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A method is described for computing the motion of bubbles through a liquid under
conditions of large Reynolds and finite Weber numbers. Ellipsoidal harmonics are
used to approximate the shapes of the bubbles and the flow induced by the bubbles,
and a method of summing flows induced by groups of bubbles, using a fast multipole
expansion technique is employed so that the computational cost increases only linearly
with the number of bubbles. Several problems involving one, two and many bubbles
are examined using the method. In particular, it is shown that two bubbles moving
towards each other in an impurity-free, inviscid liquid touch each other in a finite time.
Conditions for the bubbles to bounce in the presence of non-hydrodynamic forces
and the time for bounce when these conditions are satisfied are determined. The
added mass and viscous drag coefficients and aspect ratio of bubbles are determined
as a function of bubble volume fraction and Weber number.

1. Introduction
Considerable work has been done in recent years to determine the equations of

motion of bubbly liquids at large Reynolds and small Weber numbers (Smereka
1993; Sangani & Didwania 1993a, b; Kumaran & Koch 1993; van Wijngaarden 1993;
Yurkovetsky & Brady 1996; Kang et al. 1997; Spelt & Sangani 1998). The Reynolds
and Weber numbers are defined by Re = 2ρVa/µ and We = 2ρV 2a/σ, ρ and µ being
the density and viscosity of the liquid, σ the interfacial tension, a the radius of the
bubbles, and V the characteristic velocity of the bubbles. In the dual limit Re → ∞
and We → 0 the bubbles may be approximated as spherical, and the flow induced
by the motion as potential flow, thus allowing considerable simplifications in the
equations of motion. Numerical simulations together with kinetic theory have made
it possible to determine a complete set of equations of motion of bubbly liquids from
first principles (Spelt & Sangani 1998).

Unfortunately, the dual limit is generally satisfied for a very narrow range of bubble
sizes since, for a given gas–liquid system, both Re and We increase with the increase
in the size and the velocity of the bubbles. It is important therefore to remove the
restriction of small We before the equations of motion can be applied to practical
flows of bubbly liquids. The deformation of bubbles from a spherical shape in flows
at finite Weber numbers significantly affects the properties of bubbly liquids. For
example, it is well known that the added mass and viscous drag coefficients of the
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deformed bubbles are significantly greater than those of spherical bubbles. The shape
oscillations induced by bubble–bubble interactions may also be expected to lead to a
higher rate of viscous energy dissipation than for spherical bubbles.

The case of a single bubble rising with a steady velocity under the influence of
buoyancy force was first examined by Moore (1965) who approximated the bubble
shape to be an oblate spheroid. The aspect ratio of the spheroid as a function of
Weber number was determined by satisfying the normal stress condition at only two
points on the surface of the bubble. The viscous drag on the bubble and hence the rise
velocity were determined using the viscous dissipation method due to Levich (1962)
which makes use of the fact that the total viscous energy dissipation can be estimated
to leading order (i.e. O(Re−1)) using the potential flow approximation. More rigorous
analysis of the flow around a rising bubble was made Miksis, Vanden-Broeck &
Keller (1981, 1982) who did not assume the shape of the bubble to be ellipsoidal.
These investigators converted the potential flow problem into a nonlinear system of
integro-differential equations and solved it numerically to determine the shape of the
bubble more accurately by satisfying the normal stress condition on the entire surface
of the bubble. These rigorous calculations showed that the approximate analysis of
Moore based on a collocation method with only two points and assumed ellipsoidal
shape was surprisingly accurate over a significant range of Weber numbers. Meiron
(1989) also examined the problem of uniform flow past a bubble with the aim of
determining the stability of the flow. He expanded the velocity potential and shape
of the bubble in a series of both spherical and oblate spheroidal harmonics and used
a collocation technique to determine the shape and the velocity field. He found that
the series representation based on spherical surface harmonics did not converge for
aspect ratio χ > 1.4 while that based on ellipsoidal harmonics converged well for a
wide range of aspect ratios. His results for the steady-state shape were found to be
in excellent agreement with those obtained by Miksis et al. (1981).

The analyses mentioned above approximated the flow to be potential. Ryskin &
Leal (1984) determined the flow around a single bubble by solving the Navier–Stokes
equations of motion for various combinations of Weber and Reynolds numbers.
Their calculations show that at large Weber numbers the bubble shape loses fore–aft
symmetry, and that a region of recirculation appears on the rear side of the bubble.
For example, the recirculation region is clearly seen at Re = 200 for We > 4. For
such high Weber numbers the potential flow approximation is not uniformly valid.
Thus, the potential flow based approximations can be expected to be reliable only
for small to moderate Weber numbers. Recent progress in the study of the motion
of a single bubble in rotational flows is summarized in an excellent review article by
Magnaudet & Eames (2000).

Figure 1 shows the rise velocity of a bubble as a function of its equivalent spherical
radius a for an air–water system. The results of Moore (1965) for non-spherical
bubbles are essentially the same as those obtained by Miksis et al. (1981), and are
shown in figure 1 by solid lines. The sensitivity of the results to the interfacial tension
σ is illustrated by showing theoretical predictions of Moore for two different values
of σ. The dashed line corresponds to the results for spherical bubbles. The open
circles represent the experimental data for the rise velocity by Duineveld (1995).
These measurements were carried out in very clean water. The solid circle represents
the data recently obtained by Zenit, Koch & Sangani (2001) for bubbles in water
containing some salt (magnesium sulphate). We see that the results are in reasonably
good agreement with Moore’s theory of ellipsoidal bubbles. The rise velocity measured
by Duineveld for pure water is seen to be only slightly greater than that measured
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Figure 1. Bubble rise velocity V as a function of its radius a. The open circles show experimental
data of Duineveld (1995) for ‘hyper clean’ water and the solid circle the value reported by Zenit
et al. (2001) for a dilute MgSO4 solution. The solid lines 1 and 2 are calculated using the Moore
(1963) formula for σ = 0.07 and σ = 0.05, respectively while the dashed line 3 represents Levich’s
(1962) theory for a spherical bubble.

for water containing some salt. More noteworthy, however, is the observation that
accounting for the deformation of bubbles leads to a significant improvement in the
prediction of rise velocity and that the potential flow approximation gives reasonable
estimates of the rise velocity of a bubble over a significant size range of bubbles. Thus,
direct numerical simulation of the motion of interacting, deformable bubbles using
a potential flow theory can be expected to improve the aforementioned analytical
framework for flows of bubbly liquids based on assumption of spherical bubbles.

We describe here a method for simulating the motion of deformable bubbles.
Although the flow will be approximated as potential, the method does allow for
leading-order viscous effects. The method will be applied to several problems involving
motion of a single bubble or interactions of two or many bubbles. In the case of a
single bubble we consider both its steady motion and the motion when undergoing
translation and shape oscillations. The latter case is shown to be reasonably accurately
modelled by treating the bubble shape at any instant as an ellipsoid. The total kinetic
energy of the liquid can be decomposed into two parts, one corresponding to the
translational motion of the bubbles and the other to the shape oscillations, to
be referred to as, respectively, the translational and vibrational energies. We give
expressions for these two energies and the interfacial energy of a single bubble in
terms of its radius and aspect ratio. It is shown that simple formulas based on
treating the bubble shape at any instant as an ellipsoid for these different forms of
energy give quite an accurate description of the single bubble motion. One of the
motivations for carrying out single bubble calculations and interpreting them in the
above manner derives from the expectation that the simplest equations of motion
for bubbly liquids at finite Weber numbers will have mean bubble velocity, volume
fraction and aspect ratio as primary variables, and so a kinetic theory description of
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bubbly liquids will have to account for the partition of the fluctuation energy into
translational, vibrational, and interfacial energies.

We next consider motion of two bubbles towards each other in an impurity-free
inviscid liquid at various Weber numbers. It is shown that the distance between
the two bubbles continues to decrease with time so that they will coalesce in a
finite amount of time, at least for the Weber numbers less than about 3 for which
the computations are carried out. This was a somewhat unexpected result since it is
generally thought that the increase in the pressure in the gap between the approaching
bubbles may arrest their motion at high enough Weber numbers for which the initial
kinetic energy of liquid may be temporarily stored as interfacial energy before the
bubbles begin to bounce (Doubliez 1991; Tsao & Koch 1994; Chesters & Hoffman
1982). Thus, the presence of impurities such as salt or surface-active impurities is
necessary for the bounce to occur. Tsao & Koch (1994) have examined the case of
bubbles bouncing in the presence of electrolytes. Electrolytes such as sodium chloride
or magnesium sulphate are believed to induce a short-range non-hydrodyanamic
repulsive force between the bubbles. These investigators considered the limit of small
Weber number and showed that the time for bubbles to bounce is O(We1/2). These
investigators also reported observations on the bounce of a bubble from a wall. We
calculate the bounce time as a function of Weber number. Our results for small
Weber number are shown to be in agreement with the predictions of Tsao & Koch.
We also compare the computed trajectory and surface area of the bubble as a function
of time with those measured by Tsao & Koch for a bubble bouncing from a wall
and find very good agreement between the two even though the physical situations
are somewhat different: the experiment examined bounce from a wall in deionized
water while our simulations considered bounce due to the presence of another bubble
in the presence of a short-range repulsive potential. The good agreement may just
be fortuitous or may suggest that the interaction with a horizontal wall can be
modelled using a potential flow with an image bubble. We next study the interaction
of a pair of bubbles rising due to buoyancy forces acting on them as a function of
the initial orientation of the pair. Spherical bubbles attract each other when they
are oriented at an angle greater than 55◦ with the vertical. Accounting for bubble
deformation does not change this result significantly. Thus, the clustering seen in
the simulations of Sangani & Didwania (1993b) is also likely to be observed for
finite Weber number flows induced by rising bubbles as long as the deformation is
not sufficiently pronounced to result in deviations from potential flow. It should be
noted, however, that experiments of Duineveld (1994) and de Vries (2001) suggest
that bubble–bubble and bubble–wall interactions can lead to shedding of vortices and
significant deviations from potential flow at even smaller Weber numbers.

Finally, we consider random arrays of oriented ellipsoids as a model of bubble
suspensions at finite Weber numbers and determine their added mass, viscous drag
and viscous dissipation coefficients as functions of volume fraction and aspect ratio.
We also determine a relation between the aspect ratio, volume fraction, and Weber
number of bubbles. The results are shown to be in very good agreement with the
predictions of an effective-medium theory. The theory is used to estimate the rise
velocity and mean aspect ratio of bubbles as a function of bubble volume fraction
for which Zenit et al. (2001) recently presented experimental data. The effect of
bubble interactions on aspect ratio and average properties of bubble suspensions
were not available previously and therefore comparison between the theory and
experiments presented in Zenit et al. (2001) was somewhat limited. We see that
significant discrepancy between the theory and experiments still persists even after
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accounting for the effect of bubble interactions at finite volume fractions. We suggest
that viscous dissipation due to the presence of container walls might be significant
enough to cause the discrepancy.

The numerical method is described in § 2. Single bubble motion is considered in
§ 3 and collision of a pair of bubbles in the presence of electrolytes is considered in
§ 4. Results for random arrays of bubbles and comparison with the experiments are
given in § 5. Finally, § 6 summarizes important results.

2. The method
At large Reynolds number the flow past low- or moderate-Weber-number bubbles

can be approximated to leading order as potential, i.e. u = ∇φ, u being the velocity
at a point in the liquid and φ the velocity potential. The liquid will be treated as an
incompressible fluid so that the potential satisfies the Laplace equation

∇2φ = 0. (2.1)

The boundary conditions for φ, which are the usual kinematic and stress conditions at
the surface of the bubbles, will be expressed in terms of a local ellipsoidal coordinate
system around each bubble in view of the fact that Moore (1965) was able to obtain
reasonably accurate results for a single bubble by treating it as an ellipsoid. Thus, let
the surface of a representative bubble α be expressed as

F(x− xα, t) ≡ R(η, ϕ, t)− ξ̄ = 0, (2.2)

where xα is the centre of mass of the bubble, t is the time, and ξ̄, η and ϕ and are the
oblate-spheroidal coordinates of a point x on the surface of the bubble. The function
R will be expanded in spheroidal surface harmonics with its axis of revolution oriented
along a unit vector m. Denoting by (yα1 , y

α
2 , y

α
3) the local coordinates of the point x

with yα1 measured along m, we have

yα1 = dξ̄η, yα2 ± iyα3 = dξη̄ exp(±iϕ), ξ̄2 = ξ2 − 1, η̄2 = 1− η2. (2.3)

Here, d is the radius of the disk in the focal plane defined by ξ̄ = 0, −1 6 η 6 1, and
0 6 ϕ 6 2π. The local coordinates yα are related to x by

xi = xαi (t) + oαijy
α
j , (2.4)

where the direction cosines oαij relate the orientation of the local (related to bubble α)
coordinate system to the global Cartesian coordinate systems.

If the bubble is an exact oblate spheroid then R has a constant value, and the
surface of the bubble is given by R = ξ̄0. More general shape can be expressed in
terms of a series of surface harmonics:

R(η, ϕ, t) =

Ns∑
k=0

k∑
l=−k

Rkl(t)Ykl(η, ϕ), (2.5)

where Ykl are given by

Ykl(η, ϕ) = P l
k(η) exp(ilϕ), (2.6)

P l
k being the associated Legendre polynomial of degree k and order l, and R00 = ξ̄0.
Application of the kinematic condition yields

Ns∑
k=0

k∑
l=−k

ṘklYkl + (u− V α) · ∇F = 0, (2.7)
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where Ṙkl is the time derivative of Rkl , u = ∇φ is the liquid velocity, and V α = ẋα

is the velocity of the bubble’s centroid. We shall satisfy this condition in the integral
sense. Multiplying the above equation by Y ∗kl and integrating we obtain

Ṙkl =
1

αkl

∫ 1

η=−1

∫ 2π

ϕ=0

[(V α − ∇ϕ) · ∇F]Y ∗kl dη dϕ, (2.8)

where Y ∗kl is the complex conjugate of Ykl and

αkl =

∫ 1

η=−1

∫ 2π

ϕ=0

YklY
∗
kl dη dϕ =

4π

2k + 1

(k + |l|)!
(k − |l|)! . (2.9)

The normal-stress boundary condition for potential flow conditions can be written
as

pg = p+ σ∇ · n = −ρ
[
∂φ

∂t
+ 1

2
‖∇φ‖2

]
+ σ∇ · n, (2.10)

where σ is the interfacial tension and n is the unit outward normal at the bubble
surface. The partial derivative of φ with time must be evaluated at constant x. This
can be related to the derivative at constant η and ϕ by using the usual chain rule of
differentiation. Multiplying the stress boundary condition by Ykl and rearranging we
obtain, for k 6= 0,

dIkl
dt

= ρ

∫ 1

η=−1

∫ 2π

ϕ=0

[
− 1

2
‖∇φ‖2 + (V α + V

α
) · ∇φ+

σ

ρ
∇ · n

]
Ykl dη dϕ, (2.11)

where Ikl are the moments of velocity potential defined by

Ikl = ρ

∫ 1

η=−1

∫ 2π

ϕ=0

φYkl(η, ϕ) dη dϕ (2.12)

and V
α

= ẏα = (∂yα/∂ξ̄)(u− V α) · ∇F is a velocity due to bubble deformation. Since
the density of the gas is negligible compared to that of the liquid, the gas pressure pg
is essentially uniform inside the bubble. The integral of a constant times Ykl over the
surface (−1 6 η 6 1, 0 6 ϕ 6 2π) is zero for k 6= 0 and therefore the gas pressure does
not contribute to the above stress condition. Modifications to the above to account
for viscous and non-hydrodynamic forces acting on the bubble will be described later
in §§ 2.1 and 4.2.

The numerical scheme for evaluating the trajectories of bubbles through an inviscid
liquid consists of solving the Laplace equation (cf. (2.1)) for the velocity potential
given the shape and moments of potential, i.e. Rkl and Ikl , at time t = 0. Solution
of this boundary value problem is described below. Once the velocity potential is
determined the velocities of the bubbles are computed using

V α =
3

4πa3

∫
∂Dα

(n · u)x dA, (2.13)

where ∂Dα represents the surface of bubble α. Next Ṙkl and İkl are evaluated using
(2.8) and (2.12). (The dot above a quantity implies the derivative with respect to time.)
A Runge–Kutta scheme is used to determine Rkl and Ikl at time t = ∆t, ∆t being the
time step for trajectory integration. The above procedure is repeated to determine the
shape and motion of bubbles at subsequent times.

The orientation vector m and the parameter d defining the local curvilinear coor-
dinate system are assumed to be constant in the above derivation. Thus, the above
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expressions do not involve their time derivatives. If necessary, the re-expansion of the
bubble shape function F in terms of a new set of spheroidal coordinates with a differ-
ent m and d may be carried out every few time steps to provide better approximation
of the bubble surface and numerical efficiency of the method.

For a finite number of bubbles in an infinitely extended liquid the velocity potential
is expressed by a series

φ(x, t) =

N∑
α=1

Ns∑
n=1

n∑
m=−n

Aαnm(t)Fmn (x− xα(t), d), (2.14)

where Fmn are the solid singular ellipsoidal harmonics of degree n and order m (Hobson
1931), which can be written in oblate-spheroidal coordinates as

Fmn (yα, d) = Q−mn (iξ̄)Pm
n (η) eimϕ, (2.15)

where ξ̄, η and ϕ are related to yα ≡ x− xα and d by (2.3); Qmn are the associate Leg-
endre polynomials of the second kind of imaginary argument. It is more convenient,
however, to use instead of Qmn (iξ̄) the equivalent set of real-valued functions defined as
Qmn (ξ̄) = in+1Qmn (iξ̄); in what follows, we will use this re-definition of Qmn . Ns in (2.14)
represents the maximum order of harmonics used in determining φ. The multipoles
Aαnm at time t are determined by solving (2.12) with Ikl and Rkl specified for each
bubble at time t. The integral in (2.12) is evaluated by using a Guass quadrature rule
for integration along the meridian η and a uniform distribution of integration nodes
in ϕ. The total number of points used in evaluating the double integrals depended
on the desired accuracy.

For determining the velocity of the bubble the integration must be carried out for
its actual surface. This can be converted to integrals over η and ϕ using

dA =
d2ξ0

h
‖∇F‖dη dϕ, n = ∇F/‖∇F‖, (2.16)

where h = (ξ̄2 + η2)−1/2.
The impulse of the bubble is given by

I α = −ρ
∫
∂Dα

φ n dA, (2.17)

and its time derivative by

dI α

dt
= ρ

∫
∂Dα

[ 1
2
‖u‖2 − (n · u)u] dA. (2.18)

Note that the interfacial term is absent in the above expression. For very small Weber
number flows the surface tension term in (2.11) may require time steps for integration
to be sufficiently small. It is slightly advantageous in this case to replace the equations
with k = 1 in (2.11) by (2.18). Similarly, (2.12) with k = 1 is replaced by (2.17).

2.1. Viscous effects

The leading-order viscous effect for finite Reynolds number flows can be incorporated
in the analysis by either of the two methods discussed in Sangani & Didwania (1993b).
The first method is based on calculating the gradient of viscous energy dissipation
with respect to parameters that describe the motion of the surface of the bubbles, i.e.
Ṙαkl and ẋα for each bubble. Since the velocity correction in the boundary layers is
small, the leading-order energy dissipation can be determined from the potential flow
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solution as given by (see e.g. Batchelor 1967)

Ėdiss = −2µ

N∑
α=1

∫
∂Dα

ni
∂φ

∂xj

∂2φ

∂xi∂xj
dA. (2.19)

The gradient of the above dissipation function with respect to Ṙαkl and V α is difficult
and computationally inefficient. We shall use instead the second method, described
below.

The second method is based on the observation that the viscous force distribution
depends linearly on the parameters (ẋα, Ṙαkl) of the bubble surface motion. Instead
of determining the velocity correction in the boundary layers and the viscous force
distribution based on the full Navier–Stokes equation (Moore 1963; Kang & Leal
1988), we consider a small-amplitude oscillatory motion of the bubble around its
shape and position with the same ẋα, Ṙαkl . The viscous effects in this case are confined
to thin Stokes layers around the surface of each bubble. The analysis of the velocity
in the Stokes layer is much easier since the convective term in the Navier–Stokes
equations can be neglected for small-amplitude motion. A detailed analysis similar
to one performed in Sangani (1991) suggests solving the following problem for
determining the viscous correction to the inviscid, Bernoulli pressure. The viscous
pressure satisfies the Laplace equation in the liquid:

∇2pv = 0. (2.20)

The normal gradient of pv at the surface of the bubbles is related to the surface
divergence of the tangential component of the traction induced by the potential flow:

n · ∇pv = ∇s · T s on ∂Dα (2.21)

where the surface divergence operator is defined as

∇s · T s = ∇ · T s − n · (∇T s · n) (2.22)

and the tangent traction vector by

T s = T − n(T · n), T = 2µ∇∇φ · n. (2.23)

The boundary condition (2.21) can be expressed in the integral form∫
∂Dα

n · ∇pvY ∗kl dA =

∫
∂Dα

(∇s · T s)Y
∗
kl dA. (2.24)

The integral on the right-hand side requires evaluating third-order partial derivatives
of φ. An integration by parts can be used to lower the order of derivative required.
For this purpose it is useful first to write the above expression in terms of contravari-
ant surface components of vector T s (Aris 1962). Let uα, α = 1, 2, be the surface
coordinates of a point on the surface whose coordinates in the three-dimensional
space are yi. The contravariant surface components of T s are defined by

Tα
s = cαβtiβ(T s · ei), tiβ =

∂yi

∂uβ
, (2.25)

where the summation over i from 1 to 3 and β from 1 to 2 is implied as in the usual
Einstein notation, ei are the unit vectors in the three-dimensional space, and

cαβ =

3∑
i=1

h2
i t
i
αt
i
β , (2.26)
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hi being the metric coefficients. For the ellipsoidal coordinate system, u1 = η, u2 = ϕ,
h1 = hξ/d, h2 = hη̄/d, h3 = 1/(dξη̄) and h = (ξ̄2 + η2)−1/2. The surface divergence of
T s can be expressed in terms of surface contravariant components as

∇s · T s =
1√
c

∂

∂uα
(
√
cT α

s ), c = det ‖cαβ‖. (2.27)

Substituting the above equation in (2.24) and carrying out integration by parts we
obtain ∫

(∇s · T s)Y
∗
kl dA =

∫
Tβ
s

∂

∂uβ
Y ∗kl dA (2.28)

which requires only second-order derivatives of φ.
Once the viscous pressure is determined the normal stress balance (2.10) is modified

by adding pv − 2µnn : ∇∇φ to the right-hand side of (2.10). The integral condition
(2.11) is similarly modified. The above expression can be shown to reduce to that
used by Sangani & Didwania (1993b) for spherical bubbles. These investigators also
showed that the results obtained by this method are equivalent to those obtained by
the dissipation method for a pair of spherical bubbles.

Further details to treat the case of many bubbles with periodic boundary conditions
are given in § 5.

3. Single bubble motion
3.1. Steady motion

We begin with the results for a single bubble. As mentioned in the introduction,
several investigators have reported results for a uniform flow past a single bubble.
Moore (1965) determined the added mass, viscous drag and aspect ratio as functions
of Weber number assuming that the bubble is an oblate spheroid. We shall derive his
results here briefly in terms of the ellipsoidal harmonics introduced in the previous
section and then compare them with the results of numerical simulations which do
not assume the shape to be spheroidal. We shall also compare the results with those
by Meiron (1989) who determined the aspect ratio as a function of Weber number
by a method that is different from the one outlined here.

The velocity potential for a single oblate spheroid moving steadily with velocity
V = V e1 along the x1-axis is given by

φ(x) = A10F
0
1 (x, d) = A10Q1(ξ̄)η, Qn(ξ̄) = Q0

n(ξ̄). (3.1)

The kinematic condition at steady state reduces to n · ∇φ = n · V at ξ = ξ0. Noting
that the unit normal vector n on the surface of an oblate spheroid equals the unit
vector along the ξ-axis, it is easy to show that

A10 = dV/Q′1(ξ̄0), (3.2)

where a prime denotes differentiation of the function by its argument.
The added mass coefficient Ca for the bubble is calculated by first evaluating the

impulse I = I1e1 with

I1 = (m/2)CaV = −ρ
∫
φn1 dA, m = 4πρa3/3, (3.3)

a being the equivalent radius of a sphere having the same volume as that of the
spheroid and m the mass of the liquid displaced by the spheroid. The definition of Ca
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involves a factor of one-half so as to make Ca equal to unity for a spherical bubble.
Using n1 dA = 2π d2ξ2

0η dη, and integrating from η = −1 to η = 1, we obtain

Ca = − 2Q1(ξ̄0)

ξ̄0Q
′
1(ξ̄0)

. (3.4)

The following relations are useful for evaluating the added mass coefficient as a
function of the aspect ratio χ of the oblate spheroid:

Q1(ξ̄) = 1−ξ̄ tan−1(1/ξ̄), Q1(ξ̄)−ξ̄Q′1(ξ̄) = 1/ξ2, (a/d)3 = ξ2
0 ξ̄0, χ = ξ0/ξ̄0. (3.5)

With use of (3.5), (3.4) can be written alternatively as Ca = −2d2A10/V − 2. The
viscous drag coefficient Cd can be determined from the viscous energy dissipation rate
by means of

Ėdiss = 12πµaV 2Cd = −2µ

∫
[∇∇φ : ∇φn] dA. (3.6)

Substituting for the velocity potential φ in the above equation and evaluating the
integral yields

Cd =
1

3(ξ2
0 ξ̄0)4/3

[1− (1− ξ̄2
0)Q1(ξ̄0)]

[ξ̄0Q
′
1(ξ̄0)]2

. (3.7)

This result is just a different form of Moore’s well-known formula for a viscous drag
and it agrees with the drag force determined by the second method described in
the previous subsection, i.e. that based on determining viscous pressure based on an
equivalent bubble oscillation problem.

The above results for a single oblate spheroid are exact. To relate these results to
those for a bubble moving with velocity V , Moore (1965) estimated the aspect ratio
by satisfying the dynamic boundary condition

pg = ρ(V − 1
2
u) · u+ σ∇ · n (3.8)

at η = 0 and η = 1. The two unknowns χ and pg can be determined from the
two equations generated from (3.8). In particular, the aspect ratio is determined by
requiring that the right-hand side of (3.8) be the same for η = 0 and 1. Let H(η) be
given by

H(η) = − 1
2
‖∇φ− V ‖2 +

σ

ρ
∇ · n. (3.9)

The aspect ratio is then determined by solving

H(0) = H(1). (3.10)

The sum of curvatures at a point on the surface of an oblate spheroid can be evaluated
from

∇ · n =
h2

d

∂

∂ξ̄

(
ξ

h

)
, ∇ · n|η=0 = (1 + χ2)χ−1/3, ∇ · n|η=1 = 2χ−4/3. (3.11)

Equation (3.10) is most conveniently solved by choosing the value of ξ, and hence
the aspect ratio, and determining the Weber number from (3.9)–(3.11). The resulting
aspect ratio (Moore’s solution) is shown as a function of Weber number in figure 2
as a dashed line. The solid curve corresponds to the results of the more exact analysis
by Meiron (1989) and reproduced by the numerical method described in § 2. Both the
χ(We) curves have a turning point at We = Wec: Moore’s analysis gives Wec ' 3.74
while Meiron’s analysis gives Wec ' 3.35.
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Figure 2. Aspect ratio χ of a bubble as a function of Weber number We. The dashed line
corresponds to Moore’s (1963) theory, the triangles show Meiron’s (1989) numerical solution (data
are taken from the plot). The results obtained by the present method are shown by the solid
(Re = 200) and open (Re = 400) circles; solid line represents the fitting formula (3.12).

Meiron determined the steady state shape directly from the kinematic and nonlinear
dynamic boundary conditions by using a Newton’s iterative scheme. The velocity
potential was expressed in terms of ellipsoidal harmonics as in the present study and
the boundary conditions were satisfied at a selected number of points. In the present
analysis, we solved the unsteady flow equations. The bubble was given a body force
to counterbalance the viscous force at steady state. It was found that the numerical
results converged with increasing Ns, the highest order multipoles retained in the
calculations, and that in most cases Ns = 6 provided adequate accuracy. The time
integration was carried out using a fourth-order Runge–Kutta scheme and a time
step of 0.01 (non-dimensionalized by a/V ) gave sufficiently high accuracy. The results
for two Reynolds numbers Re = 200 and Re = 400 are shown in figure 2 by the
solid and open circles, respectively. Further increase in Re did not change the results
significantly. We see that our results for Re = 400 are in excellent agreement with the
results of Meiron corresponding to Re = ∞.

The expression given by Moore (1965) is not convenient for determining the aspect
ratio of a bubble given its Weber number since it explicitly gives Weber number as a
function of aspect ratio. The following expression obtained by curve fitting the exact
results of Meiron and the present analysis can be used in its place for estimating
aspect ratio for We 6 3.3:

χ = 1 +
9

64
We+

0.06We2

(3.37−We)1/2
. (3.12)

Figure 3 compares the results of our numerical simulations for the added mass
and viscous drag coefficients as a function of aspect ratio (and hence the Weber
number for We < Wec) with those given by Moore (cf. (3.5) and (3.7)). Once again,
the following expressions obtained by curve fitting our numerical results may be used
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Figure 3. Added mass coefficient Ca (line 1) and viscous drag coefficient, Cd (2) as a function of a
bubble aspect ratio obtained numerically (solid lines), from Moore’s approximate solution (dashed
lines), and by fitting the accurate solution by (3.13) and (3.14) (dotted lines).

1.68

1.66

1.64

–1.0 –0.5 0 0.5
è

pg

1.70

6

10

1.0

8

4

Ns=2

Figure 4. Convergence check of solution given by series (2.14), with Ns increased, by verifying the
boundary condition pg = const at the bubble surface.

for evaluating the added mass and viscous drag coefficients:

Ca = 1 +
27

160
We+ 0.072

We2

(3.37−We)1/2
, (3.13)

Cd = 1 +
3

16
We+ 0.1124

We2

(3.37−We)1/2
. (3.14)

The dynamic boundary condition on the surface of a bubble is satisfied in our
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method in the integral sense. To see how well that condition is satisfied we show in
figure 4 the gas pressure pg at the gas–liquid interface evaluated using

pg = −ρ
(
∂φ

∂t
+

1

2
u2

)
+ σ∇ · n. (3.15)

In these calculations we set the viscous and buoyancy forces to zero and chose the
initial aspect ratio of the bubble to be given by Moore’s expression with We = 2.
Since the initial shape did not correspond to the exact result, the bubble underwent
slight shape oscillations as a function of time. The partial derivative of φ with time
was evaluated using a backward difference approximation after a time of about one
unit (non-dimensionalized by a/V ). Since the density of the gas is assumed to be
vanishingly small, we expect pg to be constant. The results shown in figure 4 suggest
that variation in pg along the interface is indeed very small even with Ns = 4 for
which the pressure variation is less than 1%. (Note that the pressure scale in the
figure is considerably expanded to show the detailed variation.)

3.2. Shape oscillations

We next consider shape oscillations of bubbles. As mentioned in the introduction,
kinetic theory for finite Weber number flows of bubble suspensions must consider
both translational and vibrational (shape) oscillation modes of bubbles. We shall
first derive an approximate expression for accounting for shape oscillations and then
compare it with the results of numerical simulations.

The aspect ratio variations are governed primarily by the P2-part of the velocity
potential. Let

φ = F0
2 (x, d) = Q2(ξ̄)P2(η) (3.16)

be the velocity potential around a spheroid of aspect ratio χ. Assuming its volume to
be constant, the rate of change of aspect ratio can be determined from the normal
gradient of φ at η = 1. This yields

χ̇ = −3

2

ξ0

d2ξ̄2
0Q
′
2(ξ̄0)

. (3.17)

Next, we determine the total kinetic energy of the fluid corresponding to the velocity
potential (3.16) and express the result in the form

Ev = (m/2)Cv(aχ̇)
2, (3.18)

where Ev is the total vibrational energy, i.e. total kinetic energy resulting from a
spheroid whose aspect ratio is varying with time, and Cv the vibration coefficient
given by

Cv = − 4

15

(
d

a

)5

ξ̄4Q2(ξ̄0)

Q′2(ξ̄0)
. (3.19)

The explicit expressions for Q2 and Q′2 are

Q2(ξ̄) = 1
2
[−3ξ̄ + (1 + 3ξ̄2) tan−1(1/ξ̄)], Q′2(ξ̄) = −3 + 1/ξ2 + 3ξ̄ tan−1(1/ξ̄). (3.20)

For a spherical bubble this yields Cv(1) = 4/45. Now in the absence of viscous effects
the sum of interfacial, translational, and vibrational energy of the fluid remains
constant and therefore the motion of a single bubble undergoing translation and
shape oscillations will approximately satisfy

Et = (m/2)[CaV
2 + Cv(aχ̇)

2] + Es = const, (3.21)
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Figure 5. The excess surface area S/a2 − 4π (line 1), vibration coefficient Cv (line 2) and vibration
dissipation coefficient Cdv (line 3) as functions of spheroidal bubble aspect ratio χ. The solid circles
represent the values Cv = 4/45 and Cdv = 32/81 for a spherical (χ = 1) bubble.
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Figure 6. Aspect ratio χ of a freely oscillating bubble (V = 0) as a function of time obtained by
numerical simulation (open circles) and by integrating (3.21) (solid curves). The lines 1, 2 and 3
correspond, respectively, to We = 0.25, 1.0 and 1.5.

where Et is the total energy, Es = σ(S(χ) − 4πa2) is the excess surface energy, and S
is the surface area of a spheroid with aspect ratio χ:

S(χ) = 2πd2ξ0[ξ0 + ξ̄2
0Q0(ξ0)]. (3.22)

Figure 5 shows Cv and S/a2 − 4π as functions of χ. The above expressions are
approximate since the bubble shape does not correspond exactly to an ellipsoid and
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since the bubble motion will induce other (Pn, n > 3) shape oscillation modes in
addition to the P1 and P2 modes considered in determining the expression for the
total kinetic energy of the liquid.

Figure 6 shows the aspect ratio of a bubble as a function of time. The initial shape
of the bubble corresponded to Moore’s solution for a steadily translating bubble with
velocity V and Weber number We. To study the free oscillations of the bubble, we
set V = 0 for t > 0. Since the initial ellipsoidal shape of the bubble has a surface area
that is greater than the spherical bubble having the same volume, the bubble will
undergo shape oscillations such that the sum of vibrational and interfacial energy
will remain constant. The solid lines in figure 6 correspond to χ as a function of time
obtained by integrating (3.21) which gives

χ̇ = ±
(

Et − Es
Cv(m/2)a2

)1/2

. (3.23)

Initially χ decreases as the interfacial energy is converted into vibrational energy and
therefore the negative sign must be used while integrating (3.23). The sign is switched
subsequently every time χ̇ becomes zero.

The circles in figure 6 represents the results of numerical simulations with Ns = 10.
We see that the results are in excellent agreement with the approximate theory. Small
amplitude P2-mode oscillations of spherical bubbles have a natural frequency given
by

ω =

(
12σ

ρa3

)1/2

. (3.24)

The period for one cycle computed using 2π/ω agrees well with the results of
numerical simulations, suggesting that (3.24) gives reasonably accurate estimates of
the frequency of shape oscillations.

Next we consider a case where the translational velocity is non-zero. For this case we
once again start with an initial shape corresponding to Moore’s solution with velocity
V and Weber number We. At t = 0 we reduce the velocity to V/2 to induce shape
oscillations. Figure 7 shows results for aspect ratio as a function of time for three
initial Weber numbers. The solid line represents the predictions of the approximate
theory while the dashed lines the results of numerical simulations. The approximate
theory predicts oscillatory motion while the numerical results show that the aspect
ratio variation is not exactly cyclical. The coupling between the translational and
vibrational mode leads to more complicated behaviour of aspect ratio as a function
of time than can be predicted from the simple model given by (3.21)–(3.22). At any
rate, we see that the approximate theory does give reasonably accurate predictions
of the magnitude of the aspect ratio fluctuations. Figure 8 shows the translational
velocity of the bubble as a function of time. Once again we see good agreement
between the results of exact computations and an approximate theory based on an
ellipsoidal bubble.

The amplitude of the oscillations in aspect ratio and translational velocity of the
bubble will decrease with time when the fluid viscosity is finite. The energy dissipation
due to motion induced by aspect ratio variations can once again be estimated by
treating the bubble as an ellipsoid and considering only the P2-mode oscillations. This
yields the energy dissipation due to vibration mode be given by

Ėdv = 12πµa3χ̇2Cdv (3.25)
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Figure 7. Bubble aspect ratio χ as a function of time in the case of non-zero translational velocity
obtained by numerical simulation (dashed curves) and by integrating (3.21) (solid curves). The lines
1, 2 and 3 are calculated for, respectively, We = 0.25, 1.0 and 1.5.
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Figure 8. Translational velocity of an oscillating bubble as a function of time.
For details of the curves, see figure 7.

with the vibration dissipation coefficient given by

Cdv(χ) =
4d3

27a3
ξ̄3

0

[
1 +

2Q2(ξ̄0)

ξ̄0ξ
4
0(Q′2(ξ̄0))2

]
. (3.26)

For a spherical bubble (d → 0), the above expression yields Cdv(1) = 32/81, in
agreement with a small-amplitude analysis for spherical bubbles. Cdv as a function of
χ is given in figure 5 by line 3. Note also the simple and accurate fitting formulas
Cv(χ) = Cv(1)χ−2.158 and Cdv(χ) = Cdv(1)χ−2.082.
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Figure 9. Aspect ratio χ of a freely oscillating bubble (Re = 200). The solid line represents
solution of (3.27)–(3.28) and the dashed line the numerical solution.

The single bubble motion can be modified now to account for finite viscosity using

dI

dt
= −12πµaCdV = −12πµa(Cd/Ca)(2I/m), (3.27)

dEt
dt

= −12πµa[CdV
2 + Cdv(aχ̇)

2], (3.28)

with Et given by (3.21).
Figures 9 and 10 show comparisons between the numerical results and the predic-

tions based on the above equations. The viscous damping of a freely oscillating bubble
(with no net momentum of liquid) shown in figure 9 is very accurately predicted by
(3.28). The case of a translating and oscillating bubble shown in figure 10 is predicted
with lesser accuracy presumably because the model equations do not account for
P1-P2 mode coupling. It is interesting to note that the impulse of the bubble decreases
nearly steadily with time even though both the velocity and the aspect ratio show
considerable oscillations.

4. Pair of bubbles
4.1. Impurity-free liquids

We next consider the motion of two interacting bubbles. First, we show that bubbles
moving towards each other with equal and opposite velocities along their line of
centres will coalesce under potential flow conditions in the absence of surface-active
impurities or electrolytes.

Calculations were done for bubbles with initial relative velocity of 2V and separated
initially by 10 bubble radii. The initial shape was assumed to be an oblate spheroid
with an aspect as determined from Moore’s solution. Figure 11 shows the shape of
the bubbles as a function of Weber number (We = 2aρV 2/σ) just prior to touching.
The bubbles become considerably flattened as they approach each other but fail to
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Figure 10. Viscous damping of impulse (line 1), aspect ratio (line 2) and translational velocity
(line 3) of an oscillating bubble; Re = 200, We = 1.5. The dashed lines are obtained by numerical
integration and the solid lines using the simplified model (3.27)–(3.28).
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Figure 11. Bubble’s shape just prior to touching during the approach of two equal-sized bubbles
towards each other (minimum distance between the surfaces hmin = 0.02a). The contours 1, 2, and 3
correspond to initial We numbers of 0.25, 1.0 and 2.0, respectively.

convert the kinetic energy of the fluid completely into interfacial energy to arrest
their motion. The calculations were carried out up to We of approximately 3, slightly
less than the single-bubble critical Weber number. The viscosity of the fluid was
taken to be zero. Figures 12 and 13 show the magnitude of impulse and velocity of
the bubbles at the time when they come in contact. The hydrodynamic interactions
between the bubbles cause an attractive force and this increases the magnitude of
the impulse of the bubbles as they move towards each other. On the other hand,
the relative velocity of the bubbles decreases as they approach each other in spite
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Figure 12. The magnitude of bubble impulse I1 just prior to touching the other bubble as a function
of initial Weber number for a bubble of a general shape given by (2.5) (solid line) and a spheroidal
bubble with variable aspect ratio (Ns = 2 in (2.5)) (dashed line).
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Figure 13. Bubble velocity V just prior to touching the other bubble as a function of initial Weber
number. The solid line represents the exact calculations while the dashed line corresponds to a
spheroidal bubble.

of the increase in the impulse as a result of the flattening which increases their
added mass coefficients. Evidently, this increase in the added mass coefficients is not
sufficiently great to reduce the bubbles velocity to zero. We see from figure 13 that
the relative velocity of the bubbles is reduced by only about 55% even at We = 3.
This reduction is significantly greater than the reduction of about 18% for spherical
bubbles, but not enough to prevent bubbles from coming in contact with each other.
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The dashed lines in figures 12 and 13 correspond to an approximate model in which
the bubbles are treated oblate spheroids with a variable aspect ratio governed by
(3.10). This yields a fairly accurate estimate of the impulse variation with time. The
velocity prediction, however, is not accurate. The actual bubbles are more deformed
and their shape deviates considerably from an ellipsoid. As a consequence, the added
mass coefficients of the actual bubbles is significantly greater than those of model
ellipsoids.

From the calculations above, we conclude that two bubbles moving in impurity-
free, inviscid liquid will coalesce in a finite time. This was a somewhat unexpected
result since it is generally believed that bubbles do not coalesce at sufficiently high
Weber numbers. For example, Chesters & Hoffman (1982) performed an analysis of
the fluid flow and bubble deformation arising from the collision of two low-Weber-
number bubbles in the absence of impurities and found that the bubbles coalesce.
However, they speculated that at O(1) Weber numbers, the deformation would be
sufficient to produce a bounce. Also, there are at least three sets of experiments that
show evidence of bubbles bouncing. The first is experiments by Doubliez (1991) who
observed that bubbles rising towards a free surface will bounce off the interface when
their Weber number is greater than 0.26. The second is observations by Tsao & Koch
(1997) on a rising bubble colliding with a larger bubble held fixed in an inverted tube.
These investigators found that the smaller bubble bounced off the fixed bubble for
We greater than about 1.8. In both cases the bubbles are bouncing off a gas–liquid
interface with much greater surface area and one might suppose that the ability of the
interface with large surface area to temporarily store the kinetic energy of the liquid
as interfacial energy may be responsible for the observed bounce. In the experiments
of Tsao & Koch (1997) the fact that the larger bubble was held fixed might have
also played important role in producing the bounce. Finally, Duineveld (1994) has
reported observations on pairs of bubble rising side by side which causes an attractive
force and brings the bubbles towards each other. He found that larger bubbles with
Weber numbers based on their rise velocities greater than about 0.85 bounced while
the smaller bubbles coalesced. The Weber number based on relative velocities of the
bubbles was greater than 0.18 for bouncing bubbles.

Direct calculations for the geometries considered in the investigations mentioned
in the previous paragraph are difficult but hypotheses regarding large surface area
and fixed bubble can be partially tested by simulating interaction between a moving
bubble and a larger fixed bubble. Figure 14 shows interaction between bubbles of
radii a and 3a. The impulse of the larger bubble was set to zero at all times which
amounts to applying a time-varying force on that bubble. This caused the larger
bubble to remain nearly fixed at all times. Two cases corresponding to Weber number
based on the smaller bubble’s velocity and equivalent diameter of 0.5 and 2.0 were
simulated. In both cases no bounce occurred as can be seen from figure 14 which
shows the shape of the bubbles just prior to touching. For a bounce to occur the
impulse of the smaller bubble must become zero and then change sign during the
rebound. The potential flow interactions, however, cause the impulse of the smaller
bubble to increase with time. Thus we conclude that the observed bounce in the two
investigations cited above must be due to physical effects other than those modelled
here, i.e. potential flow interaction of bubbles in an impurity-free liquid.

The potential flow approximation can be applied to two colliding bubbles only
if the viscous traction exerted by the gas on the liquid film between the bubbles is
negligible. Since the velocity gradients in the gas scale with the radial extent of the
near-contact region, the viscous stress of the gas will induce velocity variations across
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Figure 14. Normal collision of two different-sized bubbles with the radii ratio equal to 3.0 for
We = 2.0 (solid contours) and We = 0.25 (dashed contours).

the liquid film if µg/µ = O(rf/h) where rf is the radial extent of the film, h is the film
thickness, and µg is the viscosity of the gas. At small Weber numbers in the absence
of non-hydrodynamic forces, rf = O((ah)1/2) and, since µg/µ = O(10−3), the potential
flow approximation holds down to film thicknesses h of order 1 nm. For such a thin
film, van der Waals attractions would lead to rapid coalescence. However, at higher
Weber numbers, the region of near contact between the bubbles may become larger,
so that viscous forces become important at moderate h. For example, if rf = 0.5 mm,
then viscous effects would be important for h ≈ 0.5 µm. It is therefore possible that
the bounces observed in Tsao & Koch’s and Doubliez’ experiments resulted from the
finite viscosity of the gas and the bounce coalescence criterion would then depend on
Re and µg/µ as well as We. The bounce of moderate-Weber-number bubbles rising
in a liquid might result from vortex shedding induced by the interaction as suggested
by de Vries (2001) in his study of bubble–wall collisions.

4.2. Bounce in the presence of electrolytes

We next consider the bounce of bubbles due to presence of non-hydrodynamic
repulsive forces between the bubbles. As mentioned earlier, electrolytes such as
sodium chloride or magnesium sulphate induce short-range repulsive forces between
the bubbles due to hydration effects (Pashley 1981; Lessard & Zieminski 1971; Tsao
& Koch 1994). Water molecules strongly associated with large cations such as Na+

or Mg++ adsorbed at the air–water interface are believed to form hydration layers
near the interface. Hydration layers are very thin, of the order of a few nanometers.
In the present study we shall assume that the non-hydrodynamic pressure induced in
the gap between two gas–liquid interfaces separated by distance x is given by

pnh = P0 exp−(κx) ≡ AρV 2 exp−(Bx/a), (4.1)

where P0 and κ are constants, V is the characteristic velocity used in defining the Weber
and Reynolds numbers, and A and B are non-dimensional constants representing
the ratio of non-hydrodynamic to hydrodynamic pressures and the inverse of the
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Figure 15. Dynamics of a bubble bouncing due to the short-range repulsive force given by (4.1).
The curves represent time variation of impulse (line 1), velocity (line 2), aspect ratio (line 3), kinetic
energy (line 4), total (kinetic plus excess surface) energy (line 5) and hmin (line 6).

distance over which the non-hydrodynamic forces remain significant. The above form
of the non-hydrodynamic pressure is chosen such that the pressure remains finite as
x → 0, thus permitting the possibility that a bubble–bubble encounter may result
in a coalescence when A is not sufficiently large. Since we are primarily interested
in bubbles of about 1 mm radius and since κ−1 is expected to be of order of few
nanometers, the constant B is large. Numerical computations with very large B are
extremely difficult but we expect that a reasonable approximation can be obtained by
choosing B−1 small compared to the extent of bubble deformation which is O(We1/2)
for small We.

The effect of the non-hydrodynamic pressure is included by simply adding pnh to the
right-hand side of the normal-stress condition (2.10). Now as the bubbles approach
each other, work must be done against the non-hydrodynamic force and as a result
the magnitude of the impulse decreases as the gap between the bubbles decreases.
For sufficiently large A the impulse and velocity of the bubbles can be brought to
zero before the bubbles touch resulting in the bounce. Figure 15 shows the results for
the case of We = 1, A = 20 and B = 10. Curve 1 represents impulse of a bubble as a
function of time. We see that the impulse goes through a maximum and a minimum.
The time lapse between these two extremas will be referred to as the collision time.
The impulse–time curve is not symmetric about the time at which the impulse of the
bubble vanishes. This is more clear from curve 2 which shows velocity as a function
of time. The oscillations in the velocity after the bounce are more pronounced. Curves
4 and 5 show, respectively, the total kinetic energy of the fluid (translational plus
vibrational) and the kinetic energy plus the excess interfacial energy Es. We see that
the minima in the two occur at different times. The minimum in the kinetic plus
excess interfacial energy corresponds to roughly 60% of the energy at time t = 0.
The remaining 40% of the energy was confirmed to equal the work done against the
non-hydrodynamic forces. Curve 6 shows the minimum gap thickness between the
surfaces of two bubbles as a function of time. It goes through a minimum of 0.05a
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Figure 16. Position of centroid as a function of time during its bounce from the horizontal wall.
Open circles: observations of Tsao & Koch (1997); solid line: numerical simulations. a = 0.79 mm,
Re = 420,We = 2.55 and Fr = Re/18Cd = 10.25.

shortly after the bubbles have begun to bounce back. Finally, curve 3 shows aspect
ratio of the bubble as a function of time. It goes through a maximum of about 1.5
also just after the bounce begins.

It is interesting to compare the dynamics of the bounce between two bubbles
induced by non-hydrodynamic forces with the bounce of a rising bubble from a rigid
horizontal wall observed by Tsao & Koch (1997). The velocity of the liquid normal
to the wall is zero and this is consistent with an image bubble experiencing a force
opposite to gravity. Of course, the potential flow approximation will not be valid
very close to the wall where viscous effects are significant and presumably responsible
for causing the bounce. For low-Weber-number aerosol drops bouncing from a rigid
wall, Gopinath & Koch (2002) showed that a simple non-hydrodynamic repulsive
force yields similar drop dynamics to that obtained with a rigorous treatment of
the lubricating gas film. This observation for a similar problem supports our use of
a non-hydrodynamic force with an image bubble to model the liquid film between
a bubble and a wall. Figure 16 shows the position of the centroid of the bubble
as a function of time while figure 17 shows the surface area of the bubble as a
function of time. The lines represent the results of numerical simulations based on
the potential flow approximation together with a non-hydrodynamic force due to
an image bubble. The calculations also accounted for viscous effects as described
in § 2. The circles in these figures represent the measurements by Tsao & Koch
(1997). In making this comparison we chose the radius and the initial aspect ratio
of the bubble in our simulations to be the same as those in the experiment. This
corresponds to a = 0.79 mm, χ = 1.8, Re = 420 and We = 2.55. These numbers
are somewhat different from those reported by Tsao & Koch (1997) but since the
viscous drag and other properties are sensitive to the aspect ratio, it is important
that the aspect ratio be kept the same as that observed in the experiments. We see
that both the computed trajectory and the surface area of the bubble are in excellent
agreement with the measured values. Tsao & Koch (1997) have also presented a
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Figure 17. Time variation of the normalized surface area S/4πa2 of the bubble bouncing from a
horizontal solid wall. The open circles represent experimental data of Tsao & Koch (1997), solid
line represents the numerical solution. The flow parameters are the same as in figure 16.

sequence of photographs illustrating the shape of the bubble as it approaches and
recedes from the wall. The shapes are asymmetric with the wall facing side of the
bubble much flatter during the approach than during the rebound. This is also in
very good agreement with the results of numerical simulations. Thus, it appears that
the potential flow approximation together with non-hydrodynamic repulsive forces
from an image bubble models very accurately the collision of a rising bubble with
a horizontal wall. It may be noted that Tsao & Koch’s experiment used deionized
water. The mechanism for the bounce may therefore be quite different than the one
modelled in our simulations since one would expect the interaction of the viscous
boundary layer at the wall with the bubble to play an important role in the bounce
process.

Next, we address two questions: how does the collision time between two bubbles
of equal size vary with Weber number when A and B are sufficiently large, and
for what values of A and B will the bubbles not bounce? Tsao & Koch (1994)
have examined both these questions for the case of small Weber numbers. We shall
compare our results with their predictions and provide simple formulas that can be
used when the Weber number is not small. For each Weber number we begin with
two bubbles initially separated by about 5 radii and determine the times at which
the impulses of the bubbles go through extreme values. The collision time, defined
as the difference between the times of the two extrema, is evaluated for increasing
values of A and B until no significant change in the collision time is noted. For
smaller Weber numbers it is necessary to use greater values of A and B since B must
be large compared with We−1/2 and since the work done by the non-hydrodynamic
force is O(ρV 2A/B exp(−Bhmin)), hmina being the minimum gap between the bubbles.
This work must be comparable to the initial kinetic energy of O(ρV 2) suggesting
thereby that A must also be sufficiently large. The numerical computations become
challenging as A and B are increased since the time step for integrating the equations
of motion for the bubbles must be decreased and Ns, the number of multipoles used
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Figure 18. Collision time as a function of Weber number obtained from numerical experiments
(open circles) for A = 2000 and B = 200 and given by (4.2) (dashed line).

in determining the velocity potential, must be increased to obtain accurate results.
We used Ns in the range of 10–20 depending on the magnitude of B and, for small
Weber numbers, the results for collision time as a function of B were extrapolated
to estimate the collision time as B → ∞. The results for collision times are shown in
figure 18. For small Weber numbers the collision time is proportional to We1/2a/V
in agreement with Tsao & Koch’s analysis. The dynamic boundary condition dictates
that the non-hydrodynamic pressure in the gap between the bubbles during the
bounce be O(σ/a) in order that a relatively flat liquid film between the two bubbles is
formed during the bounce. The radial extent of this region is such that the change in
interfacial energy is comparable to the initial kinetic energy of the liquid. This radial
extent can therefore be shown to be O(aWe1/4) (Tsao & Koch 1994). The force due
to non-hydrodynamic pressure therefore equals O(σaWe1/2). This force must equal
the rate of change of impulse O(ρa3V/tc) during the bounce, which requires that the
collision time tc be O(We1/2a/V ). The results of computations for the collision time
are approximated well by the formula

tc = (a/V )(α1We1/2 − α2We3/4) (4.2)

with α1 = 2.32 and α2 = 1.25 for We < 2.
The calculation of the minimum value of A below which the bubbles will fail to

bounce is somewhat more complicated. In principle, one can systematically decrease
A while keeping B and We fixed to determine the minimum value of A below which
the bubbles coalesce. This calculation, however, is difficult because the accuracy of
the solution for flow in the gap between the bubbles deteriorates as the liquid film
thickness becomes very small. The bubbles touch each other in some cases after they
have reversed their velocities due to large shape oscillations which may have been
induced because of the breakdown in the numerical solution for very thin films. To
make sure that this bubble overlap did not occur due to time stepping or inaccurate
solution, one must use very small time steps and very large Ns. To avoid this, we
determine the minimum A for the bounce by a two-step process. For every pair of A,
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Figure 20. Maximum fraction of stored interface energy Es/Et during the collision as a function
of B. The lines 1–4 are calculated for hmin/a = 0.01, 0.015, 0.02, and 0.03, respectively.

B for which the bubbles bounce, we can determine the minimum gap hmina for the
entire bounce. In the first step, we fix B and vary A until hmin from the simulation
equals a prescribed value for hmin. In the second step, we extrapolate the results
obtained for A as a function of hmin to hmin = 0.

Figure 19 shows A as a function of B for selected values of hmin for We = 1.
Figure 20 shows the maximum fraction of total (kinetic + surface) energy stored
as interfacial energy during the bounce as a function of B and hmin. We see that
this fraction approaches a constant as B is increased and that the energy stored as
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Figure 21. Es/Et (line 1) and the fitting parameter L (line 2) as a function of hmin; solid lines
represent numerical data and the dashed lines show an extrapolation as hmin → 0.

interfacial energy increases as hmin/a decreases. Extrapolating the results to hmin = 0
(cf. figure 21) we find that more than 90% of the initial kinetic energy is stored as the
interfacial energy for the case when the bounce just barely occurs. In other words,
nearly all of the initial kinetic energy is converted into interfacial energy for a critical
collision, i.e. a collision with hmin → 0.

To extrapolate the results to hmin = 0 we note that the results for A in figure 19
for larger values of B where max(Es) has become essentially constant can be fitted
according to

A = 10 exp(B/L), (4.3)

where L as a function of hmin is shown in figure 21. We see that Lhmin approaches a
constant of about 0.3 as hmin → 0. Thus the minimum value of A for bubbles with
We = 1 to bounce is 10. This procedure is repeated for other Weber numbers and
the results for the minimum value of A as a function of We are shown in figure 22.
These results for the minimum value of A to prevent coalescence are fitted well by

Amin =
P0,min

ρV 2
= 10.8 + 1.6/We. (4.4)

One final remark regarding the results for Amin concerns the result for We = 1
which is seen to give Amin lower than that given by (4.4). For We 6 0.8 we found that
hmin(t)a, the minimum distance between the surfaces of the bubbles as a function of
time, went through a single minimum during the bounce process, referred to as hmina
earlier. At We = 1, the film between the bubbles became wavy and hmin goes through
several local minima as bubble shape oscillations became significant. It is difficult to
determine the flow in the gap between the bubbles when this occurs and this may
lead to some uncertainty in our estimate of Amin for We = 1.

4.3. Pair of rising bubbles

Next we consider the motion of two bubbles rising due to gravity. Biesheuvel &
van Wijngaarden (1982) have determined the trajectories of two equal size spherical
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Figure 22. Minimum value of A to prevent coalescence as a function of Weber number obtained
numerically (solid circles) and approximated by (4.4) (dashed line).

bubbles. They found that when the line joining the initial position of the two bubbles
makes an angle with gravity that is greater than cos−1(1/

√
3) = 55◦, the attractive

force caused by potential flow interactions would bring the bubbles close to each
other. As shown in Sangani & Didwania (1993b) and Smereka (1993) this leads to
the formation of clusters in bubbly liquids. We have evaluated the trajectories of pairs
of bubbles at finite Weber numbers and found that this tendency to form clusters
will persist at finite Weber numbers also. As shown in figure 23(a, b) the critical angle
for the two bubbles to be attracted towards each other is 55◦ and 54◦ for We of
respectively 0.5 and 1.5. In other words the critical angle is a very weak function
of We. Duineveld (1994) made observations on a pair of bubbles rising through a
liquid. He found that bubbles with radius of about 0.86 mm or greater rising through
water were first attracted to each other but after one or two bounces separated from
each other permanently. It was suggested that the shedding of vortices by the rising
bubbles might be responsible for this behaviour, a phenomenon not modelled by the
present analysis.

Another related calculation is the interaction of a rising bubble with an inclined
wall. Tsao & Koch (1997) observed that when the wall is inclined at an angle greater
than 55◦ with the vertical, the bubble undergoes repeated bounces of nearly equal
magnitude. For smaller angles the bubble essentially slides along the wall after the
first few bounces of diminishing magnitude. We examined if this phenomenon can
be modelled by a leading-order potential flow interaction with an image bubble,
non-hydrodynamic repulsive force, and small viscous effects around the surface of
each bubble as in the case of bounce from a horizontal wall described earlier. We
found that a bubble undergoes bounces of diminishing magnitude and essentially
slides along the wall for all inclinations of the wall. We conclude therefore that the
interaction with an inclined wall cannot be modelled adequately using the potential
flow model. Recently, de Vries (2001) visualized the liquid flow near a bubble colliding
with a wall and showed that a vortex was shed behind the bubble when it hit the
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Figure 23. (a) Trajectories (relative centroid positions) of two rising deformable bubbles atWe = 0.5.
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wall. He developed a model describing the trajectory of the bubble resulting from
this vortical flow.

5. Random arrays of bubbles
We now consider random arrays of bubbles. Our goal is to determine average

properties such as the added mass coefficient and viscous drag coefficient as functions
of the volume fraction of the bubbles and their aspect ratio. These properties depend
on the spatial and velocity distributions of bubbles, which, in turn, depend on the
nature of the imposed flow. Rather than carrying out full scale dynamic simulations
to determine the spatial and velocity distributions for specific macroscopic imposed
flows, we shall restrict our analysis to a simple case in which all bubbles have
equal velocities and aspect ratios and are aligned in the direction of the bubbles
velocity. Moreover, the bubbles will be taken to be oblate spheroids and their spatial
distribution will be taken to be the same as that of non-overlapping (hard) oriented
ellipsoids obtained using a suitable molecular dynamics code.

As in most studies, random arrays will be modelled as periodic arrays with each
unit cell containing N bubbles, N being sufficiently large so that the average properties
are nearly independent of N. The expression for the velocity potential given earlier is
modified to account for the periodic images of the N bubbles in the primary unit cell.
The boundary condition n · ∇φ = n · V on the surface of the bubbles is satisfied in
the integral sense by multiplying it with ellipsoidal surface harmonics and integrating
over the surface of the bubble. With the integral determined from the velocity or
potential at P points on the surface of a bubble, and with the flow induced by each
bubble represented by Ns(Ns + 2) multipoles, we need to carry out computations of
O(N2

s PN
2). The O(N) algorithm described by Sangani & Mo (1996) can be used

alternatively to reduce the computations to O(N4
s PN). The unit cell is divided into an

O(PN) number of small boxes and the ellipsoidal multipoles due to each bubble are
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Figure 24. Added mass coefficient Ca as a function of a volume fraction β of randomly distributed
spherical (line 1) and spheroidal (lines 2 and 3) bubbles. The points represent the results of numerical
simulation for χ = 1 (open circles), χ = 1.5 (triangles) and χ = 2.0 (upper triangles). The dashed
lines represent the effective-medium approximation and the solid lines the fitting by (5.3).

expressed in terms of equivalent spherical multipoles at the centre of the box in which
the centre of a bubble lies. These equivalent spherical multipoles are re-expanded
to equivalent multipoles of bigger boxes. This and subsequent steps are described in
detail in Sangani & Mo (1996). The only modification needed for the present case
is the expansion of ellipsoidal multipoles into equivalent spherical multipoles. The
formulas needed for this purpose are given in the Appendix. We found that N = 32
and Ns = 6 were sufficient to determine the average properties accurately.

The results for added mass and viscous drag coefficients obtained by averaging
over 30 configurations for each β and χ are shown in figures 24 and 25, β being the
volume fraction of bubbles. These coefficients are defined by

〈I〉 = m[Ca(V − 〈u〉)/2− 〈u〉], (5.1)

〈F v〉 = 12πµaCd(〈u〉 − V ). (5.2)

The gas–liquid mixture velocity 〈u〉 was taken to be zero.
The results for the added mass coefficient can be fitted according to the simple

formula

Ca =
1 + 2β

1− β + (χ− 1)(5/4 + 3β + 6β3). (5.3)

The solid lines in figure 24 correspond to the above formula. The first term on the
right-hand side corresponds to the added mass coefficient for a spherical bubble
(χ = 1) (Zuber 1964; Sangani, Zhang & Prosperetti 1991). The coefficient 5/4 cor-
responds to the result for an isolated bubble with an aspect ratio not much greater
than unity.

The dashed lines in figure 24 correspond to predictions of an effective-medium
theory which uses a simple model for determining the conditionally averaged fields
as described below.
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defined by (5.14).

Defining the potential inside the bubbles such that φ is continuous across the
surface of the bubbles, taking the velocity inside the bubble to equal V , and ensemble-
averaging the relation between the velocity and velocity potential with the positions
of p bubbles fixed yields

〈u〉p = ∇〈φ〉p + 〈g(V − ∇φG)〉p, (5.4)

where g is the gas phase indicator defined to equal unity for a point inside the bubble
and zero for a point in the liquid phase. Note that the velocity inside the bubble is
not given by ∇φG since the potential flow satisfies the boundary condition for only
the normal component of velocity. We introduce the closure

〈g(V − ∇φG)〉0 = αβ(V − 〈u〉0), (5.5)

where the constant α is to be determined by solving for the conditionally averaged
velocity. The effective-medium theory employs a similar closure relation for the
conditionally averaged field outside a suitably defined exclusion region around a
single, fixed bubble referred to as the effective medium. Thus, we take

〈g(V − ∇φG)〉1 = αβ(V − 〈u〉1) (5.6)

in the effective medium, the quantity on the left-hand side being set to zero for all
points in the exclusion region.

For spherical bubbles of radius unity the exclusion region is usually chosen to
be spherical so that for 1 6 r 6 R the velocity potential satisfies the equations for
pure liquid, and for r > R the potential satisfies the effective-medium equations such
as (5.6). The most common choices for R are unity and β−1/3. In recent years a
choice R3 = (1− S(0))/β, where S(0) is the zero wavenumber structure factor, which
matches the total exclusion region in the actual suspension to the one in the effective-
medium approximation, has also been shown to yield quite accurate estimates of the
effective properties (Spelt et al. 2001). For added mass and viscous drag coefficients for
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spherical bubble suspensions the simple choice R = β−1/3 gives reasonably accurate
estimates.

For oblate spheroidal bubbles it is natural to take the exclusion region to be also an
oblate spheroid with a total volume that is β−1 times the volume of the bubbles. Two
simple choices for the shape of this exclusion region correspond to (i) an exclusion
oblate spheroid having the same aspect ratio as the bubbles and (ii) an oblate spheroid
that is confocal to the bubble. The aspect ratio of the exclusion region in the latter
case is not the same as the aspect ratio of the bubble. Instead, the focal plane radii
d for the bubble and the excluded region are equal. The outer confocal ellipsoid
would approach the spherical shape as R → ∞. We carried out effective-medium
calculations for both of the above cases. The analysis for the first is very involved
since the oblate spheroidal coordinate systems for two oblate spheroids of equal
aspect ratio but unequal sizes are different and, as a consequence, the expression
for the velocity potential written in one system must be re-expanded in the other to
satisfy the boundary conditions. This leads to an infinite set of equations that must
be solved to determine the added mass coefficient of the bubble. The analysis for the
second, on the other hand, is much easier, and in fact gives estimates that are in better
agreement with the simulation results. We therefore give the results corresponding
only to case (ii) here.

Taking the bubble velocity to be along the x1-axis and the mean mixture velocity
〈u〉0 = 0, the velocity potential in the exclusion region is expressed as

〈φ〉1 = A10F
0
1 (x, d) + a10f10(x, d), ξ̄0 6 ξ̄ 6 ξ̄1, (5.7)

where

fmn (x, d) = P−mn (iξ̄)Pm
n (η) eimϕ (5.8)

are the regular solid spheroidal harmonics and d3ξ̄1ξ
2
1 = β−1 in order that the

exclusion region corresponds to an oblate spheroid of volume β−1 times that of the
bubble. In particular, f0

1(x, d) = x1/d; the velocity potential in the effective medium
is expressed as

〈φ〉1 = Gx1 + A′10F
0
1 (x, d), ξ̄ > ξ̄1, (5.9)

with G = ‖〈∇φ〉0‖ = αβV . The constant α can be shown to be related to A10 by

α = d2A10/V . (5.10)

The velocity in the effective medium is given by

〈u〉1 =
1

1− αβ∇(〈φ〉1 − Gx3). (5.11)

Now the continuity of 〈ϕ〉1 and 〈u〉1 · n at ξ̄ = ξ̄1 yields A′10 = 0 and using the
condition that n · ∇〈ϕ〉1 = n · V at the surface of the bubble we obtain

d2A10

V
= α =

−d3

[Q0′
1 (ξ̄1)− Q0′

1 (ξ̄0)]
. (5.12)

The added mass coefficient can be shown to be related to α by

Ca = −2− 2α. (5.13)

As seen in figure 24, the above effective-medium theory gives estimates of the added
mass coefficients that are only slightly greater than the results of numerical simu-
lations. The effective-medium theory based on an exclusion region having the same
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Figure 26. Weber number We as a function of a volume fraction β of randomly distributed
spheroidal bubbles. The points represent the results of numerical simulation for χ = 1.5 (triangles)
and χ = 2.0 (upper triangles), the dashed lines represent the effective-medium approximation.

aspect ratio as the bubble on the other hand gave substantially lower estimates of the
added mass coefficient. The effective-medium theory based on the model of confocal
spheroids effectively assumes fewer bubble pairs aligned in the direction of the bubble
velocity compared with the exclusion region based on equal aspect ratio. Since the
added mass of a pair of bubbles oriented along the bubbles’ velocity direction is
smaller than the added mass of a pair aligned perpendicular to the velocity, we
expect the added mass coefficient based on the equal-aspect-ratio model to be lower
than that based on equal confocal radii. Finally, we should mention that the effective
medium using the confocal spheroids described here was first presented by Smereka
& Milton (1991). Although these investigators did not present their derivation in
terms of conditionally averaged fields, the final result they derived is the same as
obtained here.

Figure 25 shows numerical results for the viscous drag coefficient as a function of
aspect ratio and volume fraction. The solid lines correspond to

Cd(β, χ) = Cd(0, χ)(1 + 4β/3)/(1− 4β/3) (5.14)

whereas the dashed lines correspond to the predictions of a confocal-spheroids
effective-medium approximation. The ratio of viscous drag coefficients at finite β
and β = 0 is related to the ratio of the square of A10, i.e.

Cd(β, χ)

Cd(0, χ)
=

(
A10(β, χ)

A10(0, χ)

)2

. (5.15)

The above expressions allow one to estimate the added mass and viscous drag
coefficients given β and the aspect ratio of the bubbles. In practice, the aspect ratio
is not known a priori and therefore we need an additional relation among Weber
number, β and χ. To determine an aspect ratio, we used the same procedure as in
§ 3 (namely, Moore’s single bubble analysis). The results of numerical simulations
are given in figure 26. The dashed lines represent the relationship obtained from the
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effective-medium approximation which yields

We =
4(1 + χ2 − 2/χ)

χ1/3α2
. (5.16)

We note that the effective-medium theory describes fairly accurately the relationship
amongWe, χ and β. We also note that, since the viscous drag coefficient is proportional
to α2, we have

We(β, χ)

We(0, χ)
=
Cd(0, χ)

Cd(β, χ)
. (5.17)

Recently, Zenit et al. (2001) have presented data on bubbles rising through water
containing some magnesium sulphate which inhibits coalescence. The expression
for the viscous drag coefficients and aspect ratio as a function of volume fraction
and Weber number were not available then and hence the investigators compared
their experimental data with those obtained by combining the theory for spherical
bubbles (Spelt & Sangani 1998) with a single oblate spheroidal bubble (Moore 1965).
With the dependence among various variables determined here we are in a slightly
better position to compare the theory of motion of bubbles based primarily on the
potential flow approximation with that observed in the experiments. Our calculations
were carried out for a hard-oblate spheroid distribution of bubbles whereas the
experiments showed some evidence of clustering of bubbles in the plane normal to
gravity. Zenit et al. (2001) have measured the variance in the velocities of bubbles.
Their data are fitted well by the expression

A ≡ V 2

T
= (0.02 + 0.5β)−1, (5.18)

where 3T is the bubble-phase velocity variance. For spherical bubbles Spelt & Sangani
(1998) found that the viscous drag coefficient for a bubble suspension with finite A
was greater than the viscous drag coefficient of a bubble suspension with a hard-
sphere spatial and uniform velocity distribution having the same volume fraction β
by a factor of 1 + (3/20)Aβ. Accordingly, we take

Cd(A, β, χ) = Cd(β, χ)(1 + 3Aβ/20) (5.19)

with Cd(β, χ) given by the effective-medium theory described above. It should be noted
that the velocity variance affects the viscous drag coefficient and other properties of
bubble suspensions in two ways. First, is the direct effect of velocity variance for a
given spatial distribution of bubbles. It is found that this direct effect is relatively
insignificant, at least for the case of spherical bubbles (Sangani et al. 1991). The added
mass and viscous drag coefficients of bubbles having the same spatial distribution
vary only slightly as the velocity variance is increased from zero to infinity. The
second is the indirect effect of changing the spatial distribution of bubbles. The
spatial distribution approaches a random distribution when the velocity variance is
much greater than the square of mean bubble velocity and therefore the hard-oblate
ellipsoid spatial distribution used in the simulations presented here corresponds
roughly to A = 0. The clustering is increased as A is increased and it is this indirect
effect that is more significant and accounted for by (5.19). Lower velocity variances
generally lead to greater clustering and hence higher added mass and viscous drag
coefficients. Likewise, the Weber number is modified as given by

We(A, β, χ) = We(β, χ)/(1 + 3Aβ/20) (5.20)
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Figure 27. (a) Bubble aspect ratio as a function of gas volume fraction. Comparison with the
experiments of Zenit et al. (2001); circles represent experimental data and the triangles the theory.
(b) Bubble rise velocity as a function of gas volume fraction. Comparison with the experiments of
Zenit et al. (2001) circles represent the experiments and triangles the theory.

with, once again, We(β, χ) representing the Weber number given by the effective-
medium theory.

The mean bubble velocity V is given by

V =
a2g

9µCd(A, β, χ)
=

(
σWe(A, χ, β)

2a

)1/2

, (5.21)

where the second equality follows directly from the definition of the Weber number.
The above equations can be solved simultaneously for given values of A, β and a
to determine V and χ. The mean liquid velocity was zero in the experiments and
therefore the rise velocity and gas–liquid mixture average velocities are given by

W = V/(1− β), 〈u〉 = βW = βV/(1− β). (5.22)

Figures 27a and 27b show comparisons between the estimates for W and χ obtained
by the above scheme with those reported by Zenit et al. (2001). Calculations were
done with µ = 10−3 Pa s, g = 9.81 m s−2 and σ = 0.07 N m−1. The mean radius of the
bubbles varied in the experiment with the volume fraction of bubbles, from about
0.67 mm to 0.75 mm. The computed values of W and χ corresponded to the measured
value of a for each β. We see that both the aspect ratio and the rise velocity predicted
from the theory are considerably greater than the measured values. The rise velocity
is highly sensitive to a and σ. A value of 0.05 N m−1 for σ, for instance, would
lower the rise velocity but increase further the discrepancy between the measured
and predicted aspect ratios since the aspect ratio increases with the decrease in the
interfacial tension. The dependence on the radius is even stronger and it is possible
to decrease both W and χ by reducing a but this would require that a decrease
significantly with β in contradiction with the measurements, which show very clearly
that the radius of the bubbles increases with increasing β.

One plausible cause of the observed discrepancy between the theory and experiments
is the wall effects. The rise velocity of an isolated bubble in a large container was found
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to be 0.32 m s−1 while the average rise velocity for a very dilute bubbly liquid (β less
than 10−4) was about 0.29 m s−1 for the 2 cm wide channel in which the experimental
data reported in figure 27 were taken. The data for β greater than 0.001 extrapolated
to β = 0 yields an even lower value of about 0.275 m s−1. In other words, the velocity
calculated from Moore’s expression is about 16% greater than the measured value
obtained by extrapolating the data to β = 0. Van Wijngaarden & Kapteyn (1990)
note about 18% difference for their data taken with about twice the bubble size and
a 8 cm diameter pipe. Zenit et al. (2001) observed that bubbles tend to slow down
considerably near the wall and tend to make a sideways motion from one side of
the container to the other side in very dilute bubbly liquids. Flow visualizations by
de Vries (2001) for about 0.9 mm bubbles interacting with a wall show evidence of
vortex shedding. Even putting aside this sideways motion and vortex shedding, which
clearly cannot be modelled with the potential flow approximation, we note that the
rise velocity in a channel of finite wall thickness will differ from that in an infinite
suspension having the same spatial and velocity distribution by a factor of O(a2/Hδ)
or O(aRe1/2/H) due to energy dissipation in the boundary layers at walls. Here, H
is the width of the channel and δ is the characteristic boundary layer thickness at
the wall. This estimate is obtained by assuming that the energy dissipation per unit
surface area of the wall is O(µ〈u2/δ〉) and that the liquid velocity variance near the
wall equals that in potential flow of dilute bubbly liquids, i.e. 〈u2〉 ∼ βV 2 (Biesheuvel
& van Wijngaarden 1982). The ratio aRe1/2H is about 0.7 for Zenit et al.’s (2001)
experiments and about 1.5 in van Wijngaarden & Kapteyn’s experiments if we take
H as the ratio of volume to surface area of the container. The observed discrepancy
between the data for very dilute bubbly liquids and bubbly liquids with β greater
than say 10−3 might have resulted from the wall–bubble interactions mentioned earlier
which greatly enhanced the liquid velocity variance as noted by Zenit et al. (2001)
and which, in turn, might have led to additional viscous dissipation at the walls.
Finally, it may be noted that the data for both the rise velocity and aspect ratio as
functions of β can be fitted very well by multiplying Cd in (5.21) by 1 + α(aRe1/2/H)
with α = 0.4/(1− 3β)3.

6. Summary
A numerical method for simulating the motion of finite-Weber-number potential

flow induced by the motion of bubbles is described. The method uses ellipsoidal
harmonics to represent the shape of the bubbles and the velocity induced by the
bubbles together with an O(N) algorithm for computing flows induced by a distant
group of bubbles. The method is applied to study several problems involving one, two,
or many bubbles. The results obtained would be useful in establishing an analytical
framework for developing equations of motion of finite-Weber-number bubbly liquids.

This work was supported by NASA under grant number NAG3-1853.

Appendix. Translation of Laplace singularities
The only part of the O(N) algorithm by Sangani & Mo (1996) to be modified in the

case of deformable bubbles is the translation of singularities. We need the formulas
providing the translation of the potential field φc with its singularities at xc to an
equivalent field φp with its singularities at xp such that both φc and φp and their
derivatives have the same value at the points x far from both xc and xp. Let Sst and
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sst denote, respectively, the singular and regular solid spherical harmonics:

Sst (x) =
(t− s)!
rt+1

P s
t (µ) exp(isϕ), sst(r, d) =

rt

(t+ s)!
P s
t (µ) exp(isϕ). (A 1)

The expression for translating singularities given in Sangani & Mo (1996) is modified
to

Sst (x− xc) =

∞∑
k=t

k∑
l=−k

(−1)t+k+s+lss−lk−t(x
pc)Slk(x− xp) (A 2)

provided that ‖x− xp‖ > ‖xpc‖, where xpc = xp − xc.
To obtain the analogous translation formulas for a solution written in terms of

singular spheroidal harmonics (2.14)–(2.15), we start with the expansion (Kushch
1998)

Fmn (x, d) = (−1)m
∞∑
t=n

′Knt(d)S
m
t (x), (A 3)

valid for ‖x‖ > d. The prime means that the sum contains only the terms with (n− t)
even and

Knt(d) = (−1)(t−n)/2√π
(
d

2

)t+1/
Γ

(
t+ n

2
+

3

2

)/(
t− n

2

)
! (A 4)

for t − n even and Knt(d) = 0 otherwise. Combining (A2) and (A3) and using the
summation rule

∞∑
t=n

′
∞∑
k=t

k∑
l=−k

=

∞∑
k=n

k∑
l=−k

k∑
t=n

′ (A 5)

we obtain

Fmn (x− xc, d) =

∞∑
k=n

k∑
l=−k

βmlnk S
l
k(x− xp), (A 6)

where

βmlnk = (−1)n+k+l
k∑
t=n

′Knt(d)s
m−l
k−t (x

pc) (A 7)

is a finite sum. Expansion (A6) is convergent for ‖x− xp‖ > ‖xpc‖ and ‖x− xc‖ > d.
As easily seen, satisfaction of both these conditions is provided by the scheme of an
O(N) algorithm. Application of (A6) to (2.14) gives us

N∑
c=1

∞∑
n=1

n∑
m=−n

A(c)
nmF

m
n (x− xc, d) =

∞∑
k=1

k∑
l=−k

B
(p)
kl S

l
k(x− xp) (A 8)

where

B
(p)
kl =

k∑
n=1

n∑
m=−n

βmlnkA
(c)
nk . (A 9)

The formulas (A6) and (A7) are sufficient to perform the transformation in the
case of aligned local and global coordinate systems. In the general case of arbitrarily
oriented local coordinate systems the local and global coordinates are related by (2.4)
and, hence, additional effort is needed to accomplish translation of singularities. From
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(2.4), yc = OT
c · (x− xp); so, the problem is to represent Fmn (OT

c · (x− xc), d) in terms
of Slk(x− xp).

To this end, we apply first the formula (A3), with argument OT
c · (x− xc). Next we

make use the relation

Smt (O · x) =

t∑
s=−t

H
t−m,t−s
2t (w)Sst (x), (A 10)

where Hs,l
t are the spherical harmonics in a four-dimensional space (see e.g. Bateman

& Erdeyi 1953) and w = {w1, w3, w3, w4}, ‖w‖ = 1 is the vector determining uniquely
the rotation matrix

O =

 w2
2 − w2

1 − w2
3 + w2

4 2(w2w3 − w1w4) 2(w1w2 + w3w4)
2(w2w3 + w1w4) w2

3 − w2
1 − w2

2 + w2
4 2(w1w3 − w2w4)

2(w1w2 − w3w4) 2(w1w3 + w2w4) w2
1 − w2

2 − w2
3 + w2

4

 . (A 11)

Finally, application of (A2) and summation rule (A5) gives us again (A6) with
Fmn = Fmn (OT

c · (x− xc), d) and

βmlnk = (−1)n+k+m+l

k∑
t=n

′Knt(d)

t∑
s=−t

(−1)sHt−m,t−s
2t (wc)s

s−l
k−t(x

pc). (A 12)

The geometrical restrictions on using the expansion (A6) with the coefficients (A12)
are the same as in the case of aligned coordinate systems.

Now, one final remark. Meiron (1989) found that solution of the one-bubble steady
motion problem in terms of solid spherical harmonics (A1) is possible only for the
near-to-spherical bubble shapes. The critical value of aspect ratio, empirically found
by Meiron, is χc = 1.4. Using the expansion (A6), it is rather straightforward to prove
that the spherical-harmonics-based multipole expansion solution of the potential flow
problem for a medium with a single spheroidal bubble is convergent if its aspect ratio
χ <
√

2 = 1.414 . . . and diverges otherwise. Substitution of (A6) into (3.1) gives us a
formal series solution in terms of (A1), which is convergent at all the points x on
the bubble surface if the condition ‖x‖ > d is satisfied uniformly. The minimum ‖x‖
value is achieved at the poles of an oblate spheroid, where x = ±dξ̄0e1. Thus, ξ̄0 > 1
and, hence, χ = ξ0/ξ̄0/ <

√
2 confirming the Meiron’s finding.

Note that even for χ <
√

2 the above solution contains an infinite series of
harmonics and its convergence rate is rather slow, excluding only the small We
case of essentially spherical bubbles. At the same time, a one-term solid-spheroidal-
harmonics-based exact solution (3.1) exists for any χ.
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