
Carnegie Mellon University

From the SelectedWorks of Bob Iannucci

1987

Two Fundamental Issues in Multiprocessing
Arvind, Massachusetts Institute of Technology
Robert A Iannucci, Massachusetts Institute of Technology

Available at: https://works.bepress.com/bob/8/

http://www.cmu.edu/
https://works.bepress.com/bob/
https://works.bepress.com/bob/8/

Two Fundamental Issues in Multiprocessing

Arvind
Robert A. lannucci

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 - USA

Abstract

A general purpose mult iprocessor should be scalable, i.e. show higher perform-
ance when more hardware resources are added to the machine. Architects of such
multiprocessors must address the loss in processor efficiency due to two funda-
mental issues: long memory latencies and waits due to synchronization events. It
is argued that a well designed processor can overcome these losses provided
there is sufficient parallelism in the program being executed. The detrimental
effect of long latency can be reduced by instruction pipelining, however, the
restriction of a single thread of computation in von Neumann processors severely
limits their abil ity to have more than a few instructions in the pipeline. Further-
more, techniques to reduce the memory latency tend to increase the cost of task
switching. The cost of synchronization events in von Neumann machines makes
decomposing a program into very small tasks counter-productive. Dataflow
machines, on the other hand, treat each instruction as a task, and by paying a
small synchronization cost for each instruction executed, offer the ultimate flexi-
bil ity in scheduling instructions to reduce processor idle time.

Key words and phrases: caches, cache coherence, dataflow architectures, hazard
resolution, instruction pipelining, LOAD/STORE architectures, memory latency,
multiprocessors, multi-thread architectures, semaphores, synchronization, von
Neumann architecture.

1. Importance of Processor Architecture

Parallel machines having up to several dozen processors are commercially avail-
able now. Most of the designs are based on von Neumann processors operating
out of a shared memory. The differences in the architectures of these machines in
terms of processor speed, memory organization and communication systems, are
significant, but they all use relatively conventional von Neumann processors.
These machines represent the general belief that processor architecture is of little
importance in designing parallel machines. We will show the fallacy of this

This report describes research done at the Laboratory for Computer Science of the Massa-
chusetts Institute of Technology. Funding for the Laboratory is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval
Research contracts N00014-83-K-0125 and N00014-84-K-0099. The second author is employed
by the International Business Machines Corporation.

- 62 -

assumption on the basis of two issues: memory latency and synchronization. Our
argument is based on the following observations:

1. Most von Neumann processors are likely to "idle" during long memory refer-
ences, and such references are unavoidable in parallel machines.

2. Waits for synchronization events often require task switching, which is
expensive on yon Neumann machines. Therefore, only certain types of paral-
lelism can be exploited efficiently.

We believe the effect of these issues on performance to be fundamental, and to a
large degree, orthogonal to the effect of circuit technology. We will argue that by
designing the processor properly, the detrimental effect of memory latency on
performance can be reduced provided there is parallelism in the program. How-
ever, techniques for reducing the effect of latency tend to increase the synchroni-
zation cost.

In the rest of this section, we articulate our assumptions regarding general pur-
pose parallel computers. We then discuss the often neglected issue of quantifying
the amount of parallelism in programs. Section 2. on page 66 develops a frame:
work for defining the issues of latency and synchronization. Section 3. on page 69
examines the methods to reduce the effect of memory latency in yon Neumann
computers and discusses their limitations. Section 4. on page 75 similarly exam-
ines synchronization methods and their cost. In Section 5. on page 79, we discuss
multi-threaded computers like HEP and the MIT Tagged-Token Dataflow machine,
and show how these machines can tolerate latency and synchronization costs
provided there is sufficient parallelism in programs. The last section summarizes
our conclusions.

1.1 S c a l a b l e M u l t i p r o c e s s o r s

We are primarily interested in general purpose parallel computers, i.e. computers
that can exploit parallelism, when present, in any program. Further, we want mul-
tiprocessors to be scalable in such a manner that adding hardware resources
results in higher performance without requiring changes in application programs.
The focus of the paper is not on arbitrarily large machines, but machines which
range in size from ten to a thousand processors. We expect the processors to be
at least as powerful as the current microprocessors and possibly as powerful as
the CPU's of the current supercomputers. In particular, the context of the dis-
cussion is not machines with millions of one bit ALU's, dozens of which may fit on
one chip. The design of such machines will certainly involve fundamental issues
in addition to those presented here. Most parallel machines that are available
today or likely to be available in the next few years fall within the scope of this
paper (e.g. BBN Butterfly F36-1, ALICE [~13] and now FLAGSHIP, the Cosmic Cube
[38-1 and Intel's iPSC, IBM's RP3 [33], Alliant and CEDAR [26], and GRIP [11]).

If the programming model of a parallel machine reflects the machine configuration,
e.g. number of processors and interconnection topology, the machine is not scal-
able in a practical sense. Changing the machine configuration should not require
changes in application programs or system software; updating tables in the
resource management system to reflect the new configuration should be sufficient.
However, few multiprocessor designs have taken this stance with regard to scal-
ing. In fact, it is not uncommon to find that source code (and in some cases, a l g o -

- 6 3 -

Redesign Rewrite Rewrite Recompile

the the the the

ALGORITHM PROGRAM COMPILER PROGRAM

Reinitialize

the

RESOURCE MANAGERS

Preserves algorithms I~
r

Preserves source code
I v

Preserves compiler •

Preserves object code •

Figure 1. The Effect of Scaling on Software

rithms) must be modified in order to run on an altered machine configuration.
Figure 1. depicts the range of effects of scaling on the software. Obviously, we
consider architectures that support the scenario at the right hand end of the scale
to be far more desirable than those at the left. It should be noted that if a parallel
machine is not scalable, then it will probably not be fault-tolerant; one failed pro-
cessor would make the whole machine unusable. It is easy to design hardware in
which failed components, e.g. processors, may be masked out. However, if the
application code must be rewritten, our guess is that most users would wait for the
original machine configuration to be restored.

1.2 Quantifying Parallelism in Programs

Ideally, a parallel machine should speed up the execution of a program in pro-
portion to the number of processors in the machine. Suppose t(n) is the time to
execute a program on an n-processor machine. The speed-up as a function of n
may be defined as follows: 1)

t(1)
s p e e d - up(n) -

Speed-up is clearly dependent upon the program or programs chosen for the
measurement. Naturally, if a program does not have "sufficient" parallelism, no
parallel machine can be expected to demonstrate dramatic speedup. Thus, in
order to evaluate a parallel machine properly, we need to characterize the inher-
ent or potential parallelism of a program. This presents a difficult problem because
the amount of parallelism in the source program that is exposed to the architecture
may depend upon the quality of the compiler or programmer annotations. Fur-
thermore, there is no reason to assume that the source program cannot be
changed. Undoubtedly, different algorithms for a problem have different amounts
of parallelism, and the parallelism of an algorithm can be obscured in coding. The

1) Of course, we are assuming that it is possib le to run a p rogram on any number of processors
of a machine. In real i ty often this is not the case.

- 6 4 -

C o n c u r r e n t l y

Enab l ed

Act iv i t ies

3000 l

2000

1 0 0 0

ounded Processors

~ " i ° ,

~ ', (1ooo)
, , , ; , , ~ , " - ~ T i m e

200 400 600 800 1000 1200 1400 I600

Figure 2. Parallelism Profile of SIMPLE on a 20 x 20 Array

problem is compounded by the fact that most programming languages do not have
enough expressive power to show all the possible parallelism of an algorithm in
a program, in spite of all these difficulties, we think it is possible to make some
useful estimates of the potential parallelism of an algorithm.

It is possible for us to code algorithms in Id [30], a high-level dataflow language,
and compile Id programs into dataflow graphs, where the nodes of the graph rep-
resent simple operations such as fixed and floating point arithmetic, Iogicals,
equality tests, and memory loads and stores, and where the edges represent only
the essential data dependencies between the operations. A graph thus generated
can be executed on an interpreter (known as GITA) to produce results and the
parallelism profile, pp(t), i.e., the number of concurrently executable operators as
a function of time on an idealized machine. The idealized machine has unbounded
processors and memories, and instantaneous communication. It is further
assumed that all operators (instructions) take unit time, and operators are exe-
cuted as soon as possible. The parallelism profile of a program gives a good esti-
mate of its "inherent parallelism" because it is drawn assuming the execution of
two operators is sequentialized if and only ff there is a data dependency between
them. Figure 2 shows the parallelism profile of the SIMPLE code for a represen-
tative set of input data. SIMPLE [12], a hydrodynamics and heat flow code kernel,
has been extensively studied both analytically [1] and by experimentation.

The solid curve in Figure 2 represents a single outer-loop iteration of SIMPLE on
a 20 x 20 mesh, while a typical simulation run performs 100,000 iterations on 100
x 100 mesh. Since there is no significant parallelism between the outer-loop iter-
ations of SIMPLE, the parallelism profile for N iterations can be obtained by
repeating the profile in the figure N times. Approximately 75% of the instructions
executed involve the usual arithmetic, logical and memory operators; the rest are

- 6 5 -

500

400

Speed Up 300

~00

100

jjJJ

Ideal " / -

S p e e d u p J l ~ ~

Actual

J Speed up
i i ! i i i i

60 120 180 240 300 360 420 480

Maximum Permissible Operat ions per T i m e Step

I00

90

80

70

6O

I

% Utilizatio]

Figure 3. Speed Up and Utilization for 20 x 20 SIMPLE

miscellaneous overhead operators, some of them peculiar to dataflow. One can
easily deduce the parallelism profile of any set of operators from the raw data that
was used to generate the profile in the figure; however, classifying operators as
overhead is not easy in all cases.

The reader may visualize the execution on n processors by drawing a horizontal
line at n on the parallelism profile and then "pushing" all the instructions which
are above the line to the right and below the line. The dashed curve in Figure 2
shows this for SIMPLE on 1000 processors and was generated by our dataflow
graph interpreter by executing the program again with the constraint that no more
than n operations were to be performed at any step. However, a good estimate for
t(n) can be made, very inexpensively, from the ideal parallelism profile as follows.
For any ~, if pp(z) <_ n, we perform all pp(z) operations in time step 3. However, if
pp(~) > n, then we assume it will take the e least integer greater than pp(z)/n steps
to perform pp(~) operations. Hence,

Tma× pp(T)]
t(n) = ~[~

where Tma × is the number of steps in the ideal parallelism profile. Our estimate of
f(n) is conservative because the data dependencies in the program may permit the
execution of some instructions from p p (~ + l) in the last time step in which
instructions from pp(T) are executed.

In our dataflow graphs the number of instructions executed does not change when
the program is executed on a different number of processors. Hence, t(1) is simply
the area under the parallelism profile. We can now plot speed-up(n)=t(1)/t(n) and
utilization(n)=t(1)/nxt(n), for SIMPLE as shown in Figure 3. For example, in the
case of 240 processors, speed-up is 195, and utilization is 81%. One way to

- 66 -

understand utilization(n) is that a program has n parallel operations for only
utilization(n) fraction of its total t(n) duration.

It can be argued that this problem does not have enough parallelism to keep, say,
1000 processors fully utilized. On the other hand, if we cannot keep 10 processors
fully utilized, we cannot blame the lack of parallelism in the program. Generally,
under-utilization of the machine in the presence of massive parallelism stems from
aspects of the internal architecture of the processors which preclude exploitation
of certain types of parallelism. Machines are seldom designed to exploit inner-
loop, outer-loop, as well as instruction-level parallelism simultaneously.

It is noteworthy that the potential parallelism varies tremendously during exe-
cution, a behavior which in our experience is typical of even the most highly par-
allel programs. We believe that any large program that runs for a long time must
have sufficient parallelism to keep hundreds of processors utilized; several appli-
cations that we have studied support this belief. However, a parallel machine has
to be fairly general purpose and programmable for the user to be able to express
even the class of partial differential equation-based simulation programs repres-
ented by SIMPLE.

2. Latency and Synchronizat ion

We now discuss the issues of latency and synchronization. We believe latency is
most strongly a function of the physical decomposition of a multiprocessor, while
synchronization is most strongly a function of how programs are logically decom-
posed.

2.1 Latency: The First Fundamental Issue

Any multiprocessor organization can be thought of as an interconnection of the
following three types of modules (see Figure 4):

1. Processing elements (PE): Modules which perform arithmetic and logical
operations on data. Each processing element has a single communication port
through which all data values are received. Processing elements interact with
other processing elements by sending messages, issuing interrupts or send-
ing and receiving synchronizing signals through shared memory. PE's interact
with memory elements by issuing LOAD and STORE instructions modified as
necessary with atomicity constraints. Processing elements are characterized
by the rate at which they can process instructions. As mentioned, we assume
the instructions are simple, e.g. fixed and floating point scalar arithmetic.
More complex instructions can be counted as multiple instructions for meas-
uring instruction rate.

2. Memory elements (M): Modules which store data. Each memory element has
a single communication port. Memory elements respond to requests issued
by the processing elements by returning data through the communication

- 67 -

Figure 4. Structural Model of a Multiprocessor

port, and are characterized by their total capacity and the rate at which they
respond to these requests2).

3 . C o m m u n i c a t i o n e l e m e n t s (C) : Modules which transport data. Each nontrivial
communication element has at least three communication ports. Communi-
cation elements neither originate nor receive synchronizing signals,
instructions, or data; rather, they retransmit such information when received
on one of the communication ports to one or more of the other communication
ports. Communication elements are characterized by the rate of transmission,
the time taken per transmission, and the constraints imposed by one trans-
mission on others, e.g. blocking. The maximum amount of data that may be
conveyed on a communication port per unit time is fixed.

Latency is the time which elapses between making a request and receiving the
associated response. The above model implies that a PE in a multiprocessor sys-
tem faces larger latency in memory references than in a uniprocessor system
because of the transit time in the communication network between PE's and the
memories. The actual interconnection of modules may differ greatly from machine
to machine. For example, in the BBN Butterfly machine all memory elements are
at an equal distance from all processors, while in IBM's RP3, each processor is
closely coupled with a memory element. However, we assume that the average
latency in a well designed n-PE machine should be O(Iog(n)). In a v o n Neumann
processor, memory latency determines the time to execute memory reference
instructions. Usually, the average memory latency also determines the maximum
instruction processing speed. When latency cannot be hidden via overlapped
operations, a tangible performance penalty is incurred. We call the cost associated
with latency as the total induced processor idle time attributable to the latency.

In many traditional designs, the "memory" subsystem can be simply modeled by one of these
M elements. Interleaved memory subsystems are modeled as a collection of M's and C's.
Memory subsystems which incorporate processing capability can be modeled with PE's, M's,
and C's. Section 4.3 on page 77 describes one such case.

- 68 -

2 .2 S y n c h r o n i z a t i o n : T h e S e c o n d F u n d a m e n t a l I ssue

We will call the basic units of computation into which programs are decomposed
for parallel execution computational tasks or simply tasks. A general model of
parallel programming must assume that tasks are created dynamical ly during a
computation and die after having produced and consumed data. Situations in
parallel programming which require task synchronization include the following
basic operations:

1. Producer-Consumer: A task produces a data structure that is read by another
task. If producer and consumer tasks are executed in parallel, synchroniza-
tion is needed to avoid the read-before-write race.

2. Forks and Joins: Thejoin operation forces a synchronization event indicating
that two tasks which had been started earlier by some forking operation have
in fact completed.

3. Mutual Exclusion: Non-deterministic events which must be processed one at
a time, e.g. serialization in the use of a resource.

The minimal support for synchronization can be provided by including
instructions, such as atomic TEST-AND-SET, that operate on variables shared by
synchronizing task@). However, to clarify the true cost of such instructions, we will
use the Operational Model presented in Figure 5. Tasks in the operational model
have resources, such as registers and memory, associated with them and consti-
tute the smallest unit of independently schedulable work on the machine. A task
is in one of the three states: ready-to-execute, executing or suspended. Tasks
ready for execution may be queued locally or globally. When selected, a task
occupies a processor until either it completes or is suspended waiting for a syn-
chronization signal. A task changes from suspended to ready-to-execute when
another task causes the relevant synchronization event. Generally, a suspended
task must be set aside to avoid deadlocks4). The cost associated with such a
synchronization is the fixed time to execute the synchronization instruction plus
the time taken to switch to another task. The cost of task switching can be high
because it usually involves saving the processor state, that is, the context associ-
ated with the task.

There are several subtle issues in accounting for synchronization costs. An event
to enable or dispatch a task needs a name, such as that of a register or a memory
location, and thus, synchronization cost should also include the instructions that
generate, match and reuse identifiers which name synchronization events. It may
not be easy to identify the instructions executed for this purpose. Nevertheless,
such instructions represent overhead because they would not be present if the
program were written to execute on a single sequential processor. The hardware
design usually dictates the number of names available for synchronization as well
as the cost of their use.

The other subtle issue has to do with the accounting for intra-task synchronization.
As we shall see in Section 3. on page 69, most high performance computers over-
lap the execution of instructions belonging to one task. The techniques used for

3) While not strictly necessary, atomic operations such as TEST-AND-SET are certainly a con-
venient base upon which to build synchronization operations. See Section 4.3 on page 77

4) Consider the case of a single processor system which must execute n cooperating tasks.

- 69 -

C o m m

plus
Memory

Requests (

Requests and Responses

Suspended Tasks

111111 .

Ready-to-Execute Tasks

Newly Created Tasks

~ Response~~
and
Requests (

Requests and Responses

Suspended Tasks

I I l l l l ,

Ready-to-Execute Tasks

IIIlll J

, J

Newly Created Tasks j

Figure 5. Operational Model of a Multiprocessor

synchronization of instructions in such a situation (e.g. instruction dispatch and
suspension) are often quite different from techniques for inter-task synchroniza-
tion. It is usually safer and cheaper not to put aside the instruction waiting for a
synchronization event, but rather to idle (or, equivalently, to execute NO-OP
instructions while waiting). This is usually done under the assumption that the idle
time will be on the order of a few instruction cycles. We define the synchronization
cost in such situations to be the induced processor idle time attributable to waiting
for the synchronization event.

- 70 -

3. P r o c e s s o r A r c h i t e c t u r e s to T o l e r a t e L a t e n c y

In this section, we describe those changes in von Neumann architectures that have
directly reduced the effect of memory latency on performance. Increasing the
processor state and instruction pipelining are the two most effective techniques for
reducing the latency cost. Using Cray-1 (perhaps the best pipelined machine
design to date), we will i l lustrate that it is difficult to keep more than 4 or 5
instructions in the pipeline of a yon Neumann processor. It will be shown that
every change in the processor architecture which has permitted overlapped exe-
cution of instructions has necessitated introduction of a cheap synchronization
mechanism. Often these synchronization mechanisms are hidden from the user
and not used for inter-task synchronization. This discussion will further il lustrate
that reducing latency frequently increases synchronization costs.

Before describing these evolutionary changes to hide latency, we should point out
that the memory system in a mult iprocessor setting creates more problems than
just increased latency. Let us assume that all memory modules in a mult iprocessor
form one global address space and that any processor can read any word in the
global address space. This immediately brings up the following problems:

• The time to fetch an operand may not be constant because some memories
may be "closer" than others in the physical organization of the machine.

• No useful bound on the worst case time to fetch an operand may be possible
at machine design time because of the scalabil ity assumption. This is at odds
with RISC designs which treat memory access time as bounded and fixed.

• If a processor were to issue several (pipelined) memory requests to different
remote memory modules, the responses could arrive out of order.

All of these issues are discussed and il lustrated in the following sections. A gen-
eral solution for accepting memory responses out of order requires a synchroni-
zation mechanism to match responses with the destination registers (names in the
task's context) and the instructions waiting on that value. The ill-fated Denelcor
HEP [25~] is one of the very few architectures which has provided such mech-
anisms in the von Neumann framework. However, the architecture of the HEP is
sufficiently different from von Neumann architectures as to warrant a separate
discussion (see Section 5. on page 79).

3.1 Increasing the Processor State

Figure 6 depicts the modern-day view of the von Neumann computer I-9-1 (sans
I/O). In the earliest computers, such as EDSAC, the processor state consisted
solely of an accumulator, a quotient register, and a program counter. Memories
were relatively slow compared to the processors, and thus, the time to fetch an
instruction and its operands completely dominated the instruction cycle time.
Speeding up the Arithmetic Logic Unit was of little use unless the memory access
time could also be reduced.

The appearance of multiple "accumulators" reduced the number of operand
fetches and stores, and index registers dramatically reduced the number of
instructions executed by essentially el iminating the need for self-modifying code.

- 71 -

Memory I

I Memory Side
Processor Side

"~ 14 ((I c - - - - - _ in
I t I / 11 i vt
! Local iI~ I[I~ • . l !
l " t J l rrocessor i f f ~ l ~egls~ers l I
! M e m o r y ! i I I1 I !

1 , ~ t I / ; ~,"

I /

Figure 6. The yon Neumann Processor (from Gajski and Peir [20])

Since the memory traffic was drastically lower, programs executed much faster
than before. However, the enlarged processor state did not reduce the time lost
during memory references and, consequently, did not contribute to an overall
reduction in cycle time; the basic cycle time improved only with improvements in
circuit speeds.

3 .2 I n s t r u c t i o n P r e f e t c h i n g

The time taken by instruction fetch (and perhaps part of instruction decoding time)
can be totally hidden if prefetching is done during the execution phase of the pre-
vious instruction. If instructions and data are kept in separate memories, it is
possible to overlap instruction prefetching and operand fetching also. (The IBM
STRETCH I-7-1 and Univac LARC [16] represent two of the earliest attempts at
implementing this idea.) Prefetching can reduce the cycle time of the machine by
twenty to thirty percent depending upon the amount of time taken by the first two
steps of the instruction cycle with respect to the complete cycle. However, the
effective throughput of the machine cannot increase proportionately because
overlapped execution is not possible with all instructions.

Instruction prefetching works well when the execution of instruction n does not
have any effect on either the choice of instructions to fetch (as is the case in
BRANCH) or the content of the fetched instruction (self-modifying code) for
instructions n + 1, n + 2, ..., n + k. The latter case is usually handled by simply
outlawing it. However, effective overlapped execution in the presence of BRANCH
instructions has remained a problem. Techniques such as prefetching both
BRANCH targets have shown little performance/cost benefits. Lately, the concept
of delayed BRANCH instructions from microprogramming has been incorporated,
with success, in LOAD/STORE architectures (see 3.4 on page 73). The idea is to
delay the effect of a BRANCH by one instruction. Thus, the instruction at n + 1
following a BRANCH instruction at n is always executed regardless of which way
the BRANCH at n goes. One can always follow a BRANCH instruction with a NO-

- 72 -

OP instruction to get the old effect. However, experience has shown that seventy
percent of the time a useful instruction can be put in that position.

3.3 Instruction Buffers, Operand Caches and Pipel ined Execution

The time to fetch instructions can be further reduced by providing a fast instruction
buffer. In machines such as the CDC 6600 [40-] and the Cray-1 r37-1, the instruction
buffer is automatically loaded with n instructions in the neighborhood of the ref-
erenced instruction (relying on spatial locality in code references), whenever the
referenced instruction is found to be missing. To take advantage of instruction
buffers, it is also necessary to speed up the operand fetch and execute phases.
This is usually done by providing operand caches or buffers, and overlapping the
operand fetch and execution phases 5) Of course, balancing the pipeline under
these conditions may require further pipelining of the ALU. If successful, these
techniques can reduce the machine cycle time to one-fourth or one-fifth the cycle
time of an unpipelined machine. However, overlapped execution of four to five
instructions in the von Neumann framework presents some serious conceptual
difficulties, as discussed next.

Designing a well-balanced pipeline requires that the time taken by various pipeline
stages be more or less equal, and that the "things", i.e. instructions, entering the
pipe be independent of each other. Obviously, instructions of a program cannot
be totally independent except in some special trivial cases. Instructions in a pipe
are usually related in one of two ways: Instruction n produces data needed by
instruction n+k, or only the complete execution of instruction n determines the
next instruction to be executed (the aforementioned BRANCH problem).

Limitations on hardware resources can also cause instructions to interfere with
one another. Consider the case when both instructions n and n + 1 require an
adder, but there is only one of these in the machine. Obviously, one of the
instructions must be deferred until the other is complete. A pipelined machine
must be temporarily able to prevent a new instruction from entering the pipeline
when there possibility of interference with the instructions already in the pipe.
Detecting and quickly resolving these hazards is very difficult with ordinary
instruction sets, e.g., IBM 370, VAX 11 or Motorola 68000, due to their complexity.

A major complication in pipelining complex instructions is the variable amount of
time taken in each stage of instruction processing (refer to Figure 7). Operand
fetch in the VAX is one such example: determining the addressing mode for each
operand requires a fair amount of decoding, and actual fetching can involve 0 to
2 memory references per operand. Considering all possible addressing mode
combinations, an instruction may involve 0 to 6 memory references in addition to
the instruction fetch itself! A pipeline design that can effectively tolerate such var-
iations is close to impossible.

8) As we will show in Section 4.4 on page 78, caches in a multiprocessor setting create special
problems.

- 7 3 -

Fetch Instruction

Decode

Fetch Operands

Execute / Store

I - I

I n + 2 I

=,=

TIME

Figure 7. Variable Operand Fetch Time

3.4 Load/Store Architectures

Seymour Cray, in the sixties, pioneered instruction sets (CDC 6600, Cray-1) which
separate instructions into two disjoint classes. In one class are instructions which
move data unchanged between memory and high speed registers. In the other
class are instructions which operate on data in the registers. Instructions of the
second class cannot access the memory. This rigid distinction simplifies instruc-
tion scheduling. For each instruction, it is trivial to see if a memory reference will
be necessary or not. Moreover, the memory system and the ALU may be viewed
as parallel, noninteracting pipelines. An instruction dispatches exactly one unit of
work to either one pipe or the other, but never both.

Such architectures have come to be known as LOAD/STORE architectures, and
include the machines built by Reduced Instruction Set Computer (RISC) enthusi-
asts (the IBM 801 [34], Berkeley's RISC [32], and Stanford MIPS [22] are prime
examples). LOAD/STORE architectures use the time between instruction decoding
and instruction dispatching for hazard detection and resolution (see Figure 8). The
design of the instruction pipeline is based on the principle that if an instruction
gets past some fixed pipe stage, it should be able to run to completion without
incurring any previously unanticipated hazards.

LOAD/STORE architectures are much better at tolerating latencies in memory
accesses than other von Neumann architectures. In order to explain this point, we
will first discuss a simplified model which detects and avoids hazards in a
LOAD/STORE architecture similar to the Cray-1. Assume there is a bit associated
with every register to indicate that the contents of the register are undergoing a
change. The bit corresponding to register R is set the moment we dispatch an
instruction that wants to update R. Following this, instructions are allowed to enter
the pipeline only if they don't need to reference or modify register R or other reg-
isters reserved in a similar way. Whenever a value is stored in R, the reservation
on R is removed, and if an instruction is waiting on R, it is allowed to proceed. This
simple scheme works only if we assume that registers whose values are needed
by an instruction are read before the next instruction is dispatched, and that the
ALU or the multiple functional units within the ALU are pipelined to accept inputs

- 7 4 -

Bank 0
Bank Memo

Bank 1 n-1 Control

~r r
~r' r'

~r ~T

Bus 0

Bus 1

Bus 2

Bus m-I

6...

Prefetch

Buffers

Decoders

Serialization

~r'I az a rd

Avoidance

Functional Unit

Dispatch

Figure 8. Hazard Avoidance at the instruction Decode Stage

as fast as the decode stage can supply them6). The dispatching of an instruct ion
can also be held up because it may require a bus for stor ing results in a clock
cycle when the bus is needed by another instruct ion in the pipeline. Whenever
BRANCH instruct ions are encountered, the pipel ine is effectively held up unti l the
branch target has been decided.

Notice what wil l happen when an instruct ion to load the contents of some memory
location M into some register R is executed. Suppose that it takes k cycles to fetch
something from the memory. It wil l be possible to execute several instruct ions
dur ing these k cycles as long as none of them refer to register R. In fact, this sit-
uation is hardly different from the one in which R is to be loaded from some func-

Indeed, in the Cray-1, functional units can accept an input every clock cycle and registers are
always read in one clock cycle after an instruction is dispatched from the Decoder.

- 75 -

tional unit that, like the Floating Point multiplier, takes several cycles to produce
the result. These gaps in the pipeline can be further reduced if the compiler reor-
ders instructions such that instructions consuming a datum are put as far as pos-
sible from instructions producing that datum. Thus, we notice that machines
designed for high pipelining of instructions can hide large memory latencies pro-
vided there is local parallelism among instructionsZ).

From another point of view, latency cost has been reduced by introducing a cheap
synchronization mechanism: reservation bits on processor registers. However, the
number of names available for synchronization, i.e. the size of the task's proces-
sor-bound context, is precisely the number of registers, and this restricts the
amount of exploitable parallelism and tolerable latency. In order to understand
this issue better, consider the case when the compiler decides to use register R
to hold two different values at two different instructions say, i, and i,,. This will
require in and i,, to be executed sequentially while no such order may have been
implied by the source code. Shadow registers have been suggested to deal with
this class of problems. In fact, shadow registers are an engineering approach to
solving a non-engineering problem. The real issue is naming. The reason that
addition of explicit and implicit registers improves the situation derives from the
addition of (explicit and implicit) names for synchronization and, hence, a greater
opportunity for tolerating latency.

Some LOAD/STORE architectures have eliminated the need for reservation bits on
registers by making the compiler responsible for scheduling instructions, such that
the result is guaranteed to be available. The compiler can perform hazard resol-
ution only if the time for each operation e.g. ADD, LOAD, is known; it inserts NO-
OP instructions wherever necessary. Because the instruction execution times are
an intimate part of the object code, any change to the machine's structure (scaling,
redesign) will at the very least require changes to the compiler and regeneration
of the code. This is obviously contrary to our notion of generality, and hinders the
portability of software from one generation of machine to the next.

Current LOAD/STORE architectures assume that memory references either take a
fixed amount of time (one cycle in most RISC machines) or that they take a vari-
able but predictable amount of time (as in the Cray-1). In RISC machines, this time
is derived on the basis of a cache hit. If the operand is found to be missing from
the cache, the pipeline stops. Equivalently, one can think of this as a situation
where a clock cycle is stretched to the time required. This solution works because,
in most of these machines, there can be either one or a very small number of
memory references in progress at any given time. For example, in the Cray-1, no
more than four independent addresses can be generated during a memory cycle.
If the generated address causes a bank conflict, the pipeline is stopped. However,
any conflict is resolved in at most three cycles.

LOAD/STORE architectures, because of their simpler instructions, often execute
15% to 50% more instructions than machines with more complex instructions
r341. This increase may be regarded as synchronization cost. However, this is
easily compensated by improvements in clock speed made possible by simpler
control mechanisms.

7) The ability to reorder two instructions usually means that these instructions can be executed
in parallel.

- 76

4. Synchronization Methods for Multiprocessing

4.1 Global Scheduling on Synchronous machines

For a totally synchronous mult iprocessor it is possible to envision a master plan
which specifies operations for every cycle on every processor. An analogy can be
made between programming such a mult iprocessor and coding a horizontally
microprogrammed machine. Recent advances in compiling [18] have made such
code generation feasible and encouraged researchers to propose and build
several different synchronous multiprocessors. Cydrome and Multif low computers,
which are based on proposals in [35] and [19], respectively, are examples of such
machines. These machines are generally referred to as very long instruction
word, or VLIW, machines, because each instruction actually contains multiple
smaller instructions (one per functional unit or processing element). The strategy
is based on maximizing the use of resources and resolving potential run-time
conflicts in the use of resources at compile time. Memory references and control
transfers are "anticipated" as in RISC architectures, but here, multiple concurrent
threads of computation are being scheduled instead of only one. Given the possi-
bil ity of decoding and initiating many instructions in parallel, such architectures
are highly appealing when one realizes that the fastest machines available now
still essentially decode and dispatch instructions one at a time.

We believe that this technique is effective in its currently realized context, i.e.
Fortran-based computations on a small number (4 to 8) of processors. Compil ing
for parallelism beyond this level, however, becomes intractable. It is unclear how
problems which rely on dynamic storage allocation or require nondeterministic
and real-time constraints will play out on such architectures.

4.2 Interrupts and Low-level Context Switching

Almost all von Neumann machines are capable of accepting and handling inter-
rupts. Not surprisingly, multiprocessors based on such machines permit the use
of inter-processor interrupts as a means for signall ing events. However, interrupts
are rather expensive because, in general, the processor state needs to be saved.
The state-saving may be forced by the hardware as a direct consequence of
allowing the interrupt to occur, or it may occur explicitly, i.e. under the control of
the programmer, via a single very complex instruction or a suite of less complex
ones. independent of how the state-saving happens, the important thing to note is
that each interrupt will generate a significant amount of traffic across the process-
or - memory interface.

In the previous discussion, we concluded that larger processor state is good
because it provided a means for reducing memory latency cost. In trying to solve
the problem of low cost synchronization, we have now come across an interaction
which, we believe, is more than just coincidental. Specifically, in very fast von
Neumann processors, the "obvious" synchronization mechanism (interrupts) will
only work well in the trivial case of infrequent synchronization events or when the
amount of processor state which must be saved is very small. Said another way,
reducing the cost of synchronization by making interrupts cheap would generally
entail increasing the cost of memory latency.

- 77 -

Uniprocessors such as the Xerox Alto [41], the Xerox Dorado [27], and the Sym-
bolics 3600 family [29] have used a technique which may be called microcode-
level context switching to allow sharing of the CPU resource by the I/O device
adapters. This is accomplished by duplicating programmer-visible registers, in
other words, the processor state. Thus, in one microinstruction the processor can
be switched to a new task without causing any memory references to save the
processor state 8) This dramatically reduces the cost of processing certain types
of events that cause frequent interrupts. As far as we know, nobody has adapted
the idea of keeping multiple contexts in a multiprocessor setting (with the possible
exception of the HEP, to be discussed in Section 5. on page 79) although it should
reduce synchronization cost over processors which can hold only a single context.
It may be worth thinking about adopting this scheme to reduce the latency cost of
a nonlocal memory references as well.

The limitations of this approach are obvious. High performance processors may
have a small programmer-visible state (number of registers) but a much larger
implicit state (caches). Low-level task switching does not necessarily take care of
the overhead of flushing cache@). Further, one can only have a small number of
independent contexts without completely overshadowing the cost of ALU hard-
ware.

4,3 S e m a p h o r e s a n d the U i t r a c o m p u t e r

Next to interrupts, the most commonly supported feature for synchronization is
an atomic operation to test and set the value of a memory location. A processor
can signal another processor by writing into a location which the other processor
keeps reading to sense a change. Even though, theoretically, it is possible to per-
form such synchronization with ordinary read and write memory operations, the
task is much simpler with an atomic TEST-AND-SET instruction. TEST-AND-SET is
powerful enough to implement all types of synchronization paradigms mentioned
earlier. However, the synchronization cost of using such an instruction can be very
high. Essentially, the processor that executes it goes into a busy-wait cycle. Not
only does the processor get blocked, it generates extra memory references at
every instruction cycle until the TEST-AND-SET instruction is executed successful-
ly. Implementations of TEST-AND-SET that permit non-busy waiting imply context
switching in the processor and thus are not necessarily cheap either.

It is possible to improve upon the TEST-AND-SET instruction in a multiprocessor
setting, as suggested by the NYU Ultracomputer group 1-17]. Their technique can
be illustrated by the atomic FETCH-AND-<OP> instruction (an evolution of the
REPLACE-ADD instruction). The instruction requires an address and a value, and
works as follows: suppose two processors, i and j, simultaneously execute
FETCH-AND-ADD instructions with arguments (A,vj) and (A,vj) respectively. After
one instruction cycle, the contents of A will become (A) + v~ + v~. Processors i and
j will receive, respectively, either (A) and (A) + v~, or (A) + v i and (A) as results.
Indeterminacy is a direct consequence of the race to update memory cell A.

~) The Berkeley RISC idea of providing "register windows" to speed up procedure calls is very
similar to multiple contexts.

9) However, solutions such as multicontext caches and multicontext address translation buffers
have been used to advantage in reducing this task switching overhead, (c.f., the STO stack
mechanism in the IBM 370/I68).

- 78 -

An architect must choose between a wide variety of implementations for
FETCH-AND-<OP~>. One possibil i ty is that the processor may interpret the instruc-
tion with a series of more primitive instructions. While possible, such a solution
does not find much favor because it will cause considerable memory traffic. A
second scheme implements FETCH-AND-<OP> in the memory control ler (this is
the alternative chosen by the CEDAR project [28]). This typically results in a sig-
nificant reduction of network traffic because atomicity of memory transactions from
the memory's control ler happens by default. The scheme suggested by the NYU
Ultracomputer group implements the instruction in the switching nodes of the
network.

This implementation calls for a combining packet communication network which
connects n processors to an n-port memory. If two packets collide, say
FETCH-AND-ADD(A,v~) and FETCH-AND-ADD(A,vj), the switch extracts the values
vj and vj, forms a new packet (FETCH-AND-ADD(A,v~ + vj)) , forwards it to the
memory, and stores the value of v~ temporari ly. When the memory returns the old
value of location A, the switch returns two values ((A) and (A) + v~). The main
improvement is that some synchronization situations which would have taken
O(n) time can be done in O(Iog n) time. It should be noted, however, that one
memory reference may involve as many as Iog2n additions, and implies substantial
hardware complexity. Further, the issue of processor idle time due to latency has
not been addressed at all. In the worst case, the complexity of hardware may
actually increase the latency of going through the switch and thus completely
overshadow the advantage of "combining" over other simpler implementations.

The simulation results reported by NYU E17] show quasi-l inear speedup on the
Ultracomputer (a shared memory machine with ordinary yon Neumann process-
ors, employing FETCH-AND-ADD synchronization) for a large variety of scientific
applications. We are not sure how to interpret these results without knowing many
more details of their simulation model. Two possible interpretations are the fol-
lowing:

1. Parallel branches of a computation hardly share any data, thus, the costly
mutual exclusion synchronization is rarely needed in real applications.

2. The synchronization cost of using shared data can be acceptably brought
down by judicious use of cachable/non cachable annotations in the source
program.

The second point may become clearer after reading the next section.

4 . 4 C a c h e C o h e r e n c e M e c h a n i s m s

While highly successful for reducing memory latency in uniprocessors, caches in
a mult iprocessor setting introduce a serious synchronization problem called cache
coherence. Censier and Feautrier [101 define the problem as follows: "A memory
scheme is coherent if the value returned on a LOAD instruction is always the value
given by the latest STORE instruction with the same address.". It is easy to see
that this may be difficult to achieve in multiprocessing.

Suppose we have a two-processor system tightly coupled through a single main
memory. Each processor has its own cache to which it has exclusive access. Sup-
pose further that two tasks are running, one on each processor, and we know that
the tasks are designed to communicate through one or more shared memory cells.

- 7 9 -

In the absence of caches, this scheme can be made to work. However, if it happens
that the shared address is present in both caches, the individual processors can
read and write the address and never see any changes caused by the other pro-
cessor. Using a store-through design instead of a store-in design does not solve
the problem either. What is logically required is a mechanism which, upon the
occurrence of a STORE to location x, invalidates copies of location x in caches of
other processors, and guarantees that subsequent LOAD will get the most recent
(cached) value. This can incur significant overhead in terms of decreased memory
bandwidth.

All solutions to the cache coherence problem center around reducing the cost of
detecting rather than avoiding the possibility of cache incoherence. Generally,
slate information indicating whether the cached data is private or shared, read-
only or read-write, etc., is associated with each cache entry. However, this state
somehow has to be updated after each memory reference. Implementations of this
idea are generally intractable except possibly in the domain of bus-oriented mul-
tiprocessors. The so-called snoopy bus solution uses the broadcasting capability
of buses and purges entry x from all caches when a processor attempts a STORE
to x In such a system, at most one STORE operation can go on at a time in the
whole system and, therefore, system performance is going to be a strong function
of the snoopy bus" ability to handle the coherence-maintaining traffic.

It is possible to improve upon the above solution if some additional state infor-
mation is kept with each cache entry. Suppose entries are marked "shared" or
"non-shared". A processor can freely read shared entries, but an attempt to
STORE into a shared entry immediately causes that address to appear on the
snoopy bus. That entry is then deleted from all the other caches and is marked
"non-shared" in the processor that had attempted the STORE. Similar action takes
place when the word to be written is missing from the cache. Of course, the main
memory must be updated before purging the private copy from any cache. When
the word to be read is missing from the cache, the snoopy bus may have to first
reclaim the copy privately held by some other cache before giving it to the
requesting cache. The status of such an entry will be marked as shared in both
caches. The advantage of keeping shared/non-shared information with every
cache entry is that the snoopy bus comes into action only on cache misses and
STOREs to shared locations, as opposed to all LOADs and STOREs. Even if these
solutions work satisfactorily, bus-oriented multiprocessors are not of much interest
to us because of their obvious limitations in scaling.

As far as we can tell, there are no known solutions to cache coherence for non-
bussed machines. It would seem reasonable that one needs to make caches par-
tially visible to the programmer by allowing him to mark data (actually addresses)
as shared or not shared. In addition, instructions to flush an entry or a block of
entries from a cache have to be provided. Cache management on such machines
is possible only if the concept of shared data is well integrated in the high-level
language or the programming model. Schemes have also been proposed explicitly
to interlock a location for writing or to bypass the cache (and flush it if necessary)
on a STORE; in either case, the performance goes down rapidly as the machine is
scaled. Ironically, in solving the latency problem via multiple caches, we have
introduced the synchronization problem of keeping caches coherent.

It is worth noting that, while not obvious, a direct trade-off often exists between
decreasing the parallelism and increasing the cachable or non-shared data.

- 80 -

5. M u l t i - T h r e a d e d A r c h i t e c t u r e s

In order to reduce memory latency cost, it is essential that a processor be capable
of issuing multiple, overlapped memory requests. The processor must view the
memory/communication subsystems as a logical pipeline. As latency increases,
keeping the pipeline full implies that more memory references will have to be in
the pipeline. We note that memory systems of current von Neumann architectures
have very little capability for pipelining, with the exception of array references in
vector machines. The reasons behind this l imitation are fundamental:

1. yon Neumann processors must observe instruction sequencing constraints,
and

2. since memory references can get out of order in the pipeline, a large number
of identifiers to dist inguish memory responses must be provided.

One way to overcome the first deficiency is to interleave many threads of sequen-
tial computations (as we saw in the very long instruction word architectures of 4.1
on page 75). The second deficiency can be overcome by providing a large register
set with suitable reservation bits. It should be noted that these requirements are
somewhat in conflict. The situation is further complicated by the need of tasks to
communicate with each other. Support for cheap synchronization calls for the
processor to switch tasks quickly and to have a non-empty queue of tasks which
are ready to run. One way to achieve this is again by interleaving multiple threads
of computation and providing some intell igent scheduling mechanism to avoid
busy-waits. Machines supporting multiple threads and fancy scheduling of
instructions or processes look less and less like von Neumann machines as the
number of threads increases.

in this section, we first discuss the erstwhile Denelcor HEP 1-25, 39~]. The HEP was
the first commercially available multi-threaded computer. After that we briefly dis-
cuss dataflow machines, which may be regarded as an extreme example of
machines with multiple threads; machines in which each instruction constitutes an
independent thread and only non-suspended threads are scheduled to be exe-
cuted.

5.1 The Denelcor HEP: A Step Beyond von N e u m a n n Archi tectures

The basic structure of the HEP processor is shown in Figure 9. The processor's
data path is built as an eight step pipeline. In parallel with the data path is a con-
trol loop which circulates process status words (PSW's) of the processes whose
threads are to be interleaved for execution. The delay around the control loop
varies with the queue size, but is never shorter than eight pipe steps. This mini-
mum value is intentional to allow the PSW at the head of the queue to initiate an
instruction but not return again to the head of the queue until the instruction has
completed. If at least eight PSW's, representing eight processes, can be kept in the
queue, the processor's pipeline will remain full. This scheme is much like tradi-
tional pipelining of instructions, but with an important difference. The inter-in-
struction dependencies are likely to be weaker here because adjacent instructions
in the pipe are always from different processes.

- 8 1 -

PSW Queue

IIIbLLI l
Control Loop

Opcode

and

Operands

Program [
Memory

Register
Memory

Function

Units Results

Figure 9. Latency Toleration and Synchronization in the HEP

There are 2048 registers in each processor; each process has an index offset into
the register array. Inter-process, i.e., inter-thread, communication is possible via
these registers by overlapping register allocations. The HEP provides
FULL/EMPTY/RESERVED bits on each register and FULL/EMPTY bits on each word
in the data memory. An instruction encountering EMPTY or RESERVED registers
behaves like a NO-OP instruction; the program counter of the process, i.e. PSW,
which initiated the instruction is not incremented. The process effectively busy-
waits but without blocking the processor. When a process issues a LOAD or
STORE instruction, it is removed from the control loop and is queued separately
in the Scheduler Function Unit (SFU) which also issues the memory request.
Requests which are not satisfied because of improper FULL/EMPTY status result
in recirculation of the PSW within the SFU's loop and also in reissuance of the
request. The SFU matches up memory responses with queued PSW's, updates
registers as necessary and reinserts the PSW's in the control loop.

Thus, the HEP is capable up to a point of using parallelism in programs to hide
memory and communication latency. At the same time it provides efficient, low-
level synchronization mechanisms in the form of presence-bits in registers and
main memory. However, the HEP approach does not go far enough because there
is a limit of one outstanding memory request per process, and the cost of syn-
chronization through shared registers can be high because of the loss of proces-
sor time due to busy-waiting. A serious impediment to the software development
on HEP was the limit of 64 PSW's in each processor. Though only 8 PSW's may be
required to keep the process pipeline full, a much larger number is needed to
name all concurrent tasks of a program.

- 8 2 -

5 . 2 D a t a f l o w A r c h i t e c t u r e s

Dataflow architectures F2, 15, 21, 23~] represent a radical alternative to von Neu-
mann architectures because they use dataflow graphs as their machine language
E4, 14]. Dataflow graphs, as opposed to conventional machine languages, specify
only a partial order for the execution of instructions and thus provide opportunit ies
for parallel and pipelined execution at the level of individual instructions. For
example, the dataflow graph for the expression a • b + c • d only specifies that both
multiplications be executed before the addition; however, the multipl ications can
be executed in any order or even in parallel. The advantage of this f lexibil i ty
becomes apparent when we consider that the order in which a, b, c and d will
become available may not be known at compile time. For example, computations
for operands a and b may take longer than computations for c and d or vice
versa. Another possibil ity is that the time to fetch different operands may vary due
to scheduling and hardware characteristics of the machine. Dataflow graphs do
not force unnecessary sequentialization and dataflow processors schedule
instructions according to the availabil i ty of the operands.

The instruction execution mechanism of a dataflow processor is fundamentally
different from that of a yon Neumann processor. We will briefly il lustrate this using
the MIT Tagged-Token architecture (see Figure 10). Rather than following a Pro-
gram Counter for the next instruction to be executed and then fetching operands
for that instruction, a dataflow machine provides a low-level synchronization
mechanism in the form of Wait ing-Matching section which dispatches only those
instructions for which data are already available. This mechanism relies on tag-
ging each datum with the address of the instruction to which it belongs and the
context in which the instruction is being executed. One can think of the instruction
address as replacing the program counter, and the context identifier replacing the
frame base register in tradit ional von Neumann architecture. It is the machine's
job to match up data with the same tag and then to execute the denoted instruc-
tion. tn so doing, new data will be produced, with a new tag indicating the suc-
cessor instruction(s). Thus, each instruction represents a synchronization opera-
tion. Note that the number of synchronization names is limited by the size of the
tag, which can easily be made much larger than the size of the register array in a
von Neumann machine. Note also that the processor pipeline is non-blocking:
given that the operands for an instruction are available, the corresponding
instruction can be executed without further synchronization.

In addit ion to the waiting-matching section which is used primari ly for dynamic
scheduling of instructions, the MIT Tagged-Token machine provides a second
synchronization mechanism called I-Structure Storage. Each word of I-structure
storage has 2 bits associated with it to indicate whether the word is empty, full or
has pending read-requests. This greatly facilitates overlapped execution of a pro-
ducer of a data structure with the consumer of that data structure. There are three
instructions at the graph level to manipulate I-structure storage. These are allocate
- to allocate n empty words of storage, select - to fetch the contents of the i ~h word
of an array and store - to store a value in a specified word. Generally software
concerns dictate that a word be written into only once before it is deallocated. The
dataflow processor treats all I-structure operations as spli t-phase. For example,
when the select instruction is executed, a packet containing the tag of the desti-
nation instruction of the select instruction is forwarded to the proper address,
possibly in a distant I-structure storage module. The actual memory operation may

- 8 3 -

I

t nxn Routing Network

i ~ a PE

Local Path ~~

Waiting - I Matching I

II-Structure I Ilnstruction ~
I St°rage I i Fetch [~ ' "

Compute

Form Token I

Figure 10. The MIT Tagged-Token Dataflow Machine

require waiting if the data is not present and thus the result may be returned many
instruction times later. The key is that the instruction pipeline need not be sus-
pended during this time. Rather, processing of other instructions may continue
immediately after initiation of the operation. Matching of memory responses with
waiting instructions is done via tags in the waiting-matching section.

One advantage of tagging each datum is that data from different contexts can be
mixed freely in the instruction execution pipeline. Thus, instruction-level parallel-
ism of dataflow graphs can effectively absorb the communication latency and
minimize the losses due to synchronization waits. We hope it is clear from the
prior discussion that even the most highly pipelined von Neumann processor
cannot match the flexibility of a dataflow processor in this regard. A more com-

- 8 4 -

plete discussion of datafiow machines is beyond the scope of this paper. An over-
view of executing programs on the MIT Tagged-Token Dataflow machine can be
found in [6]. A deeper understanding of dataflow machines can be gotten from
[2]. Additional, albeit slightly dated, details of the machine and the instruction set
are given in [31 and F5J, respectively.

6 . C o n c l u s i o n s

We have presented the loss of performance due to increased latency and waits for
synchronization events as the two fundamental issues in the design of parallel
machines. These issues are, to a large degree, independent of the technology dif-
ferences between various parallel machines. Even though we have not presented
it as such, these issues are also independent of the high-level programming model
used on a multiprocessor. If a multiprocessor is built out of conventional micro-
processors, then degradation in performance due to latency and synchronization
will show up regardless of whether a shared-memory, message-passing, reduction
or dataflow programming model is employed.

Is it possible to modify avon Neumann processor to make it more suitable as a
building block for a parallel machine? In our opinion the answer is a qualified
"yes". The two most important characteristics of the dataflow processor are split-
phase memory operations and the ability to put aside computations (i.e., proc-
esses, instructions, or whatever the scheduling quanta are) without blocking the
processor. We think synchronization bits in the storage are essential to support
the producer-consumer type of parallelism. However, the more concurrently active
threads of computation we have, the greater is the requirement for hardware-sup-
ported synchronization names, lannucci E24] and others [8] are actively explor-
ing designs based on these ideas. Only time will tell if it will be fair to classify such
processors as von Neumann processors.

The biggest appeal of yon Neumann processors is that they are widely available
and familiar. There is a tendency to extrapolate these facts into a belief that von
Neumann processors are "simple" and efficient. A technically sound case can be
made that well designed von Neumann processors are indeed very efficient in
executing sequential codes and require less memory bandwidth than dataflow
processors. However, the efficiency of sequential threads disappears fast if there
are too many interruptions or if idling of the processor due to latency or data-de-
pendent hazards increases. Papadopoulos [31] is investigating dataflow architec-
tures which will improve the efficiency of the MIT Tagged-Token architecture on
sequential codes without sacrificing any of its dataflow advantages. We can assure
the reader that none of these changes are tantamount to introducing a program
counter in the dataflow architecture.

For lack of space we have not discussed the effect of multi-threaded architectures
on the compiling and language issues. It is important to realize that compiling into
primitive dataflow operators is a much simpler task than compiling into cooperat-
ing sequential threads. Since the cost of inter-process communication in a v o n
Neumann setting is much greater than the cost of communication within a process,
there is a preferred process or "grain" size on a given architecture. Furthermore,
placement of synchronization instructions in a sequential code requires careful
planning because an instruction to wait for a synchronization event may experi-

- 85 -

ence very different waiting periods in different locations in the program. Thus,
even for a given grain size, it is difficult to decompose a program optimally.
Dataflow graphs, on the other hand, provide a uniform view of inter- and intra-
procedural synchronization and communication, and as noted earlier, only specify
a partial order to enforce data dependencies among the instructions of a program.
Though it is very difficult to offer a quantitative measure, we believe that an Id
Nouveau compiler to generate code for a multi-threaded von Neumann computer
will be significantly more complex than the current compiler [41] which generates
fine grain dataflow graphs for the MIT Tagged-Token dataflow machine. Thus
dataflow computers, in addition to providing solutions to the fundamental hard-
ware issues raised in this paper, also have compiler technology to exploit their full
potential.

A c k n o w l e d g m e n t

The authors wish to thank David Culler for valuable discussions on much of the
subject matter of this paper, particularly Load/Store architectures and the struc-
ture of the Cray machines. Members of the Computation Structures Group have
developed many tools, without which the analysis of the Simple code would have
been impossible. In particular, we would like to thank Ken Traub for the ID Com-
piler and David Culler and Dinarte Morais for GITA. This paper has benefited from
numerous discussions with people both inside and outside MIT. We wish to thank
Natalie Tarbet, Ken Traub, David Culler, Vinod Kathail and Rishiyur Nikhil for
suggestions to improve this manuscript.

7 . R e f e r e n c e s

[i]

[2]

[3]

[4]

[5]

[6]

Arvind and R.E. Bryant
Design Considerations for a Partial Equation Machine. Proceedings of Scientific
Computer Information Exchange Meeting,
Lawrence Livermore Laboratory, Livermore, CA, September, 1979,
pp. 94-102.

Arvind and D.E. Culler
"Dataflow Architectures".
Annual Reviews of Computer Science I (1986), 225-253.

Arvind and D.E. Culler, R.A. lannucci, V. Kathail, K. Pingali, and R.E. Thomas
The Tagged Token Dataflow Architecture.
Internal Report. (including architectural revisions of October, 1983).

Arvind and K.P. Gostelow
"The U-Interpreter".
Computer 15, 2 (February 1982), 42-49.

Arvind and R.A. lannucci
Instruction Set Definition for a Tagged-Token Data FLow Machine.
Computation Structures Group Memo 212-3, Laboratory for Computer Science,
M1T, Cambridge, Mass., Cambridge, MA 02139, December, 198t.

Arvind and R.S. Nikhil
Executing a Program on the MIT Tagged-Token Data FLow Architecture.
Proc. PARLE, (Parallel Architectures and Languages Europe), Eindhoven, The
Netherlands, June, 1987.

- 8 6 -

[7] Block, E.
The Engineering Design of the STRETCH Computer.
Proceedings of the EJCC, 1959, pp. 48-59.

[8] Buehrer, R. and K. Ekanadham
Dataflow Principles in Multi-processor Systems.
ETH Zurich, and Research Division, Yorktown Heights, IBM Corporation, July,
1986.

[9] Burks, A., H.H. Goldstine, and J. von Neumann
"Preliminary Discussion of the Logical Design of an Electronic Instrument, Part
2".
Datamation 8, 10 (October 1962), 36-41,

[10] Censier, L.M. and P. Feautrier
"A New Solution to the Coherence Problems in Multicache Systems".
IEEE Transactions on Computers C-27, 12 (December 1979), 1112-1118.

[11] Clack, C. and Peyton-Jones, S.L.
The Four-Stroke Reduction Engine.
Proceedings of the 1986 ACM Conference on Lisp and Functional Programming,
Association for Computing Machinery, August, 1986, pp. 220-232.

[12] Crowley, W.P., C.P. Hendrickson and T.E. Rudy
The SIMPLE Code.
Internal Report UClD-17715, Lawrence Livermore Laboratory, Livermore, CA, Feb-
ruary, 1978.

[13] Darlington, J. and M Reeve
ALICE; A Multi-Processor Reduction Machine for the Parallel Evaluation of Appli-
cative Languages.
Proceedings of the 1981 Conference on Functional Programming Languages and
Computer Architecture, Portsmouth, NH, 1981, pp. 65-76.

[14] Dennis, J.B.
Lecture Notes in Computer Science. Volume 19: First Version of a Data Flow Pro-
cedure Language. In
In Programming Symposium: Proceedings, Colloque sur la Programmation, B.
Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

[15] Dennis, J.B.
"Data Flow Supercomputers".
Computer 13, I1 (November 1980), 48-56.

[16] Eckert, J.P., J.C. Chu, A.B. Tonik & W.F. Schmitt
Design of UNIVAC-LARC System: 1.
Proceedings of the EJCC, 1959, pp. 59-65.

[17] Edler, J., A. Gottlieb, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, M. Snir, P.J. Teller
& J. Wilson
Issues Related to MIMD Shared-Memory Computers: The NYU Ultracomputer
Approach.
Proceedings of the 12th Annual International Symposium On Computer Architec-
ture, Boston, June, 1985, pp. 126-135.

[18] Ellis, J.R.
Cufldog: a Compiler for VLIW Architectures.
The MIT Press, 1986.

- 87 -

[19] Fisher, J.A.
Very Long Instruction Word Architectures and the ELI-512.
Proc. of the lOth, Internation Symposium on Computer Architecture, IEEE Com-
puter Society, June, 1983.

[20] Gajski, D.D. & J-K. Peir
"Essential Issues in Multiprocessor Systems".
Computer 18, 6 (June 1985), 9-27.

[21] Gurd, J.R., C.C. Kirkham, and I. Watson
"The Manchester Prototype Dataflow Computer".
Communications of ACM 28, I (January 1985), 34-52.

[22] Hennessey, J.L.
"VLSI Processor Architecture".
IEEE Transactions on Computers C-33, 12 (December 1984), 1221-1246.

[23] Hiraki, K., S. Sekiguchi, and T. Shimada
System Architecture of a Dataflow Supercomputer.
Computer Systems Division, Electrotechnical Laboratory, Japan, 1987.

[24] lannucci, R.A.
A Dataflow Ivon Neuamnn Hybrid Architecture.
Ph.D.Th.Dept. of Electrical Engineering and Computer Science, MIT, Cambridge,
Mass., (in preparation) 1987.

[25] Jordan, H.F.
Performance Measurement on HEP- A Pipelined MIMD Computer.
Proceedings of the 10th Annual International Symposium On Computer Architec-
ture, Stockholm, Sweden, June, 1983, pp. 207-212.

[26] Kuck, D.E. Davidson, D. Lawrie, and A. Sameh
"Parallel S'upercomputing Today and the Cedar Approach".
Science Magazine 231 (February 1986), 967-974.

[27] Lampson, B.W. and K.A. Pier
A Processor for a High-Performance Personal Computer.
Xerox Palo Alto Research Center, January, 1981.

[28] Li, Z. and W. Abu-Sufah
A Technique for Reducing Synchronization Overhead in Large Scale Multi-
processors.
Proc. of the 12th, International Symposium on Computer Architecture, June, 1985,
pp. 284-291.

[29] Moon, D.A.
Architecture of the Symbolics 3600.
Proceedings of the 12th Annual International Symposium On Computer Architec-
ture , Boston, June, 1985, pp. 76-83.

[30] Nikhil, R.S., K. Pingali, and Arvind
Id Nouveau.
Computation Structures Group Memo 265, Laboratory for Computer Science, MIT,
Cambridge, Mass., Cambridge, MA 02139, July, 1986.

[31] Papadopoulos, G.M.
Implementation of a General Purpose Dataflow Multiprocessor.
Ph.D.Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge,
Mass., (in preparation) 1987.

- 8 8 -

[32] Paterson, D.A.
"Reduced Instruction Set Computers".
Communications of ACM 28, I (January 1985), 8-21.

[33] Pfister, G.F., W.C.Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P.
McAuliffe, E.A. Melton, V.A. Norton, and J. Weiss
The IBM Research Parallel Processor Prototype (RP3): Introduction and Architec-
ture.
Proceedings of the 1985 International Conference on Parallel Processing, Institute
of Electrical and Electronics Engineers, Piscataway, N.J., 08854, August, 1985, pp.
764-771.

[34] Radin, G.
The 801 Minicomputer.
Proceedings of the Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, ACM, March, 1982.

[35] Rau, B., D. Glaeser, and E. Greenwalt
Architectural Support for the Efficient Generation of Code for Horizontal Architec-
tures.
Proceedings of the Symposium on Architectural Support for Programming Lan-
guages and Operating Systems, March, 1982. Same as Computer Architecture
News 10,2 and SlGPLAN Notices 17,4.

[36] Rettberg, R., C. Wyman, D. Hunt, M. Hoffmann, P. Carvey; B. Hyde, W. Clark, and
M. Kraley
Development of a Voice Funnel System: Design Report.
4098, Bolt Beranek and Newman Inc., August, 1979.

[37] Russell, R.M.
"The CRAY-1 Computer System".
Communications of ACM 21, I (January 1978), 63-72.

[38] Seitz, C.M.
"The Cosmic Cube".
Communications of ACM 21, I (January 1985), 22-33.

[39] Smith, B.J.
A Pipelined, Shared Resource MIMD Computer.
Proceedings of the 1978 International Conference on Parallel Proceeding, 1978, pp.
6-8.

[40] Thornton, J.E.
Parallel Operations in the Control Data 6600.
Proceedings of the SJCC, 1964, pp. 33-39.

[41] Traub, K.R.
A Compiler for the MIT Tagged-Token Dataflow Architecture - S.M. Thesis.
Technical Report 370, Laboratory for Computer Science, MIT, Cambridge, Mass.,
Cambridge, MA 02139, AUGUST, 1986.

[42] ALTO:
A Personal Computer System - Hardware Manual.
Xerox Pale Alto Research Center, Pale Alto, California, 94304, 1979.

	Carnegie Mellon University
	From the SelectedWorks of Bob Iannucci
	1987

	Two Fundamental Issues in Multiprocessing
	Two fundamental issues in multiprocessing

