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Dispersed-phase stress tensor in flows of bubbly
liquids at large Reynolds numbers
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(Received 6 March 1992 and in revised form24 August 1992)

We derive averaged equations for large Reynolds number laminar flows of gas-liquid
dispersions accounting for slowly varying spatial and temporal fields. In particular,
we obtain an exact, expression for the dispersed-phase stress tensor to be used in the
force balance equation for gas bubbles and illustrate its application by evaluating the
stress tensor for a few special cases. It is shown that the dispersed-phase stress tensor
gradient with respect to the mean relative motion or the void fraction for the
uniformly random bubbly liquids under conditions of large Reynolds number
laminar flows is negative and thus has a destabilizing influence on the dynamics of
void fraction waves in bubbly liquids.

1. Introduction
We consider the problem of deriving averaged equations for flows of liquids

containing spherical gas bubbles when the Reynolds number based on the radius and
the characteristic velocity of the bubbles is large compared to unity. This problem
has been examined previously by a number of investigators (see, for example, Ishii
1975;Nigmatulin 1979;Prosperetti & Jones 1984; Biesheuvel & van Wijngaarden
1984; Geurst 1986; and van Wijngaarden & Kapteyn 1990). Biesheuvel & van
Wijngaarden (198a) used a combination of volur{re and ensemble averaging
techniques to derive the averaged equations for the mixture. This results in averaged
quantities such as the Reynolds stress and the overall stress in the medium which
depend on the magnitude of the relative motion between the two phases. To calculate
this quantity, Biesheuvel & van Wijngaarden proposed that an additional relation
derived from the force balance on the dispersed phase must be used. By examining
the nature offorces that act on a single bubble under unsteady flow conditions, they
proposed such a relation, and this, together with the averaged equations for the
overall medium, then forms the complete set of equations for analysing various
macroscopic flows. Since this relation for the force balance on a single bubble was
derived from a volume averaging procedure, it has the right form as far as the various
unsteady terms are concerned. However, as pointed out by these investigators, it
lacks the terms that are important when there are spatial variations in the velocity
and volume fractions of the individual phases.

Equations of motion taking account of spatial variations in yolume fraction and
velocity have been developed in the theory of rapid granular flows (Jenkins &
Richman 1985).and gas-solid suspensions under conditions of small Reynolds and
large Stokes numbers (Koch 1990). These theories contain particle or dispersed-phase
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stress terms which clescribe the transport of rnomentum by the random translation
of the solid particles and by solid-bocly collisions. Batchelor (1988) noteil that, in
addition, there should be a stress contribution from fluid dynamic interparticle forces

in a fluidized bed. However, he did not specify the means of calculating this stress

from a detailed study of the particle interactions'
For gas-liquid dispersions, van Wijngaarden & Kapteyn (1990) arrived at a term

in the force brlance on a test bubble which can be interpreted as the divergence of
the dispersed-phase stress tensor. These investigators analysed explicitly the case of
dilute àispersiãn only, and the stress tensor they derived is related to the average of
the fluctuãtions in the impulse multiplied by the fluctuations in the velocity of the

bubbles. The impulse associated with a bubble is ilefined through (26) and it plays

a role similar to the momentum of a particle in gas-solid suspensions. 'Ihus, the stress

tensor that these investigators have derived accounts for the translational stress but
not the fluid dynamic interactions and collisions, if any. Biesheuvel & Gorissen (1990)

used an approach similar to that used in the statistical mechanics theory of pressure

in d.ense gæ". or liquids (Rice & Gray 1965) to obtain a formal expression for the

stless tensor for bubbly liquids. Their expression accounts for both the translational
and the fluid dynamic interparticle interactions. They assumed that the interparticle
interactions can be expressed &s a, sllm ofpair interactions but did not show how the

interactions among many bubbles can be decomposed into pair interactions. They

also did not carry out any specific calculations for estimating the contribution due

to these fluid dynamic interactions.
With the development of efÊcient numerical methods for solving rigorously the

problem of multiparticle interactions, it has become possible to carry out detailed

ãynamic simulations of the motion of many bubbles under conditions of large

Reynolds number laminar flow, as can be seen, for example, in a companion study,
Sangani & Didwania (1993, to be referred to herein as I). With the help of these

simùlations, it is possible to compute various dynamic quantities, and thus it is

important to establish the precise definitions of various average quantities thatrnust
be evaluated via such simulations. While both Batchelor"s and van Wijngaarden &
Kapteyn's studies give a good phvsical picture of the origin of the term associated.

with the interparticle stress, they do not give the recipes for iletermining them from
the detailed knowledge of the motion of particle or bubbles. The aim of the present

investigation therefore is to derive the averaged equations in a sYstematic manner

and to give formulae for determining various averaged quantities from the details of
the bubble motion in non-dilute dispersions, i.e. dispersions in which the volume

fraction p of the dispersed phase is not small. The main emphasis is on determining
the correct expression for the interparticle or the dispersed-phase stress tensor. This

quantity is believed to play an important role in stabilizing small-amplitude
disturbances of p in bubbly liquids and fluidized beds (see, for example, van

wijngaarden & Kapteyn 1990; Biesheuvel & Gorissen 1990; Batchelor 1988).

io illustrate the application of this expression for the stress tensor, we consider

three special cases. In the first case, the centres of the bubbìes coincide with the

lattice ãf a periodic array. For this situation, it is possible to derive an analYtical

expression that is valid when p is small. In order that the waves in p in the direction
of the mean relative flow are stabilized by the dispersed-phase stress tensor, the

gradient of this quantity in the direction of the mean flow must be positive. This

ãondition is satisfied when the bubbles are alranged on a simple cubic lattice but not
when the bubbles a,re arranged on the body-centred cubic lattice. Thus the latter
arrangement of bubbles is destabilized by the dispersed phase. The dispersed-phase
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stress plays a stabilizing role in the case of a simple cubic arrangement provided that
the disturbance in p is produced by changing only the spacing between the bubbles
in the direction of gravity. We should emphasize here that the actual criterion for the

stability of bubbly liquids will also depend on the relative magnitude of the other
terms in the averaged equations. Our goal in the present study is not to carry out the
complete stability analysis. Rather, we a,re only interested in determining under
what circumstances the dispersed-phase stress will play a stabilizing (or destabilizing)
role.

The second case lüe consider is that of a random arrangement of bubbles rising
under the influence of buoyancy forces. The velocity of all bubbles is taken to be the
same at limet:0. We find that the gradient of the stress is negative in this case also,

indicating its destabilizing influence. Indeed, as shown in I via dynamic simulations,
the uniform random state of a bubbly liquid is unstable under these conditions. The
magnitude of the fluid dynamic interparticle interaction term is greater than the
combined contribution of the translational and collisional components of the stress.

van Wijngaarden & Kapteyn (1990) determined the dispersed-phase stress for dilute
bubbly liquids by accounting only for the kinetic contrìbution, and, therefore, the

stress they calculated played the stabilizing role. Thus, what we find is that
accounting for fluid dynamic interactions actually reuerses the role played by the

dispersed-phase stress in the stability of void fraction wâves. We should add here

that Biesheuvel & Gorissen (1990) had actually suggested that the potential
contribution to the stress is likely to be negative even though they did not actually
account for it in their numerical analysis of the stability of the void fraction waves.

The third case we consider is that of an initially random arrângement of bubbles
with large fluctuations in their velocities. We take the magnitudes of the relative
motion, gravity, and viscosity all to be vanishingly small. This situation may be

applicable to flows of bubbly liquids under turbulent flow conditions or to laminar
flãw of bubbly liquids undergoing shear, as in the case of flows inside pipes. The latter
may be thought of as an analogous situation to rapid granular flow of slightly
ineiastic particles for which it is known that the leading-order velocity distribution
is isotropic Maxwellian with the mean shear causing a small perturbation. In this
case, the dispersed-phase stress is a function of the Reynolds stress and p, and we

determine this dependence by carrying out dynamic simulations. The magnitude of
the translational and collisional contributions is much larger than that of the fluid
dynamic interaction and, as a, consequence, the dispersed-phase stress has a positive
gradient. Thus, we see that if there is a mechanism for inducing large variance in the

velocity, e.g. by turbulence or shear, the state of uniform bubbly liquids can be made

stable.
In addition to the continuity and the force balance condition, the theory ofrapid

granular flows also includes an energy equation for the dispersed phase. For complete

ánalysis of the flows of bubbly liquids at large Reynolds number, we also require such

an energy equation for the dispersed phase. Analogous to the dispersed-phase stress

term in the momentum balance, this equation contains an energy flux term' We have

been unable to derive an exact expression for this term, and therefore, an

approximate expression is given for it. The accuracy of this expression is tested with
thõ results obtained from numerical simulations. The results for this quantity for the

special cases described above are also presented.
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2. Ensemble-averaged equations for the overall medium
We consider an infinite medium consisting of gas bubbles dispersed in a liquid. The

Reynolds number of the flow based on the characteristic velocity and size of the gas

bubbles is large compared to unity. The interfacial tension is also large enough to
maintain the bubbles' approximate spherical shape. We wish to derive the averaged
equations when spatial g'radients of' various macroscopic quantities, such as the
a,verage velocity or the volume fraction of bubbles, are small, and hence it will suffice
to obtain averaged equations that are valid to first order in the spatial derivatives
on a macroscopic lengthscale. We also wish to derive the averaged equations in a
form such that all the quantities that are needed in the analysis of the flows that are

slowly varying in time and space can be estimated to the leading order from dynamic
simulations of homogeneous flows, as they are the simplest kind of flow to simulate.
By homogeneous flows, we mean flows in which there are no macroscopic variations
in velocity or volume fraction. Since the density of most gases is negligibly small
compared to that of liquids, we treat the bubbles as massless. Finally, we also restrict
ourselves to the case when both phases may be regarded as essentially incompressible.
Fol acoustic applications, of course, the compressibility of the phases are important,
and therefore the equations to be derived here cannot be used for such applications.
The averaged equations for such applications have been derived by a number of
investigators including the most recent work by Sangani (1991). In that study, the
focus was mainly on problems in which the ternporal variations in the averaged
quantities were of prime importance, whereas in the present study, the interest is in
correct modelling of the spatial variations.

'Ihe equations of motion for an incompressible liquid are

V.uL:O, (1)

where p is the density of the liquid, uL and 7* are the velocity and pressure fields
for the liquid phase, g is the gravitational acceleration, and t| is the viscous stress
tensor defined by

r!: p,[YuL-l (Vu")*], (3)

¡t. being the viscosity of the liquid.
The density and viscosity of the gas phase are taken to be vanishingly small and

therefore the momentum equation for the gas phase is simply

vp* :0, (4)

which implies that pressure inside any bubble is uniform.
To obtain the ensemble-averaged equations for the overall medium, we follow the

approach taken in Sangani (1991) and introduce an indicator function X deflned to
be unity for a point x lying in the liquid phase and zero for the gas phase. Since there
is no mass transfer at the gas-liquid interface, ¡ is convected along with the fluid, and
therefore we have

ôv
å*u'vl:o (5)

at all points in the medium. It may be noted lhat y has a jump discontinuity at the
gas-liquid interface, and therefore VX equals a delta function situated at the

,l+.v' (u'ut)l : -vpL -r ps* v 't|, (2)
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interface multiplied by a unit normal vector at the interface pointing into the liquid
phase. Similarly, ðylðt is also singular at the interface and can be determined from
V2g and (5).

The ensemble-averaged equations for the overall medium can now be determined
by multiplying the equations of motion for the liquid phase by ¡ and those for the
gas phase by l-x, adding them, and taking ensemble averages of the resulting
equations. Thus, since both phases have been assumed to be incompressible, the
continuity equation for the overall medium is given by

(yV.uL*(r-x)v.uc):9, (6)

where the angular brackets denote the operation òf ensemble averaging. Taking the
divergence outside the averaging procedure produces

v.(yuL+(1-,t)uG)+(Yx'(zc-zt¡): g. (7)

The second term on the left-hand side of the above equation vanishes identically on

account of the kinematic condition at the interface, and thus we obtain

Y .U :0 (8)

with the ensemble-averaged velocity U of the mixture given by
g: (7uL*(t-x)uo). (9)

The result (8) is rather obvious since we expect the overall medium to be

incompressible when both of the constituent phases are incompressible'
We now proceed in a similar manner to derive the averaged momentum equation

for the overall medium. Combining (2) and (4) we obtain

olfr<x""> *Y '(vuLuL, - ((#. "t',ì'")l
: -VP+ (I - þ) S +v' (X""")+ (VX' (oo -o")), (10)

where ø is the stress tenso r , i,e. co, : - pÌr, + ru-,. The third term on the left-hand side

of (10) vanishes identically due to (5), w rereas the last term on the right-hand side

can be expressed as

(#,,r-"t') : In-,,,:"(n,(a$- 
o!,))' (x I x')P'( x') dA'' (11)

where Pr(xr) is the probability of finding a bubble at x, such that point x lies on the
surface of this bubble, and ( )r(x I xr) denotes the conditional average of a quantity
evaluated at x given a bubble at xr. Here we have assumed, for simplicity, that the
bubbles are monodisperse with radius ø. The above integral involves evaluating the
integrand for different bubbles whose centres lie on the surface lx-xtl : ø. It is

convenient instead to compute integrals on the surface of a single bubble located at,
say, x. To accomplish this, we note that a conditional-averaged quantity such as

(/), (x lxr) may be treated as a function of the position of a point relative to the
centre of the test bubble, i.e, x-xt, and the centre of the bubble, i.e. xt. The
variation of (/)r(x-xr,.xr) with respect to the first argument is rapid while that
with the second is slow. Thus, we first write

I

I <t"8- ofi)n)'(x- x1,x,)Pr(x')dA,
J lx-xrl-a

: | (@fi- oÐn,),(s,x-s)Pr(x-s)d-4,, (12)
IJ s-ü
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in which ^r: r-xr and s is the magnitude of the vector s. Next, when the average

quantities vary slowly in space, the use of a Taylor series expansion of the integrand

in the above equation ne&r .x yields

fl
I <t"$- of;)n¡)r(s.x-s)P,(x-s)d-4" : r',@) | ({oit-ofi)n¡)t(s.x)d'4,

J s:a J s:a

Now, since o?¡: -po ô¿¡, and since t
integral of cf;,nt in the first term
remainder in that term integrates
bubble at x, and this also vanishes as the
the last term in (10), and rearranging, we obtain the averaged momentum equation

for the overall medium as

-fi {at"l t,-"<ørr-, 
oh)ntsi)r(s, xl ae,}+ ..'

where Uf is the avera,ge velocity of the liquid phase defined by

(r-p)U!: (yu!), (15)

p is the volume fraction of the gas bubbles, i.e'

þ: (I-X), (16)

and. Ð0, is the stress tensor for the overall medium and equals

þÐ ot 
: þrû + þ4¡ : (xp(u! - ui) @i - ui))

,[*qrt - p)ui+#,Í- p)uyuif: -#,* ort- Øøo- *!,Êzoi, (14)

where we have made use of the relation PJx) : þ(x)lrr,uo: tna,8 being the volume

of the bubble. The averaged momentum equation (1a)is the same as that derived by
Biesheuvel & van Wijngaarden (198a) who considered the slightly more general case

of compressible bubbieJ and used a somewhat different procedure for deriving these

equations.
It may be noted that the expression (17) for the overall stress is actually valid for

all Reynolds numbers. The first term on the right-hand side of (17) corresponds to the

Reynolds stress, while the deviatoric part of the second term is related to the stresslet

that is required. in the evaluation of the effective viscosity of suspensions under low
Reynolds number conditions. In the case of large Reynolds number flows, we may

neglect zf in the above expression, and thus this part of the overall stress is related

toã particular distribution of the inviscid pressure at the interface. Thus, we write

( 13)

.l* 
L: "(((p" 

- p* ) ù nr - rf; u) n ¡ s ¡) r *, - <xr!,,>), ( 1 7 )

Here we have made use of the fact that the pressure inside the bubble is uniform and

therefore the surface integration of pG(3nnn¡-30) vanishes. Now, the second term on

the right-hand side of (18) can be shown to equal 8nøTôu, plus a term which is of

OçafV" le^). Here, ? is the interfacial tension, Z is the characteristic velocity of the

P 4t : hlÏ, :,(p" 
(3, o n, - ô ¿i)),-dl, + ôdi 

L - "ro" 
- o*)' d'4,]' (18)
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bubbles, and Pu is the pressure in the liquid in the absence of flow. The correction
term arises because of a small change in the ra,dius of the bubbles due to variations
in the dynamic pressure resulting from the flow, and its magnitude is negligible in
most practical applications.

In the limit of small p,if lhe interactions among the bubbles may be neglected, the
above quantities can be readily related to the velocity of the bubbles relative to the
Iiquid (or the mixture) by

tû : hv,4+frrn 4,, (1e)

4,:2]to,*#uh-frv'q,, (20)

which are in agreement with the expressions derived by Biesheuvel & van
Wijngaarden (1984). IJ.erc Vo: Uf - Q is the velocity of the gas phase relative to the
mixture. It is important to note that the dynamic part of the stresslet term
represented by the last two terms in (20) has a zero trace, and thus it contributes only
to the deviatoric stress of the overall medium. In situations where the gradient of p
is not zero, the most signiflcant contribution to the overall stress arises from the
surface tension term since the dynamic quantities ate O(We) compared t'o it', We:
paV2lT being the Weber number.

The continuity and momentum equations for the overall medium (cf. (8) and (14))

together constitute a total of four scalar relations among a total of eight variables:
U, U",P, and p, and therefore, it is clear that more relations are needed for a unique
determination of these quantities.

As mentioned in the Introduction, Biesheuvel & van Wijngaarden (198a) proposed

using an additional relation based on the force balance on a single bubble to close the
system of equations. This relation is

(Ð: o: P'ol#-;ry;-t2nPøv-Puog' Qt)

where Lrpuris the virtual or the added mass associated with the relative motion of a
massless bubble in the mixture. At steady state, the magnitude of the relative motion
is determined from the balance of gravitational and viscous forces, and an

acceleration in the mean flow c&uses this relative motion to change as given by (21)

whenever interactions a,mong the bubbles and spatial derivatives of p or mean flow
are negligible.

Our aim, as mentioned in the Introduction, is to systematically derive the terms
that are necessa,ry to account for spatial variations, and thereby to obtain
expressions for various averaged quantities that should be evaluated from dynamic
simulations. This requires deriving another set, of averaged equations corresponding
to the relative motion of the dispersed phase.

3. Averaged equations for the dispersed phase

The continuity equation for the dispersed phase can be obtained simply by taking
the ensemble average of the continuity equation for the gas phase multiplied by its
indicator function 1-X. This yields

((t-x)V.zG) : I or v'(PW)+(VX'uG) :0' (22)
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The second term on the left-hand sicle of (22) equals (-ðxlðt) (cf. (5)), and thus, we

obtain
v .(pu") *K : o. Q3)

The main difficulty is in deriving the mornentum equation for the dispersed phase,

as this Yields ((r -x)vp") : o, e4)

from which no further progress can be made to obtain a relation for the force acting

on the dispersed phase in tòrms of various diffelent physical phenornena, such as the

addecl -u., ot the viscous effects, as \ry'as done, for example, in writing down (21)'

Therefore, we need to follow a different approach to derive the averaged motnentum

equations for the dispersed phase.

At large Reynolds numbers, the force balance otr a massless bubble ø in the midst

of a dispersion containing many other bubbles, yields (cf' I)

!t? r..
ff: e )r,lt"!"!-ului)nidA+tr'i,'+tr'i,s, 

(25)

where n\,, and. tr'i,, arc, respectively, the viscous and gravitational forces on the

bubble oL',uo isthe velocity of the bubble, S" is the surface enclosing the bubble, and

{ is the impulse associated with the bubble as defined by
(

Iî:-p)r"Óno*, e6)

with þ being the velocity potential. As discussed in more detail in I, the velocity field

"u.r 
b" reasãnably well approximated in the large Reynolds number limit by the

inviscid, irrotational flow-approximation, for which it is possible to write uL:Yþ'
The integral in (25) is thus to be evaluated from the potential flow approximation.
The viscous force evaluation is also discussed at length in I. Ilinally, the time

derivative in (25) is to be evaluated following the motion of the bubble ø.

For a single bubble moving with velocity UG in a liquid, whose velocity at infinity
is U, it is eásy to show that the instantaneous velocity potential is given by

ó: u.x+L(l- uc\'x, (27)' 2ro'

in which r and x are measured. from the centre of the bubble, and ø is the radius of
the bubble. The impulse associated with such a bubble is given by

I¿: Pat làVt-Ur), (28)

withvr:u?-Q. Also, for the case of a single bubble, it iseasy to show that_the

integral otr ih" right-hand side of (25) vanishes on account of symmetry of the flow

r"or".rd an isolatéd single bubble. Thus, we see that (21) is obtained simply by
averaging (25) without the integral term in that equation'

Whãn ipatial variations in p or V are non-zero, a contribution will arise from the

first term on the right-hand side of (25), and we wish to determine it. X'or this

purpose, we find it most convenient to use a,n approach similar to that taken by

Biesheuvel & Gorissen (1990).

3.1 . Deriua'tion of the momentum equati'on Jor the d'ispersed' phøse

We assume that there are y'y' bubbles within a unit cell and that the entire space is

filledwithreplicasof thiscell.Let.xoand ao,&:I,2,...,N,denotethepositionand
velocities of lhese bubbles at some instant and let x, denote the lattice vectors for

A. S. Sanç1øni a'ncl A. I(. Di'dwøniø
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the periodic arra,ngement. The velocity and spatial distribution of the bubbles is thus

unchanged opon ã translation by x".The reason for creating such an artificial
periodicìty cóndition in our formulation is simply the need to properly account for
ih" lotrg-runge hydrodynamic interactions among bubbles in a definitive manner.

We furtheì assume that the velocity field everywhere in the liquid can be

approximated. in terms of a velocity potential and that the viscous force on bubbles

dãpends only on the velocities ofthe bubbles at a given instant and not on their past

history. In this case, the complete state is determined if the velocity and position of
each bubble is specified. Let f*(t,c*,Ô*) denote the ,l/-bubbte probability
distribution function for frnding bubbles in the neighbourhood of configurations

C*= (xr,x',...,xN)and C*= (at,a2,...,uN). Since the unit cell always cont'ainsN
bubbles, /, satisfies the normalizat'ion condition

Also, since /r is conserved in the phase space, it satisfies

1rN

ï* + ) v ,,' (ut f *)+ v,? ' (úvl') : o. (30)
oa y_\

To obtain averaged continuity or momentum equations for the dispersed phase, we

multiply the above equation by an appropriate dynamical variable and then

integiaie the resulting equation over the phase space ofpositions and velocities ofthe
bubbles. The dynamical variable can be chosen to be any function of Jc,C*, and Ct
but not of ü. For example, the continuity equation for the dispersed phase derived

earlier (cf. (23)) can also be obtained if we multiply (30) by the dynamical variable

,.Ë> a(x-x"-x"). (31)
e:l L

It may be noted that integration of the above quantity multiplied by /r is related

to volume fraction p of lhe gas bubbles by

l,. u,c *, Ò *)dc' di' : ¡¿ t

Actually, p computed in this manner is somewhat different from our previous

defrnitiðn (cf. ltOi) due to the finite size of the bubbles. The definition (32) assigns all
of the volume of the bubble to be located at the centre of the bubble, which is only
approximately correct. The difference in the two definitions is signifrcant, how^ever,

otrly *h"n the second-order gradients of p are to be included in the calculations. Since

in t|e present study we wish to derive the averaged momentum equation correct only
to the first spatial derivative in p or the velocity field, this distinction between the

two definitions of p is not important.
Now multiplying (30) by (31) and integrating over the phase space, we obtain

þ(x, t): fr få ) ô(x-x"- x 
") 

f * dc * dc *

(2s)

9y" | )/NdcNdiN
aú1rr! J

.(ut f *) *Y ,'

(32)

N
. (úr,fr)l ) ) ô(x-x"-*")dCNdiN. (33)

a:l L
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The right-hand side of the above equation can be simplifled with the use of the

divergence theorem to yield

un(, N N

frJ/"dcNdiN Prro''Y,trùv'v,'1"ì18(x-x"-x") 
(34)

plus an integral on the surface ofthe phase boundary which can be shown to vanish

L""uor" of túe periodicity of the probábility density function and the velocity fields.

Now, we note ihat in (Ba) only the derivative of the delta function with respect to

xv with l: q,is non-zero, and upon using V"' 8(x-x"-x") : -V'ô(x -x"-x"),we
obtain the continuity equation for the dispersed phase (23) with

Pw:-frJå )a*à(x-x"-x*)l¡¡dcNdi'' (35)

The same procedure can be repeated now for determining the momentum (or

impulse) 
"qoitio.r 

for the dispersed phase. For this, we use the dynamical variable

,"i >tt ò(x- x"- x'). (36)
a:l L

Defining an average imPulse via

we obtain

2 p,, :-3+ | ac * ac * ¡ * i E,r tr
AL UiU¿ 'L\ | | a-l L

N
r v 

*"ï Z,4i'8(x-x"-x')'

pr, = #r.l 2,) 
Ii 81x - x" - x ) I *dc' diiv,

where If is defined as

v:7

and equals the time derivative of the impulse associated with the butble ø following

its moìion in the dispersion (cf. (25)). úe therefore substitutefot i7 from (25)ìnto^

(38) and then average separately each of the three terms on the right-hand side of

iZS¡. 1'n" viscous and gravitational forces can be averaged in a straightforward

mannel. The main diffiãulty is in determining the aYerage of the first term on the

right-hand side of (25), which we shall refer to as 1fr,. This is the force due to potential

flõw interactions among the bubbles. As shown iri I, the sum of this term over all

bubbles in the unit cell vanishes, i.e.

N

iî : E (uv.Y ¡ I itv.Y 
",) 

Ii

when the velocity of the liquid is derived from a scalar potential. Thus, the average

of this term over all bubbles in a unit cell is zero for homogeneous flow conditions.

In the presence of spatial variations, the last term on the right-hand side of (38) is

"*pr"r.i"d 
in terms of u floid dynamic interaction potential by means of

T,ii,:år[. $uful-ului)n¿dA: o (40)

(37)

- !, crr,r: 3 iac, dc * Í * i, >¡r 8(x - xo - x 
"),ð*1rr' tii - NtJ --^ a:l L

(38)

(3e)

(41)
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where rf, is to be determined. Substituting the above result into (38), making use of
the continuity relation for the dispersed phase (23), and rearranging, we finally arrive
at

T,* * .v r : _.þv . (Br) *f, rf,, (42)

where

with the kinetic or translational part of the dispersed-phase stress tk defined

þ,Tt:frJu".,a¿,f,å @i4-(ttrIi)8(x-)c"). (46)

We now proceed to determine rfr.

3.1.1. The potentiøl contribut'ion to the d'i,spersed,-phase stress

The velocity potential can be expressed in terms of multipoles at the centre of each

bubble as (cf' I) 
þ: G.x+i i nt^rt.)nv(n)sr(x-x"), (47)

e:l n:l

where S, is the periodic Green's function for the Laplace equation (Hasimoto 1959;

Sangani & Acrivos 1983) which satisfies

V.VSr(x) : 4nl{-1-) â(x-xr)1. (48)

^/. is the volume of the unit cell of the periodic lattice, and

Ai,)(.)'v@) = fol,li*^*+Ãi*Làai-* (49)

with L^: lði +ðil, Ã*: ilð? -Ail, (50)

ðr=ðfðrr,( ')" denotes an n-fold scalar product, V(') and nth-order gradient, (:
nr*irs, and r¡ : rr-ir, G in (+7) is related to the avera,ge velocity of the dispersion

as shown in L The strengths of 2"-multipoles, A6¡, can be determined as described

in I from the boundary conditions on the surface of the bubbles, and subsequently
the integral in (25) can be evaluated to determine the force acting on the bubble ø

due to potential flow interactions. To understand how one evaluates the potential
stress from the magnitudes of these multipoles, let us first consider a simple case of
well-separated dilute random a,rrays for which the separation between any two
bubbles is large compared to their radii.

Well-sepørøted, d,ilute ranilom alraAs. For such arrays, the velocity potential can be

adequately approximated by keeping only the leading-order term with n: 1 in (47).

This amounts to treating the bubbles as point dipoles located at their centres. The
magnitude of these dipoles can be determined by first expanding þ near the surface

of bubble ø as

f":

fr:

* - *"),

x - x"),

(43)

(44)

(45)

via

A.s
þ: c"'s- st -1 ..., (51)
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where A"= Air¡,s: x-xq, and C" is related tc.¡ the regular part of þ near x"by

C":Ycþ.(x"). (52)

The singular part of / near x" corresponds to the derivative of the term 1/s in the
expansion of ,Sr(x-x") near its singularity (cf. (48), Hasimoto 1959), and therefore,
the regular part of'l is obtained by subtracting this singularity from ,S, i.e.

c': G*i, or.vvsri(x"-xz), (53)
y-l

whereBT : S, -If slor a- y andSi : B, otherwise, The impulse associatedwith the
bubble a. (cf. (26)) can be readily evaluated from (51) to be given by

I" : m(A"ø-" - C"), (54)

and the velocity of the bubble by

ts" : 2A"ø-B I C", (55)

where ffi : puø. Let us now consider the case in which the pressure gradient across the
dispersion is held constant. In this case, G is independent of time, and, since we

expect the dispersed-phase stress to be independent ofthe magnitude ofthe average
velocity of the mixture, we may choose it be zero without loss of generality. The force
on bubble ø due to potential flow interactions can be er.aluated from (25) by
substituting uL:Vþ. However, a simple calculation will show that the integral in
(25) with point dipoles alone used in the local expansion of þ (cf. (51)) vanishes. In
order to obtain a non-zero estimate, we shall also need to keep the quadrupole Ai,
term in the expansion. 'Ihe leading-order estimate, however, can be obtained from
the dipole approximation alone by using an alternative expression for the force as

derived from the Langrangian (cf. Biesheuvel & Gorissen 1990). This expression is

ii: v,"K, (56)

where K is the kinetic energy per unit cell which, for G : 0, can be evaluated from
(cf. I)

rN
K : ;E I''a'. (57)

. y:t

Substitutingfor I" and u" from (54) and (55) into (57), we obtain

K : m !, ¡n-.o" o-s -LAo, co cL-B -Èc". c"l. (58)

In the point,-bubbt" uonro*Ulation, we regard ct' a,s a,small quantity, and the inter-
bubble distances as O(1). To the leading-order approximation, therefore,

A" - f,a,\u". (59)

Now using (53) to evaluate C" and taking the gradient of K with the position of the
bubble yields the following leading-order estimate of the potential interaction force
on the bubble ø:

N
ii: -npoo E a"t/1' )2v(3) s'i(x"-xr), (60)

y:).

where the gradients are to be evaluated with respect to x"-x^t. Expressed in this
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ma,nner, we see that the potential interaction force on bubble a, i.e. i3, may be

thought of as a sum of forces acted upon by each bubble y in the dispersion with a
pair potential between the bubbles a and y being, roughly speaking, proportional to
VVSilx"-xv). The total potential can then be obtained by adding over all the pa,irs

in the dispersion. This simple scheme, however, needs some modification since

VVSi(x"-xz) behaves like lllx"-¡rl3 for distances that are small compared to the

unit ãell size, and. hence this sum may not converge for infinitely large unit cells' In
other words, we need to proceed with some caution'

As pointed out in Sangani & Acrivos (1983), the use of the periodic Green's

function S, in the analysis avoids the difficulties associated with the non-convergence

of long-range interactions. It is easy to show, using the Green's identity, and the

Greenis funãtion for the Laplace equation in an infinite spa,ce (lllx), that S, has the

following representation :

s,(x) : }p"-x")= l[#;J -+1, ] (61)

X'or large lx- x"l, the integrand in the above expression can be expanded in a Taylor
series tã show that for cubic unit cells çl decays as lflx-x"15. Thus, although the

summation of each term inside the square bracket in (61) diverges as lxrl +co, the

overall expression for,S, converges and the value of Br at a point within the basic unit
cell does nãt depend on the manner in which we take the limit lxrl +oo. Now we follow
Biesheuvel & Gorissen (1990) and determine the expression for the potential
contribution to the stress tensor using the particular form of pairwise decomposition

we have obtained in (60). In the following manipulations, we take bubble ø to be in
the basic unit cell and write the total force on it as a sum of forces due to each bubble

y and its periodic images. Thus

fNTN
l/racrdi" ) i3,81x-x"¡: ll*dCNdi' > >/f¿ ù@-xr-xt¡ (62ø)
J'- a:7 -" J Y:r L

: -Tcpqf lnut-ui'å þ,4,rrrôl¡,tq(R 
-x)lô'(x-x") (62b)

: ltpa6 
Jt. 

u, *ui' å 4 P,rr 
*ð|unlç@ - x 

"\1 
6(x - x "- 

xt) (62 c)

where R : xn- xr and ô, : Alðßt. Equation (62a,) is a simple identity in which the

summation olrer 6ú is replaced by the summation over y ; $2b) is obtained from (60) ;

(62 c) is obtained by making use of the fact lhat V(t)p(R) is an odd function of R ; and
(OZa¡ ir obtained by adding the terms on the right-hand sides of (62ó) and (62c) and

dividing by two.
Nowîo å*pr"*. the above quantity as the divergence of a stress tensot, we use the

usual procedire adopted in the statistical mechanics literature (see, for example,

Rice & Gray 1965) and expand the delta function in the Taylor series

f NN
: -lnpa6 l.frd0rdC, ) ))uiutAi,rlp(R-x")l

J o:Lt:t L

x (ô(x -x") - 8(x - x 
"- 

xt)),

8(x- x"- x7) : ô(x-x') + (Ã - *"¡,$.t6-x") +... .

(62d)

(63)
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Since ô$ng decays as lflx-x"18, the use of'Taylol selies expansiou of the delta
function is justified even for large x-x". Substituting the above expansion in (62),

and comparing the resulting expression with (a1), we obtain the expression for the
potential flow interaction contribution to the dispersed-phase stress as

ß,p. - ub.lÍ*or*di" 
Ë Ë (-npo'l ul,ut,V,.n,(R)ô(r-r'), (64)Y'ii- 2NtJ a_ty_r

where Yo*n¡(R): 
? 

(* -x¡,)tð",-np(lR-xr). (65)

It is easy to verify that the above quantity converges as lxrl +co. For the purpose

of numerical evaluation of'the stress, it is useful to express this quantity in terms of
periodic functions S, and S, as Ewalcl's summation technique described in Hasimoto
(1959) can then be readily used. Here, the function s, satisfies vz,s, : s, and is given
by

s"(jR) : ¡. [lÃ - 
xrl 

- 
t- | lR- x-r- x'l o*,]. (66)z\'-' ,"1 2 f J, 2 )

The summation in this case does not converge even though S, itself is finite. Thus,

the above representation should not be used for evaluating,Sr. In the present study,
however, we shall only be interested in V(")S, with ø ) 4, andit can be seen that such

derivatives of S, can be evaluated from (66) as the sum is then convergent.
To recast (65) in terms of derivatives of Sr and .Sr, we use the identity

Rorðlr..',,*,R-t: òl,*tr,*, R- (ôirirði"..!o,,nrl 8o,orðlr.lr,,*rl "'n terms)'B-1' (67)

Wilh n: 3 in the above identity, and summing oYer xa, wQ obtain

A. S. Søngøni and A. I(. Di,dtaa'nia

where

-

yi1i,¡ : #4 L{ur,*n 
R - x r- x' - (ôo¡ð2*n+ 8,*ð.;,+ Ii,ð?*)

- (R - x 
")¡ði*, lnj t; x1Ì 

r"' : - ï+ J, 
*l a?.,, 

rR-.j L- Ãdx'' 
(6e)

It can be shown that, for a simple cubic unit cell, the above quantity is independent
of .R and equals

Y"äî,¡:Tur*,,' (70)

where âzmni eQuals unity for i' : j : 'tn' : n, and zero otherwise.

Non-d,ilute a,rroys. We now return to the case of non-dilute arrays. The key step in
the previous derivation was the decomposition of the total potentiaì interaction force

on bubble ø in terms of a sum of the forces exerted by the other bubbles. For the
general case of non-dilute dispersions, such a decomposition may not always be

possible. Indeed, a straightforward calculation of the total kinetic energy of the
system in terms of higher-order reflections would quickly involve interactions a,mong

three or more bubbles. Fortunately though, such a decomposition is possible in the
present case a,s we shall now show.

V¿*nj : zðîj^nS';- Qo¡ð'*r* 8¡,nð?,,+ âj, Al2,,)Si + úäi,'"¡, (68)
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The formula (56) for evaluating the potential interaction force from the gradient
of the kinetic energy is not suitable for non-dilute arrays, as the explicit dependence
of the total kinetic energy on the position of the bubbles is not known. Instead, it
proves more convenient to evaluate the integral in (25) directly from the local
expansion of þ new the surface of bubble ø. Defining þ* : þ-a"'(x-x"), we have

io-.f r
ri: p 

)r"{+"".uL-uL'u")ndA 
: p 

)""+vþ*.vþ*ndA. 
(71)

Next, let the expansion of /* near the surface of bubble ø in spherical harmonics be

given by (cf. I)

ó*: i,i,rlz-raYn*+i,*1s¡\^1, Q2)

with Íi,*@) : Ci*s" +DL*s-"-t (73)

and s: x-xo. Now the boundary conditions at the surface of the bubble give the
relationship

n,I I

Cî*o':îOî,*a'-n-r' (74)

Similar expressions apply to fî,*.Substituting (72) into (71), and simplifying, we

obtain a relatively simple expression for Ii. For example (cf. I),

ii,: i,å,u**rri*,ri*,,**fi*fi*,,*1, (?5)

where the functions fft* etc. are to be evaluated at s : o,, and Hn*is given by

H : znpn(n+z) (nJ!r¿+ 1)l 
(1 + ô.0). (76)" nm - Qn* r) (2n-f o¡ \rL-rtL) |

Now we make use of (73) and (74) to obtain

2nr l - t-n-r :"! ,' rr_or. (77)J'i*@) : n D\*t n* |

Substitutin g for fft* and fft*r,^ in (75) in terms of Di* and Cf,*r,^ respectively, we

obtain

ii,: i i znplt*â-o) lDi.*Ci.*r,*+ñ:,*Õi,*r,*1. (?8)

Now we -ro" ";";t:i" tu"t that ci*r,*must be related to the regular part of / near

x" (cf. (13) in I) by

ci*,*: --=,1 ,?-'ll*)n-m+l L^þ'1 (7e)'n (n-lm-t 1)!(1+à,0)l\or,/ "' ' l,:,"

Substituting for the regular part of þ fuom (47 ) , using the relations between Dft* and
Ai* þf . (12) in I), combining (78) with (79), and rearranging we obtain

ææN
ii, : Z E Z an p ( - l)" lAi,, AIu>l )u 

* 
" v @ + n' 

)ô1 ^Si 
(,R )

n:7 h:l y:l
(80)
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in which R : xn - xr. Similar calculations can be m¿r,de fol: t'he rr- and ø, cornponents

of {, and the final result is

It may be noted that this result is valicl for any G (cf. (a7)) since evaluation of CT,*r,*^

requires second- and higher-order derivatives of þfor n2 I and these derivatives of

G. x vanish identically.
For the point-bubble approximation, Aîr>:|ø\a", and thus we recover the

expression [OO) UV keeping ðnly the ter ,. with k:n:1in (81). For non-dilute

,uirdo- dispersions, thã multipoles Ai,t indeed depend on the interactions among

ma,ny bubbies, but, as far as the derivation of the potential flow stress is considered,

these multipoles may be regarded as constants, just as the velocities of the bubbles

were treateã as constants in--our derivation ofthe stress tensor for the well-separated

dilute random arrays. It may be noted that although (81) has some similarity to the

expression based o.r th" kinetic energy (cf. (56)), there is no direct relation between

thå terms appearing in it to those in the evaluation of the kinetic energy' Since the

constants that appear in the expression for K are functions of the positions of all the

bubbles, it is unlùely that the result (81) can be derived starting from (56).

The resnlt, (81) gives us a,n eract formtla for decomposing the potential flow

interaction force (1ff) into the sum of forces exelted by all other bubbles in the

dispersion. Now, it is straightforward to derive the exact expression for the stress

ten-sor. If we take the mean relative motion to coitrcide with the rr-axis, it will sufÊce

to evaluate rlo and rf, because of the isotropy of the microstructure in the plane

transverse to"ihe mean relative motion. Substituting (49) into (80), making use of

(61) and (67), and simplifying we obtain

,i,:mèe \"Øi*L*+ Ãi*L*) ØI, a,,+ Ãy,Ã,¡a11zoi, sä - (p + 1)sï) * rì1"1,

(82)

,p, :3P".r t( - l\'+l(tt -f n-l l) (Ai,* L-+ Ãî,*Ã,*¡ 1'1y,,1,, + fi,,Ã,)af si + riu""l, (83)tü - 2¡¡otL-t

where the summation is to be carried over n, m, h, i, oc, and y, the functions Sti and

si and their derivatives are to be evaluated at R: x"- xr, p: n-m+lt,- j, andr\i"
uiar;;" are the contributions that arise from terms similar to tþäf,,i in (69) Onlv the

dipolå'terms contribute to these quantities because the integlals such as one on the

"*ir"rrr"rightof 
(69)vanishwhenàerivativesofordergreaterthan3 of lllR-x"-x'l

are involvãd. This is not surprising as one would expect the renormalization of Sr,

represented by the integral term in (61), to be necessary onlv for evaluating its

derivatives of order less than or equal t'o 2. Thus, we obtain

rä^: - äZ,TVAioAT0+Ai,A!1+ÃitÃ!11, 
(84)

N
rTln: -åå #or,or,. (85)

The strengths of'the multipoles can be d.eterminecl directly by solving the many-

bubble interaction problem as shown in L The derivatives of ,Sr can be evaluatecl

frorn the formula given itr Sangani, Zhang & Prosperetti (1991) r¡'hich employs

A. S. Søngøni a'nd, A. K. Di,dwønia

æælV
i3 : L Z E an p( - t)" Aînr A"t@, (' )".'n v(7¿+tu+1) si (R).

n:7 k:7 y:7

-t

(81)
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Ewald's summation technique. Similar expression can also be obtained for
d.erivatives of BÐ and hence (82)-(85) provide us with an exact method

determining the potential flow interaction contribution to the dispersed phase'

Collisionøl contribution to the d,'ispersed,-phase stress. As discussed in detail in I, there

is experimental evidence (Kok 1989) to suggest that bubbles do not coalesce when a

smaú amount of surface-active impurity is present in the dispersion. In our

simulations, \rye assume that bubbles collide in such a, wa,y as to conserve the kinetic
energy and the momentum of the liquid. The timescale for collision is assumed to be

small'compared to the inertial timescale. It is further assumed that the fluid dynamic
interactions in the gap between the colliding pair of bubbles is manifested as an

instantaneous force (on the timescale of inertial motion) of collision on the colliding
bubbles. Thus, for times close to a collision time ú., we write

Ìf,:m"F"ô('-'") :-i'n; Ì":0 for &:3,4,"'' (86)

where 1-2 is the colliding pair of bubbles, m" : (xL- x2) f 2ø, and f] is the magnitude

of the impulse acting on the colliding bubbles that is to be cletermined from the
conservation of the kinetic energy of the liquid (cf. I). X'or evaluating the

contribution to the dispersed-phase stress due to collisions, the trial function must
strictly be taken as a function of (Cr, ir) and thus no explicit dependence on time
is permissible. This can be done by replacing â(ú-r") in the above by â(lxl - x2l-2ø\.
Now we use

N

I r; a 
" -'"' 

I 1ilÍ1,'l:;äïi:.": ïi:--l,Ti - ;l ;": * ",,,,

to obtain the collision contribution as given by

43

the
for

where ?, is the length of the time interval and the summation is over all collisions

occurring during that interval.

3.2. Rema,rks on the d'eriuøtion

The approach we have taken in deriving the expression for the stress tensor is similar
to that used in deriving the expression for pressure in pure liquids from statistical
mechanics principles. There the problem is to average out the molecular interactions
to arrive ul th" p""sot" to be used in the continuum description of liquids. The

pressure in a liquid is the sum of two quantities. The first, referred to as the trans-

lational or the kinetic part of the pressure, is related to the avera,ge of m'aiai-
m'V¿Vi, where m' is the mass of a molecule, of its velocity-, and V, fhe a,verage

velociîy. In the case of bubbles dispersed in liquids, the mass of a bubble is, of course,

negligifile, but there is still a virtual mass associated with its motion under potential
flol ãonditions. The impulse I' in the dynamics of bubbly liquids plays a role similar
to that of momentu^ *'n" in molecular dynamics. Thus, (46) simply represents the

translational contribution to the stress tensor. For ideal gases in which the

interaction a,mong molecules is negligible, the pressure is entirely due to this
translational part. For d.ense gases and liquids, there is a second part ofthe pressure

that arises frãm the interactions among molecules. In molecular dynamics, it is

,":ffi\F,m"m", (88)
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customary to represent these interrnolecul¿ll folces in terms of pair potentials, and
thus the second palt of the pressule is trsualh¡ expressed in telrns of these pair
potentials. Deriving the equivalent form of'pair potentials for bubbly liquids is the
main contribrtion of the present studv. We shou'ed that while the multiparticle
interactions are quite important, it is still possible to interplet the force acting on a
representative bubble a,s a sum of'pairwise interaction forces. The intermolecular
forces in ordinary liquids are short ra,nge and therefore, the pair potentials can be

added in a straightforward manner to determine the potential contribution to the
pressure. In the statistical mechanics literature for pressure in liquids, the potential
part of the plessure is sometimes expressed in terms of a quantity rvhich is the sum
of riFi over all the molecules. Here /'f is the force on the molecule ø. When the
jntermolecular folces are short range, this alternative expression provides an efficient
method for determining the pressrue via simulations. We have followed a different
approach here mainly because the interactions in our case are long range.

It may be noted Lhat (42) is equivalent to (5.13) in vatr Wijngaarden & Kapteyn
(1990). A comparison of these two expressions suggests that their dispelsed-phase
tensor is the same as the translational part in our (46). It may appeal at first, by
analogy with the theories for pressure in gases at low number densities where the
translational part is the most impoltant one, that the expression that van
Wijngaarden & Kapteyn obtained must be valid when p is small. This, however, is

not the case aß there is an important difference between the two systems. In gases at
finite temperatures, there is considerable randomness in the motion of molecules,
which makes the variance in velocity, and hence the pressure, finite even in the limit
of zeto nurnber density. In the gas-liquicl dispersions that we have examined, the
variance in the velocity of the bubbles vanishes in the limit of small p (provided that
the bubbles do not form aggregates), and thus both the translational and potential
parts of the stress tensor are of comparable magnitude. Indeed, as we shall see in $4,
the potential contribution to the stress is two to three times larger than the
translational contribution for / as small as 0.1.

3.3. Ðnergy equøt'íon for the d'ispersed, phase

The momentum and continuity equations for the dispersed phase derived in previous
sections (cf. (23) and (42)) constitute a total of four scalar relations among þ,Vo:
Uf -4,10, and the average frictional force/,, u. In the limit of large Revnolds number
flows, the kinetic energy of the liquid remains approximately constant over a

timescale small compared to the viscous relaxation Lime a2 p f p and the microstructure
of the dispersion depends on the kinetic energy of the liquid. Thus 1o will not only
depend on p and V, buf also on the kinetic energY of the dispersion' When the
Reynolds number is large but flnite, this kinetic energy will slowly change with time,
ancl hence, after a sufficiently long time, the kinetic energy of the liquid, and thereby
the microstructure of the dispersion, under homogeneous and equilibrium conditions
will depend only on p and {. Thus, Iu andf," will eventually be functions of p and
V, only. When spatial and temporal fluctuations from this homogeneous state occur,
1o rvill vary because of the variations in the kinetic energy in addition to those in p
andVr. Thus, for a correct analysis of such flows, we must also include an additional
relat,ion corresponding to the changes in kinetic energy. Such equations are also used

in the study of granular flou's.
The energv equation can be derived in essentially the same manner as the

momentum equation. 'Ihe key is the choice of the proper trial function such as (36)

for the momenturn equation. In palticular, the trial function to be selected must

A. S. San,gan,i, a"nd, A. K. I)'iclu',e,niq,

-
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satisfy a cond.ition such as (a0). As discussed in detail in I, rvhich quantities remajn

invariant depends on the conditions of simulations. If the average velocity of the

liquid phase,-or the pressure gradient across the dispersion, are maintained constant,

tlren the sum of ¿" remains invariant. }Jere, e" is defined by

e" : LJîuî. (89)

If, however, the average velocity of the mixture is held constant during simulation,

the sum of ¿" d.efined via (57) inI remains invariant. In the present study, we shall

determine the average quantities for the former condition, i.e. for the constant

average velocity of tñe liquid phase. Thus, we shall use (89) as our definitionof e"'

Now the derivation of the-energy equation is quite straightfbrward and, for

inviscid interactions, yields

where ": ]* iË ,'ut"-"")/NdCNdiN, (91)" 
llNl ) *-,

and q,is the energy flux vector for the dispersed phase and consists of three t91ms qr\,

Ql , înd qrç corre-sponding, respectively,_ to the kinetic, potential and collisional

contributions. The kinetic part is given by

øf : ffilac,dc*ÍNí,@ie'-(Jfe) (e2)

v.hereas the potential and collisional contributions are defined via

**rr#,: -þfi,tool.

We have been unable to obtain an exact expression for the time rate of change of

energy associated with bubbte a, i.e. é", as the sum of pair interaction potential

"rr".!i"r. 
Therefore, an approximate expression based on point bubbles (dilute well-

sepaíabd arrays) will bã-presented here. The accuracy of this expression will be

tested against the numerical results for i" in the next section'

To delermine the point-bubble approximation for e",\et us choose G:0. The

impulse and velocityãt ¡o¡¡t" ø are related to the dipoles by (5a) and (55). Taking

the time derivative of the scalar product of these two expressions, we obtain

¿ : f,m(2A".À"a,-u 
_ (a. 7løo-t - C". À"ø-3) (94)

To determin e èo to leading order when ø is small, we note f,hal A",C" : O(o"), A" :
O(a6). Let us first detúmine C" by differentiating (53). Taking G:0, the

differentiation gives two terms;the firÀt involves a derivative of Av and the second

involves that of x"-xr, of which the latter is larger' Thus

^3NC":i)at(o"_r.,/)(.)rv(s)S\(x"-xr), (95)

" y:|

where we used ¿o -Lrüocl}. Now using the expression for la (cf. (60)) and combining

it with (95) and the time derivative of (5a) we obtain

^6N
À. : _)E @"+2¿t¡¿t(.)2V{3r8l(xø-xr). (96)

4 *-'t'

-fi,{ør+qi):#lr-dcNdiN T,a6{*-**¡ (e3)

(e0)
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Combining the above leading-order estirnates of À" and C" wiLh (94) and noting that,
to the leading order, |A"o-t : t)o : I" lQm) we obtain three equivalent expressions
for e"'.

n" : -ry 
ä,ro¿v(ao 

iur) ( . )sgrsr s,i(x"- xr)

: -+'! n' n, ç1" + Av) (. )Bvt'rsrr(x* - xr)
&" y:t

anP { tdrrltd t: -ihP,Idlv(l"+Iv) (.)3V(3)Si(xø-x7). (97)

It is easy to verify that the sum of e over all the bubbles in the dispersion vanishes,
as it should for the case of inviscid interactions.

As mentioned earlier, we have been unable to derive an exact decomposition of'ri"
in pair potential energies, and therefore we would like to use the results of the above
analysis to obtain an approximate pair decomposition. The three expressions listed
above are equivalent for the dilute case, but one of these three may provide better
approximation to the actual ¡j" in non-dilute dispersions, which can be evaluated by
using a forward time difference formula on the values of ¿" obtained in numerical
simulations. A comparison of the actual values with those obtained from the above
approximations is given in $4, where we find that the relative error is least when the
approximation based <¡n A" is used and largest when that. based on 1" is used. Now,
comparing (97) and (60) with the exact expression for ,la (cf. (80)) we obtain yet
another approximation, which is an improvement over that given by (97) :

¿ :4fr! z(- l),Ain¡ A(k) (A, + A7) ( . )z+/'+1v(r*to*1),,Sï(x'- x7). (gg)" 0}-

The summation in (98) is to be carried over n, lc, and 7. Now the potential
contribution to the energy flux can be determined following essentially the same
procedure as for rp and, in fact, the final expression can be written down by
multiplying (82) with (A"+AY)lø3:

ú : W è e \" Øi,n a, * + Ãx * Ã',,¡ 1'+y, a,, + Ã¡, Ã, ¡ Øio + AIò al

x {2ôl,S!- (p+I)Si}*øì"'1, (99)

where the summation is over n, m, h, j, T, and o(; p:n-m,*h-j; S\ and S[ are
evaluated at.R: xd-xv. Here, we have assumed that the mean relative motion is
in the ør-direction. The microstructure is expected to be isotropic in the ø, plane and
hence qf : ql:0. Finally,

øîen:-S S 9oîooïo(Aio+ATo). (1oo)ut î,f,, r'
We note that it may be possible to obtain & more accurate expression for qf by

adding a virial-type expression to the above, i.e. by adding

!T, m"*i (101)
N 1:,'
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to (gg). Here Ai" is the difference between the actual value of i", as evaluated

from numerically differentiating the values of ¿" obtained in simulations, and its
approximat" ,r"lo" as given by (98). In the present study, however, we have used

onìy the approximate relation (99)'
Finally,-the collisional contribution to the dispersed-phase energy flux was a.lso

evaluatecl by an approximate relation. During the collision, impulses of only the

colliding buúbles 
"hung", 

whereas, since the velocities of all the bubbles change, råo is

,rorr-r"rã for all the bubbles. Once again, it is difficult to obtain a pair decomposition

of the potential energies during the collision, and hence we used an approximate
relation in which the õhanges in e" of non-colliding bubbles were neglected' Thus, we

used
1qT:21)rI"E(LeL-L,ez)(*l-"?), (102)

where 1-2 is the colliding pair of bubbles, Â denotes the total change over a collision,

and the summation is cÀriied over all the collisions during a time interval of length

T'.

4. Results and discussion

The averaged equations and. the expressions for va,rious averaged quantities,

including the dispersed-phase stress and energy flux derived in previous sections,

should be combined with dynamic simulations for various macroscopic flows to

obtain their macroscale description. We shall study specific flows in more detail in

our future work. Here, we briefly consider three special cases'

4.L Period'ic ctrraYs

The first is the case ofbubbles arranged on the lattice ofa periodic array rising under

gravity. In this special case, it is possible to obtain analytical expressions for the

ãirp"rr"d-phase stiess and energy flux and this is quite useful in testing the accuracy

of ihe numerical calculations, particularly in view of the rather complicated nature

of the explessions for these quantities. Moreover, the results for periodic a,lrays serve

as benchmarks.
F or dilute cubic arrays with the velocity of all the bubbles equal to Z relativ_e to

the mixture and aligned along the ør-axis, An* are non-zelo only for odd ¿. It is

easy to show that, to leading orders,

va, : -o' ,4 - A4... ,qlrol, (1oB)Aro: 
Ul _ p), Aso : - 4gA 10 clillr òï(u)

which upon substitution into (82), (83), and (107), yield

, :mv¿(t +2Ê^l+orøi, (104)'t- z \r_p)-"rr-,,
rf, : À, Pl4"*otË1, (105)

\I-P)

rî¡: -ÀrËmw'+o(È), (106)

^ mlF ^. ^ro.
Çî : À, f ffi+otful' (107)
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lt lJ
Ilrçunn 1. The non-dimensional gt, rt, and r, fo,- (ct) the simple cubic lattice,

and (b) the bod¡'-ss¡1tred cubic lattice.

where ffi : puø and the constants À, and À, are given by

0.1 0.2 0

The constants À, and À, can be eyaluated from Hasimoto (1959) and Sangani &
Acrivos (1982) to be 0.386 and 3.66 for a simple cubic array, - 1.26 and 0.364 for the
body-centred array, and -1.17 and 0.212 for the face-centred cubic a,rra,y. The
kinetic and collisional contributions to the stress and energy flux are, ofcourse, zero.

The above results apply when the velocity of all the bubbles is taken to be the
same. This corresponds to one value of e, namely e:mV2(I+2P)/(4(l-p)).In a
stability analysis, one would also need to evaluate how each of these quantities va,ries
with ¿ near this state of equal velocities. This can be done, for instance, by calculating
various quantities when the velocity of each bubble is given a small random
perturbation. Since these calculations are somewhat involved, we shall not pursue
them here.

'Ihe numerical results for simple and body-centred cubic arrays, obtained by
including a suffioient number of multipoles &re shown in figures 1(ø) and 1(b),
respectively. For higher values of p, up to 2? multipoles were needed for convergence.
In these figures, 71r a,nd r¿¿ are non-dimensionalized with mV2, and q, with mW. The
calculations apply to the case when bubbles' velocities are equal. The numerical
results obtained from computer proglams were checked against the asymptotic
formulae presented above and perfect agreement was obtained in the limit of p>0.
For finite p, an agreement within 2o/o was obtained for zf, and qf for p ( 0.1, while
the computed value of zon was about 20o/o higher than the asymptotic value al p :
0.1. The departure from the asymptotic values of r' and zø increased quickly as p
was increased beyond 0.1, and in fact as mentioneil earlier the multipoles of as high
as 2? order were needed to reach convergence in the numerical results.

We note Lhat, q, and z' are positive for the simple cubic arrangement and negative
for the body-centred cubic arra,ngement. A positive pressure implies a repulsive
potential. It is well known from the work of Biesheuvel & van Wijngaarden (1982)
that a repulsive potential exists between a, pair of bubbles moving vertically when
theil orientation makes an angle less than about 30' with the vertical direction.
Thus, we expect the repulsive potential for the ll-component in a simple cubic
arrangement in accorclance with our numerical and asymptotic analyses. As

o, : -Ku1,,,sä(o), 
^, 

: &(Y)*q,,, 1110¡ (108)
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Time

Frcunn 2. The non-dimensional Ç1, r¡, and ru às a, function of non-dimensionaÌ time.
The initial velocity distribution is uniform' N:20' P:0'l' ancl A¿:500'

mentioned in the Introduction, a positive gradient in rrr with p or V will have a
stabilizing influence for the planar void fraction wa\¡es travelling in the ør-direction.
Thus, weãxpect the simple cubic arrangement to be stabilized and the body-centred

cubic arrangement to be destabilized. On the other hand, since rnn is negative for
both arrangements, these configurations are likely to be unstable to arbitrary
disturbances.

4.2. Rand,om arra,As of bubbles

The second case we consider is that of an initially random arrangement of bubbles

rising und.er gravity. The initial velocity of all the bubbles is Z and in Lhe rr-
direction, which is taken to be along the direction opposite to gravity. The

simulations were carried out with G : 0, which corresponds to a constant average

liquid velocity (cf. I).
First, let us discuss the comparison of various approximate formulae for

determining è (cf. (97)). we defined the relative error in estimating i" by

",, 
:Egt- ¿:l'. 

(r oe)"r >Q'i)' '

where é[ is the exact value as determined from numerical differentiation of the results

and. e" ih" uppto*imate estimate obtained using different formulae in (97). For a
conflguration of 10 bubbles per unit cell with no viscous or gravitational forces we

computed the relatíve errors for the three approximations. The calculations were

madã by including up to 23-multipoles' For p:0'01,0'1' and 0'3' the relative error
e" based on the dþole approximation was, respectively, 0.039, 0.079, and 0.16. The

corresponding values for that based on velocity were 0.043, 0'12, and 0'23. Finally,
the relative error based on the values of the impulse was the largest, being equal to
0.30 for þ :0.3. Thus, we conclude that the least error is made when the

approximations based on the dipole (the middle equality in (97)) were used.
-Figor" 

2 shows the results for r¡,r¿¿, &îd qr. The non-dimensionalization is the

*"-""u* in the periodic array case. The Reynolds number based on the terminal speed

of isolated bubbles was taken to be 500 in these calculations, and N: 30. We note

that z' is negative, and thus the dispersed-phase pressure has a destabilizing
influene,e. The relative contributions of the kinetic, potential, and collisional stresses

- 1.0

-2.0
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Frçunn 3. The collisirmal (c),
(a) and r,, in

(a)

to r' and rro ar:e shown in figures 3(ø) and 3(ð) respectively. We see that the
magnitude of the potential contribution to r' is far greater than the translational
and collisional contributions. The latter two are positive, but the overall stress

component is negative. van Wiingaarden & Kapteyn (1990) ignored the collisional
and potential stresses in their analysis of dilute bubbly liquids. We see that
accounting for the potential contlibution changes the role of clispelsed-phase stress

from being a stabilizing influence to a destabilizing one. Indeed, this is what we found
in I: the initial uniform structure changed to one in which the bubbles formed planar
aggregates. The trace ofthe stress tensor r,u shown in figure 3(b) is also negative but
its magnitude is much smaller than that of r' indicating that rzza,nd 7BB are positive.
The collisional contribution to these components is generally much larger than for rrt
owing to the fact that most collisions among bubbles occur in the plane transverse
to the mean motion. This suggests thal r* and r* are positive since the collisional
contributions to them are larger than the potential interaction contributiotr.

As seen in figure 2, r' conbinues to decrease with time as bubbles arrange
themselves to form planar aggregates. This result at first may appea,r counter-
intuitive since it is the negative value of the stress tensor that destabilizes the
uniform spatial distribution of the bubbles, and hence the bubbles should form a
structure which will reduce this tendency. Actually, it is the gradient, and not the
magnitude, of z' that plays an important role in the stability analysis of the void
fraction waves. The magnitude of the stress increases because bubbles get more
closely packed as time progresses. Since the difference in the structures a,mong
dispersions with different values of p become small when planar aggregates form, the
magnitude of the gradient of r' with p will decrease with the formation of planar
aggregates.

The results shown in figures 2 and 3 were obtaineil by including only the dipoles
in our solution. The velocity and spatial distributions of the bubbles are reasonably
well approximated even with this highly truncated solution. We found, howevet,
that the accurate evaluation of the potential stress would require higher-order
multipoles in the solution. The computational time required for carrying out
dynamic simulations increases rapidly with the order of multipoles included in the
solution mainly due to the time required in evaluating the potential stress.
Fortunately, the magnitude of the potential stress for the given spatial and velocity
distribution increased with the number of multipoles retained in the solution, and

20

0

Time
kinetic (k), and potential (p) contributions to the ovelalÌ (o) rr, in
(ö) for simulation conclitions described in figure 2.
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thus the conclusion reached above, i.e. the overall stress being negative, remeins

valid. If more accurate evaluation of the stress is required, it can be accomplished by

storing the spatial and velocity configurations ofthe bubbles at every few hundred

time sieps utrã th"tr evaluating the potential contribution for those configurations by

including higher-order multipoles. Most of the dynamic simulation can be carried out

to an afequãte degree of aõcuracy by truncating the solution to the dipoles and

quadrupoles. As mentioned in I, CPU time for a configuration of 40 bubbles per one

configuration is less than 2 s on the IBM 3090 at cornell Theory center.

4.3. No meøn reløtiue motion

The third case we examined is one with zero relative motion. The gravitational and

viscous forces are absent, and the initial velocity distribution is non-uniform. As in
the previous ca,se, the simulations were carried out with G :0, which corresponds to

a constant pressure gradient across the dispersion. As shown in I, the sum of impulses

a"îd. ee."-uin invariãnt for this situation. To avoid any bias due to the finite number

of bubbles used. in simulation toward making the dispersion anisotropic, we required

that the sum of impulses be exactly zero throughout, the simulation. Thus, instead

of specifying the initial velocity distribution of the bubbles, we specify the impulse

¿istri¡ution. The three components of the impulses for the individual bubbles were

chosen to be uniform random variables between -0.5 and 0.5. The initial spatial and

velocity distribution determines the kinetic energy of the liquid. For this special

situatiån, the liquid avera,ge velocity remains zero throughout the simulation, and

both the ar"tugé velocity of the gas phase and the avera,ge velocity of the mixture
fluctuate uroorrã zero. The fluctuations for the gas-phase aYela,ge velocity were less

than 5o/o.The trace of the Reynolds stress Ifi is related to the total kinetic energy

of the liquid and hence remains constant during the simulation. Therefore, the

dispersed:phase stress was non-dimensionalized wifh Dft. Similarly, the viscous drag

coJfficientìo be used in the energy equation was obtained by using Vt : 2*,1m. (ßor

simulations, hot{ever, we chose Re : Ø.)
The situation described above is relevant to the flow of bubbly liquids through a

pipe. In the absence of gravitational forces acting on the bubbles, the gas-phase

velocity is roughly the same as that of the liquid phase. If the gradient in the average

liquid velocity isimall but non-zeïo, the mean motion it produces would introduce

a, non-zero variance in the velocity of the bubbles. In the limit of large Reynolds

number, one would expect the root-mean-squared velocity to be much greater than

the mean relative motion which produces this variance. The question of modelling

the flow inside pipes is, of coutse, much more complex, and therefore it will be

addressed in future work. Here, we shall simply give the preliminary results for the

idealized situation described in the previous paragraph.
X'igure 4 shows the results of dynamic simulations for three different values of p'

lüwas chosen to equal 20 for þ:0'l and 0'3, and 16 for p:0'5' The results for

þ:O.l were obtainìd using dipoles and those for p:0.3 and 0.5 with dipoles and

quadrupoles. The kinetic component of ron is unity for all p. This is simply the

"onr"qri"rr"e 
of choosing the characteristic velocity based on the Reynolds st'ress, and

this mäy be thought ofãs analogous to the ideal gas law. Interestingly, we foundthe
viscous drag coefficient to be relatively insensitive to p, changing from about 2.0 t'o

2.4 as p varied from 0.1 to 0.5. The isolated bubble ap

drag coefficient of 2.We also find that the magnitude
to the stress is much smaller than the kinetic and colli
latter increasing rapidly wifh p. Because of the isotropy, we expect QTtobe zero and
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p

l'reunn 4.'I'he viscous drag coefficient based on oneÌgJ¡ clissipation, and the kinetic (k), collisional
(c) and potential (p) contributions to the overall (o) 2,, as a function of p. The mean relative rnotion
is zero.

hence we did not eva,luate it. To save computational time, we a,lso did not evaluate
the potential contribution to rrr. However, since the magnitude of the potential
contribution to rii is small, we found that the sum rr" * zf, was rea,sonably close to {rno,
as required by the isotropy of'the dispersion.

As in the case of random a,rra,ys with mean relative motion, we found that in order
to evaluate the potential contribution to the stress with greater a,ccuracy, we need
to include higher-order multipoles. Interestingly, the magnitude of the potential
contribution decreased with higher-order multipoles. For example, for an initial
configuration of 10 bubbles with a random velocity distribution, we found that the
potential contribution changed by 50o/o as the highest-order multipoles retained in
the solution were increased from dipoles to octupoles. However, in contrast to the
cese of random arr¿ùys with mean relative motion, we found that the magnitude of
the potential contribution decreased with higher-order multipoles. Thus, the actual
potential contribution to the total dispersed-phase stress is even smaller than is
indicated in figure 4.

5. Summary
We have derived a set of equations to describe the behaviour of gas-liquid

dispersions for the special case of large Reynolds number and slowly varying fields.
The emphasis was on deriving expressions for various average quantities in terms of
dynamic variables accessible through numerical simulations such as those described
in I. For easy reference, these are listed below.

Equations for the overall medium:

dtT.

d;: o' (110)

lô ¡ .l aP a
nlo:tt - p) ui + o\(- p) ui ui): -il, + p(t - þ)ø: *L ÊELi. (1 1 1)

Equations for the dispersed phase:

-4

'u
ri,

0.2

Ctr

0.4 0.6
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9Ê*!(ß(Jf):0, Ít2)ðt ' ðr,'Y

*.of#,: -i#,$rn)-r2npaco,vo-*so, (113)

u:*w9: -:yt-r2n¡.røco,v2-mg¿v¿, (114)
at- "J ðij- þð*t

where Q is the average velocity of the mixture, k: Uf -U,, (l-P)Uf;: (4-P-UG,

C u, and"C o, are the viscous drag coefficients based, respectively, on the average drag

fJrce a"d ïiscous dissipation per unit volume of the mixture. The impulse is related

Lo (J and \by fhe added mass coefficient:

Io: mlf,Cuvr-Url. (115)

The added mass and viscous drag coefficients are functions of p and e ot (elmW)'

Similarly, the dispersed-phase tensor is defined via

r¿t: ml(V¿V -+WSdìTr+tWTkkSrjf, (116)

where !,, and Trrare functions of p ande'
Finalþ, it should be emphasized lhat bhe above expressions are correct only to

the frrst-order spatial derivatives in p and I{, except for those terms multiplied by

the viscosity of the liquid. Since we a,re dealing with large Reynolds number flows, the

first-order spatial derivatiyes in those terms have been neglected. When gradients

are significant, we shall also need to include them in the constitutive relations for ru,

etc. alnd this will introduce new quantities such as the viscosity of the dispersed

phase.
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Note acld,ed, i,n proof

When the gradients in average velocity IJ are non-zero, there will be an additional
contribution to the rate of change of impulse associated with each bubble. To first
order in small gradients, the contribution due to this (referred to as the lifT force) is
similar to the yiscous and buoyancy forces, and can be expressed in terms of the rate
of strain tensor and vorticity of the mean flow. Thus, -nLlÍ+ll2CòÐ¿JVt+
lf4CneqoQ,Zol must be added to the right-hand side of (113). Here, Er,:
(ôP j+ ô jui)12, Qu: eo,rôrUu, and C E a,nd Ca a,re coeffrcients accounting for the effect
of finite p.It can be shown that Cu: Cu for periodic a,rra,ys. Whether this simple
relation between Cu and Cu applies even to random arrays will be investigated in a
future work. Note that a similar correction will apply to the dispersed phase energy
equation (114) as well,

mechanics of heterogeneous and dispersecl

folces in disperse two-phase flow. Intl J.
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