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Abstract 

A general purpose mult iprocessor should be scalable, i.e. show higher perform- 
ance when more hardware resources are added to the machine. Architects of such 
multiprocessors must address the loss in processor efficiency due to two funda- 
mental issues: long memory latencies and waits due to synchronization events. It 
is argued that a well designed processor can overcome these losses provided 
there is sufficient parallelism in the program being executed. The detrimental 
effect of long latency can be reduced by instruction pipelining, however, the 
restriction of a single thread of computation in von Neumann processors severely 
limits their abil ity to have more than a few instructions in the pipeline. Further- 
more, techniques to reduce the memory latency tend to increase the cost of task 
switching. The cost of synchronization events in von Neumann machines makes 
decomposing a program into very small tasks counter-productive. Dataflow 
machines, on the other hand, treat each instruction as a task, and by paying a 
small synchronization cost for each instruction executed, offer the ultimate flexi- 
bil ity in scheduling instructions to reduce processor idle time. 

Key words and phrases: caches, cache coherence, dataflow architectures, hazard 
resolution, instruction pipelining, LOAD/STORE architectures, memory latency, 
multiprocessors, multi-thread architectures, semaphores, synchronization, von 
Neumann architecture. 

1. Importance of Processor Architecture 

Parallel machines having up to several dozen processors are commercially avail- 
able now. Most of the designs are based on von Neumann processors operating 
out of a shared memory. The differences in the architectures of these machines in 
terms of processor speed, memory organization and communication systems, are 
significant, but they all use relatively conventional von Neumann processors. 
These machines represent the general belief that processor architecture is of little 
importance in designing parallel machines. We will show the fallacy of this 
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assumption on the basis of two issues: memory latency and synchronization. Our 
argument is based on the following observations: 

1. Most von Neumann processors are likely to "idle" during long memory refer- 
ences, and such references are unavoidable in parallel machines. 

2. Waits for synchronization events often require task switching, which is 
expensive on yon Neumann machines. Therefore, only certain types of paral- 
lelism can be exploited efficiently. 

We believe the effect of these issues on performance to be fundamental, and to a 
large degree, orthogonal to the effect of circuit technology. We will argue that by 
designing the processor properly, the detrimental effect of memory latency on 
performance can be reduced provided there is parallelism in the program. How- 
ever, techniques for reducing the effect of latency tend to increase the synchroni- 
zation cost. 

In the rest of this section, we articulate our assumptions regarding general pur- 
pose parallel computers. We then discuss the often neglected issue of quantifying 
the amount of parallelism in programs. Section 2. on page 66 develops a frame: 
work for defining the issues of latency and synchronization. Section 3. on page 69 
examines the methods to reduce the effect of memory latency in yon Neumann 
computers and discusses their limitations. Section 4. on page 75 similarly exam- 
ines synchronization methods and their cost. In Section 5. on page 79, we discuss 
multi-threaded computers like HEP and the MIT Tagged-Token Dataflow machine, 
and show how these machines can tolerate latency and synchronization costs 
provided there is sufficient parallelism in programs. The last section summarizes 
our conclusions. 

1.1 S c a l a b l e  M u l t i p r o c e s s o r s  

We are primarily interested in general purpose parallel computers, i.e. computers 
that can exploit parallelism, when present, in any program. Further, we want mul- 
tiprocessors to be scalable in such a manner that adding hardware resources 
results in higher performance without requiring changes in application programs. 
The focus of the paper is not on arbitrarily large machines, but machines which 
range in size from ten to a thousand processors. We expect the processors to be 
at least as powerful as the current microprocessors and possibly as powerful as 
the CPU's of the current supercomputers. In particular, the context of the dis- 
cussion is not machines with millions of one bit ALU's, dozens of which may fit on 
one chip. The design of such machines will certainly involve fundamental issues 
in addition to those presented here. Most parallel machines that are available 
today or likely to be available in the next few years fall within the scope of this 
paper (e.g. BBN Butterfly F36-1, ALICE [~13] and now FLAGSHIP, the Cosmic Cube 
[38-1 and Intel's iPSC, IBM's RP3 [33], Alliant and CEDAR [26], and GRIP [11]). 

If the programming model of a parallel machine reflects the machine configuration, 
e.g. number of processors and interconnection topology, the machine is not scal- 
able in a practical sense. Changing the machine configuration should not require 
changes in application programs or system software; updating tables in the 
resource management system to reflect the new configuration should be sufficient. 
However, few multiprocessor designs have taken this stance with regard to scal- 
ing. In fact, it is not uncommon to find that source code (and in some cases, a l g o -  
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Figure 1. The Effect of Scaling on Software 

rithms) must be modified in order to run on an altered machine configuration. 
Figure 1. depicts the range of effects of scaling on the software. Obviously, we 
consider architectures that support the scenario at the right hand end of the scale 
to be far more desirable than those at the left. It should be noted that if a parallel 
machine is not scalable, then it will probably not be fault-tolerant; one failed pro- 
cessor would make the whole machine unusable. It is easy to design hardware in 
which failed components, e.g. processors, may be masked out. However, if the 
application code must be rewritten, our guess is that most users would wait for the 
original machine configuration to be restored. 

1.2 Quantifying Parallelism in Programs 

Ideally, a parallel machine should speed up the execution of a program in pro- 
portion to the number of processors in the machine. Suppose t(n) is the time to 
execute a program on an n-processor machine. The speed-up as a function of n 
may be defined as follows: 1) 

t(1) 
s p e e d -  up(n) - 

Speed-up is clearly dependent upon the program or programs chosen for the 
measurement. Naturally, if a program does not have "sufficient" parallelism, no 
parallel machine can be expected to demonstrate dramatic speedup. Thus, in 
order to evaluate a parallel machine properly, we need to characterize the inher- 
ent or potential parallelism of a program. This presents a difficult problem because 
the amount of parallelism in the source program that is exposed to the architecture 
may depend upon the quality of the compiler or programmer annotations. Fur- 
thermore, there is no reason to assume that the source program cannot be 
changed. Undoubtedly, different algorithms for a problem have different amounts 
of parallelism, and the parallelism of an algorithm can be obscured in coding. The 

1) Of course, we are assuming that  it is possib le to run a p rogram on any number  of  processors 
of  a machine.  In real i ty  often this is not the case. 



- 6 4  - 

C o n c u r r e n t l y  

Enab l ed  

Act iv i t ies  

3000 l 

2000 

1 0 0 0  

ounded  Processors  

~ " i ° , 

~ . . . .  ', (1ooo) 
, , , ; , , ~ , " -  ~ T i m e  

200 400 600 800 1000 1200 1400 I600 

Figure 2. Parallelism Profile of SIMPLE on a 20 x 20 Array 

problem is compounded by the fact that most programming languages do not have 
enough expressive power to show all the possible parallelism of an algorithm in 
a program, in spite of all these difficulties, we think it is possible to make some 
useful estimates of the potential parallelism of an algorithm. 

It is possible for us to code algorithms in Id [30], a high-level dataflow language, 
and compile Id programs into dataflow graphs, where the nodes of the graph rep- 
resent simple operations such as fixed and floating point arithmetic, Iogicals, 
equality tests, and memory loads and stores, and where the edges represent only 
the essential data dependencies between the operations. A graph thus generated 
can be executed on an interpreter (known as GITA) to produce results and the 
parallelism profile, pp(t), i.e., the number of concurrently executable operators as 
a function of time on an idealized machine. The idealized machine has unbounded 
processors and memories, and instantaneous communication. It is further 
assumed that all operators (instructions) take unit time, and operators are exe- 
cuted as soon as possible. The parallelism profile of a program gives a good esti- 
mate of its "inherent parallelism" because it is drawn assuming the execution of 
two operators is sequentialized if and only ff there is a data dependency between 
them. Figure 2 shows the parallelism profile of the SIMPLE code for a represen- 
tative set of input data. SIMPLE [12], a hydrodynamics and heat flow code kernel, 
has been extensively studied both analytically [1]  and by experimentation. 

The solid curve in Figure 2 represents a single outer-loop iteration of SIMPLE on 
a 20 x 20 mesh, while a typical simulation run performs 100,000 iterations on 100 
x 100 mesh. Since there is no significant parallelism between the outer-loop iter- 
ations of SIMPLE, the parallelism profile for N iterations can be obtained by 
repeating the profile in the figure N times. Approximately 75% of the instructions 
executed involve the usual arithmetic, logical and memory operators; the rest are 
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Figure 3. Speed Up and Utilization for 20 x 20 SIMPLE 

miscellaneous overhead operators, some of them peculiar to dataflow. One can 
easily deduce the parallelism profile of any set of operators from the raw data that 
was used to generate the profile in the figure; however, classifying operators as 
overhead is not easy in all cases. 

The reader may visualize the execution on n processors by drawing a horizontal 
line at n on the parallelism profile and then "pushing" all the instructions which 
are above the line to the right and below the line. The dashed curve in Figure 2 
shows this for SIMPLE on 1000 processors and was generated by our dataflow 
graph interpreter by executing the program again with the constraint that no more 
than n operations were to be performed at any step. However, a good estimate for 
t(n) can be made, very inexpensively, from the ideal parallelism profile as follows. 
For any ~, if pp(z) <_ n, we perform all pp(z) operations in time step 3. However, if 
pp(~) > n, then we assume it will take the e least integer greater than pp(z)/n steps 
to perform pp(~) operations. Hence, 

Tma× pp(T) ] 
t(n) = ~[~ 

where Tma × is the number of steps in the ideal parallelism profile. Our estimate of 
f(n) is conservative because the data dependencies in the program may permit the 
execution of some instructions from p p ( ~ + l )  in the last time step in which 
instructions from pp(T) are executed. 

In our dataflow graphs the number of instructions executed does not change when 
the program is executed on a different number of processors. Hence, t(1) is simply 
the area under the parallelism profile. We can now plot speed-up(n)=t(1)/t(n) and 
utilization(n)=t(1)/nxt(n), for SIMPLE as shown in Figure 3. For example, in the 
case of 240 processors, speed-up is 195, and utilization is 81%. One way to 
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understand utilization(n) is that a program has n parallel operations for only 
utilization(n) fraction of its total t(n) duration. 

It can be argued that this problem does not have enough parallelism to keep, say, 
1000 processors fully utilized. On the other hand, if we cannot keep 10 processors 
fully utilized, we cannot blame the lack of parallelism in the program. Generally, 
under-utilization of the machine in the presence of massive parallelism stems from 
aspects of the internal architecture of the processors which preclude exploitation 
of certain types of parallelism. Machines are seldom designed to exploit inner- 
loop, outer-loop, as well as instruction-level parallelism simultaneously. 

It is noteworthy that the potential parallelism varies tremendously during exe- 
cution, a behavior which in our experience is typical of even the most highly par- 
allel programs. We believe that any large program that runs for a long time must 
have sufficient parallelism to keep hundreds of processors utilized; several appli- 
cations that we have studied support this belief. However, a parallel machine has 
to be fairly general purpose and programmable for the user to be able to express 
even the class of partial differential equation-based simulation programs repres- 
ented by SIMPLE. 

2. Latency and Synchronizat ion  

We now discuss the issues of latency and synchronization. We believe latency is 
most strongly a function of the physical decomposition of a multiprocessor, while 
synchronization is most strongly a function of how programs are logically decom- 
posed. 

2.1 Latency: The First Fundamental Issue 

Any multiprocessor organization can be thought of as an interconnection of the 
following three types of modules (see Figure 4): 

1. Processing elements (PE): Modules which perform arithmetic and logical 
operations on data. Each processing element has a single communication port 
through which all data values are received. Processing elements interact with 
other processing elements by sending messages, issuing interrupts or send- 
ing and receiving synchronizing signals through shared memory. PE's interact 
with memory elements by issuing LOAD and STORE instructions modified as 
necessary with atomicity constraints. Processing elements are characterized 
by the rate at which they can process instructions. As mentioned, we assume 
the instructions are simple, e.g. fixed and floating point scalar arithmetic. 
More complex instructions can be counted as multiple instructions for meas- 
uring instruction rate. 

2. Memory elements (M): Modules which store data. Each memory element has 
a single communication port. Memory elements respond to requests issued 
by the processing elements by returning data through the communication 
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Figure 4. Structural Model of a Multiprocessor 

port, and are characterized by their total capacity and the rate at which they 
respond to these requests2). 

3 .  C o m m u n i c a t i o n  e l e m e n t s  ( C ) :  Modules which transport data. Each nontrivial 
communication element has at least three communication ports. Communi- 
cation elements neither originate nor receive synchronizing signals, 
instructions, or data; rather, they retransmit such information when received 
on one of the communication ports to one or more of the other communication 
ports. Communication elements are characterized by the rate of transmission, 
the time taken per transmission, and the constraints imposed by one trans- 
mission on others, e.g. blocking. The maximum amount of data that may be 
conveyed on a communication port per unit time is fixed. 

Latency is the time which elapses between making a request and receiving the 
associated response. The above model implies that a PE in a multiprocessor sys- 
tem faces larger latency in memory references than in a uniprocessor system 
because of the transit time in the communication network between PE's and the 
memories. The actual interconnection of modules may differ greatly from machine 
to machine. For example, in the BBN Butterfly machine all memory elements are 
at an equal distance from all processors, while in IBM's RP3, each processor is 
closely coupled with a memory element. However, we assume that the average 
latency in a well designed n-PE machine should be O(Iog(n)). In a v o n  Neumann 
processor, memory latency determines the time to execute memory reference 
instructions. Usually, the average memory latency also determines the maximum 
instruction processing speed. When latency cannot be hidden via overlapped 
operations, a tangible performance penalty is incurred. We call the cost associated 
with latency as the total induced processor idle time attributable to the latency. 

In many traditional designs, the "memory" subsystem can be simply modeled by one of these 
M elements. Interleaved memory subsystems are modeled as a collection of M's and C's. 
Memory subsystems which incorporate processing capability can be modeled with PE's, M's, 
and C's. Section 4.3 on page 77 describes one such case. 
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2 .2  S y n c h r o n i z a t i o n :  T h e  S e c o n d  F u n d a m e n t a l  I ssue  

We will call the basic units of computation into which programs are decomposed 
for parallel execution computational tasks or simply tasks. A general model of 
parallel programming must assume that tasks are created dynamical ly during a 
computation and die after having produced and consumed data. Situations in 
parallel programming which require task synchronization include the following 
basic operations: 

1. Producer-Consumer: A task produces a data structure that is read by another 
task. If producer and consumer tasks are executed in parallel, synchroniza- 
tion is needed to avoid the read-before-write race. 

2. Forks and Joins: Thejoin operation forces a synchronization event indicating 
that two tasks which had been started earlier by some forking operation have 
in fact completed. 

3. Mutual Exclusion: Non-deterministic events which must be processed one at 
a time, e.g. serialization in the use of a resource. 

The minimal support for synchronization can be provided by including 
instructions, such as atomic TEST-AND-SET, that operate on variables shared by 
synchronizing task@). However, to clarify the true cost of such instructions, we will 
use the Operational Model presented in Figure 5. Tasks in the operational model 
have resources, such as registers and memory, associated with them and consti- 
tute the smallest unit of independently schedulable work on the machine. A task 
is in one of the three states: ready-to-execute, executing or suspended. Tasks 
ready for execution may be queued locally or globally. When selected, a task 
occupies a processor until either it completes or is suspended waiting for a syn- 
chronization signal. A task changes from suspended to ready-to-execute when 
another task causes the relevant synchronization event. Generally, a suspended 
task must be set aside to avoid deadlocks4). The cost associated with such a 
synchronization is the fixed time to execute the synchronization instruction plus 
the time taken to switch to another task. The cost of task switching can be high 
because it usually involves saving the processor state, that is, the context associ- 
ated with the task. 

There are several subtle issues in accounting for synchronization costs. An event 
to enable or dispatch a task needs a name, such as that of a register or a memory 
location, and thus, synchronization cost should also include the instructions that 
generate, match and reuse identifiers which name synchronization events. It may 
not be easy to identify the instructions executed for this purpose. Nevertheless, 
such instructions represent overhead because they would not be present if the 
program were written to execute on a single sequential processor. The hardware 
design usually dictates the number of names available for synchronization as well 
as the cost of their use. 

The other subtle issue has to do with the accounting for intra-task synchronization. 
As we shall see in Section 3. on page 69, most high performance computers over- 
lap the execution of instructions belonging to one task. The techniques used for 

3) While not strictly necessary, atomic operations such as TEST-AND-SET are certainly a con- 
venient base upon which to build synchronization operations. See Section 4.3 on page 77 

4) Consider the case of a single processor system which must execute n cooperating tasks. 



- 69 - 

C o m m  

plus 
Memory 

Requests ( 

Requests and Responses 

Suspended Tasks 

111111 . 

Ready-to-Execute Tasks 

Newly Created Tasks 

~ Response~~ 
and 
Requests ( 

Requests and Responses 

Suspended Tasks 

I I l l l l  , 

Ready-to-Execute Tasks 

IIIlll J 

, J  

Newly Created Tasks j 

Figure 5. Operational Model of a Multiprocessor 

synchronization of instructions in such a situation (e.g. instruction dispatch and 
suspension) are often quite different from techniques for inter-task synchroniza- 
tion. It is usually safer and cheaper not to put aside the instruction waiting for a 
synchronization event, but rather to idle (or, equivalently, to execute NO-OP 
instructions while waiting). This is usually done under the assumption that the idle 
time will be on the order of a few instruction cycles. We define the synchronization 
cost in such situations to be the induced processor idle time attributable to waiting 
for the synchronization event. 
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3. P r o c e s s o r  A r c h i t e c t u r e s  to T o l e r a t e  L a t e n c y  

In this section, we describe those changes in von Neumann architectures that have 
directly reduced the effect of memory latency on performance. Increasing the 
processor state and instruction pipelining are the two most effective techniques for 
reducing the latency cost. Using Cray-1 (perhaps the best pipelined machine 
design to date), we will i l lustrate that it is difficult to keep more than 4 or 5 
instructions in the pipeline of a yon Neumann processor. It will be shown that 
every change in the processor architecture which has permitted overlapped exe- 
cution of instructions has necessitated introduction of a cheap synchronization 
mechanism. Often these synchronization mechanisms are hidden from the user 
and not used for inter-task synchronization. This discussion will further il lustrate 
that reducing latency frequently increases synchronization costs. 

Before describing these evolutionary changes to hide latency, we should point out 
that the memory system in a mult iprocessor setting creates more problems than 
just increased latency. Let us assume that all memory modules in a mult iprocessor 
form one global address space and that any processor can read any word in the 
global address space. This immediately brings up the following problems: 

• The time to fetch an operand may not be constant because some memories 
may be "closer" than others in the physical organization of the machine. 

• No useful bound on the worst case time to fetch an operand may be possible 
at machine design time because of the scalabil ity assumption. This is at odds 
with RISC designs which treat memory access time as bounded and fixed. 

• If a processor were to issue several (pipelined) memory requests to different 
remote memory modules, the responses could arrive out of order. 

All of these issues are discussed and il lustrated in the following sections. A gen- 
eral solution for accepting memory responses out of order requires a synchroni- 
zation mechanism to match responses with the destination registers (names in the 
task's context) and the instructions waiting on that value. The ill-fated Denelcor 
HEP [25~] is one of the very few architectures which has provided such mech- 
anisms in the von Neumann framework. However, the architecture of the HEP is 
sufficiently different from von Neumann architectures as to warrant a separate 
discussion (see Section 5. on page 79). 

3.1 Increasing the Processor State 

Figure 6 depicts the modern-day view of the von Neumann computer I-9-1 (sans 
I/O). In the earliest computers, such as EDSAC, the processor state consisted 
solely of an accumulator, a quotient register, and a program counter. Memories 
were relatively slow compared to the processors, and thus, the time to fetch an 
instruction and its operands completely dominated the instruction cycle time. 
Speeding up the Arithmetic Logic Unit was of little use unless the memory access 
time could also be reduced. 

The appearance of multiple "accumulators" reduced the number of operand 
fetches and stores, and index registers dramatically reduced the number of 
instructions executed by essentially el iminating the need for self-modifying code. 
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Figure 6. The yon Neumann Processor (from Gajski and Peir [20]) 

Since the memory traffic was drastically lower, programs executed much faster 
than before. However, the enlarged processor state did not reduce the time lost 
during memory references and, consequently, did not contribute to an overall 
reduction in cycle time; the basic cycle time improved only with improvements in 
circuit speeds. 

3 .2  I n s t r u c t i o n  P r e f e t c h i n g  

The time taken by instruction fetch (and perhaps part of instruction decoding time) 
can be totally hidden if prefetching is done during the execution phase of the pre- 
vious instruction. If instructions and data are kept in separate memories, it is 
possible to overlap instruction prefetching and operand fetching also. (The IBM 
STRETCH I-7-1 and Univac LARC [16] represent two of the earliest attempts at 
implementing this idea.) Prefetching can reduce the cycle time of the machine by 
twenty to thirty percent depending upon the amount of time taken by the first two 
steps of the instruction cycle with respect to the complete cycle. However, the 
effective throughput of the machine cannot increase proportionately because 
overlapped execution is not possible with all instructions. 

Instruction prefetching works well when the execution of instruction n does not 
have any effect on either the choice of instructions to fetch (as is the case in 
BRANCH) or the content of the fetched instruction (self-modifying code) for 
instructions n + 1, n + 2, ..., n + k. The latter case is usually handled by simply 
outlawing it. However, effective overlapped execution in the presence of BRANCH 
instructions has remained a problem. Techniques such as prefetching both 
BRANCH targets have shown little performance/cost benefits. Lately, the concept 
of delayed BRANCH instructions from microprogramming has been incorporated, 
with success, in LOAD/STORE architectures (see 3.4 on page 73). The idea is to 
delay the effect of a BRANCH by one instruction. Thus, the instruction at n + 1 
following a BRANCH instruction at n is always executed regardless of which way 
the BRANCH at n goes. One can always follow a BRANCH instruction with a NO- 
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OP instruction to get the old effect. However, experience has shown that seventy 
percent of the time a useful instruction can be put in that position. 

3.3 Instruction Buffers, Operand Caches  and Pipel ined Execution 

The time to fetch instructions can be further reduced by providing a fast instruction 
buffer. In machines such as the CDC 6600 [40-] and the Cray-1 r37-1, the instruction 
buffer is automatically loaded with n instructions in the neighborhood of the ref- 
erenced instruction (relying on spatial locality in code references), whenever the 
referenced instruction is found to be missing. To take advantage of instruction 
buffers, it is also necessary to speed up the operand fetch and execute phases. 
This is usually done by providing operand caches or buffers, and overlapping the 
operand fetch and execution phases 5) Of course, balancing the pipeline under 
these conditions may require further pipelining of the ALU. If successful, these 
techniques can reduce the machine cycle time to one-fourth or one-fifth the cycle 
time of an unpipelined machine. However, overlapped execution of four to five 
instructions in the von Neumann framework presents some serious conceptual 
difficulties, as discussed next. 

Designing a well-balanced pipeline requires that the time taken by various pipeline 
stages be more or less equal, and that the "things", i.e. instructions, entering the 
pipe be independent of each other. Obviously, instructions of a program cannot 
be totally independent except in some special trivial cases. Instructions in a pipe 
are usually related in one of two ways: Instruction n produces data needed by 
instruction n+k,  or only the complete execution of instruction n determines the 
next instruction to be executed (the aforementioned BRANCH problem). 

Limitations on hardware resources can also cause instructions to interfere with 
one another. Consider the case when both instructions n and n + 1 require an 
adder, but there is only one of these in the machine. Obviously, one of the 
instructions must be deferred until the other is complete. A pipelined machine 
must be temporarily able to prevent a new instruction from entering the pipeline 
when there possibility of interference with the instructions already in the pipe. 
Detecting and quickly resolving these hazards is very difficult with ordinary 
instruction sets, e.g., IBM 370, VAX 11 or Motorola 68000, due to their complexity. 

A major complication in pipelining complex instructions is the variable amount of 
time taken in each stage of instruction processing (refer to Figure 7). Operand 
fetch in the VAX is one such example: determining the addressing mode for each 
operand requires a fair amount of decoding, and actual fetching can involve 0 to 
2 memory references per operand. Considering all possible addressing mode 
combinations, an instruction may involve 0 to 6 memory references in addition to 
the instruction fetch itself! A pipeline design that can effectively tolerate such var- 
iations is close to impossible. 

8) As we will show in Section 4.4 on page 78, caches in a multiprocessor setting create special 
problems. 
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3.4 Load/Store Architectures 

Seymour Cray, in the sixties, pioneered instruction sets (CDC 6600, Cray-1) which 
separate instructions into two disjoint classes. In one class are instructions which 
move data unchanged between memory and high speed registers. In the other 
class are instructions which operate on data in the registers. Instructions of the 
second class cannot access the memory. This rigid distinction simplifies instruc- 
tion scheduling. For each instruction, it is trivial to see if a memory reference will 
be necessary or not. Moreover, the memory system and the ALU may be viewed 
as parallel, noninteracting pipelines. An instruction dispatches exactly one unit of 
work to either one pipe or the other, but never both. 

Such architectures have come to be known as LOAD/STORE architectures, and 
include the machines built by Reduced Instruction Set Computer (RISC) enthusi- 
asts (the IBM 801 [34], Berkeley's RISC [32], and Stanford MIPS [22] are prime 
examples). LOAD/STORE architectures use the time between instruction decoding 
and instruction dispatching for hazard detection and resolution (see Figure 8). The 
design of the instruction pipeline is based on the principle that if an instruction 
gets past some fixed pipe stage, it should be able to run to completion without 
incurring any previously unanticipated hazards. 

LOAD/STORE architectures are much better at tolerating latencies in memory 
accesses than other von Neumann architectures. In order to explain this point, we 
will first discuss a simplified model which detects and avoids hazards in a 
LOAD/STORE architecture similar to the Cray-1. Assume there is a bit associated 
with every register to indicate that the contents of the register are undergoing a 
change. The bit corresponding to register R is set the moment we dispatch an 
instruction that wants to update R. Following this, instructions are allowed to enter 
the pipeline only if they don't need to reference or modify register R or other reg- 
isters reserved in a similar way. Whenever a value is stored in R, the reservation 
on R is removed, and if an instruction is waiting on R, it is allowed to proceed. This 
simple scheme works only if we assume that registers whose values are needed 
by an instruction are read before the next instruction is dispatched, and that the 
ALU or the multiple functional units within the ALU are pipelined to accept inputs 
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Figure 8. Hazard Avoidance at the instruction Decode Stage 

as fast as the decode stage can supply them6). The dispatching of an instruct ion 
can also be held up because it may require a bus for stor ing results in a clock 
cycle when the bus is needed by another  instruct ion in the pipeline. Whenever 
BRANCH instruct ions are encountered, the pipel ine is effectively held up unti l  the 
branch target has been decided. 

Notice what wil l happen when an instruct ion to load the contents of some memory 
location M into some register R is executed. Suppose that it takes k cycles to fetch 
something from the memory. It wil l be possible to execute several instruct ions 
dur ing these k cycles as long as none of them refer to register R. In fact, this sit- 
uation is hardly different from the one in which R is to be loaded from some func- 

Indeed, in the Cray-1, functional units can accept an input every clock cycle and registers are 
always read in one clock cycle after an instruction is dispatched from the Decoder. 
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tional unit that, like the Floating Point multiplier, takes several cycles to produce 
the result. These gaps in the pipeline can be further reduced if the compiler reor- 
ders instructions such that instructions consuming a datum are put as far as pos- 
sible from instructions producing that datum. Thus, we notice that machines 
designed for high pipelining of instructions can hide large memory latencies pro- 
vided there is local parallelism among instructionsZ). 

From another point of view, latency cost has been reduced by introducing a cheap 
synchronization mechanism: reservation bits on processor registers. However, the 
number of names available for synchronization, i.e. the size of the task's proces- 
sor-bound context, is precisely the number of registers, and this restricts the 
amount of exploitable parallelism and tolerable latency. In order to understand 
this issue better, consider the case when the compiler decides to use register R 
to hold two different values at two different instructions say, i, and i,,. This will 
require in and i,, to be executed sequentially while no such order may have been 
implied by the source code. Shadow registers have been suggested to deal with 
this class of problems. In fact, shadow registers are an engineering approach to 
solving a non-engineering problem. The real issue is naming. The reason that 
addition of explicit and implicit registers improves the situation derives from the 
addition of (explicit and implicit) names for synchronization and, hence, a greater 
opportunity for tolerating latency. 

Some LOAD/STORE architectures have eliminated the need for reservation bits on 
registers by making the compiler responsible for scheduling instructions, such that 
the result is guaranteed to be available. The compiler can perform hazard resol- 
ution only if the time for each operation e.g. ADD, LOAD, is known; it inserts NO- 
OP instructions wherever necessary. Because the instruction execution times are 
an intimate part of the object code, any change to the machine's structure (scaling, 
redesign) will at the very least require changes to the compiler and regeneration 
of the code. This is obviously contrary to our notion of generality, and hinders the 
portability of software from one generation of machine to the next. 

Current LOAD/STORE architectures assume that memory references either take a 
fixed amount of time (one cycle in most RISC machines) or that they take a vari- 
able but predictable amount of time (as in the Cray-1). In RISC machines, this time 
is derived on the basis of a cache hit. If the operand is found to be missing from 
the cache, the pipeline stops. Equivalently, one can think of this as a situation 
where a clock cycle is stretched to the time required. This solution works because, 
in most of these machines, there can be either one or a very small number of 
memory references in progress at any given time. For example, in the Cray-1, no 
more than four independent addresses can be generated during a memory cycle. 
If the generated address causes a bank conflict, the pipeline is stopped. However, 
any conflict is resolved in at most three cycles. 

LOAD/STORE architectures, because of their simpler instructions, often execute 
15% to 50% more instructions than machines with more complex instructions 
r341. This increase may be regarded as synchronization cost. However, this is 
easily compensated by improvements in clock speed made possible by simpler 
control mechanisms. 

7) The ability to reorder two instructions usually means that these instructions can be executed 
in parallel. 
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4. Synchronization Methods for Multiprocessing 

4.1 Global Scheduling on Synchronous machines 

For a totally synchronous mult iprocessor it is possible to envision a master plan 
which specifies operations for every cycle on every processor. An analogy can be 
made between programming such a mult iprocessor and coding a horizontally 
microprogrammed machine. Recent advances in compiling [18] have made such 
code generation feasible and encouraged researchers to propose and build 
several different synchronous multiprocessors. Cydrome and Multif low computers, 
which are based on proposals in [35] and [19], respectively, are examples of such 
machines. These machines are generally referred to as very long instruction 
word, or VLIW, machines, because each instruction actually contains multiple 
smaller instructions (one per functional unit or processing element). The strategy 
is based on maximizing the use of resources and resolving potential run-time 
conflicts in the use of resources at compile time. Memory references and control 
transfers are "anticipated" as in RISC architectures, but here, multiple concurrent 
threads of computation are being scheduled instead of only one. Given the possi- 
bil ity of decoding and initiating many instructions in parallel, such architectures 
are highly appealing when one realizes that the fastest machines available now 
still essentially decode and dispatch instructions one at a time. 

We believe that this technique is effective in its currently realized context, i.e. 
Fortran-based computations on a small number (4 to 8) of processors. Compil ing 
for parallelism beyond this level, however, becomes intractable. It is unclear how 
problems which rely on dynamic storage allocation or require nondeterministic 
and real-time constraints will play out on such architectures. 

4.2 Interrupts and Low-level Context Switching 

Almost all von Neumann machines are capable of accepting and handling inter- 
rupts. Not surprisingly, multiprocessors based on such machines permit the use 
of inter-processor interrupts as a means for signall ing events. However, interrupts 
are rather expensive because, in general, the processor state needs to be saved. 
The state-saving may be forced by the hardware as a direct consequence of 
allowing the interrupt to occur, or it may occur explicitly, i.e. under the control of 
the programmer, via a single very complex instruction or a suite of less complex 
ones. independent of how the state-saving happens, the important thing to note is 
that each interrupt will generate a significant amount of traffic across the process- 
or - memory interface. 

In the previous discussion, we concluded that larger processor state is good 
because it provided a means for reducing memory latency cost. In trying to solve 
the problem of low cost synchronization, we have now come across an interaction 
which, we believe, is more than just coincidental. Specifically, in very fast von 
Neumann processors, the "obvious" synchronization mechanism (interrupts) will 
only work well in the trivial case of infrequent synchronization events or when the 
amount of processor state which must be saved is very small. Said another way, 
reducing the cost of synchronization by making interrupts cheap would generally 
entail increasing the cost of memory latency. 
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Uniprocessors such as the Xerox Alto [41], the Xerox Dorado [27], and the Sym- 
bolics 3600 family [29] have used a technique which may be called microcode- 
level context switching to allow sharing of the CPU resource by the I/O device 
adapters. This is accomplished by duplicating programmer-visible registers, in 
other words, the processor state. Thus, in one microinstruction the processor can 
be switched to a new task without causing any memory references to save the 
processor state 8) This dramatically reduces the cost of processing certain types 
of events that cause frequent interrupts. As far as we know, nobody has adapted 
the idea of keeping multiple contexts in a multiprocessor setting (with the possible 
exception of the HEP, to be discussed in Section 5. on page 79) although it should 
reduce synchronization cost over processors which can hold only a single context. 
It may be worth thinking about adopting this scheme to reduce the latency cost of 
a nonlocal memory references as well. 

The limitations of this approach are obvious. High performance processors may 
have a small programmer-visible state (number of registers) but a much larger 
implicit state (caches). Low-level task switching does not necessarily take care of 
the overhead of flushing cache@). Further, one can only have a small number of 
independent contexts without completely overshadowing the cost of ALU hard- 
ware. 

4,3 S e m a p h o r e s  a n d  the  U i t r a c o m p u t e r  

Next to interrupts, the most commonly supported feature for synchronization is 
an atomic operation to test and set the value of a memory location. A processor 
can signal another processor by writing into a location which the other processor 
keeps reading to sense a change. Even though, theoretically, it is possible to per- 
form such synchronization with ordinary read and write memory operations, the 
task is much simpler with an atomic TEST-AND-SET instruction. TEST-AND-SET is 
powerful enough to implement all types of synchronization paradigms mentioned 
earlier. However, the synchronization cost of using such an instruction can be very 
high. Essentially, the processor that executes it goes into a busy-wait cycle. Not 
only does the processor get blocked, it generates extra memory references at 
every instruction cycle until the TEST-AND-SET instruction is executed successful- 
ly. Implementations of TEST-AND-SET that permit non-busy waiting imply context 
switching in the processor and thus are not necessarily cheap either. 

It is possible to improve upon the TEST-AND-SET instruction in a multiprocessor 
setting, as suggested by the NYU Ultracomputer group 1-17]. Their technique can 
be illustrated by the atomic FETCH-AND-<OP> instruction (an evolution of the 
REPLACE-ADD instruction). The instruction requires an address and a value, and 
works as follows: suppose two processors, i and j, simultaneously execute 
FETCH-AND-ADD instructions with arguments (A,vj) and (A,vj) respectively. After 
one instruction cycle, the contents of A will become (A) + v~ + v~. Processors i and 
j will receive, respectively, either (A) and (A) + v~, or (A) + v i and (A) as results. 
Indeterminacy is a direct consequence of the race to update memory cell A. 

~) The Berkeley RISC idea of providing "register windows" to speed up procedure calls is very 
similar to multiple contexts. 

9) However, solutions such as multicontext caches and multicontext address translation buffers 
have been used to advantage in reducing this task switching overhead, (c.f., the STO stack 
mechanism in the IBM 370/I68). 
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An architect must choose between a wide variety of implementations for 
FETCH-AND-<OP~>. One possibil i ty is that the processor may interpret the instruc- 
tion with a series of more primitive instructions. While possible, such a solution 
does not find much favor because it will cause considerable memory traffic. A 
second scheme implements FETCH-AND-<OP> in the memory control ler (this is 
the alternative chosen by the CEDAR project [28]). This typically results in a sig- 
nificant reduction of network traffic because atomicity of memory transactions from 
the memory's control ler happens by default. The scheme suggested by the NYU 
Ultracomputer group implements the instruction in the switching nodes of the 
network. 

This implementation calls for a combining packet communication network which 
connects n processors to an n-port memory. If two packets collide, say 
FETCH-AND-ADD(A,v~) and FETCH-AND-ADD(A,vj), the switch extracts the values 
vj and vj, forms a new packet (FETCH-AND-ADD(A,v~ + vj)) , forwards it to the 
memory, and stores the value of v~ temporari ly. When the memory returns the old 
value of location A, the switch returns two values ((A) and (A) + v~). The main 
improvement is that some synchronization situations which would have taken 
O(n) time can be done in O(Iog n) time. It should be noted, however, that one 
memory reference may involve as many as Iog2n additions, and implies substantial 
hardware complexity. Further, the issue of processor idle time due to latency has 
not been addressed at all. In the worst case, the complexity of hardware may 
actually increase the latency of going through the switch and thus completely 
overshadow the advantage of "combining" over other simpler implementations. 

The simulation results reported by NYU E17] show quasi-l inear speedup on the 
Ultracomputer (a shared memory machine with ordinary yon Neumann process- 
ors, employing FETCH-AND-ADD synchronization) for a large variety of scientific 
applications. We are not sure how to interpret these results without knowing many 
more details of their simulation model. Two possible interpretations are the fol- 
lowing: 

1. Parallel branches of a computation hardly share any data, thus, the costly 
mutual exclusion synchronization is rarely needed in real applications. 

2. The synchronization cost of using shared data can be acceptably brought 
down by judicious use of cachable/non cachable annotations in the source 
program. 

The second point may become clearer after reading the next section. 

4 . 4  C a c h e  C o h e r e n c e  M e c h a n i s m s  

While highly successful for reducing memory latency in uniprocessors, caches in 
a mult iprocessor setting introduce a serious synchronization problem called cache 
coherence. Censier and Feautrier [101 define the problem as follows: "A memory 
scheme is coherent if the value returned on a LOAD instruction is always the value 
given by the latest STORE instruction with the same address.". It is easy to see 
that this may be difficult to achieve in multiprocessing. 

Suppose we have a two-processor system tightly coupled through a single main 
memory. Each processor has its own cache to which it has exclusive access. Sup- 
pose further that two tasks are running, one on each processor, and we know that 
the tasks are designed to communicate through one or more shared memory cells. 
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In the absence of caches, this scheme can be made to work. However, if it happens 
that the shared address is present in both caches, the individual processors can 
read and write the address and never see any changes caused by the other pro- 
cessor. Using a store-through design instead of a store-in design does not solve 
the problem either. What is logically required is a mechanism which, upon the 
occurrence of a STORE to location x, invalidates copies of location x in caches of 
other processors, and guarantees that subsequent LOAD will get the most recent 
(cached) value. This can incur significant overhead in terms of decreased memory 
bandwidth. 

All solutions to the cache coherence problem center around reducing the cost of 
detecting rather than avoiding the possibility of cache incoherence. Generally, 
slate information indicating whether the cached data is private or shared, read- 
only or read-write, etc., is associated with each cache entry. However, this state 
somehow has to be updated after each memory reference. Implementations of this 
idea are generally intractable except possibly in the domain of bus-oriented mul- 
tiprocessors. The so-called snoopy bus solution uses the broadcasting capability 
of buses and purges entry x from all caches when a processor attempts a STORE 
to x In such a system, at most one STORE operation can go on at a time in the 
whole system and, therefore, system performance is going to be a strong function 
of the snoopy bus" ability to handle the coherence-maintaining traffic. 

It is possible to improve upon the above solution if some additional state infor- 
mation is kept with each cache entry. Suppose entries are marked "shared" or 
"non-shared". A processor can freely read shared entries, but an attempt to 
STORE into a shared entry immediately causes that address to appear on the 
snoopy bus. That entry is then deleted from all the other caches and is marked 
"non-shared" in the processor that had attempted the STORE. Similar action takes 
place when the word to be written is missing from the cache. Of course, the main 
memory must be updated before purging the private copy from any cache. When 
the word to be read is missing from the cache, the snoopy bus may have to first 
reclaim the copy privately held by some other cache before giving it to the 
requesting cache. The status of such an entry will be marked as shared in both 
caches. The advantage of keeping shared/non-shared information with every 
cache entry is that the snoopy bus comes into action only on cache misses and 
STOREs to shared locations, as opposed to all LOADs and STOREs. Even if these 
solutions work satisfactorily, bus-oriented multiprocessors are not of much interest 
to us because of their obvious limitations in scaling. 

As far as we can tell, there are no known solutions to cache coherence for non- 
bussed machines. It would seem reasonable that one needs to make caches par- 
tially visible to the programmer by allowing him to mark data (actually addresses) 
as shared or not shared. In addition, instructions to flush an entry or a block of 
entries from a cache have to be provided. Cache management on such machines 
is possible only if the concept of shared data is well integrated in the high-level 
language or the programming model. Schemes have also been proposed explicitly 
to interlock a location for writing or to bypass the cache (and flush it if necessary) 
on a STORE; in either case, the performance goes down rapidly as the machine is 
scaled. Ironically, in solving the latency problem via multiple caches, we have 
introduced the synchronization problem of keeping caches coherent. 

It is worth noting that, while not obvious, a direct trade-off often exists between 
decreasing the parallelism and increasing the cachable or non-shared data. 
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5. M u l t i - T h r e a d e d  A r c h i t e c t u r e s  

In order to reduce memory latency cost, it is essential that a processor be capable 
of issuing multiple, overlapped memory requests. The processor must view the 
memory/communication subsystems as a logical pipeline. As latency increases, 
keeping the pipeline full implies that more memory references will have to be in 
the pipeline. We note that memory systems of current von Neumann architectures 
have very little capability for pipelining, with the exception of array references in 
vector machines. The reasons behind this l imitation are fundamental: 

1. yon Neumann processors must observe instruction sequencing constraints, 
and 

2. since memory references can get out of order in the pipeline, a large number 
of identifiers to dist inguish memory responses must be provided. 

One way to overcome the first deficiency is to interleave many threads of sequen- 
tial computations (as we saw in the very long instruction word architectures of 4.1 
on page 75). The second deficiency can be overcome by providing a large register 
set with suitable reservation bits. It should be noted that these requirements are 
somewhat in conflict. The situation is further complicated by the need of tasks to 
communicate with each other. Support for cheap synchronization calls for the 
processor to switch tasks quickly and to have a non-empty queue of tasks which 
are ready to run. One way to achieve this is again by interleaving multiple threads 
of computation and providing some intell igent scheduling mechanism to avoid 
busy-waits. Machines supporting multiple threads and fancy scheduling of 
instructions or processes look less and less like von Neumann machines as the 
number of threads increases. 

in this section, we first discuss the erstwhile Denelcor HEP 1-25, 39~]. The HEP was 
the first commercially available multi-threaded computer. After that we briefly dis- 
cuss dataflow machines, which may be regarded as an extreme example of 
machines with multiple threads; machines in which each instruction constitutes an 
independent thread and only non-suspended threads are scheduled to be exe- 
cuted. 

5.1 The Denelcor  HEP: A Step Beyond von N e u m a n n  Archi tectures 

The basic structure of the HEP processor is shown in Figure 9. The processor's 
data path is built as an eight step pipeline. In parallel with the data path is a con- 
trol loop which circulates process status words (PSW's) of the processes whose 
threads are to be interleaved for execution. The delay around the control loop 
varies with the queue size, but is never shorter than eight pipe steps. This mini- 
mum value is intentional to allow the PSW at the head of the queue to initiate an 
instruction but not return again to the head of the queue until the instruction has 
completed. If at least eight PSW's, representing eight processes, can be kept in the 
queue, the processor's pipeline will remain full. This scheme is much like tradi- 
tional pipelining of instructions, but with an important difference. The inter-in- 
struction dependencies are likely to be weaker here because adjacent instructions 
in the pipe are always from different processes. 
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Figure 9. Latency Toleration and Synchronization in the HEP 

There are 2048 registers in each processor; each process has an index offset into 
the register array. Inter-process, i.e., inter-thread, communication is possible via 
these registers by overlapping register allocations. The HEP provides 
FULL/EMPTY/RESERVED bits on each register and FULL/EMPTY bits on each word 
in the data memory. An instruction encountering EMPTY or RESERVED registers 
behaves like a NO-OP instruction; the program counter of the process, i.e. PSW, 
which initiated the instruction is not incremented. The process effectively busy- 
waits but without blocking the processor. When a process issues a LOAD or 
STORE instruction, it is removed from the control loop and is queued separately 
in the Scheduler Function Unit (SFU) which also issues the memory request. 
Requests which are not satisfied because of improper FULL/EMPTY status result 
in recirculation of the PSW within the SFU's loop and also in reissuance of the 
request. The SFU matches up memory responses with queued PSW's, updates 
registers as necessary and reinserts the PSW's in the control loop. 

Thus, the HEP is capable up to a point of using parallelism in programs to hide 
memory and communication latency. At the same time it provides efficient, low- 
level synchronization mechanisms in the form of presence-bits in registers and 
main memory. However, the HEP approach does not go far enough because there 
is a limit of one outstanding memory request per process, and the cost of syn- 
chronization through shared registers can be high because of the loss of proces- 
sor time due to busy-waiting. A serious impediment to the software development 
on HEP was the limit of 64 PSW's in each processor. Though only 8 PSW's may be 
required to keep the process pipeline full, a much larger number is needed to 
name all concurrent tasks of a program. 
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5 . 2  D a t a f l o w  A r c h i t e c t u r e s  

Dataflow architectures F2, 15, 21, 23~] represent a radical alternative to von Neu- 
mann architectures because they use dataflow graphs as their machine language 
E4, 14]. Dataflow graphs, as opposed to conventional machine languages, specify 
only a partial order for the execution of instructions and thus provide opportunit ies 
for parallel and pipelined execution at the level of individual instructions. For 
example, the dataflow graph for the expression a • b + c • d only specifies that both 
multiplications be executed before the addition; however, the multipl ications can 
be executed in any order or even in parallel. The advantage of this f lexibil i ty 
becomes apparent when we consider that the order in which a, b, c and d will 
become available may not be known at compile time. For example, computations 
for operands a and b may take longer than computations for c and d or vice 
versa. Another possibil ity is that the time to fetch different operands may vary due 
to scheduling and hardware characteristics of the machine. Dataflow graphs do 
not force unnecessary sequentialization and dataflow processors schedule 
instructions according to the availabil i ty of the operands. 

The instruction execution mechanism of a dataflow processor is fundamentally 
different from that of a yon Neumann processor. We will briefly il lustrate this using 
the MIT Tagged-Token architecture (see Figure 10). Rather than following a Pro- 
gram Counter for the next instruction to be executed and then fetching operands 
for that instruction, a dataflow machine provides a low-level synchronization 
mechanism in the form of Wait ing-Matching section which dispatches only those 
instructions for which data are already available. This mechanism relies on tag- 
ging each datum with the address of the instruction to which it belongs and the 
context in which the instruction is being executed. One can think of the instruction 
address as replacing the program counter, and the context identifier replacing the 
frame base register in tradit ional von Neumann architecture. It is the machine's 
job to match up data with the same tag and then to execute the denoted instruc- 
tion. tn so doing, new data will be produced, with a new tag indicating the suc- 
cessor instruction(s). Thus, each instruction represents a synchronization opera- 
tion. Note that the number of synchronization names is limited by the size of the 
tag, which can easily be made much larger than the size of the register array in a 
von Neumann machine. Note also that the processor pipeline is non-blocking: 
given that the operands for an instruction are available, the corresponding 
instruction can be executed without further synchronization. 

In addit ion to the waiting-matching section which is used primari ly for dynamic 
scheduling of instructions, the MIT Tagged-Token machine provides a second 
synchronization mechanism called I-Structure Storage. Each word of I-structure 
storage has 2 bits associated with it to indicate whether the word is empty, full or 
has pending read-requests. This greatly facilitates overlapped execution of a pro- 
ducer of a data structure with the consumer of that data structure. There are three 
instructions at the graph level to manipulate I-structure storage. These are allocate 
- to allocate n empty words of storage, select - to fetch the contents of the i ~h word 
of an array and store - to store a value in a specified word. Generally software 
concerns dictate that a word be written into only once before it is deallocated. The 
dataflow processor treats all I-structure operations as spli t-phase. For example, 
when the select instruction is executed, a packet containing the tag of the desti- 
nation instruction of the select instruction is forwarded to the proper address, 
possibly in a distant I-structure storage module. The actual memory operation may 
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Figure 10. The MIT Tagged-Token Dataflow Machine 

require waiting if the data is not present and thus the result may be returned many 
instruction times later. The key is that the instruction pipeline need not be sus- 
pended during this time. Rather, processing of other instructions may continue 
immediately after initiation of the operation. Matching of memory responses with 
waiting instructions is done via tags in the waiting-matching section. 

One advantage of tagging each datum is that data from different contexts can be 
mixed freely in the instruction execution pipeline. Thus, instruction-level parallel- 
ism of dataflow graphs can effectively absorb the communication latency and 
minimize the losses due to synchronization waits. We hope it is clear from the 
prior discussion that even the most highly pipelined von Neumann processor 
cannot match the flexibility of a dataflow processor in this regard. A more com-  
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plete discussion of datafiow machines is beyond the scope of this paper. An over- 
view of executing programs on the MIT Tagged-Token Dataflow machine can be 
found in [6]. A deeper understanding of dataflow machines can be gotten from 
[2]. Additional, albeit slightly dated, details of the machine and the instruction set 
are given in [31 and F5J, respectively. 

6 .  C o n c l u s i o n s  

We have presented the loss of performance due to increased latency and waits for 
synchronization events as the two fundamental issues in the design of parallel 
machines. These issues are, to a large degree, independent of the technology dif- 
ferences between various parallel machines. Even though we have not presented 
it as such, these issues are also independent of the high-level programming model 
used on a multiprocessor. If a multiprocessor is built out of conventional micro- 
processors, then degradation in performance due to latency and synchronization 
will show up regardless of whether a shared-memory, message-passing, reduction 
or dataflow programming model is employed. 

Is it possible to modify avon  Neumann processor to make it more suitable as a 
building block for a parallel machine? In our opinion the answer is a qualified 
"yes". The two most important characteristics of the dataflow processor are split- 
phase memory operations and the ability to put aside computations (i.e., proc- 
esses, instructions, or whatever the scheduling quanta are) without blocking the 
processor. We think synchronization bits in the storage are essential to support 
the producer-consumer type of parallelism. However, the more concurrently active 
threads of computation we have, the greater is the requirement for hardware-sup- 
ported synchronization names, lannucci E24] and others [8]  are actively explor- 
ing designs based on these ideas. Only time will tell if it will be fair to classify such 
processors as von Neumann processors. 

The biggest appeal of yon Neumann processors is that they are widely available 
and familiar. There is a tendency to extrapolate these facts into a belief that von 
Neumann processors are "simple" and efficient. A technically sound case can be 
made that well designed von Neumann processors are indeed very efficient in 
executing sequential codes and require less memory bandwidth than dataflow 
processors. However, the efficiency of sequential threads disappears fast if there 
are too many interruptions or if idling of the processor due to latency or data-de- 
pendent hazards increases. Papadopoulos [31] is investigating dataflow architec- 
tures which will improve the efficiency of the MIT Tagged-Token architecture on 
sequential codes without sacrificing any of its dataflow advantages. We can assure 
the reader that none of these changes are tantamount to introducing a program 
counter in the dataflow architecture. 

For lack of space we have not discussed the effect of multi-threaded architectures 
on the compiling and language issues. It is important to realize that compiling into 
primitive dataflow operators is a much simpler task than compiling into cooperat- 
ing sequential threads. Since the cost of inter-process communication in a v o n  
Neumann setting is much greater than the cost of communication within a process, 
there is a preferred process or "grain" size on a given architecture. Furthermore, 
placement of synchronization instructions in a sequential code requires careful 
planning because an instruction to wait for a synchronization event may experi- 
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ence very different waiting periods in different locations in the program. Thus, 
even for a given grain size, it is difficult to decompose a program optimally. 
Dataflow graphs, on the other hand, provide a uniform view of inter- and intra- 
procedural synchronization and communication, and as noted earlier, only specify 
a partial order to enforce data dependencies among the instructions of a program. 
Though it is very difficult to offer a quantitative measure, we believe that an Id 
Nouveau compiler to generate code for a multi-threaded von Neumann computer 
will be significantly more complex than the current compiler [41] which generates 
fine grain dataflow graphs for the MIT Tagged-Token dataflow machine. Thus 
dataflow computers, in addition to providing solutions to the fundamental hard- 
ware issues raised in this paper, also have compiler technology to exploit their full 
potential. 
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