked to optimize” with respect to the array’s  physical 
resource constraints.  See KLEMENS, supra note 2, at 67. 

214 See 35 U.S.C. § 154. 
215 See Tol-O-Matic, Inc. v. Proma Product-und Mktg. G.M.b.H., 945 F.2d 1546, 1552 

(Fed. Cir. 1991) (“By § 101 there is excluded from the patent system such things as 
scientific theories, pure mathematics, and laws of nature.”) (emphasis added). 

216 See 35 U.S.C. § 112, ¶ 1. 
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and equivalence in legal reasoning and patent doctrine.  At least as currently 
presented, their arguments that software is different, and that this difference 
compels technology-specific changes in patent doctrine, appear to be 
without empirical support.   

The factual corrections provided in this Article serve as a timely 
reminder that an empirical approach to patent law reform calls for attention 
not only to economic methods, but also to the scientific principles and 
stakeholder perspectives that pervade patent law and practice.  Scholars 
interested in diagnosing the disconnect between the patent system and 
software innovation should know what computer scientists have said on the 
subject. 

For example, European computer scientists Martin Campbell-Kelly and 
Patrick Valduriez recently conducted a detailed technical review of the fifty 
most-cited software patents issued since 1990.217  They found little evidence 
that obvious or overbroad patents had been granted.218 Their main cause for 
concern was that forty-four of the patents “had medium or low disclosure 
that would make reproducing the invention either time-consuming or 
problematic.”219  The scientists’ findings support a more modest approach 
to software patent reform, which would aim to elaborate the enablement and 
written description requirements in accordance with the standard practices 
of software engineers for documenting and validating their inventions.220  
They have also conducted a subsequent study in the area of anti-spam 
software patents.221   

While both of these studies are of considerable interest to the scientific 
community,222 Campbell-Kelly and Valduriez have taken the exceptional 
and commendable step of publishing their results in American student-
edited law reviews, rather than in peer-reviewed scientific journals.  

 
217 Martin Campbell-Kelly & Patrick Valduriez, A Technical Critique of Fifty Softwaer 

Patents, 9 MARQ. INTELL. PROP. L. REV. 249 (2005). 
218 See id. at 281. 
219 Id. 
220 See supra text accompanying note 146; see also Jay P. Kesan, Carrots and Sticks to 

Create a Better Patent System, 17 BERKELEY TECH. L.J. 145, 167-69 (2002) (arguing that 
the Patent Office should require the use of standard modeling and representational 
languages in software patent disclosures); but see Ajeet P. Pai, Note, The Low Written 

Description Bar for Software Inventions, 94 VA. L. REV. 457, 490-93 (2008) (arguing that 
patent law should continue to maintain a low written description requirement for software 
inventions). 

221 Martin Campbell-Kelly & Patrick Valduriez, An Empirical Study of the Patent 

Prospect Theory: An Evaluation of Anti-Spam Patents, 11 VA. J. L & TECH. 10 (2006) 
222 Cf. Wolfgang Emmerich et al., The Impact of Research on the Development of 

Middleware Technology, ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND 

METHODOLOGY, vol. 17, no. 4, art. 19 (Aug. 2008) (reporting, inter alia, findings regarding 
the historical importance of patented inventions in the field of middleware technology). 
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Interestingly, Bessen and Meurer’s book discusses at some length an earlier 
historical article on software patents by Campbell-Kelly,223 but does not 
mention any of his empirical studies.224  Bessen and Meurer may be right to 
criticize Campbell-Kelly’s historical account of the software patent 
controversy as too narrow, but their equally narrow view of empirical patent 
law scholarship forecloses an important opportunity to acknowledge the 
methods and perspectives that computer scientists can contribute to the 
study of software patenting.  Given the significant problems Bessen, Meurer 
and Klemens have identified, the cause of software patent reform would be 
better served by a deeper engagement between recognized scholars in the 
fields of patent law, economics and computer science than has appeared to 
date. 

 
 

APPENDIX.  A SIMPLE TURING MACHINE 
 

This example of a Turing machine is designed to double the initial 
number of + symbols on its tape.  The Turing machine consists of an 
infinite strip of tape partitioned into an infinite number of spaces, and a 
head that can move in either direction along the tape and can print a symbol 
taken from a finite alphabet into the space where it resides, replacing 
whatever was in the space before.  At any given time, the machine is in one 
of a finite number of states.  The head performs work on the tape through a 
sequence of moves.  During each move, the head may (a) perform a read, 
write or erase operation, (b) change to any state (or remain in the current 
state), and (c) move one space either to the left or to the right.  The specific 
move to be taken by the head at any given time is determined by a next 
move function that depends on (i) the current state of the machine and (ii) 
the current contents of the space where the head is located.  

The table in Figure 6 describes the next move function for this Turing 

machine.  It has five states and uses the alphabet { }blank,+ . 

 

Machine State If head reads a blank  If head reads a + 

State 1 STOP Write <blank>; change to 
state 2; move left 

State 2 Write +; change to state 
3; move left 

Remain in state 2; move left 

State 3 Write +; change to state Remain in state 3; move left 

 
223 Martin Campbell-Kelly, Not All Bad: An Historical Perspective on Software 

Patents, 11 MICH. TELECOMM. & TECH. L. REV. 191 (2005). 
224 See BESSEN & MEURER, supra note 6, at 188-91. 
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4; move right 

State 4 Change to state 5; move 
right 

Remain in state 4; move 
right 

State 5 STOP Write <blank>; change to 
state 2; move left 

Figure 6. Next move function for a Turing machine that doubles the initial 

number of + symbols on the tape. 

 
As indicated in Figure 7, the initial content of the tape, or input, consists 

of a single contiguous string of + symbols on an otherwise blank tape.  
Initially (at time t=0), the head is initially in state 1 and is located at the 
leftmost + symbol.  Given this initial condition and the next move function 
defined in Figure 6, it is possible to determine the sequence of all 
subsequent moves.  Figure 7 shows how this Turing machine continues for 
14 steps and then stops in state 5.   
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Figure 7. First 14 steps of a computation on a Turing machine with the next move 

function defined in Figure 6. 
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