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Student Evaluations of Teaching Effectiveness:
The Interpretation of Observational Data
and the Principle of Faute de Mieux

B. Burt Gerstman
San Jose State University

Student opinion surveys are important but widely misunder-
stood tools for evaluating teaching effectiveness. In this brief
review, an analogy is drawn between the use and interpreta-
tion of observational data for public health and biomedical re-
search and the use of student opinion data in evaluating teach-
ing effectiveness. Sources of systematic error in the form of
selection bias, information bias, and confounding are defined
and illustrated. Original data concerning intermittent “quid
pro quo” confounding (i.e., the effect of expected grades on stu-
dent evaluations of teaching) are presented. Finally, the prin-
ciple of faute de mieux (“lack of anything better”) and the
interpretation of less-than-pristine data are considered.

Introduction

Nearly everyone in higher education has an opinion about the value
of student evaluations of teaching effectiveness. Without question, these
evaluations are among the most important sources of information con-
sidered by university retention, tenure, and promotion committees and
university administrators alike. In my opinion, there has been some de-
gree of misinterpretation and misuse of these data, which has resulted in
controversies similar to those that surrounded my field, epidemiology
and biostatistics, not too long ago.

A turning point for the disciplines of epidemiology and biostatistics
occurred in 1964, when the Surgeon General of the United States con-
vened a panel of scientists to advise him on the effects of cigarette smoking
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on health. The panel adopted a set of criteria that formalized and legiti-
mized the use of nonexperimental data for causal inference (U.S.
Department of Health, Education & Welfare, 1964). These criteria have
helped clarify epidemiologic debates ever since.

Epidemiology has matured as a science over the last 30 years, through
the establishment of methods to increase the accuracy of observational
data collection, analysis, and interpretation. One critical aspect of epide-
miologic methods is the control and mitigation of bias. In this article, I
will discuss the basic concepts of bias and demonstrate how they may
affect student evaluation data. I will also discuss the principle of faute de
mieux, which translates roughly as “lack of anything better,” in relation
to student evaluations. That is, as imperfect as student evaluations might
be, they still provide important insights into teaching performance. It is
true that student evaluation data are compromised by the lack of poten-
tially relevant information about the students, the uncontrolled circum-
stances under which student evaluation data are collected, and the lack
of objectivity associated with student opinion. However, no other ob-
servers—whether peers; retention, tenure, and promotion committee
members; or university administrators—have greater opportunity to
observe and assess a professor’s performance than do students. There-
fore, student evaluations of teaching effectiveness probably will contin-
ue to be a valuable source of information in assessing teaching perfor-
mance at the university level.

Before proceeding, I should note that significant discoveries regard-
ing health have been made on the basis of relatively crude, uncontrolled
data (e.g., the adverse effects of smoking on health). However, the col-
lection and interpretation of these data have been fundamentally different
from the collection and interpretation of “clean” experimental data. The
challenge is to recognize the limitations inherent in “dirty” data and to
apply only those means of analysis, interpretation, and inference that
are appropriate. To understand the “dirtiness” of data, fundamentals of
study design must be considered first.

Differences Between Experimental
and Observational Data

There are two different types of data: experimental and observation-
al. The distinction between the two is clear: In experiments, investigators
control the allocation of the factors (“treatments” or “independent vari-
ables”) they wish to study; in observational studies, no such discretion is
allowed—selection of the study factors is in the hands of the observa-
tional study participants themselves. Control over study factor allocation
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by investigators permits randomization of treatments. Randomization,
in turn, tends to result in group comparability, making the comparisons
that follow fairly straightforward. In the absence of randomization, com-
parisons may be confounded by the underlying noncomparability of
groups. Therefore, experimental study designs are almost always pref-
erable to observational designs when feasibility and ethical considerations
allow a choice between the two.

Less distinct differences between experimental and observational stud-
ies are also apparent. For example, experimental studies are often char-
acterized by homogeneity of study participants, whereas those partici-
pating in observational studies may be quite diverse. The clearest example
of experimental study participant homogeneity is in laboratory and ag-
ricultural experiments where treatments are randomized among geneti-
cally identical laboratory animals or crops. Even in experimental studies
involving humans, participant homogeneity can be effected through strict
admissibility criteria for participant selection.

Finally, experimental studies are often carried out in relatively con-
trolled environments. In contrast, observational studies are pursued in
natural, population-based settings where environmental and other ex-
traneous conditions are heterogeneous and uncontrolled. This can fur-
ther confound comparisons in that observed differences may be due to
environmental factors other than the independent variable under inves-
tigation. For all of the aforementioned reasons, comparisons based on
observational studies must be controlled, statistically adjusted, or other-
wise compensated for before being interpreted or scrutinized.

Acceptability of Nonexperimental Data

R. A. Fisher (whom many consider the “father of modern statistics”)
and other skeptics scorned inferences based on nonexperimental data.
In addition, Fisher believed that solutions derived without a full under-
standing of the sort of reasoning behind experiments were unjustifiable.
He suggested that statistics be entrusted only “to those with sufficient
prolonged experience of practical research, and of responsibility for draw-
ing conclusions from actual data upon which practical action is to be
taken” (Box, 1978, p. 435).

Until relatively recently, the accepted norm in the conservative realm
of science was not too different from Fisher’s curmudgeonly views. The
Report of the Advisory Committee to the Surgeon General of the Public
Health Service (U.S. Department of Health, Education & Welfare, 1964)
went some way toward reversing this excessively orthodox view. Im-
portantly, the Surgeon General’s report did agree with Fisher’s basic
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premise that inference is a matter of judgment which goes beyond nu-
merical manipulations. Still, the Surgeon General’s report went beyond
this generality and actually documented nonstatistical criteria by which
to judge causality.! The more pertinent criteria were the following: (a)
Cause-and-effect conclusions based on a single study are rarely justifi-
able; rather, consistency between studies using diverse methods in dif-
ferent populations, but providing largely similar conclusions, is necessary
for reliable conclusions; (b) large differences carry more weight than do
small differences; and (c) statistical associations must be plausible and
coherent in the face of other known facts relevant to the topic. (Other
criteria outlined by the Surgeon General’s report were more specific to
biological phenomena.)

By applying this thinking to the interpretation of student evaluations,
the inferences based on these data are strengthened.

Sources of Inaccuracy

In assessing data of any type, two different sources of error must be
kept in mind: imprecision and bias. Imprecision is synonymous with
“random error” and often is associated with small sample size and the
resultant sampling variation. Imprecision causes the random noise that
must be subdued to determine whether apparent differences are real or
random. This noise is easily quantified in terms of standard error esti-
mates and confidence interval lengths. Moreover, it can be handled
intelligently by means of statistical significance testing.

Bias, the other major form of error, is any condition that tends to cre-
ate systematic deviations from the truth (Sacket, 1979). Bias repeatedly
leads to the wrong conclusions and is to some degree independent of
random sources of error. Bias, more than imprecision, is of central con-
cern when dealing with observational data.

According to current epidemiologic theory, there are three principal
forms of bias: information, selection, and confounding. Although these
three forms of bias are distinct by definition, they tend to overlap in prac-
tice. Nonetheless, it is worthwhile to consider them separately to help
define and clarify their potential adverse effects.

Selection Bias

Selection bias occurs when the study participants do not fully repre-
sent the population that they supposedly represent. In student evalua-
tions, selection bias happens if some professors have the option of sur-
veying only their more agreeable classes, whereas other professors do
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not. This practice tends to extend the “normal” range. Comparisons (for-
mal or otherwise) that follow therefore may be biased in favor of self-
selected classes.

Selection bias may be prevented simply by taking the class selection
process out of professors” hands. At the very least, comparisons could be
based on a random sample of classes taught at the university.

Information Bias

Information bias occurs when one or more variables are misclassified
or inaccurately measured. For the purpose of this discussion, student
ratings of teaching effectiveness will be the primary outcome, or depen-
dent variable, of the study.

The quintessential question about effectiveness ratings is how well
they reflect the complex interaction of teaching and learning. Although
a thorough treatment of this question is beyond the scope of this general
overview, this issue points to the importance of objectively defining study
outcomes and endpoints before referring back to results.

In population-based studies of disease occurrence, criteria that define
study outcomes are called “case definitions.” Accurate case definitions
are essential to study reliability and acceptability. In my view, the case
definition of student evaluations of teaching effectiveness can be viewed
in one of two ways: as a surrogate endpoint for what classically have
been the goals of effective teaching—stimulating intellectual curiosity,
developing thought processes and critical thinking skills, and preparing
students to contribute to society (Cruse, 1987)—or as an outcome in and
of itself. Unfortunately, the distinction between these two views is often
disregarded.

If student evaluations are viewed as true reflections of classical learn-
ing objectives, they are, at best, surrogate or substitute measures. As with
all surrogate measures, there is ample opportunity for information bias.
If student evaluations are viewed more literally, such as a measure of
rapport with and ability to please students, information bias is less of an
issue. Machina (1987) argued that reaching students may be considered
a prerequisite for effective teaching and therefore is an acceptable out-
come.

Confounding

Confounding is a result’s distortion by extraneous variables. For an
extraneous variable (“potential confounder”) to confound, it must be
associated with both the independent and dependent variables under
consideration (Rothman, 1986).
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Extraneous variables that may confound student evaluations include,
but are not limited to, the reason for taking the class (Brandenburg, Slinde,
& Bautista, 1977; Feldman, 1978); discipline (Centra & Creech, 1976); class
size (Centra & Creech, 1976; Feldman, 1978; Marsh, Overall, & Kesler,
1979); and expected grade (Centra, 1979; Feldman, 1983). Over the past
few years, I have become increasingly interested in this last form of con-
founding that may result from different grading standards. I shall refer
to this hypothesized effect as “quid pro quo” confounding.

Quid pro quo confounding may occur when relatively lenient grad-
ing standards are associated with higher-than-average student evalua-
tions and when relatively stringent grading standards are associated with
lower-than-average student evaluations. To quantify the hypothesized
quid pro quo effect, I conducted a simple study in which two of my classes
were surveyed (it is fair to say that class 1 was relatively less challenging
and had less stringent grading standards than class 2). Both classes were
administered a brief survey in which students were asked to rate my
overall teaching effectiveness on a scale of 1 to 5 (1 = excellent, 2 = good,
3 =fair, 4 = poor, and 5 = very poor). Students were also asked to indicate
the grade they expected to receive on the basis of the exams and assign-
ments to date. Students did not identify themselves on the survey, so
analysis of the data was blind.

Interestingly, in class 1 there was no relationship between expected
grade and teaching effectiveness ratings (Figure 1, p = .38). In class 2, on
the other hand, there was a strong linear relationship (Figure 2, p =.006),
such that the higher the expected grade, the higher the rating of teaching
effectiveness. This inconsistency of effect indicates a statistical interac-
tion. It appears that higher grading standards and more rigorous materials
are associated with quid pro quo confounding, whereas a more laid-back
approach is not. I believe this result has far-reaching implications for
higher education.

On a related note, I would like to point out what I suspect is a fallacy
in the educational literature concerning the potential effects of confound-
ing. Marsh (1984) suggested that student ratings are “relatively unaffected
by a variety of variables hypothesized as potential biases” (p. 707). The
statistics behind this and similar statements in the literature are coeffi-
cients of determination or other standardized regression or correlation
coefficients. For example, Seldin (1993) stated that “relationships between
extraneous variables and student ratings . . . account for just 12 to 14 per
cent of the variance between positive and poor ratings” (p. A40). The
statistic in this case (“12 to 14 per cent of the variance”) appears to be a
coefficient of determination (abbreviated in the statistical literature as
12). I believe that this statistic is inappropriate, given the nature of stu-
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Figure 1. Mean # standard error of student ratings of teach-
ing effectiveness by self-estimated student grade, class 1 (less
challenging curriculum and less stringent grading standards).
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Figure 2. Mean + standard error of student ratings of teaching
effectiveness by self-estimated student grade, class 2 (more chal-
lenging curriculum and more stringent grading standards).
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dent evaluation data. Although coefficients of determination provide an
intuitive measure of an independent variable’s effect in reducing vari-
ance in the dependent variable, they are generally inappropriate for causal
inference based on observational data (Rothman, 1986, p. 303). This is
because coefficients of determination depend, in part, on the overall fre-
quency and range of covariates in question. Greenland, Schlesselman,
and Criqui (1986) therefore suggested that coefficients of determination
and other standardized correlation parameters be avoided as an analytic
tool in observational studies of cause and effect. Another problem with
coefficients of determination is that they represent average correlations
and are therefore insensitive to interactions of the type illustrated in the
aforementioned simple study. Further consideration of the inadequacy
of coefficients of determination and similar coefficients for causal infer-
ence based on observational data is beyond the scope of this commentary.
Interested readers should see Neter, Wasserman, and Kutner (1985, es-
pecially p. 99) and Greenland et al. (1986) for a more technical discussion
of this matter.

Faute de Mieux

Given the nonrigorous nature and the vagaries of student evaluation
data, their value might be questioned. A recent debate concerning the
use of nonrigorous biomedical data for epidemiologic research may shed
some light on this subject. Feinstein (1989) referred to the logic behind
the use of nonrigorous biomedical data as the faute de mieux, or “lack of
anything better,” reason. He eloquently expressed the essence of this
debate as follows: “Caught in the necessity for making decisions based
on evidence and the pragmatic difficulty of getting high quality evidence,
... investigators and policy makers usually conclude that imperfect data
are better than none” (p. 930).

The similarities between the use of nonrigorous biomedical data and
the use of student evaluation data are obvious yet striking. Academic
administrators, when looking for evidence of teaching effectiveness as
they consider the promotion, tenure, or reappointment of faculty, often
rely on the quantification inherent in student evaluation data.? Unfortu-
nately, administrators may mistake the numerical nature of the data for
objectivity (it is seductive to confuse the two). Without an appreciation
of the potential sources of error inherent in student evaluation data, the
inferences that follow may be invalid and the data potentially abused.
The potential for selection bias, information bias, and confounding must
be considered, and adjustments must be made, if possible. (As far as I
know, very little has been done in advancing statistical adjustment for
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student evaluation data.) Moreover, student evaluations must be viewed
in light of other sources of information, and small differences should not
be overinterpreted. Most important, statistical data must be plausible
and coherent in the face of other relevant facts. There is a saying in the
epidemiologic community attributed to Michael Gregg, “We are always
dealing with dirty data. The trick is to do it with a clean mind” (Bernier
& Mason, 1991, p. 236). Consumers of student evaluation data would be
well served to adopt a similar philosophy.

Footnotes

1Tt should be noted that the Surgeon General’s Advisory Committee
based their criteria on the earlier work of Sir Bradford Hill. See Hill (1965)
for a description of the inferential criteria he originally proposed.

2As part of a recent retention, tenure, and promotion (RTP) grievance
hearing at my university, I was asked to blind-review the student ratings
of a professor’s teaching effectiveness and to render an interpretation.
Apparently, the case revolved around a small number of student ratings
that had fallen below the normative range. Few supportive data were
offered. This points to the overreliance on student evaluations as the de
facto “gold standard” of many RTP actions.
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