Skip to main content
Article
Power Spectra of the Total Occupancy in the Totally Asymmetric Simple Exclusion Process
Physical Review Letters (2007)
  • D. `A. Adams, Virginia Polytechnic Institute and State University
  • R. K. P. Zia, Virginia Polytechnic Institute and State University
  • Beate Schmittmann, Virginia Polytechnic Institute and State University
Abstract

As a solvable and broadly applicable model system, the totally asymmetric exclusion process enjoys iconic status in the theory of nonequilibrium phase transitions. Here, we focus on the time dependence of the total number of particles on a 1-dimensional open lattice and its power spectrum. Using both Monte Carlo simulations and analytic methods, we explore its behavior in different characteristic regimes. In the maximal current phase and on the coexistence line (between high and low density phases), the power spectrum displays algebraic decay, with exponents −1.62 and −2.00, respectively. Deep within the high and low density phases, we find pronounced oscillations, which damp into power laws. This behavior can be understood in terms of driven biased diffusion with conserved noise in the bulk.

Disciplines
Publication Date
July 10, 2007
Publisher Statement
Copyright 2007 American Physical Society. Posted with permission.
Citation Information
D. `A. Adams, R. K. P. Zia and Beate Schmittmann. "Power Spectra of the Total Occupancy in the Totally Asymmetric Simple Exclusion Process" Physical Review Letters Vol. 99 (2007)
Available at: http://works.bepress.com/beate_schmittmann/8/