
Carnegie Mellon University

From the SelectedWorks of Cécile Péraire

May, 2017

Lessons Learned from an Extended Participant
Observation Grounded Theory Study
Todd Sedano
Paul Ralph
Cécile Péraire

Available at: https://works.bepress.com/cecile_peraire/40/

http://www.cmu.edu/
https://works.bepress.com/cecile_peraire/
https://works.bepress.com/cecile_peraire/40/


Lessons Learned from an Extended Participant
Observation Grounded Theory Study

Todd Sedano
Pivotal

Palo Alto, CA, USA
Carnegie Mellon University

Silicon Valley Campus
Email: professor@gmail.com

Paul Ralph
University of Auckland
Auckland, New Zealand

University of British Columbia
Vancouver, BC, Canada

Email: paul@paulralph.name

Cécile Péraire
Carnegie Mellon University

Electrical and Computer Engineering
Silicon Valley Campus

Moffett Field, CA 94035, USA
Email: cecile.peraire@sv.cmu.edu

ABSTRACT

Context: Conducting a Grounded Theory study is rigorous,
demanding, and challenging. Misperceptions exist within the
software engineering community [1].

Objective: The purpose of this paper is to describe one
extended participant observation Grounded Theory study for
aiding new empirical researchers wanting to run similar re-
search studies.

Method: Following Constructivist Grounded Theory, we
conducted a two-year five-month participant-observation of
eight software development projects at Pivotal, a software
development organization; interviewed 33 software engineers,
interaction designers, and product managers; and analyzed
one year of retrospection topics. We iterated between analysis
and theoretical sampling until achieving theoretical saturation,
publishing papers on team code ownership [2], sustainable
software development through overlapping code ownership
[3], and software development waste [4].

Results: This paper describes the missteps, challenges, and
unique insights that occurred while conducting a Grounded
Theory study.

Limitations: While the results are highly relevant to the
researcher, the outcomes might not apply to other researchers.

Conclusion: Conducting my own Grounded Theory research
study, attending Glaser’s Seminar, and reading and rereading
Charmaz’s and Glaser’s books helped the researcher overcome
misperceptions about Grounded Theory research.

I. INTRODUCTION

For the past 2.5 years, I 1 have been conducting a full-time,
participant observation, Grounded Theory study. Participant
observation is a data collection method where the researcher
participates in the project or organization being observed [5].
Grounded Theory is a comprehensive research method that
generates theory from observations [6].

My first introduction to Grounded Theory came while read-
ing Brown [7] in March 2013. Brown details her journey in

1We have written this paper in the first person because it predominantly
recounts the experience of the first author and because its narrative elements
flow better this way.

applying Grounded Theory to her psychological research about
processing shame. Grounded Theory’s focus on interpersonal
communication appealed to me. Later, in May, I attended the
first International Workshop on Conducting Empirical Studies
in Industry (CESI 2013) and quizzed attendees about how they
used Grounded Theory in their research. During the main
conference, The 35th International Conference on Software
Engineering, I attended each Grounded Theory presentation
to learn more about how the community used the method.

Lengthy participant observation studies are unusual in soft-
ware engineering and in computer science more generally.
Moreover, software engineering contexts present unique, un-
resolved challenges for longitudinal participant observation
and Grounded Theory [1]. The purpose of this paper is
therefore to offer guidance, based on my experiences, for
researchers considering a similar trajectory. While we should
avoid overgeneralizing from a sample of one, others may
benefit from adopting some ideas and avoiding possible risks.

Grounded Theory is such a simple method, yet so easily
and often misapplied [1]. It is easy to describe but hard
to understand. My Grounded Theory study appears typical:
confusion followed by insight. A researcher starts a Grounded
Theory study open to see where the research leads. Once
unleashed, the method seems to have a mind of its own as
it guides the researcher towards research treasure through
uncharted territory. I’ve been teaching and performing Extreme
Programming for over 11 years, yet the method delighted me
by finding precious insights.

The structure of the paper follows the stages of a Grounded
Theory study, Section II “Getting started,” Section III “Con-
stant Comparison,” Section IV “Theory Construction,” Section
V “Theoretical Saturation, ” Section VI “Managing The Data,”
Section VII “Publishing,” Section VIII “Advantages and Dis-
advantages of Extended Participant Observation,” and Section
IX “Conclusion.”

II. GETTING STARTED

Following Glaser’s advice of “just do it” [8], I learned the
intricacies of Grounded Theory by diving into a study and
reading about the method as I went. This section examines

https://www.researchgate.net/publication/259982152_Daring_Greatly_How_the_Courage_to_Be_Vulnerable_Transforms_the_Way_We_Live_Love_Parent_and_Lead?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243783609_The_Research_Methods_Knowledge_Base?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243773261_Doing_Grounded_Theory_Issues_and_Discussions?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/242569642_The_Discovery_of_Grounded_Theory_Strategies_for_Qualitative_Research?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/profile/Todd_Sedano?el=1_x_100&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/profile/Cecile_Peraire?el=1_x_100&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/profile/Paul_Ralph?el=1_x_100&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==


early important decisions such as which variant to use, select-
ing a site, and gathering rich data.

A. Selecting a Method Variant

Grounded Theory has many variants with both practical
and philosophical differences. Initially, I chose Constructivist
Grounded Theory simply because it was the latest, a fine
justification for selecting software libraries, but as I later
discovered, not the best reason for selecting a sociological
research method.

I continue to use Constructivist Grounded Theory for several
reasons. Glaser’s recommendations are not always practical
(or acceptable in our community of practice); for instance,
simply taking notes without recording/transcribing interviews
and delaying the literature review until near the end of the
study. Furthermore, a constructivist epistemology offers many
advantages over Classic Grounded Theory’s objectivist episte-
mology for software engineering contexts. Software develop-
ment is a socio-technical endeavor. Many concepts software
engineering researchers study are socially constructed (e.g.
code, comments, tests, projects, schedules, teams). Moreover,
software developers can be quite reflective and helpful in
contributing to the construction of concepts. Constructivist
Grounded Theory better acknowledges socially constructed
concepts and participants’ contribution to theorizing than many
other Grounded Theory variants.

Recommendation: If you want just to get started, begin
with Stol’s comparison of the three variants [1], read a few
exemplars (e.g. [3], [4]), and then read Charmaz’s book [9]. If
you want more depth about each variant, read Evan’s article
[10]. Note that Evan includes Glaser’s pontificating criticisms
of Constructivist Grounded Theory [11], but excludes Bryant’s
rebuttal [12].

My primary text was Charmaz [9], which I supplemented
with Glaser’s books [6], [13], [8] to build a deeper understand-
ing of the method and the historical context of Constructivist
Grounded Theory. I find Charmaz’s writing more approachable
and less polemical than Glaser’s.

Lesson Learned: I initially read Glaser’s books in the wrong
sequence. His works are additive and build on each other.

Recommendation: Read Glaser’s books in order of publica-
tion, oldest first.

B. Selecting a Research Site

Pivotal Labs is a division of Pivotal—a large American
software company with 17 offices around the world. Pivotal
Labs provides teams of agile developers, product managers,
and interaction designers to other firms. Its mission is not
only to deliver highly-crafted software products, but also to
help transform clients’ engineering cultures. To change the
client’s development process, Pivotal combines the client’s
software engineers with Pivotal’s engineers at a Pivotal office
where they can experience Extreme Programming [14] in an
environment conducive to agile development. Pivotal Labs has
followed Extreme Programming [14] since the late 1990s.

Fig. 1: Interview 6: Pivotal’s Software Development process

We selected Pivotal because: 1) it is successful; 2) it is
interesting in its continued use and evolution of extreme
programming; 3) it is accessible and cooperative with research.
Both Classic and Constructivist Grounded Theory advocate
picking an interesting site to see “What’s going on here?”

Lessons learned: Selecting a consultancy provided exposure
to many different projects, both greenfield and brownfield.
Pivotal was open to research, provided we did not reveal
client information. Pivotal Labs’ business goals aligned with
gaining insights about the way of working. Clients own the
code, whereas Pivotal teaches its way of working. Client-
Pivotal dynamics revealed tensions in adopting agile software
development. However, the consultancy’s focus on billing 40
hours per person per week limited research activities (e.g.
data collection, data analysis, and attending conferences) to
personal time.

Recommendation: Since Grounded Theory starts with the
question “what is going on here?,” start with an organization
that excels at what you hope to research. Consultancies can
work well.

C. Gathering Rich Data
Initially, the two main data sources were interviews with

Pivotal employees and notes from participant observation. I be-
gan with no solid expectations about the number of interviews
or amount of participant observation that I would conduct.
The interviewees consisted of interaction designers, product
managers, and software engineers who had experience with
Pivotal’s software development process from five different
Pivotal offices. At first, I selected interviewees opportunis-
tically; for example, when a product manager visited from
another office, I requested an interview. When I visited the
Los Angeles area, I scheduled interviews at the Santa Monica
office.

Lesson learned: Opportunistic interviewing sometimes gen-
erated an analysis backlog.

Recommendation: Prioritize analysis over data collection.

https://www.researchgate.net/publication/308097779_Constructivist_grounded_theory?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/308097448_A_constructiveist_response_to_Glaser's_Constructivist_Grounded_Theory?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265091982_Constructing_Grounded_Theory_A?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265091982_Constructing_Grounded_Theory_A?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243773261_Doing_Grounded_Theory_Issues_and_Discussions?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243768144_Theoretical_Sensitivity_Advances_In_The_Methodology_of_Grounded_Theory?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/242569642_The_Discovery_of_Grounded_Theory_Strategies_for_Qualitative_Research?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/242350998_Extreme_Programming_Explained_Embrace_Change?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==


Fig. 2: Interview 31: Software Engineer’s drawing for “How
do you feel or how do you think about the code?”’

I relied on “intensive interviews,” which are “open-ended
yet directed, shaped yet emergent, and paced yet unrestricted”
[9], to abandon assumptions and better understand the inter-
viewee’s perspective.

Lesson Learned: Creating an interview guide helped me
generate open-ended questions. Transcribing and coding my
interviews enabled me to hear when I asked leading questions.

Recommendation: Use an interview guide at most three
times between revisions. This reinforces constant comparison
and theoretical sampling. When you learn how to formulate
open-ended questions dynamically during an interview, replace
the interview guide with one open-ended question.

I asked early interviewees to draw their “view of Pivotal’s
software development process.” Figure 1 shows one response.
When analysis shifted interviewing onto new topics, I would
start with a new drawing question. For example, asking
participants, “please draw your feelings about the code” often
resulted in conversations about code ownership. Figure 2
shows an example.

Lesson Learned: Asking participants to draw helped under-
stand their perspective and provide a natural starting place for
follow-up questions without forcing topics or perspectives.

Recommendation: Try initiating interviews with a drawing
question.

Meanwhile, I worked as a software engineer on eight
sequential projects lasting two-years and five-months (see
[4] for details). I wrote extensive field notes on individual

and collective actions, what participants found interesting or
problematic, and emerging anecdotes and observations; for
example:

“Monday was the first time we started getting data from the
client’s servers. We’ve been implementing for several months
without knowing whether our system would work with real
backend systems. In order to make progress, we created mocks
for each of the client’s systems based upon documentation.
Now we need to modify our code base to match the reality of
the systems’ implementation.”

Lesson Learned: Collecting and analyzing field notes from
participant observation is not easy. Just as Charmaz discovered
that taking breaks from observation to write down her thoughts
can be difficult [9], I found it very challenging to record ob-
servations during intensive activities (e.g. pair-programming).

Recommendation: Limit participant observation to 20-30
hours per week. Write detailed observations after work, but use
post-it notes or an unobtrusive notebook for capturing insights
during intense activities. This was more culturally acceptable
than typing on a laptop. Explain your actions to participants.
For example, saying “I want to reflect on what you said” or
“what you said was really insightful” makes the participant
feel valued rather than ignored. In short breaks, try recording
verbal notes; some phones will convert spoken words into text.

Participant observation provided a rich data set for emer-
gent ideas. For example, one day while pair programming, I
realized that I did not know who was on my team because
of significant team churn. This realization led me to convert
task allocation data into a chart showing the start and stop
dates for each team member, which raised the question, how
was it possible to be successful [15] with the client with so
many people rotating through the project? Investigating this
research question led to the Theory of Sustainable Software
Development [3].

Lesson Learned: Participant observation often provided
research insights not available from interviews or documents.

Recommendation: Supplement interviews and document
analysis with participant observation or direct observation
(watching without interacting).

III. CONSTANT COMPARISON

I used line-by-line coding [9] to identify nuanced interac-
tions in the data and avoid jumping to conclusions. Whenever
insight occurred, I would write it down as a memo. My advisor
reviewed the initial codes while reading the transcripts and
listening to the audio recordings. We discussed the codes
and the coding process during weekly research collaboration
meetings. To avoid missing insights from these discussions
[13], we often recorded and transcribed the discussion into
Grounded Theory memos. As data was collected and coded,
I stored initial codes in a spreadsheet and I used constant
comparison to generate focused codes.

Lesson Learned: I tend to continue too long with initial
coding.

Recommendation: Use constant comparison to drive re-
search forward.

https://www.researchgate.net/publication/266656200_The_dimensions_of_software_engineering_success?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265091982_Constructing_Grounded_Theory_A?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265091982_Constructing_Grounded_Theory_A?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265091982_Constructing_Grounded_Theory_A?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243768144_Theoretical_Sensitivity_Advances_In_The_Methodology_of_Grounded_Theory?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==


Concept: The underlying, meaning, uniformity and/or pattern within

a set of descriptive incidents.

Category: A type of concept. Usually used for a higher level of

abstraction.

Property: A type of concept that is a conceptual characteristic

of a category, thus at a lesser level of abstraction than a category.

A property is a concept of a concept.

Coding: Conceptualizing data by constant comparison of incident

with incident, and incident with concept to emerge more categories and

their properties.

Fig. 3: Glaser’s Definitions [16]

A. Understanding Constant Comparison

Glaser’s seminal book assumes the reader is a sociolo-
gist, making it inaccessible to many software engineering
researchers and other non-sociologists. The term constant
comparison is especially challenging. Struggling to understand
it—not just remember the definition, but deeply understand
how it works—I read three of Glaser’s books [6], [8], [13] and
attended one of his seminars in Mill Valley, CA. The workshop
helped me understand Grounded Theory terms that were not
clear from the books. I later discovered clearer definitions [16]
(see Figure 3), which Glaser wrote in response to Strauss and
Corbin’s [17] criticisms.

Lesson Learned: I needed to read four of Glaser’s books
and listen to him speak to properly understand constant
comparison—Grounded Theory’s main data analysis method.
It involves continually comparing codes to codes, codes to
categories, codes within a category, and comparing categories
to categories not only to generate and refine emerging theory
but also to decide what data to collect next.

I routinely compared new codes to existing codes to refine
codes and eventually generate categories. I periodically audited
each category for cohesion by comparing its codes. When this
comparison became complex, I printed codes on index cards
and then arranged and rearranged until cohesive categories
emerged. I wrote memos to capture the analysis of codes,
examinations of theoretical plausibility, and insights.

Recommendation: To deeply understand constant compari-
son, iterate between reading about grounded theory (or attend-
ing seminars) and analyzing your data. Accept that it takes
study, practice, and reflection to master.

B. Pulling in New Literature and Data

As the code ownership category emerged, I looked to litera-
ture on ownership in general. Understanding the psychology of
ownership [18] allowed me to connect team code ownership
to underlying emotional needs and explained how emotions
affect the transition from individual code ownership to team
code ownership.

When removing waste emerged as a topic, I examined Lean
Software Development to understand how the Poppendiecks
used the Toyota Production System waste taxonomy for

software development [19]. Contrasting the emergent waste
taxonomy with the Lean Software Development’s top-down
taxonomy helped me better understand and clarify its structure
and elements.

Recommendation: Examine literature outside the studied
domain.

To understand software development waste [4], I began
collecting and analyzing data from retros. (A retrospection
meeting, or retro, is a weekly meeting to collectively reflect
on the work done during the week, i.e., a safe place where
any team member can discuss any issue.)

Lesson Learned: Fortunately, I had been recording retro
issues for over a year, so there was no waiting to gather the
needed data.

Recommendation: Record easily captured information, just
in case. Take lots of photos.

C. Dealing with Confusion
During the analysis process, confusion can emerge. I

found that sensemaking of comparing codes, naming concepts,
defining terms, and identifying theoretical structure could be
straightforward or anfractuous. Glaser said that “confusion is
the royal road to emergence,” [20].

My process for solving this tension looked like this:
1) Be confused
2) Try an idea (e.g. a name, a definition, a relationship

between categories)
3) Iterate on Step 2
4) Experience an “ah ha” moment
5) Verify with data
Lesson Learned: Confusion appears to be a typical, critical

step for the Grounded Theory researcher.
Recommendation: Be patient; embrace the confusion.

D. Focusing on a Manageable Topic
For Glaser, a key matter is “what is the participant’s main

concern?” However, a study of this duration may produce
several distinct core categories, necessitating ongoing scope
adjustments. When my initial findings on course correcting
seemed unwieldy, my co-advisor suggested that I focus on
one concrete category at first.

Lesson Learned: Ambitious Grounded Theory studies can
illuminate several interesting phenomena. For a novice, ini-
tially concentrating on one area helps drive constant compari-
son and theoretical sampling. Later, you can return to the other
phenomena.

Recommendation: When first learning Grounded Theory,
focus on one emerging phenomenon of interest.

IV. THEORY CONSTRUCTION

The iterative process of constant comparison and memo-
writing that generates a grounded theory may be straight-
forward (as it was with our software development waste
taxonomy) or confusing (as it was for the theory of sustainable
software development). Understanding the relationship be-
tween properties may require significant analysis. For example,

https://www.researchgate.net/publication/272577423_Toward_a_Theory_of_Psychological_Ownership_in_Organizations?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265092226_Basics_of_Grounded_Theory_Analysis_Emergence_vs_Forcing?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/265092226_Basics_of_Grounded_Theory_Analysis_Emergence_vs_Forcing?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243773261_Doing_Grounded_Theory_Issues_and_Discussions?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243768144_Theoretical_Sensitivity_Advances_In_The_Methodology_of_Grounded_Theory?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/242569642_The_Discovery_of_Grounded_Theory_Strategies_for_Qualitative_Research?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/235362971_The_Basics_of_Qualitative_Research?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/234828740_Implementing_Lean_Software_Development_From_Concept_to_Cash_The_Addison-Wesley_Signature_Series?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==


I grappled with the nature of the relationship between code
ownership and teams thriving despite excessive churn. Does
ownership encompass both ideas? No. Does surviving churn
cover both ideas? Maybe. Are both concepts manifestations
of the same more abstract phenomenon? No. After reviewing
Glaser’s 18 theoretical coding families, I reconceptualized
surviving team churn as “sustainable software development”
with team code ownership as one of its properties.

We then started teasing apart the relationships between
all the subcategories. Several felt different from each other.
In time, we realized that some were practices, some were
policies, and some were underlying principles.

Refining the practices into clear, logical groups was dif-
ficult. We identified six practices that supported sustainable
software development by supporting team code ownership.
My advisor proposed a separation based on her reading of
the interview transcripts, but it did not resonate with the
participant observation data. This spurred me into reconsid-
ering the relationships between categories based on different
specific questions. The question that eventually worked was
“which of these practices directly affect the code?” Three of
them did: TDD/BDD, Continuous Refactoring, and Live on
Master. Then I asked, “how are these other practices related?”
Continuous Pair Programming, Overlapping Pair Rotation, and
Knowledge Pollination all concern knowledge silos. I recalled
one interviewee discussing caretaking the code like a gardener
and another expressing concern over knowledge silos forming
on his team. I then labeled each group with in vivo codes
(phrases used by participants), leading to the “Caretaking the
Code Practices” and “Removing Knowledge Silos Practices”
categories.

Lesson Learned: Theoretical structure may take time to
emerge.

Recommendation: Review the 18 theoretical coding families
in Theoretical Sensitivity [13]. However, do not adopt a coding
family too readily—the coding family must earn its way into
the theory like everything else.

Meanwhile, prior research treated code ownership as a team
or organizational policy, whereas our participants understood
code ownership as an individual’s feelings toward the code,
further complicating matters. My memos reflect the progres-
sion of searching for the best term: “code ownership” to
“communal code ownership” to “collective code possession”
and eventually to “team code ownership”.

Lesson Learned: Choosing the right names for emerging
ideas is important and challenging.

Recommendation: When struggling with names, try in vivo
codes or terms used in existing literature. Try using variants
in memos and conversations and see if any of them work. It is
normal to feel conceptually uncomfortable during a Grounded
Theory study. When in doubt, simply continue data collection
and constant comparison.

V. THEORETICAL SATURATION

Once a theory emerged, the next question was “what more
data do I need to collect?” Starting this research study,

I thought I understood theoretical saturation. Eventually, I
realized that I did not and understood that the widely held
definition of theoretical sampling as “the phase of qualitative
data analysis in which the researcher has continued sampling
and analyzing data until no new data appear and all concepts
in the theory are well-developed” [21] is problematic.

Sampling until no new data emerges is subtly different than
sampling to elaborate the emerging theory.

Grounded Theory is not about repeating the same questions
until they stop producing new information. The Grounded
Theorist alters the questions based on the emerging data and
asks new questions to help elaborate and corroborate the
relationships between codes, between codes and categories,
and between categories in the emerging theory. The process
stops once the researcher is satisfied that the theory’s concepts
and relationships are mature and the theory feels whole.

More data collection will often still reveal new concepts.
The researcher may decide against including or further ex-
ploring these concepts for several reasons:

1) The concept is not directly relevant to the current theory
(out of scope).

2) The concept has not earned its way into the theory. Po-
tentially, a new Grounded Theory study at different site
would produce more incidents revealing that concept.

3) The concept represents a poor depth-to-parsimony trade-
off; that is, adding the concept would increase the
theory’s complexity without a reasonable corresponding
increase in explanatory power.

In other words, the idea of no new data appearing is rooted
in interview-focused, sociological research where interviewees
just stop saying anything new. In participant-observation, soft-
ware engineering research, we often have much more data than
we can manually analyze, so “no new data” never happens.
Researchers must use personal judgment and experience to
recognize a saturated theory and halt data collection.

At one point, I asked my advisor and co-advisor, “what
questions should I ask my participants to achieve theoretical
saturation?” This was unfair in retrospect. As the primary
researcher, I am the one most qualified to know which rela-
tionships between the categories are not robust. I shifted from
asking “what questions will get me theoretical saturation?” to
asking myself, “what do I not know about this theory?”, “what
is confusing?”, and “how do each of these categories relate?”

I finally understood Theoretical Saturation by reading and
rereading Charmaz and Glaser, experiencing saturation first-
hand and discussing these challenges with my advisor and
co-advisor.

Lesson Learned: Theoretical sampling is collecting addi-
tional data to develop full and robust categories, identify
the relationships between categories, and elaborate the main
category’s properties.

Recommendation: For saturation, focus on exploring and
corroborating the emerging theory. Do not expect new data to
dwindle.

https://www.researchgate.net/publication/285851958_Theoretical_saturation?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==
https://www.researchgate.net/publication/243768144_Theoretical_Sensitivity_Advances_In_The_Methodology_of_Grounded_Theory?el=1_x_8&enrichId=rgreq-f02237cd3e4edda17d0f44f42451266a-XXX&enrichSource=Y292ZXJQYWdlOzMxNDA4MTA1ODtBUzo0NjYyNDg0MzA1NTkyMzJAMTQ4ODE3MzY5NjE4Mw==


VI. MANAGING THE DATA

During the study, I shifted from electronic to paper aids for
constant comparison, as follows.

1) I initially did all constant comparison in Google spread-
sheets.

2) I started hand-writing cards for hard-to-understand
or complex comparisons and physically sorting them
around me in a circle (e.g. needing to make sense of
multiple perspectives about a backlog).

3) I printed the codes directly related to team code owner-
ship onto index cards.

4) I printed all the retrospective notes onto index cards.
When looking at rows in a spreadsheet, I found them

blurring together and easy for me to gloss over. When holding
a card, I felt compelled to consider it before putting it down.
In a spreadsheet, I subconsciously felt that adjacent rows were
related even when they were not. With physical cards, I found
that picking up the next card helped me see it as something
new. However, maintaining both an electronic and physical
copy was time-consuming and felt wasteful.

The advantages of digital aids include:
• Available wherever you have a computer
• Easy to share with co-authors
• Easy to backup and duplicate
• Simple to turn into physical cards
The advantages of physical aids include:
• Easy to rearrange
• Easy to see big picture
• Easy to focus on one area
• Easy to see outliers
• Easy to annotate with thoughts
• Encourages short capturing of ideas
• Time-consuming to turn into electronic storage
Lesson Learned: Sometimes using physical media can help

with constant comparison.
Recommendation: There are many good ways to analyze

data, and researchers need to find the techniques that work
for them, but if you are getting lost in spreadsheets or NVivo,
physical cards are worth trying.

VII. PUBLISHING

I expected and experienced three main challenges with
publishing this research. To the extent software engineering
reviewers are familiar with Grounded Theory at all, they
are accustomed to much shorter, interview-centric studies.
Some of our reviewers did not understand analyses on data
types (e.g. retrospective items) not usually used in Grounded
Theory, or understand that such a long study produces multiple
core categories, which cannot be addressed all in one paper.
Meanwhile, some reviewers appear suspicious of qualitative
research in general. To overcome their concerns, I distributed
the methodology and findings very carefully across several
interconnected papers.

Lesson Learned: It is extremely difficult to convey a large,
participant-observation Grounded Theory study in a series of

short papers, such that its methodological rigor is established
and its findings are clear.

Recommendations: Use existing guidance for presenting
grounded theory to a software engineering audience [1]. Rather
than a long methods section, distribute ample methodological
detail throughout the paper where appropriate. Explicitly ad-
dress differences between interviews and participant observa-
tion. Clearly explain that you have conducted a long study with
several core categories and that this paper only talks about this
one category because space precludes treating all categories
simultaneously. You can even cite our papers as precedent.
Use a table or figure with examples to show the chain of
evidence from raw data to categories. As reviewers, remember
that the size of a competent grounded theory analysis precludes
visualization even in a long journal article.

VIII. ADVANTAGES AND DISADVANTAGES OF EXTENDED
PARTICIPANT OBSERVATION

Extended participant observation allows for a deep under-
standing of participants’ points of view. During this study,
I have done almost 4,800 hours of pair programming. After
thousands of conversations, I know what participants agree
and disagree on.

Many software engineering researchers began in the soft-
ware development field because they enjoy writing software.
Writing code with a development team exposes the researcher
to the latest software development techniques employed in
industry. A researcher who has experienced pair programming
for several weeks may have a richer experience to draw upon
than a researcher who has no pair programming experiences.

Lesson Learned: Extended participant observation improves
the researcher’s technical skills, understanding of development
processes, and empathy for software developers.

Recommendation: Recognizing that it does not work for
everyone, consider participant observation (or direct observa-
tion). Avoid over-reliance on interviews.

During extended participant observation, a promotion may
present a dilemma. At one point, I was encouraged to apply for
a promotion to Associate Director, a sales role with no time for
coding. Because working directly with the teams was crucial
for my research, getting this position would have derailed the
study.

Furthermore, the research cycle gets complicated. When
is the right time to present research findings to the partic-
ipants? Would presenting research findings alter the system
under study? I resolved these tensions by not withholding my
opinions while pair programming, making decisions that were
best for clients, my company, and my team. For example, I
suggested adding retros to a team that was missing them, and
for a struggling team, I introduced stress relieving measures
and team building exercises.

The academic cycle of writing papers, submitting, resolving
reviewer comments, and presenting the research is lengthy.
Since Grounded Theory produces theories that are grounded
in the observed context, we realized that sharing my published
insights would not adversely affect my research.



Lesson Learned: Sharing my published research with the
organization confirmed resonance. Giving my academic talks
at Pivotal offices became a way for me to give back.

Recommendation: After achieving theoretical saturation,
share findings with the organization.

Moreover, business goals do not always align with the
research goals. The research may be at the mercies of the
business. Business concerns dictated my rotation from team to
team. Fortunately, most of my rotations enhanced my research,
but I could be moved from a really interesting project to
one with little research potential. At one point, I was even
transferred to a different business unit.

Lesson Learned: Business decisions can have profound
impacts on research.

Recommendations: Either work with a company where all
projects are relevant to the research area or negotiate a deal
where the researcher has control of which projects they work
on.

Glaser observed that Grounded Theory is easy to interrupt
and pick up again. “Built into the method is the ability to put
it down at will and pick it up later with virtually no need to
backtrack or unduly review where the researcher was before
the break in pace. The study is always ready to go forward on
the current, next step. Thus there is no need to sacrifice the
requirements of and need for family, friends and recreation for
the research. The research in progress is always there waiting
to move forward when the researcher can return to it” [8].

Lesson Learned: While Grounded Theory is easy to start
and stop, balancing a 40-hour work week, research, and family
is challenging. I kept Saturdays free, often using it for rest.

Recommendation: Build in rest time into your schedule.
As a developer, I have access to the stories in the backlog,

daily conversations with my pair, team discussions, daily
standups, weekly planning meetings, weekly retrospection
meetings, and the code itself. There is a lot of potential data
to analyze—much more than just interviews. The retrospec-
tion dataset alone had 663 items. The volume of data can
be overwhelming. I resonated with the saying, “a potential
problem with ethnographic studies is seeing data everywhere
and nowhere, gathering everything and nothing” [9].

Recommendation: Use the ideas emerging from constant
comparison to guide what kinds of data to collect.

IX. CONCLUSION

This paper attempts to use my experience running an
ambitious grounded theory study to illustrate some challenges
and recommend some practices that I found helpful. Some of
the key challenges are as follows:

Grounded Theory is more complicated than it first appears.
I had to not only experience the method firsthand, but also
read and reread several seminal texts to really understand it.
Questions asking participants to draw a picture helped me
focus on interviewees’ perspectives and avoid forcing topics.
Participant observation revealed many insights that interviews
could not. Prioritizing analysis over data collection help me
avoid getting overwhelmed. My datasets were too unwieldy to

analyze digitally; using physical index cards helped tremen-
dously. Theoretical sampling is difficult to recognize and
widely misunderstood. It is more about elaborating the emerg-
ing theory than running out of data. Extensive methodological
detail and explicitly confronting the unusual aspects of the
study helped assuage reviewer concerns.

Glaser says that a Grounded Theory study can create a
rich trove of data. Indeed, I am still collecting and analyzing
data and there is much more here worth studying. If you
are conducting a Grounded Theory study of your own, and
especially if you are struggling, feel free to contact me.

ACKNOWLEDGEMENT

Thank you to Rob Mee, David Goudreau, Ryan Richard,
Zach Larson, Elisabeth Hendrickson, and Michael Schubert
for making this research possible.

REFERENCES

[1] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: A critical review and guideline,” in Proceedings of
the 2016 International Conference on Software Engineering, ser. ICSE,
2016.

[2] T. Sedano, P. Ralph, and C. Péraire, “Practice and perception of team
code ownership,” in Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE, 2016.

[3] ——, “Sustainable software development through overlapping pair ro-
tation,” in Proceedings of the International Symposium on Empirical
Software Engineering and Measurement International Conference on
Software Engineering, ser. ESEM, 2016.

[4] ——, “Software development waste,” in Proceedings of the 2017 Inter-
national Conference on Software Engineering, ser. ICSE ’17, 2017.

[5] W. M. Trochim. (2006) Research methods knowledge base, 2nd edition.
[Online]. Available: http://www.socialresearchmethods.net/kb/

[6] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Sociology Press, 1968.

[7] B. Brown, Daring greatly: How the courage to be vulnerable transforms
the way we live, love, parent, and lead. Penguin, 2012.

[8] B. Glaser, Doing Grounded Theory: Issues and Discussions. Sociology
Press, 1998.

[9] K. Charmaz, Constructing Grounded Theory. SAGE Publications, 2014.
[10] G. L. Evans, “A novice researchers first walk through the maze of

grounded theory,” Grounded Theory Review, vol. 12, no. 1, 2013.
[11] B. G. Glaser, “Constructivist grounded theory?” Forum Qualitative

Sozialforschung / Forum: Qualitative Social Research, vol. 3, no. 3,
2002.

[12] A. Bryant, “A constructive/ist response to Glaser’s ”constructivist
grounded theory?”,” Historical Social Research / Historische Sozial-
forschung. Supplement, no. 19, 2007.

[13] B. Glaser, Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. Sociology Press, 1978.

[14] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[15] P. Ralph and P. Kelly, “The dimensions of software engineering suc-
cess,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014.

[16] B. G. Glaser, Basics of grounded theory analysis: emergence vs forcing.
Sociology Press, 1992.

[17] A. Strauss and J. Corbin, Basics of qualitative research. Newbury Park,
CA: Sage, 1988.

[18] J. L. Pierce, T. Kostova, and K. T. Dirks, “Toward a theory of psycho-
logical ownership in organizations,” Academy of Management Review,
vol. 26, no. 2, 2001.

[19] M. Poppendieck and T. Poppendieck, Implementing Lean Software
Development: From Concept to Cash. Addison-Wesley Professional,
2006.

[20] B. Glaser, “Notes from the grounded theory seminar held at mill valley,”
November 2015.

[21] J. M. Morse, “Theoretical saturation,” The SAGE Encyclopedia of Social
Science Research Methods, vol. 3, 2017.

View publication statsView publication stats


	Carnegie Mellon University
	From the SelectedWorks of Cécile Péraire
	May, 2017

	Lessons Learned from an Extended Participant Observation Grounded Theory Study
	tmp59uyTN.pdf

