
With the help of Monte Carlo simulations and a mean-field theory, we investigate the ordered steady-state structures resulting from the motion of a single vacancy on a periodic lattice which is filled with two species of oppositely “charged” particles. An external field biases particle-vacancy exchanges according to the particle’s charge, subject to an excluded volume constraint. The steady state exhibits charge segregation, and the vacancy is localized at one of the two characteristic interfaces. Charge and hole density profiles, an appropriate order parameter, and the interfacial regions themselves exhibit characteristic scaling properties with system size and field strength. The lattice spacing is found to play a significant role within the mean-field theory.
Available at: http://works.bepress.com/beate_schmittmann/20/