
University of Massachusetts Amherst

From the SelectedWorks of Andrew McGregor

September 6, 2010

Optimizing Linear Counting Queries Under
Differential Privacy
Chao Li
Michael Hay
Vibhor Rastogi
Gerome Miklau
Andrew McGregor, University of Massachusetts - Amherst

Available at: https://works.bepress.com/andrew_mcgregor/3/

http://www.umass.edu
https://works.bepress.com/andrew_mcgregor/
https://works.bepress.com/andrew_mcgregor/3/

Optimizing Linear Counting Queries
Under Differential Privacy

Chao Li†, Michael Hay†, Vibhor Rastogi‡, Gerome Miklau†, Andrew McGregor†

†University of Massachusetts Amherst,
Amherst, Massachusetts, USA

{chaoli,mhay,miklau,mcgregor}@cs.umass.edu

‡University of Washington,
Seattle, Washington, USA
vibhor@cs.washington.edu

N.B. This is the full version of the conference paper pub-
lished as [12]. This version includes an Appendix with proofs
and additional results, and corrects a few typographical er-
rors discovered after publication. It also adds an improve-
ment in the error bounds achieved under (ε, δ)-differential
privacy, included as Theorem 5.

ABSTRACT
Differential privacy is a robust privacy standard that has
been successfully applied to a range of data analysis tasks.
But despite much recent work, optimal strategies for answer-
ing a collection of related queries are not known.

We propose the matrix mechanism, a new algorithm for
answering a workload of predicate counting queries. Given
a workload, the mechanism requests answers to a different
set of queries, called a query strategy, which are answered
using the standard Laplace mechanism. Noisy answers to
the workload queries are then derived from the noisy answers
to the strategy queries. This two stage process can result in
a more complex correlated noise distribution that preserves
differential privacy but increases accuracy.

We provide a formal analysis of the error of query answers
produced by the mechanism and investigate the problem of
computing the optimal query strategy in support of a given
workload. We show this problem can be formulated as a
rank-constrained semidefinite program. Finally, we analyze
two seemingly distinct techniques, whose similar behavior is
explained by viewing them as instances of the matrix mech-
anism.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—Statistical databases;
G.1 [Numerical Analysis]: Optimization

General Terms: Algorithms, Security, Theory

Keywords: private data analysis, output perturbation, diff-
erential privacy, semidefinite program.

1. INTRODUCTION
Differential privacy [8] offers participants in a dataset the

compelling assurance that information released about the
dataset is virtually indistinguishable whether or not their
personal data is included. It protects against powerful ad-
versaries and offers precise accuracy guarantees. As outlined
in recent surveys [5, 6, 7], it has been applied successfully to
a range of data analysis tasks and to the release of summary
statistics such as contingency tables [1], histograms [11, 17],
and order statistics [13].

Differential privacy is achieved by introducing randomness
into query answers. The original algorithm for achieving diff-
erential privacy, commonly called the Laplace mechanism [8],
returns the sum of the true answer and random noise drawn
from a Laplace distribution. The scale of the distribution is
determined by a property of the query called its sensitivity:
roughly the maximum possible change to the query answer
induced by the addition or removal of one tuple. Higher sen-
sitivity queries are more revealing about individual tuples
and must receive greater noise.

If an analyst requires only the answer to a single query
about the database, then the Laplace mechanism has re-
cently been shown optimal in a strong sense [9]. But when
multiple query answers are desired, an optimal mechanism
is not known.

At the heart of our investigation is the suboptimal be-
havior of the Laplace mechanism when answers to a set of
correlated queries are requested. We say two queries are cor-
related if the change of a tuple in the underlying database can
affect both answers. Asking correlated queries can lead to
suboptimal results because correlation increases sensitivity
and therefore the magnitude of the noise. The most extreme
example is when two duplicate queries are submitted. The
sensitivity of the pair of queries is twice that of an individual
query. This means the magnitude of the noise added to each
query is doubled, but combining the two noisy answers (in
the natural way, by averaging) gives a less accurate result
than if only one query had been asked.

Correlated workloads arise naturally in practice. If mul-
tiple users are interacting with a database, the server may
require that they share a common privacy budget to avoid
the threat of a privacy breach from collusion. Yet, in acting
independently, they can easily issue redundant or correlated
queries. Further, in some settings it is appealing to simul-
taneously answer a large structured set of queries, (e.g. all
range queries), which are inherently correlated.

In this work we propose the matrix mechanism, an im-
proved mechanism for answering a workload of predicate

ar
X

iv
:0

91
2.

47
42

v2
 [

cs
.D

B
]

 6
 S

ep
 2

01
0

counting queries. Each query is a linear combination of base
counts reporting the number of tuples with the given com-
bination of attribute values. A set of such queries is repre-
sented as a matrix in which each row contains the coefficients
of a linear query. Histograms, sets of marginals, and data
cubes can be viewed as workloads of linear counting queries.

The matrix mechanism is built on top of the Laplace mech-
anism. Given a workload of queries, the matrix mechanism
asks a different set of queries, called a query strategy, and
obtains noisy answers by invoking the Laplace mechanism.
Noisy answers to the workload queries are then derived from
the noisy answers to the strategy queries. There may be more
than one way to estimate a workload query from the answers
to the strategy queries. In this case the derived answer of
the matrix mechanism combines the available evidence into
a single consistent estimate that minimizes the variance of
the noisy answer.

While the Laplace mechanism always adds independent
noise to each query in the workload, the noise of the matrix
mechanism may consist of a complex linear combination of
independent noise samples. Such correlated noise preserves
differential privacy but can allow more accurate results, par-
ticularly for workloads with correlated queries.

The accuracy of the matrix mechanism depends on the
query strategy chosen to instantiate it. This paper explores
the problem of designing the optimal strategy for a given
workload. To understand the optimization problem we first
analyze the error of any query supported by a strategy. The
error is determined by two essential features of the strategy:
its error profile, a matrix which governs the distribution of
error across queries, and its sensitivity, a scalar term that
uniformly scales the error on all queries. Accurately answer-
ing a workload of queries requires choosing a strategy with
a good error profile (relatively low error for the queries in
the workload) and low sensitivity. We show that natural
strategies succeed at one, but not both, of these objectives.

We then formalize the optimization problem of finding
the strategy that minimizes the total error on a workload
of queries as a semi-definite program with rank constraints.
Such problems can be solved with iterative algorithms, but
we are not aware of results that bound the number of itera-
tions until convergence. In addition, we propose two efficient
approximations for deciding on a strategy, as well as a heuris-
tic that can be used to improve an existing strategy.

Lastly, our framework encompasses several techniques pro-
posed in the literature. We use it to analyze two tech-
niques [11, 17], each of which can be seen as an instance
of the matrix mechanism designed to support the workload
consisting of all range queries. Our analysis provides insight
into the common behavior of these seemingly distinct tech-
niques, and we prove novel bounds on their error.

After a background discussion we describe the matrix mech-
anism in Section 3. We analyze its error formally in Section 4.
In Section 5, we characterize the optimization problem of
choosing a query strategy and propose approximations. We
use our results to compare existing strategies in Section 6.
We discuss related work, including other recent techniques
that improve on the Laplace mechanism, in Section 7.

2. BACKGROUND
This section describes the domain and queries considered,

and reviews the basic principles of differential privacy. We
use standard terminology of linear algebra throughout the

paper. Matrices and vectors are indicated with bold letters
(e.g A or x) and their elements are indicated as aij or xi.
For a matrix A, At is its transpose, A−1 is its inverse, and
trace(A) is its trace (the sum of values on the main diagonal).
We use diag(c1, . . . cn) to indicate an n× n diagonal matrix
with scalars ci on the diagonal. We use 0m×n to indicate a
matrix of zeroes with m rows and n columns.

2.1 Linear queries
The database is an instance I of relational schema R(A),

where A is a set of attributes. We denote by dom(A) the
cross-product of the domains of attributes in A. The analyst
chooses a set of attributes B ⊆ A relevant to their task.
For example if the analyst is interested in a subset of two
dimensional range queries over attributes A1 and A2, they
would set B = {A1, A2}. We then form a frequency vector x
with one entry for each element of dom(B). For simplicity we
assume dom(B) = {1, 2, . . . , n} and for each i ∈ dom(B), xi
is the count of tuples equal to i in the projection ΠB(I). We
represent x as a column vector of counts: x = [x1 . . . xn]t.

A linear query computes a linear combination of the counts
in x.

Definition 2.1 (Linear query). A linear query is a
length-n row vector q = [q1 . . . qn] with each qi ∈ R. The
answer to a linear query q on x is the vector product qx =
q1x1 + · · ·+ qnxn.

We will consider sets of linear queries organized into the
rows of a query matrix.

Definition 2.2 (Query matrix). A query matrix is a
collection of m linear queries, arranged by rows to form an
m× n matrix.

If Q is an m × n query matrix, the query answer for Q
is a length m column vector of query results, which can be
computed as the matrix product Qx.

Example 1. Figure 1 shows three query matrices, which
we use as running examples throughout the paper. I4 is the
identity matrix of size four. This matrix consists of four
queries, each asking for an individual element of x. H4 con-
tains seven queries, which represent a binary hierarchy of
sums: the first row is the sum over the entire domain (re-
turning the total number of tuples in I), the second and third
rows each sum one half of the domain, and the last four rows
return individual elements of x. Y4 is the matrix of the Haar
wavelet. It can also be seen as a hierarchical set of queries:
the first row is the total sum, the second row computes the
difference between sums in two halves of the domain, and the
last two rows return differences between smaller partitions of
the domain. In Section 6 we study general forms of these
matrices for domains of size n [11, 17].

2.2 The Laplace mechanism
Because the true counts in x must be protected, only

noisy answers to queries, satisfying differential privacy, are
released. We refer to the noisy answer to a query as an
estimate for the true query answer. The majority of our re-
sults concern classical ε-differential privacy, reviewed below.
(We consider a relaxation of differential privacy briefly in
Sec. 5.2.)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1


I4 H4 Y4

Figure 1: Query matrices with dom = {1, 2, 3, 4}. Each
is full rank. I4 returns each unit count. H4 computes
seven sums, hierarchically partitioning the domain.
W4 is based on the Haar wavelet.

Informally, a randomized algorithm is differentially private
if it produces statistically close outputs whether or not any
one individual’s record is present in the database. For any
input database I, let nbrs(I) denote the set of neighboring
databases, each differing from I by at most one record; i.e.,
if I ′ ∈ nbrs(I), then |(I − I ′) ∪ (I ′ − I)| = 1.

Definition 2.3 (ε-differential privacy). A random-
ized algorithm K is ε-differentially private if for any instance
I, any I ′ ∈ nbrs(I), and any subset of outputs S ⊆ Range(K),
the following holds:

Pr[K(I) ∈ S] ≤ exp(ε)× Pr[K(I ′) ∈ S],

where the probability is taken over the randomness of the K.

Differential privacy can be achieved by adding random
noise to query answers. The noise added is a function of the
privacy parameter, ε, and a property of the queries called
sensitivity. The sensitivity of a query bounds the possi-
ble change in the query answer over any two neighboring
databases. For a single linear query, the sensitivity bounds
the absolute difference of the query answers. For a query
matrix, which returns a vector of answers, the sensitivity
bounds the L1 distance between the answer vectors resulting
from any two neighboring databases. The following proposi-
tion extends the standard notion of query sensitivity to query
matrices. Note that because two neighboring databases I
and I ′ differ in exactly one tuple, it follows that their corre-
sponding vectors x and x′ differ in exactly one component,
by exactly one.

Proposition 1 (Query matrix sensitivity). The sen-
sitivity of matrix Q, denoted ∆Q, is:

∆Q =def max
‖x−x′‖1=1

∥∥Qx−Qx′
∥∥

1
= max

j

n∑
i=1

|qij |.

Thus the sensitivity of a query matrix is the maximum L1

norm of a column.

Example 2. The sensitivities of the query matrices in Fig-
ure 1 are: ∆I4 = 1 and ∆H4 = ∆Y4 = 3. A change by one
in any component xi will change the query answer I4x by ex-
actly one, but will change H4x and Y4x by three since each
xi contributes to three linear queries in both H4 and Y4.

The following proposition describes an ε-differentially pri-
vate algorithm, adapted from Dwork et al. [5], for releasing
noisy answers to the workload of queries in matrix W. The
algorithm adds independent random samples from a scaled
Laplace distribution.

Proposition 2 (Laplace mechanism). Let W be a qu-

ery matrix consisting of m queries, and let b̃ be a length-
m column vector consisting of independent samples from a
Laplace distribution with scale 1. Then the randomized al-
gorithm L that outputs the following vector is ε-differentially
private:

L(W,x) = Wx + (
∆W

ε
)b̃.

Recall that Wx is a length-m column vector representing
the true answer to each linear query in W. The algorithm
adds independent random noise, scaled by ε and the sensi-
tivity of W. Thus L(W,x), which we call the output vector,
is a length-m column vector containing a noisy answer for
each linear query in W.

3. THE MATRIX MECHANISM
Central to our approach is the distinction between a query

strategy and a query workload. Both are sets of linear queries
represented as matrices. The workload queries are those
queries for which the analyst requires answers. Submitting
the workload queries to the Laplace mechanism described
above is the standard approach, but may lead to greater er-
ror than necessary in query estimates. Instead we submit
a different set of queries to the differentially private server,
called the query strategy. We then use the estimates to the
strategy queries to derive estimates to the workload queries.
Because there may be more than one derived estimate for a
workload query, we wish to find a single consistent estimate
with least error.

In this section we present the formal basis for this deriva-
tion process. We define the set of queries whose estimates
can be derived and we provide optimal mechanisms for de-
riving estimates. Using this derivation, we define the matrix
mechanism, an extension of the Laplace mechanism that uses
a query strategy A to answer a workload W of queries. The
remainder of the paper will then investigate, given W, how
to choose the strategy A to instantiate the mechanism.

3.1 Deriving new query answers
Suppose we use the Laplace mechanism to get noisy an-

swers to a query strategy A. Then there is sufficient evi-
dence, in the noisy answers to A, to construct an estimate
for a workload query w if w can be expressed as a linear
combination of the strategy queries:

Definition 3.1 (Queries supported by a strategy).
A strategy A supports a query w if w can be expressed as a
linear combination of the rows of A.

In other words, A supports any query w that is in the sub-
space defined by the rows of A. If a strategy matrix consists
of at least n linearly independent row vectors (i.e., its row
space has dimension n), then it follows immediately that it
supports all linear queries. Such matrices are said to have
full rank. We restrict our attention to full rank strategies
and defer discussion of this choice to the end of the section.

To derive new query answers from the answers to A we
first compute an estimate, denoted x̂A, of the true counts x.
Then the derived estimate for an arbitrary linear query w is
simply the vector product wx̂A. The estimate of the true
counts is computed as follows:

Definition 3.2 (Estimate of x using A). Let A be a
full rank query strategy A consisting of m queries, and let
y = L(A,x) be the noisy answers to A. Then x̂A is the
estimate for x defined as:

x̂A = A+y,

where A+ = (AtA)
−1

At is the pseudo-inverse of A.

Because A has full rank, the number of queries in A, m,
must be at least n. When m = n, then A is invertible and
A+ = A−1. Otherwise, when m > n, A is not invertible, but
A+ acts as a left-inverse for A because A+A = I. We explain
next the justification for the estimate x̂A above, and provide
examples, considering separately the case where m = n and
the case where m > n.

A is square. In this case A is an n× n matrix of rank n,
and it is therefore invertible. Then given the output vector
y, it is always possible to compute a unique estimate for the
true counts by inverting A. The expression in Definition 3.2
then simplifies to :

x̂A = A−1y.

In this case, query strategy A can be viewed as a linear
transformation of the true counts, to which noise is added by
the privacy mechanism. The transformation is then reversed,
by the inverse of A, to produce a consistent estimate of the
true counts.

Example 3. In Figure 1, I4 and Y4 are both square, full
rank matrices which we will use as example query strategies.
The inverse of I4 is just I4 itself, reflecting the fact that since
I4 asks for individual counts of x, the estimate x̂ is just the
output vector y. The inverse of Y4 is shown in Figure 2(c).
Row i contains the coefficients used to construct an estimate
of count xi. For example, the first component of x̂A will be
computed as the following weighted sum: .25y1 + .25y2 + .5y3.

Specific transformations of this kind have been studied be-
fore. A Fourier transformation is used in [1], however, rather
than recover the entire set of counts, the emphasis is on a
set of marginals. A transformation using the Haar wavelet is
considered [17]. Our insight is that any full rank matrix is a
viable strategy, and our goal is to understand the properties
of matrices that make them good strategies. In Section 6 we
analyze the wavelet technique [17] in detail.

A is rectangular. When m > n, we cannot invert A and
we must employ a different technique for deriving estimates
for the counts in x. In this case, the matrix A contains n
linearly independent rows, but has additional row queries as
well. These are additional noisy observations that should be
integrated into our estimate x̂A. Viewed another way, we
have a system of equations given by y = Ax, with more
equations (m) than the number of unknowns in x (n). The
system of equations is likely to be inconsistent due to the
addition of random noise.

We adapt techniques of linear regression, computing an es-
timate x̂A that minimizes the sum of the squared deviations
from the output vector. Because we assume A has full rank,
this estimate, called the least squares solution, is unique. The
expression in Definition 3.2 computes the well-known least

squares solution as x̂ = (AtA)
−1

Aty.

This least squares approach was originally proposed in [11]
as a method for avoiding inconsistent answers in differentially
private outputs, and it was shown to improve the accuracy
of a set of histogram queries. In that work, a specific query
strategy is considered (related to our example H4) consisting
of a hierarchical set of queries. An efficient algorithm is
proposed for computing the least squares solution in this
special case. We analyze this strategy further in Sec. 6.

Example 4. H4, shown in Figure 1, is a rectangular full
rank matrix with m = 7. The output vector y = L(H4,x)
does not necessarily imply a unique estimate. For example,
each of the following are possible estimates of x1: y4, y2 −
y5, y1 − y3 − y5, each likely to result in different answers.
The reconstruction matrix for H4, H+

4 shown in Fig 2(b),
describes the unique least squares solution. The estimate for
x1 is a weighted combination of values in the output vector:
3
21
y1 + 5

21
y2− 2

21
y3 + 13

21
y4− 8

21
y5− 1

21
y6− 1

21
y7. Notice that

greatest weight is given to y4, which is the noisy answer to
the query that asks directly for x1; but the other output values
contribute to the final estimate.

In summary, whether m = n or m > n, Definition 3.2
shows how to derive a unique, consistent estimate x̂A for the
true counts x. Once x̂A is computed, the estimate for any
w is computed as wx̂A. The following theorem shows that
x̂A is an unbiased estimate of x and that in a certain sense
it is the best possible estimate given the answers to strategy
query A.

Theorem 1 (Minimal Variance of estimate of x).
Given noisy output y = L(A,x), the estimate x̂ = A+y is
unbiased (i.e., E[x̂A] = x), and has the minimum variance
among all unbiased estimates that are linear in y.

The theorem follows from an application of the Gauss-
Markov theorem [16] and extends a similar result from [11].

3.2 The Matrix Mechanism
In the presentation above, we used the Laplace mecha-

nism to get noisy answers y to the queries in A, and then
derived x̂A, from which any workload query could then be
estimated. It is convenient to view this technique as a new
differentially private mechanism which produces noisy an-
swers to workload W directly. This mechanism is denoted
MA when instantiated with strategy matrix A.

Proposition 3 (Matrix Mechanism). Let A be a full
rank m × n strategy matrix, let W be any p × n workload
matrix, and let b̃ be a length-m column vector consisting of
independent samples from a Laplace distribution with scale
1. Then the randomized algorithm MA that outputs the fol-
lowing vector is ε-differentially private:

MA(W,x) = Wx + (
∆A

ε
)WA+b̃.

Proof. The expression above can be rewritten as follows:

MA(W,x) = W(x + (
∆A

ε
)A+b̃)

= WA+(Ax + (
∆A

ε
)b̃)

= WA+L(A,x).

Thus, MA(W,x) is simply a post-processing of the output
of the ε-differentially private L and therefore M is also ε-
differentially private.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(a) I4

−1

1
21
×


3 5 −2 13 −8 −1 −1
3 5 −2 −8 13 −1 −1
3 −2 5 −1 −1 13 −8
3 −2 5 −1 −1 −8 13


(b) H+

4


0.25 0.25 0.5 0.0
0.25 0.25 −0.5 0.0
0.25 −0.25 0.0 0.5
0.25 −0.25 0.0 −0.5


(c) Y4

−1

Figure 2: For strategy A equal to I4, H4 and Y4, respectively, the matrices above are used to derive the
estimate x̂A from the noisy output y = L(A,x). Row i in each matrix contains the coefficients of the linear
combination of y used to construct an estimate for count xi. The inverse of the identity I4 is the identity;

the reconstruction matrix for H4 is H+
4 = (Ht

4H4)
−1

Ht
4; Y4

−1 describes the wavelet reconstruction coefficients.

Like the Laplace mechanism, the matrix mechanism com-
putes the true answer, Wx, and adds to it a noise vector.
But in the matrix mechanism the independent Laplace noise
b̃ is transformed by the matrix WA+, and then scaled by
∆A/ε. The potential power of the mechanism arises from
precisely these two features. First, the scaling is propor-
tional to the sensitivity of A instead of the sensitivity of W,
and the former may be lower for carefully chosen A. Second,
because the noise vector b̃ consists of independent samples,
the Laplace mechanism adds independent noise to each query
answer. However, in the matrix mechanism, the noise vec-
tor b̃ is transformed by WA+. The resulting noise vector
is a linear combination of the independent samples from b̃,
and thus it is possible to add correlated noise to query an-
swers, which can result in more accurate answers for query
workloads whose queries are correlated.

3.3 Rank deficient strategies and workloads
If a workload is not full rank, then it follows from Defini-

tion 3.1 that a full rank strategy is not needed. Instead, any
strategy whose rowspace spans the workload queries will suf-
fice. However, if we wish to consider a rank deficient strategy
B, we can always transform B into a full rank strategy A by
adding a scaled identity matrix δI, where δ approaches zero.
The result is a full rank matrix A which supports all queries,
but for which the error for all queries not supported by B
will be extremely high. Another alternative is to apply di-
mension reduction techniques, such as principle components
analysis, to the workload queries to derive a transformation
of the domain in which the workload has full rank. Then the
choice of full rank strategy matrix can be carried out in the
reduced domain.

4. THE ANALYSIS OF ERROR
In this section we analyze the error of the matrix mech-

anism formally, providing closed-form expressions for the
mean squared error of query estimates. We then use ma-
trix decomposition to reveal the properties of the strategy
that determine error. This analysis is the foundation for the
optimization problems we address in the following section.

4.1 The error of query estimates
While a full rank query strategy A can be used to com-

pute an estimate for any linear query w, the accuracy of the
estimate varies based on the relationship between w and A.
We measure the error of strategy A on query w using mean
squared error.

Definition 4.1 (Query and Workload Error). Let
x̂A be the estimate for x derived from query strategy A. The

mean squared error of the estimate for w using strategy A
is:

ErrorA(w) = E[(wx−wx̂A)2].

Given a workload W, the total mean squared error of an-
swering W using strategy A is:

TotalErrorA(W) =
∑

wi∈W

ErrorA(wi).

For any query strategy A the following proposition de-
scribes how to compute the error for any linear query w and
the total error for any workload W:

Proposition 4 (Error Under Strategy A). For a full
rank query matrix A and linear query w, the estimate of w is
unbiased (i.e. E[wx̂A] = wx), and the error of the estimate
of w using A is equal to:

ErrorA(w) = (
2

ε2
) ∆2

A w(AtA)
−1

wt. (1)

The total error of the estimates of workload W using A is:

TotalErrorA(W) = (
2

ε2
) ∆2

A trace((AtA)
−1

WtW). (2)

Proof. It is unbiased because x̂A is unbiased. Thus, for
formula (1), the mean squared error is equal to the variance:

ErrorA(w) = V ar(wx̂A) = V ar(wx + (
∆A

ε
)wA+b̃)

= (
∆A

ε
)2V ar(wA+b̃).

With algebraic manipulation and that V ar(b̃) = 2Im, we
get:

V ar(wA+b̃) = wA+V ar(b̃)(wA+)t

= wA+2Im(wA+)t

= 2w(AtA)−1AtA((AtA)−1)twt

= 2w(AtA)−1wt,

where ((AtA)−1)t = (AtA)−1 because the matrix is sym-

metric. Therefore, ErrorA(w) = (∆A
ε

)22w(AtA)−1wt.
For formula (2) if wi is row i of workload W, then ErrorA(wi)

is the i-th entry on the diagonal of matrix (2
ε2

)∆2
AW(AtA)

−1
Wt.

Therefore, since the trace of a matrix is the sum of the values
on its diagonal, the TotalErrorA(W) is equal to

(
2

ε2
)∆2

Atrace(W(AtA)
−1

Wt).

Formula 2 follows from a standard property of the trace:

trace(W(AtA)
−1

Wt) = trace((AtA)
−1

WtW).

These formulas underlie much of the remaining discussion
in the paper. Formula (1) shows that, for a fixed ε, error is
determined by two properties of the strategy: (i) its squared

sensitivity, ∆2
A; and (ii) the term w(AtA)

−1
wt. In the se-

quel, we refer to the former as simply the sensitivity term.
We refer to the latter term as the profile term and we call

matrix (AtA)
−1

the error profile of query strategy A.

Definition 4.2 (Error profile). For any full rank m×
n query matrix A, the error profile of A, denoted M, is de-

fined to be the n× n matrix (AtA)
−1

.

The coefficients of the error profile M = (AtA)
−1

measure
the covariance of terms in the estimate x̂A. Element mii

measures the variance of the estimate of xi in x̂A (and is
always positive), while mij measures the covariance of the
estimates of xi and xj (and may be negative). We can
equivalently express the profile term as:

w(AtA)
−1

wt =
∑
i

w2
imii +

∑
i<j

2wiwjmij ,

which shows that error is a weighted sum of the (positive)
diagonal variance terms of M, plus a (possibly negative) lin-
ear combination of off-diagonal covariance terms. This illus-
trates that it is possible to have a strategy that has relatively
high error on individual counts yet is quite accurate for other
queries that are linear combinations of the individual counts.
We analyze instances of such strategies in Sec. 6.

Example 5. Figure 3 shows the error profiles for each
sample strategy. I4 has the lowest error for queries that ask
for a single count of x, such as w = [1, 0, 0, 0]. For such
queries the error is determined by the diagonal of the error
profile (subject to scaling by the sensitivity term). Queries
that involve more than one count will sum terms off the main
diagonal and these terms can be negative for the profiles of
H4 and Y4. Despite the higher sensitivity of these two strate-
gies, the overall error for queries that involve many counts,
such as w = [1, 1, 1, 1], approaches that of I4. The small
dimension of these examples hides the extremely poor perfor-
mance of In on queries that involve many counts.

The next example uses Prop. 4 to gain insight into the
behavior of some natural strategies for answering a workload
of queries.

Example 6. If A is the identity matrix, then Prop. 4
implies that the total error will depend only on the workload,
since the sensitivity of In is 1:

TotalErrorIn(W) = (
2

ε2
) trace(WtW).

Here the trace of WtW is the sum of squared coefficients of
each query. This will tend to be a good strategy for workloads
that sum relatively few counts. Assuming the workload is
full rank, we can use the workload itself as a strategy, i.e.
A = W. Then Prop. 4 implies that the total error is:

TotalErrorW(W) = (
2

ε2
) ∆2

W n.

since trace((WtW)
−1

WtW) = trace(In) = n. In this case
the trace term is low, but the strategy will perform badly if
∆W is high. Note that if W is m × n, the total error of

the Laplace mechanism for W will be ((2
ε2

)∆2
Wm), which is

worse than the matrix mechanism whenever m > n.
In some sense, good strategies fall between the two extremes

above: they should have sensitivity less than the workload but
a trace term better than the identity strategy.

4.2 Error profile decomposition
Because an error profile matrix M is equal to (AtA)

−1
for

some A, it has a number of special properties. M is always a
square (n×n) matrix, it is symmetric, and even further, it is
always a positive definite matrix. Positive definite matrices
M are such that wMwt > 0 for all non-zero vectors w. In
our setting this means that the profile term is always pos-
itive, as expected. Furthermore, the function f = wMwt

is a quadratic function if w is viewed as a vector of vari-
ables. Then the function f is an elliptic paraboloid over n-
dimensional space. If we consider the equation wMwt = 1,
this defines an ellipsoid centered at the origin (the solutions
to this equation are the queries whose profile term is one).
We can think of the error function of strategy A as a scaled
version of this paraboloid, where the scale factor is (2

ε2
) ∆2

A.
To gain a better understanding of the error profile, we con-

sider its decomposition. Recall that a matrix is orthogonal
if its transpose is its inverse.

Definition 4.3 (Decomposition of Profile). Let M
be any n× n positive definite matrix. The spectral decompo-
sition of M is a factorization of the form M = PMDMPt

M,
where DM is an n×n diagonal matrix containing the eigen-
values of M, and PM is an orthogonal n×n matrix contain-
ing the eigenvectors of M.

Thus the matrices DM and PM fully describe the error
profile. They also have an informative geometric interpreta-
tion. The entries of the diagonal matrix DM describe the
relative stretch of the axes of the ellipsoid. The matrix PM

is orthogonal, representing a rotation of the ellipsoid. In
high dimensions, a set of common eigenvalues mean that
the ellipsoid is spherical with respect to the corresponding
eigen-space. For example, the profile of I4 is fully spherical
(all eigenvalues are one), but by choosing unequal eigenval-
ues and a favorable rotation, the error is reduced for certain
queries.

4.3 Strategy matrix decomposition
Despite the above insights into tuning the error profile,

the matrix mechanism requires the choice of a strategy ma-
trix, not simply a profile. Next we focus on the relationship
between strategies and their profile matrices.

We will soon see that more than one strategy can result
in a given error profile. Accordingly, we define the following
equivalence on query strategies:

Definition 4.4 (Profile Equivalence). Two query ma-
trices A and B are profile equivalent if their error profiles

match, i.e. (AtA)
−1

= (BtB)
−1

.

A key point is that two profile equivalent strategies may
have different sensitivity. If A and B are profile equivalent,
but A has lower sensitivity, then strategy A dominates strat-
egy B: the estimate for any query will have lower error using
strategy A.

Example 7. Recall that strategies Y4 and H4 both have
sensitivity 3. This is not the minimal sensitivity for strategies


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(a) (I4

tI4)
−1

1
21
×


13 −8 −1 −1
−8 13 −1 −1
−1 −1 13 −8
−1 −1 −8 13


(b) (H4

tH4)
−1

1
8
×


3 −1 0 0
−1 3 0 0
0 0 3 −1
0 0 −1 3


(c) (Y4

tY4)
−1

Figure 3: The profile term of the error function for query w on strategy A is w(AtA)
−1

wt. Shown are the error
profiles for query strategies I4, H4, and Y4. Every error profile matrix is symmetric and positive definite.

H′ =


−1.32 −1.32 −1.32 −1.32
0.87 0.87 −0.87 −0.87
−0.71 0.71 0.00 0.00
0.00 0.00 −0.71 0.71


(a) H′ is profile equivalent to H4, but
∆H′ = 2.896 while ∆H4 = 3

Y′ =


1.73 0.58 0.00 0.00
0.00 1.63 0.00 0.00
0.00 0.00 1.73 0.58
0.00 0.00 0.00 1.63


(b) Y′ is profile equivalent to Y4,
but ∆Y′ = 2.210 while ∆Y4 = 3

Figure 4: When two strategies A and B are profile
equivalent, the one with lower sensitivity dominates.

achieving either of these error profiles. A square matrix H′,
profile equivalent to H4, is shown in Figure 4(a). This matrix
has sensitivity ∆H′ = 2.896. A matrix Y′, profile equivalent
to Y4 is shown in Figure 4(b). This matrix has sensitivity
∆Y′ = 2.210.

To analyze strategy matrices we again use matrix decom-
position, however because a strategy matrix may not be sym-
metric, we use the singular value decomposition.

Definition 4.5 (Decomposition of Strategy). Let A
be any m × n query strategy. The singular value decom-
position (SVD) of A is a factorization of the form A =
QADAPt

A such that QA is a m×m orthogonal matrix, DA

is a m × n diagonal matrix and PA is a n × n orthogonal
matrix. When m > n, the diagonal matrix DA consists of
an n× n diagonal submatrix combined with 0(m−n)×n.

The following theorem shows how the decompositions of
the error profile and strategy are related. It explains exactly
how a strategy matrix determines the parameters for the er-
ror profile, and it fully defines the set of all profile equivalent
strategies.

Theorem 2. Let m ≥ n and let M be any n × n posi-
tive definite matrix decomposed as M = PMDMPt

M where
DM = diag(λ1 . . . λn). Then for any m × n matrix A, the
following are equivalent:

(i) A achieves the profile M, that is (AtA)
−1

= M;

(ii) There is a decompostion of A into A = QADAPt
A

where QA is an m×m orthogonal matrix, DA is an m×
n matrix equal to diag(1/

√
λ1 . . . 1/

√
λn) plus 0(m−n)×n,

and PA = PM.

Proof. Given (i), let D′ = diag(
√
λ1 . . .

√
λn), and since

PM is an orthogonal matrix Pt
M = PM

−1. Then

D′tPt
MAtAPMD′ = D′tPt

MM−1PMD′

= D′tPt
MPMDM

−1Pt
MPMD′ = In.

Thus A = Q′AD′
−1

Pt
M where the Q′A is an m × n matrix

whose column vectors are unit length and orthogonal to each
other. Let QA be an m×m orthogonal matrix whose first n
columns are Q′A. Let DA be an m×n matrix equal to D′

−1

plus 0(m−n)×n, which is equivalent to diag(1/
√
λ1 . . . 1/

√
λn)

plus 0(m−n)×n. Then

QADAPt
M = Q′AD′

−1
Pt

M = A.

Given (ii) we have A = QADAPt
M and we first compute

AtA = (QADAPt
M)t(QADAPt

M) = (PMDt
AQt

A) (QADAPt
M)

= (PMDt
ADAPt

M). Note that while DA may be m × n,
Dt

ADA is an n×n diagonal matrix equal to diag(1/λ1 . . . 1/λn).

Then (AtA)
−1

= (PMDt
ADAPt

M)
−1

= (PM(Dt
ADA)

−1
Pt

M).

Then since (Dt
ADA)

−1
= diag(λ1 . . . λn) = DM we conclude

that (AtA)
−1

= PMDMPt
M.

This theorem has a number of implications that inform
our optimization problem. First, it shows that given any
error profile M, we can construct a strategy that achieves
the profile. We do so by decomposing M and constructing a
strategy A from its eigenvectors (which are contained in PM

and inherited by PA) and the diagonal matrix consisting of
the inverse square root of its eigenvalues (this is DA, with
no zeroes added). We can simply choose Q as the n × n
identity matrix, and then matrix DAPt

A is an n×n strategy
achieving M.

Second, the theorem shows that there are many such strate-
gies achieving M, and that all of them can be constructed
in a similar way. There is a wrinkle here only because some
of these strategies may have more than n rows. That case is
covered by the definition of DA, which allows one or more
rows of zeroes to be added to the diagonal matrix derived
from the eigenvalues of M. Adding zeroes, DA becomes
m×n, we choose any m×m orthogonal matrix QA, and we
have an m× n strategy achieving M.

Third, the theorem reveals that the key parameters of the
error profile corresponding to a strategy A are determined
by the DA and PA matrices of the strategy’s decomposition.
For a fixed profile, the QA of the strategy has no impact on
the profile, but does alter the sensitivity of the strategy. Ulti-
mately this means that choosing an optimal strategy matrix
requires determining a profile (DA and PA), and choosing a
rotation (QA) that controls sensitivity. The rotation should
be the one that minimizes sensitivity, otherwise the strategy
will be dominated.

We cannot find an optimal strategy by optimizing either of
these factors independently. Optimizing only for the sensi-
tivity of the strategy severely limits the error profiles possible
(in fact, the identity matrix is a full rank strategy with least
sensitivity). If we optimize only the profile, we may choose
a profile with a favorable “shape” but this could result in a
prohibitively high least sensitivity. Therefore we must opti-
mize jointly for the both the profile and the sensitivity and
we address this challenge next.

5. OPTIMIZATION
In this section, we provide techniques for determining or

approximating optimal query strategies for the matrix mech-
anism, and we also give some heuristic strategies that may
improve existing strategies. We first state our main problem.

Problem 1 (minError). Given a workload matrix W,
find the strategy A that minimizes TotalErrorA(W).

The MinError problem is difficult for two reasons. First,
the sensitivity ∆A is the maximum function applied to the
L1 norms of column vectors, which is not differentiable. Sec-
ond, we do not believe MinError is expressible as a convex
optimization problem since the set of all query strategies that
support a given workload W is not convex: if A supports
W, then −A also supports W but 1

2
(A + (−A)) = 0 does

not support W.
In Section 5.1 we show that MinError can be expressed

as a semidefinite program with rank constraints. While rank
constraints make the semidefinite program non-convex, there
are algorithms that can solve such problems by iteratively
solving a pair of related semidefinite programs.

Though the set of all query strategies A that support a
given workload W is not convex, the set of all possible ma-
trices AtA is convex. In Sec. 5.2 we provide two approaches
for finding approximate solutions based on bounding ∆A by
a function of AtA rather than a function of A. While each
technique results in a strategy, they essentially select a pro-
file and a default rotation Q. Error bounds are derived by
reasoning about the default rotation. It follows that both
of these approximations can be improved considering rota-
tions Q that reduce sensitivity. Therefore we also consider a
secondary optimization problem.

Problem 2 (minSensitivity). Given a query matrix A,
find the query matrix B that is profile equivalent to A and
has minimum sensitivity.

Unfortunately this subproblem is still not a convex prob-
lem, since the set of all query matrices that are profile equiv-
alent is also not convex. Notice A is profile equivalent to −A
but is not profile equivalent to 1

2
(A + (−A)) = 0. Again the

problem can be expressed as an SDP with rank constraints
as it is shown in Sec. 5.4.

5.1 Solution to the MinError Problem
In this section we formulate the MinError problem for an

n×n workload W. It is sufficient to focus on n×n workloads
because Proposition 4 shows that the strategy that minimizes
the total error for some workload W also minimizes the total
error for any workload V such that VtV = WtW. There-
fore, if given an m×n workload for m > n, we can use spec-
tral decomposition to transform it into an equivalent n × n
workload.

Program 5.1 Minimizing the Total Error

Given: W ∈ Rn×n

Minimize: u1 + u2 + . . .+ un

Subject to: For i ∈ [n] : ei is the n dimensional column vector whose

ith entry is 1 and remaining entries are 0. 2Im −AW−1 0

−(AW−1)t (Wt)
−1

ZW−1 ei
0 eti ui

 � 0 (3)

For i ∈ [n], j ∈ [m] :

cji ≥ aji, cji ≥ −aji,
m∑
k=1

cki ≤ 1 (4)

rank

([
Im A
At Z

])
= m (5)

Theorem 3. Given an n×n workload W, Program 5.1 is
a semidefinite program with rank constraint whose solution
is the tuple (A,C,u,Z) and the m×n strategy A minimizes
TotalErrorA(W) among all m× n strategies.

Proof. In Program 5.1, u1 + . . .+ un is an upper bound
on the total error (modulo constant factors). The rank con-
straint in Eq. (5) makes sure that Z = AtA.

The semidefinite constraint, Eq. (3), ensures that ui is
an upper bound on twice the error of the ith query in the
workload, ignoring for the moment the sensitivity term.

ui ≥ 2(W(AtA)
−1

Wt)ii

To show this, let X be the (m + n) × (m + n) upper left
submatrix of the matrix in Eq. (3), substituting AtA for Z:

X =

[
2Im −AW−1

−(AW−1)t (Wt)
−1

AtAW−1

]
,

and then

X−1 =

[
W(2Im −AA+)

−1
Wt (WA+)t

WA+ 2W(AtA)
−1

Wt

]
.

The semidefinite constraints in Eq. (3) are equivalent to:

∀i, ui ≥ (X−1)m+i,m+i = 2(W(AtA)
−1

Wt)ii.

Thus, minimizing u1 + . . .+un is equivalent to minimizing

the trace of W(AtA)
−1

Wt. To make u1 + . . .+un a bound
on the total error, we must show that ∆A = 1. The con-
straints in Eq. (4) ensure that ∆A ≤ 1. To see that ∆A ≥ 1,
observe that (kX)−1 = 1

k
X−1. So u1 + . . . un is minimized

when ∆A = 1 because otherwise we can multiply X (which
contains A) by a constant to make u1 + . . . + un smaller.
Above all, we have

u1 + u2 + . . .+ un = 2

n∑
i=1

(W(AtA)
−1

Wt)ii

= 2trace(W(AtA)
−1

Wt)

= 2∆2
A trace(W(AtA)

−1
Wt)

= ε2TotalErrorA(W).

with ε fixed.

Thus Theorem 3 provides the best strategy to the MinError
problem with at most m queries. Observe that if the optimal
strategy has m′ < m queries, then Program 5.1 will return
an m× n matrix with m−m′ rows of 0s. In addition, if the
workload contains queries with coefficients in {−1, 0, 1}, we
can show that n2 is upper bound on the number of queries
in the optimal strategy.

Dattorro [4] shows that solving a semidefinite program
with rank constraints can be converted into solving two semi-
definite programs iteratively. The convergence follows the
widely used trace heuristic for rank minimization. We are
not aware of results that quantify the number of iterations
that are required for convergence. However, notice it takes
O(n3) time to solve a semidefinite program with an n × n
semidefinite constraint matrix and in Program 5.1, there are
n semidefinite constraint matrices with size m+n, which can
be represented as a semidefinite constraint matrix with size
n(m + n). Thus, the complexity of solving our semidefinite
program with rank constraints is at least O(m3n3).

5.2 Approximations to the MinError problem
As mentioned above, the MinError problem can be sim-

plified by bounding the sensitivity of A with some properties
of AtA. Here we introduce two approximation methods that
use this idea and can be computed efficiently: the L2 approx-
imation (5.2.1), and the singular value bound approximation
(5.2.2). Error bounds on both methods can be measured by
providing upper bounds to ∆A.

5.2.1 L2 approximation
Note that the diagonal entries of AtA are the squared L2

norms of column vectors of A. For sensitivity, recall that
we are interested in the maximum L1 norm of the column
vectors of A. This observation leads to the following ap-
proaches: we can either use the L2 norm as an upper bound
to the L1 norm, or we can relax the definition of differential
privacy by measuring the sensitivity in terms of L2 rather
than L1.

Using L2 norm as an upper bound to L1 norm. Instead
of MinError, we can solve the following L2 approximation
problem. We use ||A||2 to denote the maximum L2 norm of
column vectors of A.

Problem 3 (L2 approximation). Given a workload ma-
trix W, find the strategy A that minimizes

||A||22trace(W(AtA)
−1

Wt).

According to the basic property of L norms, for any vector
v of dimension n, ||v||2 ≤ ‖v‖1 ≤

√
n||v||2. Therefore we

can bound the approximation rate of the L2 approximation.

Theorem 4. Given a workload W, let A be the optimal
solution to the minError problem and A′ be the optimal
solution to the L2 approximation. Then

TotalErrorA′(W) ≤ nTotalErrorA(W).

Notice the L2 bound is equal to the L1 bound if all queries
in strategy A are uncorrelated, so that the L2 approxima-
tion gives the optimal strategy if the optimal strategy only
contains uncorrelated queries such as In.

Relaxing the definition of differential privacy. L2

Program 5.2 L2 approximation

Given: W ∈ Rn×n.
Minimize: u1 + u2 + . . .+ un.

Subject to: For i ∈ [n] : ei is the n dimensional column vector whose

ith entry s 1 and other entries are 0.[
X ei
eti ui

]
� 0;

(WtXW)ii ≤ 1, i ∈ [n].

norms can also be applied by relaxing the definition of ε-
differential privacy into (ε, δ)-differential privacy, which is
defined as following:

Definition 5.1 ((ε, δ)-differential privacy). A ran-
domized algorithm K is (ε, δ)-differentially private if for any
instance I, any I ′ ∈ nbrs(I), and any subset of outputs
S ⊆ Range(K), the following holds:

Pr[K(I) ∈ S] ≤ exp(ε)× Pr[K(I ′) ∈ S] + δ

where the probability is taken over the randomness of the K.

(ε, δ)-differential privacy can be achieved by answering each
query in strategy A with i.i.d Gaussian noise:

Theorem 5. Let W be a query matrix consisting of m
queries, and let b̃δ be a length-m column vector consisting
of independent samples from a Gaussian distribution with
scale N(0, 8 ln(2/δ)). Then for ε ≤ 8 ln(2/δ), δ ≤ 1, the
randomized algorithm L that outputs the following vector is
(ε, δ)-differentially private:

Lδ(W,x) = Wx + (
||W||2
ε

)b̃δ

Recall the proof of Proposition 4 and apply it to Theo-
rem 5. Minimizing the total error under (ε, δ)-differential
privacy is equivalent to solving Problem 3.

A semidefinite program (Program 5.2) can be used to solve
Problem 3. For a given solution X of Program 5.2, any
n × n matrix A such that X = AtA is a valid solution to
Problem 3. Moreover, when δ is given, the Gaussian noise
added in the (ε, δ)-differential privacy is Θ(ε2||A||22). Ac-
cording to the relationship between L1 and L2 norm, the
Laplace noise added in the ε-differential privacy is at least
Ω(ε2||A||22), which indicates relaxing the definition of differ-
ential privacy will always lead to better utility.

5.2.2 Singular value bound approximation
Another way to bound the L1 sensitivity is based on its ge-

ometric properties. Remember the matrix A can be repere-
sented by its singular value decomposition A = QADAPt

A.
Let us consider the geometry explanation of the sensitivity.
The sensitivity of A can be considered as the radius of min-
imum L1 ball that can cover all column vectors of A, and
column vectors of A lay on the ellipsoid

φA : xtQt
A(Dt

ADA)
−1

QAx = 1.

Let ∆φA denotes radius of the minimum L1 ball that covers
the ellipsoid φA. Notice all the column vectors of A are
contained in φA, which indicates ∆A ≤ ∆φA . The minimum

sensitivity that can be achieved by the strategies that are
profile equivalent to A can be bounded as following:

min
B : BtB=AtA

∆B ≤ min
B : BtB=AtA

∆φB .

The matrix B that is profile equivalent to A and has the
minimum ∆φB is given by the theorem below.

Theorem 6. Let A be a matrix with singular value de-
composition A = QADAPt

A and δ1, δ2, . . . , δn be its singular
values. Then

argmin
B : BtB=AtA

∆φB = DAPt
A,

min
B : BtB=AtA

∆φB =
√
δ2
1 + δ2

2 + . . .+ δ2
n ≤
√
n∆A. (6)

Using the singular value bound in Theorem 6 to substi-
tute for the L1 sensitivity, the minError problem can be
converted to the following approximation problem.

Problem 4 (Singular value bound approximation).
Given a workload matrix W, find the strategy A that mini-
mizes

(δ2
1 + δ2

2 + . . .+ δ2
n)trace(W(AtA)

−1
Wt),

where δ1, δ2, . . . , δn are singular values of A.

The singular value bound approximation has a closed-form
solution.

Theorem 7. Let W be the workload matrix with singular
value decomposition W = QWDWPt

W and δ′1, δ
′
2, . . . , δ

′
n be

its singular values. The optimal solution DA, PA to the
singular value bound approximation is to let PA = PW and
DA = diag(

√
δ′1,
√
δ′2, . . . ,

√
δ′n).

The solution in Theorem 7 is very similar to the strategy
metioned at the end of Sec. 4 that matches PA to PW and
DA be diag(δ′1, δ

′
2, . . . , δ

′
n). We use a slightly different DA so

as to provide an guaranteed error bound based on Theorem 6.

Theorem 8. Given a workload W, let A be the optimal
solution to the minError problem and A′ be the optimal
solution to the singular value bound approximation. Then

TotalErrorA′(W) ≤ nTotalErrorA(W).

5.3 Augmentation Heuristic
We formalize below the following intuition: as far as the

error profile is concerned, additional noisy query answers can
never detract from query accuracy as they must have some
information content useful to one or more queries. Therefore
the error profile can never be worse after augmenting the
query strategy by adding rows.

Theorem 9. (Augmenting a strategy) Let A be a query
strategy with full rank and consider a new strategy A′ ob-
tained from A by adding the additional rows of strategy B,
so that A′ = [AB]. For any query w, we have:

wt(A′tA′)−1w ≤ wt(AtA)−1w

Further, wt(A′tA′)−1w = wt(AtA)−1w only for the queries
in the set {AtAw | Bw = 0}, which is non-empty if and only
if B does not have full column rank.

Program 5.3 Minimizing the sensitivity

Given: M ∈ Rn×n.
Minimize: r.

Subject to: For i ∈ [n], j ∈ [m] :

cji ≥ aji, cji ≥ −aji,
m∑
k=1

cki ≤ r

rank

([
In A
At M−1

])
= n.

The proof is included in Appendix D.
This improvement in the error profile may have a cost—

namely, augmenting A with strategy B may lead to a strat-
egy A′ with greater sensitivity than A. A heuristic that fol-
lows from Theorem 9 is to augment strategy A only by com-
pleting deficient columns, that is, by adding rows with non-
zero entries only in columns whose absolute column sums
are less the sensitivity of A. In this case the augmentation
does not increase sensitivity and is guaranteed to strictly im-
prove accuracy for any query with a non-zero coefficient in
an augmented column.

Our techniques could also be used to reason formally about
augmentations that do incur a sensitivity cost. We leave this
as future work, as it is relevant primarily to an interactive
differentially private mechanism which is not our focus here.

5.4 Minimizing the sensitivity
We now return to Problem 2 which finds the strategy with

least sensitivity that results in a given profile. This problem
is important whenever one has a specific profile in mind (e.g.
the profile of strategy Hn or Yn), or when one used another
method to compute a desired profile (e.g. the approxima-
tion method from Section 5.2). Recall that for a fixed error
profile, the profile-equivalent strategies are determined by
the choice of a rotation matrix Q which then determines the
sensitivity of the strategy. The following theorem formulates
the problem of minimizing the sensitivity into a semidefinite
program with rank constraint.

Theorem 10. Given an error profile M, Program 5.3 is
a semidefinite program with rank constraint that outputs a

square matrix A such that (AtA)
−1

= M and such that the
sensitivity of A is minimized.

6. APPLICATIONS
In this section we use our techniques to analyze and im-

prove existing approaches. We begin by analyzing two tech-
niques proposed recently [17, 11]. Both strategies can be seen
as instances of the matrix mechanism, each using different
query strategies designed to support a workload consisting
of all range queries. Although both techniques can support
multidimensional range queries, we focus our analysis on one
dimensional range queries, i.e. interval queries with respect
to a total order over dom(B).

We will show that the seemingly distinct approaches have
remarkably similar behavior: they have low (but not mini-
mal) sensitivity, and they are highly accurate for range queries
but much worse for queries that are not ranges. We describe
these techniques briefly and how they can each be repre-

sented in matrix form.
In the hierarchical scheme proposed in [11], the query strat-

egy can be envisioned as a recursive partitioning of the do-
main. We consider the simple case of a binary partitioning,
although higher branching factors were considered in [11].
First we ask for the total sum over the whole domain, and
then ask for the count of each half of the domain, and so
on, terminating with counts of individual elements of the
domain. For a domain of size n (assumed for simplicity to
be a power of 2), this results in a query strategy consisting
of 2n − 1 rows. We represent this strategy as matrix Hn,
and H4 in Fig. 1 is a small instance of it.

In the wavelet scheme, proposed in [17], query strategies
are based on the Haar wavelet. For one dimensional range
queries, the technique can also be envisioned as a hierarchical
scheme, asking the total query, then asking for the difference
between the left half and right half of the domain, continuing
to recurse, asking for the difference in counts between each
binary partition of the domain at each step.1 This results in
n queries—fewer than the hierarchical scheme of [11]. The
matrix corresponding to this strategy is the matrix of the
Haar wavelet transform, denoted Yn, and Y4 in Fig. 1 is a
small instance of it.

Thus Hn is a rectangular (2n−1)×n strategy, with answers
derived using the linear regression technique, and Yn is an
n×n strategy with answers derived by inverting the strategy
matrix. As suggested by the examples in earlier sections,
these seemingly different techniques have similar behavior.
We analyze them in detail below, proving new bounds on
the error for each technique, and proving new results about
their relationship to one another. We also include In in the
analysis, which is the strategy represented by the dimension
n identity matrix, which asks for each individual count.

6.1 Geometry of In, Hn and Yn

Recall from Section 4 that the decomposition of the error
profile of a strategy explains its error. The decomposition
of In results in a D that is itself the identity matrix. This
means the error profile is spherical. To understand the shape
and rotation of the error profiles for Yn and Hn we provide a
complete analysis of the decomposition, but leave the details
in the Appendix F.1. The eigenvalues and eigenvectors are
shown in Table 1 of Appendix F.1. Their eigenvalue distri-
butions are remarkably similar. Each has logn + 1 distinct
eigenvalues of geometrically increasing frequency. The actual
eigenvalues of Hn are smaller than those of Yn by exactly
one throughout the increasing sequence, except the largest
eigenvalue: it is equal to the second largest eigenvalue in
Yn, but it has a distinct value in Hn. Finally, the smallest
eigenvalue of either approach is 1 and the ratio between their
corresponding eigenvalues is in the range [1

2
, 2].

For sensitivity, it is clear that ∆In = 1 for all n. Intuitively,
this sensitivity should be minimal since the columns of In
are axis aligned and orthogonal, and any rotation of In can
only increase the L1 ball containing the columns of In. This
intuition can be formalized by considering the relationship

1We note that the technique in [17] is presented somewhat
differently, but that the differences are superficial. The au-
thors use queries that compute averages rather than sums,
and their differentially private mechanism adds scaled noise
at each level in the hierarchy. We prove the equivalence of
that construction with our formulation Yn in App. E.

between the L1 norm and the L2 norm stated in Section
5.2.1. No strategy profile equivalent to In can have lower
sensitivity, since ∆In = ||In||2 = 1.

On the other hand, the sensitivity of Yn and Hn is not
minimal, suggesting that there exist strategies that dominate
both of them. We have ∆Yn = ∆Hn = log2 n + 1. In ad-
dition we find that their L2 norms are also equal: ||Yn||2 =
||Hn||2 =

√
log2 n+ 1. This L2 norm is a lower bound on

the sensitivity of profile equivalent strategies for both Hn and
Yn. We do not know if there are profile equivalent strategies
that achieve this sensitivity lower bound for these strategies.
We can, however, improve on the sensitivity of both. As an
example, Fig. 4 shows profiles equivalent to H4 and Y4 with
improved sensitivity. Through our decomposition of Hn and
Yn we have derived modest improvements on the sensitivity
in the case of arbitrary n ≥ 8: logn+ 0.64 for Hn, which is
the sensitivity of its decomposition, and logn+ 2

√
2− 4 for

Yn, which is achieved by applying some minor modifications
to its decomposition. We suspect it is possible to find rota-
tions of Hn and Yn that improve more substantially on the
sensitivity.

6.2 Error analysis for In,Hn and Yn

In this section we analyze the total and worst case error
for specific workloads of interest. We focus on two typical
workloads: WR, the set of all range queries, and W01, which
includes arbitrary predicate queries, since it consists of all
linear queries 0-1 queries. Note that attempting to use either
of these workloads as strategies leads to poor results: the
sensitivity of WR is O(n2) while the sensitivity of W01 is
O(2n).

In the original papers describing Hn and Yn [11, 17], both
techniques are shown to have worst case error bounded by
O(log3 n) on WR. Both papers resort to experimental anal-
ysis to understand the distribution of error across the class
of range queries. We note that our results allow error for any
query to be analyzed analytically.

It follows from the similarity of eigenvectors and eigenval-
ues of Hn and Yn that the error profiles are asymptotically
equivalent to one another. We thus prove a close equivalence
between the error of the two techniques:

Theorem 11. For any linear counting query w,

1

2
ErrorY(w) ≤ ErrorH(w) ≤ 2ErrorY(w).

Note that this equivalence holds for the hierarchical strat-
egy with a branching factor of two. Higher branching factor
can lower the error rates of the hierarchical strategy com-
pared with the wavelet technique.

Next we summarize the maximum and total error for these
strategies. The following results tighten known bounds for
WR, and show new bounds for W01. The proof of the fol-
lowing theorem can be found in Appendix F.2.

Theorem 12 (Maximum and Total Error). The max-
imum and total error on workloads WR and W01 using strate-
gies Hn,Yn, and In is given by:

MaxError Hn Yn In
WR Θ(log3 n/ε2) Θ(log3 n/ε2) Θ(n/ε2)
W01 Θ(n log2 n/ε2) Θ(n log2 n/ε2) Θ(n/ε2)

TotalError Hn Yn In
WR Θ(n2 log3 n/ε2) Θ(n2 log3 n/ε2) Θ(n3/ε2)
W01 Θ(n2n log2 n/ε2) Θ(n2n log2 n/ε2) Θ(n2n/ε2)

While Hn and Yn achieve similar asymptotic bounds, their
error profiles are slightly different (as suggested by previous
examples for n = 4). As a result, Hn tends to have lower
error for larger range queries, while Yn has lower error for
unit counts and smaller range queries.

7. RELATED WORK
Since differential privacy was first introduced [8], it has

been the subject of considerable research, as outlined in re-
cent surveys [5, 6, 7].

Closest to our work are the two techniques, developed inde-
pendently, for answering range queries over histograms. Xiao
et al. [17] propose an approach based on the Haar wavelet;
Hay et al. [11] propose an approach based on hierarchical
sums and least squares. The present work unifies these two
apparently disparate approaches under a significantly more
general framework (Section 3) and uses the framework to
compare the approaches (Section 6). While both approaches
are instances of the matrix mechanism, the specific algo-
rithms given in these papers are more efficient than a generic
implementation of the matrix mechanism employing matrix
inversion. Xiao et al. also extend their wavelet approach to
nominal attributes and multi-dimensional histograms.

Barak et al. [1] consider a Fourier transformation of the
data to estimate low-order marginals over a set of attributes.
The main utility goal of [1] is integral consistency: the num-
bers in the marginals must be non-negative integers and their
sums should be consistent across marginals. Their main re-
sult shows that it is possible to achieve integral consistency
(via Fourier transforms and linear programming) without
significant loss in accuracy. We would like to use the frame-
work of the matrix mechanism to further investigate optimal
strategies for workloads consisting of low-order marginals.

Blum et al. [2] propose a mechanism for accurately an-
swering queries for an arbitrary workload (aka query class),
where the accuracy depends on the VC-dimension of the
query class. However, the mechanism is inefficient, requiring
exponential runtime. They also propose an efficient strategy
for the class of range queries, but this approach is less ac-
curate than the wavelet or hierarchical approaches discussed
here (see Hay et al. [11] for comparison).

Some very recent works consider improvements on the
Laplace mechanism for multiple queries. Hardt and Tal-
war [10] consider a very similar task based on sets of linear
queries. They propose the k-norm mechanism, which adds
noise tailored to the set of linear queries by examining the
shape to which the linear queries map the L1 ball. They also
show an interesting lower bound on the noise needed for sat-
isfying differential privacy that matches their upper bound
up to polylogarithmic factors assuming the truth of a central
conjecture in convex geometry. But the proposed k-norm
mechanism can be inefficient in practice because of its re-
quirement of sampling uniformly from high-dimensional con-
vex bodies. Furthermore, the techniques restrict the number
of queries to be less than n (the domain size). A notable
difference in our approach is that our computational cost is
incurred for finding the query strategy. Once a strategy is
found, our mechanism is as efficient as the Laplace mecha-
nism. For stable or recurring workloads, optimization needs

only to be performed once.
Roth and Roughgarden [15] consider the interactive set-

ting, in which queries arrive over time and must be an-
swered immediately without knowledge of future queries.
They propose the median mechanism which improves upon
the Laplace mechanism by deriving answers to some queries
from the noisy answers already received from the private
server. The straightforward implementation of the median
mechanism is inefficient and requires sampling from a set
of super-polynomial size, while a more efficient polynomial
implementation requires weakening the privacy and utility
guarantees to average-case notions (i.e., guarantees hold for
most but not all input datasets).

The goal of optimal experimental design [14] is to produce
the best estimate of an unknown vector from the results of
a set of experiments returning noisy observations. Given the
noisy observations, the estimate is typically the least squares
solution. The goal is to minimize error by choosing a subset
of experiments and a frequency for each. A relaxed version
of the experimental design problem can be formulated as
a semi-definite program [3]. While this problem setting is
similar to ours, a difference is that the number and choice
of experiments is constrained to a fixed set. In addition,
although experimental design problems can include costs as-
sociated with individual experiments, modeling the impact
of the sensitivity of experiments does not fit most problem
formulations. Lastly, the objective function of most exper-
imental design problems targets the accuracy of individual
variables (the x counts), rather than a specified workload
computed from those counts.

8. CONCLUSION
We have described the matrix mechanism, which derives

answers to a workload of counting queries from the noisy an-
swers to a different set of strategy queries. By designing the
strategy queries for the workload, correlated sets of counting
queries can be answered more accurately. We show that the
optimal strategy can be computed by iteratively solving a
pair of semidefinite programs, and we use our framework to
understand two recent techniques targeting range queries.

While we have formulated the choice of strategy matrix as
an optimization problem, we have not yet generated optimal—
or approximately optimal—solutions for specific workloads.
Computing such optimal strategies for common workloads
would have immediate practical impact as it could boost the
accuracy that is efficiently achievable under differential pri-
vacy. We also plan to apply our approach to interactive query
answering settings, and we would like to understand the con-
ditions under which optimal strategies in our framework can
match known lower bounds for differential privacy.

Acknowledgements
We would like to thank the anonymous reviewers for their
helpful comments. The NSF supported authors Hay, Li, Mik-
lau through IIS-0643681 and CNS-0627642, author Rastogi
through IIS-0627585, and author McGregor through CCF-
0953754.

9. REFERENCES
[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,

F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: A holistic solution to contingency
table release. In PODS, 2007.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
STOC, 2008.

[3] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[4] J. Dattorro. Convex optimization & Euclidean distance
geometry. Meboo Publishing USA, 2005.

[5] C. Dwork. Differential privacy: A survey of results. In
TAMC, 2008.

[6] C. Dwork. The differential privacy frontier. In TCC,
2009.

[7] C. Dwork. A firm foundation for privacy. In To
Appear, CACM, 2010.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis.
In TCC, 2006.

[9] A. Ghosh, T. Roughgarden, and M. Sundararajan.
Universally utility-maximizing privacy mechanisms. In
STOC, 2009.

[10] M. Hardt and K. Talwar. On the geometry of
differential privacy. In STOC, 2010.

[11] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting
the accuracy of differentially-private histograms
through consistency. In Proceedings of the VLDB,
2010. (also available as CoRR abs/0904.0942 2009).

[12] C. Li, M. Hay, V. Rastogi, G. Miklau, and
A. McGregor. Optimizing linear counting queries under
differential privacy. In Principles of Database Systems
(PODS), pages 123–134, 2010. (24% Accepted).

[13] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
STOC, pages 75–84, 2007.

[14] F. Pukelsheim. Optimal Design of Experiments. Wiley
& Sons, 1993.

[15] A. Roth and T. Roughgarden. The median mechanism:
Interactive and efficient privacy with multiple queries.
In STOC, 2010.

[16] S. D. Silvey. Statistical Inference. Chap. & Hall, 1975.

[17] X. Xiao, G. Wang, and J. Gehrke. Differential privacy
via wavelet transforms. In ICDE, 2010.

APPENDIX
A. SCALING QUERY STRATEGIES

The matrix mechanism always adds identically-distributed noise to each query in the strategy matrix. In addition, in
Section 5, the sensitivity of all considered strategies is bounded by 1. In this section, we demonstrate that those constraints
do not limit the power of the mechanism or the generality of the optimization solutions.

A.1 Scalar multiplication of query strategy
Multiplying a query strategy by a scalar value (which scales every coefficient of every query in the strategy) does not change

the error of any query. The sensitivity term is scaled, but it is compensated by a scaling of the error profile.

Proposition 5 (Error equivalence under scalar multiplication). Given query strategy A, and any real scalar
k 6= 0, the error for any query w is equivalent for strategies A and kA. That is, ∀w,ErrorA(wx̂) = ErrorkA(wx̂).

Proof. It is easy to see that ∆kA = k∆A. Thus, for any query w, we have

ErrorkA(wx̂) = ∆2
kAw((kA)t(kA))

−1
wt

= k2∆2
Aw(k2AtA)

−1
wt

= k2∆2
Aw

1

k2
(AtA)

−1
wt

= ∆2
Aw(AtA)−1wt

= ErrorA(wx̂).

A.2 Strategies with unequal noise – scaling rows
The strategies described in this paper add equal noise to each query; i.e., the independent Laplace random variables have

equal scale. It is sufficient to focus on equal-noise strategies because, as the following proposition shows, any unequal-noise
strategy can be simulated by an equal-noise strategy.

Proposition 6 (Simulating unequal noise strategies). Let KA be an unequal-noise strategy that returns y = Ax+
E where E is a m-length vector of independent Laplace random variables with unequal scale. Let bi denote the scale of the ith

Laplace random variable in the vector. There exists an equal-noise strategy such that its output, y′, has the same distribution
as y.

Proof. Let R be an m×m diagonal matrix with rii = b/bi for an arbitrary b. Let the equal noise strategy be defined as
KB = Bx + Lap(b) where the query matrix B = RA. Let y′ = R−1(Bx + Lap(b)).

The claim is that y and y′ have the same distribution. Vector y′ can be expressed as:

y′ = R−1(Bx + Lap(b))

= R−1Bx + R−1Lap(b)

= Ax + R−1Lap(b)

Observe that R−1Lap(b) is an m×1 vector where the ith entry is equal to bi
b
Lap(b). The quantity bi

b
Lap(b) follows a Laplace

distribution with scale bi, and is therefore equal in distribution to the ith entry of E, which is Lap(bi). Therefore y′ is equal
in distribution to y.

B. RELAXATION OF DIFFERENTIAL PRIVACY
(ε, δ)-differential privacy is introduced in Section 5.2.1. Here we formally prove the amount of gaussian noise required to

achieve (ε, δ)-differential privacy.

Theorem 5. Let W be a query matrix consisting of m queries, and let b̃δ be a length-m column vector consisting of
independent samples from a Gaussian distribution with scale N(0, 8 ln(2/δ)). Then for ε ≤ 8 ln(2/δ), δ ≤ 1, the randomized
algorithm L that outputs the following vector is (ε, δ)-differentially private:

Lδ(W,x) = Wx + (
||W||2
ε

)b̃δ

Proof. Let I and I ′ be neighboring databases, and then their corresponding vectors x and x′ differ in exact one component.
Notice

max
‖x−x′‖1=1

||Wx−Wx′||2 = ||W||2,

consider adding column vector (||W||2/ε)b̃ to Wx. Let

σ = (||W||2/ε)2
√

2 ln(2/δ).

For any vector equals to Wx + z, we have

Pr[Wx + (||W||2
ε

)b̃ = Wx + z]

Pr[Wx′ + (||W||2
ε

)b̃ = Wx + z]

=
e
− 1

2σ2
(ztz)

e
− 1

2σ2
((Wx−Wx′+z)t(Wx−Wx′+z))

=e
1

2σ2
(||Wx−Wx′||22−2zt(Wx−Wx′))

≤e
ε2

16 ln(2/δ)
+

zt(Wx−Wx′)
σ2

≤e
ε
2

+
zt(Wx−Wx′)

σ2 .

Let Z = {Wx + z| z
t(Wx−Wx′)

σ2 > ε
2
}, to guarantee (ε, δ)-differential privacy, we only need to proof

δ ≥ Pr[Wx + (
||W||2
ε

)b̃ ∈ Z]

= Pr[b̃t(Wx−Wx′) ≥ 4||W||2 ln(2/δ)].

Notice the entries of random vector b̃ are independent varibles following N(0, 8 ln(2/δ)) and b̃t(Wx−Wx′) can be considered

as a weighted sum of all the entries of b̃, b̃t(Wx −Wx′) follows N(0, 8||Wx −Wx′||22 ln(2/δ)). Let z be a variable that
follows N(0, 1) Then

Pr[b̃t(Wx−Wx′) ≥ 4||W||2 ln(2/δ)]

= Pr[2||Wx−Wx′||2
√

2 ln(2/δ)z ≥ 4||W||2 ln(2/δ)]

= Pr[z ≥ ||W||2
||Wx−Wx′||2

√
2 ln(2/δ)]

≤Pr[z ≥
√

2 ln(2/δ)].

Notice that

Pr[z ≥ x] <
1

x

1√
2π
e−

x2

2 ,

we have

Pr[z ≥
√

2 ln(2/δ)] <
δ

2
√
π ln(2/δ)

< δ.

Thus the randomized algorithm L follows (ε, δ)-differentially privacy.

C. SINGULAR VALUE BOUND APPROXIMATION
In this section we theoretically compute the approximation rate of the singular value bound approximation and the optimized

solution under the singular value bound approximation.

Lemma 1. Given an ellipsoid defined by xtZx = 1 and a vector v, vtx =
√

vtZ−1v is a tangent hyperplane of the ellipsoid.

Proof. For any point y on the ellipsoid, the tangent hyperplane of the ellipsoid on y is ytAx = 1. Consider a tangent
hyperplane of the ellipsoid: vtx = k where k is an unknown constant, there exists a point x0 on the ellipsoid such that

xt0A = vt

k
. Therefore x0 = Z−1v

k
. Since xt0Zx0 = 1, we know

1 = xt0Zx0 = (
1

k
vtZ−1)Z(

1

k
Z−1v) =

1

k2
vtZ−1v.

Therefore k =
√

vtZ−1v.

Theorem 6. Let A be a matrix with singular value decomposition A = QADAPt
A and δ1, δ2, . . . , δn be its singular values.

Then

argmin
B : BtB=AtA

∆φB = DAPt
A,

min
B : BtB=AtA

∆φB =
√
δ2
1 + δ2

2 + . . .+ δ2
n ≤
√
n∆A. (7)

Proof. For any strategy B, the ellipsoid φB must tangent with diamond with radius ∆φB . With out lose of generality, let
us assume it is tangent to the hyperplane (1, 1, . . . , 1)x = ∆φB and (a1, . . . , an)x ≤ ∆φB , here ai = 1,−1. Let B = QBDAPt

A

be the singular value decomposition of B and let Ψ = Qt
B(Dt

ADA)
−1

QB to simplify the notation. According to Lemma 1,

(1, 1, . . . , 1)Ψ(1, 1 . . . , 1)t ≥ (a1, . . . , an)Ψ(a1, . . . , an)t.

In particular,

(1, 1, ..1)Ψ(1, 1 . . . , 1)t ≥ (−1, 1, 1, 1, . . . , 1)Ψ(−1, 1, 1, 1, . . . , 1)t,

which means ψ12 + ψ13 + . . . + ψ1n =
∑n
i=1 ψ1i − ψ11 ≥ 0. Similarly, we can show for any j we have

∑n
i=1 ψji − ψjj ≥ 0.

Therefore

(1, 1, ..1)Ψ(1, 1 . . . , 1)t

=
∑
i

∑
j

ψij

=
∑
j

ψjj +
∑
j

(
∑
i

ψji − ψjj)

≥
∑
j

ψjj

= trace(Ψ)

= trace(Qt
B(Dt

ADA)
−1

QB)

= trace(QBQ′tB(Dt
ADA)

−1
)

= trace((Dt
ADA)

−1
)

Since DA is fixed, the minimize can be achieved in case that Φ is a diagonal matrix, which indicates that QB = I. Therefore,

B = DAPt
A

∆φB =
√

(1, 1, ..1)Ψ−1(1, 1 . . . , 1)t =
√

(1, 1, ..1)Dt
ADA(1, 1 . . . , 1)t =

√
δ2
1 + δ2

2 + . . .+ δ2
n,

where δ1, δ2, . . . , δn are the singular values of A.
Moreover, notice the fact that the sum of square of L2 norm of all the columns of B is same as the sum of square of L2

norm of all the rows of B = DAPt
A. Since PA is a rotation matrix it does not change the L2 norm of rows in DA, which is

δ2
1 + δ2

2 + . . .+ δ2
n. Notice B has n columns in total, there exists a column of B whose L2 norm is at least

√
δ21+δ22+...+δ2n

n
so

that ∆φB ≤
√
n||B||2. Since ||B||2 = ||A||2, ||A||2 ≤ ∆A, we know ∆φB ≤

√
n∆A.

Theorem 7. Let W be the workload matrix with singular value decomposition W = QWDWPt
W and δ′1, δ

′
2, . . . , δ

′
n be

its singular values. The optimal solution DA, PA to the singular value bound approximation is to let PA = PW and
DA = diag(

√
δ′1,
√
δ′2, . . . ,

√
δ′n).

Proof. Recall the total error with the singular value approximation:

(δ2
1 + δ2

2 + . . .+ δ2
n)trace(W(AtA)

−1
Wt),

where δ1, δ2, . . . , δn are the singular values of A. Notice

trace(W(AtA)
−1

Wt) = trace((AtA)
−1

WtW)

= trace(Pt
A(Dt

ADA)
−1

PAPt
WDt

WDWPW)

= trace(Dt
W(PAPt

W)t(Dt
ADA)

−1
(PAPt

W)Dt
WDW),

and PA does not influence the singular value approximation to the sensitivity. PA can be arbitrary orthogonal matrix and
then PAPt

W can be arbitrary orthogonal matrix as well. Then the best PAPt
W is set to be the one that minimizes the error

on estimating DW with given DA. Since DW is actually a set of queries over individual buckets, the best strategy to estimate
it is also queries over individual buckets, which means PAPt

W = I. Since PW is an orthogonal matrix, PA = PW. Then, the
total error with singular value approximation is:

(δ2
1 + δ2

2 + . . .+ δ2
n)trace((Dt

ADA)
−1

Dt
WDW) = (δ2

1 + δ2
2 + . . .+ δ2

n)(
δ′21
δ2
1

+
δ′22
δ2
2

+ . . .+
δ′2n
δ2
n

)

= (δ′1 + δ′2 + . . .+ δ′n)2

To achieve the lower bound given by the equality above, it requires that for each i, the ratio between
δ′i
δi

and δi to be constant,

which means δi = c
√
δ′i for some constant c. Since a constant multiple does not change the strategy, we let c = 1 and then

have the theorem proved.

D. COMPLETING DEFICIENT COLUMNS
Here we complete the proof of the theorem about augmenting the deficient columns in Section 5.3.

Proposition 7. For any square matrix A, if v is an eigenvector of A with eigenvalue λ, v is an eigenvector of kI + A
with eigenvalue k + λ. If A is invertible, v is an eigenvector of A−1 with eigenvector 1

λ
.

Proof. Since (kI + A)v = kIv + Av = kv + λv = (k+ λ)v, we know v is an eigenvector of kI + A with eigenvalue k+ λ.
If A is invertible, we know λ 6= 0 otherwise there exists a non-zero vector v such that Av = 0, which contradicts with the
fact that A is invertible. Moreover, since Av = λv, A−1v = 1

λ
v, v is an eigenvector of A−1 with eigenvector 1

λ
.

Theorem 9. (Augmenting a strategy) Let A be a query strategy with full rank and consider a new strategy A′ obtained
from A by adding the additional rows of strategy B, so that A′ = [AB]. For any query w, we have:

wt(A′tA′)−1w ≤ wt(AtA)−1w

Further, wt(A′tA′)−1w = wt(AtA)−1w only for the queries in the set {AtAw | Bw = 0}, which is non-empty if and only
if B does not have full column rank.

Proof. Since A is a query plan with full column rank, there exists an invertible square matrix Q such that AtA = QtQ.
Moreover, notice that A′tA = AtA + BtB, the theorem we are going to prove is equivalent to the following statement: the
matrix (QtQ)−1 − (QtQ + BtB)−1 is positive semi-definite. Since Q is an invertible matrix, for any query w,

wt((QtQ)−1 − (QtQ + BtB)−1)w

=((Qt)−1w)t(I−Q(QtQ + BtB)−1Qt)((Qt)−1w).

Therefore it is enough to show I−Q(QtQ+BtB)−1Qt is positive semi-definite, which is equivalent to prove that all eigenvalues
of Q(QtQ + BtB)−1Qt are less than or equal to 1 according to Proposition 7. Furthermore, since Q(QtQ + BtB)−1Qt is
invertible, according to Proposition 7, the statement that all eigenvalues of Q(QtQ + BtB)−1Qt are less than or equal to 1 is
equivalent to the statement that all the eigenvalue of its inverse matrix, (Qt)−1(QtQ + BtB)Q−1, is larger than or equal to
1. Notice (Qt)−1(QtQ + BtB)Q−1 = I + (BQ−1)t(BQ−1), we can apply Proposition 7 again and to prove the eigenvalues of
(BQ−1)t(BQ−1) are non-negative. Since for any vector v, vt(BQ−1)t(BQ−1)v ≥ 0, we know is semi-positive definite, hence
all its eigenvalues are non-negative.

Moreover, according to Proposition 7, (Qt)−1w is an eigenvector of I−Q(QtQ + BtB)−1Qt with eigenvalue 0 if and only
if it is an eigenvector of Q(QtQ + BtB)−1Qt = (I + (BQ−1)t(BQ−1))−t with eigenvalue 1, which is equivalent with the fact
that (Qt)−1w is an eigenvector of (BQ−1)t(BQ−1) with eigenvalue 0. Furthermore, notice the fact that AtA is an invertible
matrix and (BQ−1)t(BQ−1)(Qt)−1w = 0 is equivalent to (BQ−1)(Qt)−1w = B(QtQ)−1w = B(AtA)−1w = 0. Therefore
(BQ−1)t(BQ−1) has eigenvalue 0 if and only if B does not have full column rank. When B does not have full column rank,
the set wB = {w|Bw = 0} is not empty, and the set of all non-zero queries w such that wt(A′tA′)−1w = wt(AtA)−1w can
be represented as {AtAw|w ∈ wB} = {AtAw|w ∈ wB = 0}.

E. REPRESENTING THE HAAR WAVELET TECHNIQUE
The representation of Haar wavelet queries in Section 6 is different from their original presentation in Xiao et al. [17]. The

following theorem shows the equivalence of both representations.

Proposition 8 (Equivalence of Haar wavelet representations). Let x̂Haar denote the estimate derived from the
Haar wavelet approach of Xiao et al. [17]. Let x̂Yn denote the estimate from asking query Wn. Then x̂Haar and x̂Yn are
equal in distribution, i.e., Pr[x̂Haar ≤ x] = Pr[x̂Yn ≤ x] for any vector x.

Proof. Given vector x, the Haar wavelet is defined in terms of a binary tree over x such that the leaves of the tree are x.
Each node in the tree is associated with a coefficient. Coefficient ci is defined as ci = (aL − aR)/2 where aL (aR) is the

average of the leaves in the left (right) subtree of ci. Each ci is associated with a weight W(ci) which is equal to the number
of leaves in subtree rooted at ci. (In addition, there is a coefficient c0 that is the equal to the average of x and W(c0) = n).

An equivalent definition for ci is ci =
∑n
j=1 xjzi(j) where for i > 0,

zi(j) =

 1/W(ci), if j is in the left subtree of ci
−1/W(ci), if j is in the right subtree of ci
0, otherwise

For i = 0, then zi(j) is equal to 1/W(c0) for all j.
Let A be a matrix where aij = zi(j). The ith row of A corresponds to coefficient ci. Since there are n coefficients, A is an

n× n matrix.
The approach of [17] computes the following yHarr = Ax+E where E is an n×1 vector such that each Ei is an independent

sample from a Laplace distribution with scale bi = 1+logn
εW(ci)

. Observe that E can be equivalently represented as:

E = R−1

(
1 + logn

ε

)
b̃

where R is an n× n diagonal matrix with rii =W(ci). The estimate for x is then equal to:

x̂Haar = A−1yHarr = x + A−1E

= x + A−1R−1

(
1 + logn

ε

)
b̃

= x + (RA)−1

(
1 + logn

ε

)
b̃

We now describe an equivalent approach based on the matrix Yn. Observe that Yn = RA. The sensitivity of Yn is
∆Yn = 1 + logn. Using the matrix mechanism, the estimate x̂Yn is:

x̂Yn = Yn
−1

(
Ynx + (

∆Yn

ε
)b̃)

)
= x + Yn

−1 ∆Yn

ε
b̃

= x + (RA)−1

(
1 + logn

ε

)
b̃

F. ANALYSIS OF THE HIERARCHICAL AND WAVELET STRATEGIES
In Section 6 we demonstrated the results of applying the matrix mechanism to analyze hierarchical and wavelet scheme. In

this section, we show the detailed analysis to those results.

F.1 Eigen-decomposition of Hn and Yn

The following eigen-decomposition shows the similarity between Hn and Yn.

Theorem 13. Let n be a power of 2, so that n = 2k. The eigenvalues and their corrsponding eigienvectors of Ht
nHn and

Yt
nYn are shown as Table 1. (0a×b and 1a×b are the a× b matrices whose entries are all 0 and 1, respectively).

eigenvalue of Hn eigenvalue of Yn order eigenvector

1 2 2k−1

[1,−1,01×(2k−2)]
[0, 0, 1,−1,01×(2k−4)]

· · ·
[01×(2k−2), 1,−1]

3 4 2m−2

[11×2,−11×2,01×(2k−4)]
[01×4,11×2,−11×2,01×(2k−8)]

· · ·
[01×(2k−4),11×2,−11×2,]

· · · · · · · · · · · ·

2k − 1 2k 2m−k

[11×2k−1 ,−11×2k−1 ,01×(2k−2k)]
[01×2k ,11×2k−1 ,−11×2k−1 ,01×(2k−2k+1)]

· · ·
[01×(2k−2k),11×2k−1 ,−11×2k−1]

· · · · · · · · · · · ·
2k − 1 2k 1 [11×2k−1 ,−11×2k−1]

2k+1 − 1 2k 1 11×2k

Table 1: Eigenvalues and eigenvectors for Ht
nHn and Yt

nYn.

Proof. We will prove it by induction on m. When k = 1,

Ht
2H2 =

[
2 1
1 2

]
,

whose eigenvalues are 3 and 1 with eigenvector [1, 1] and [1,−1] respectively. Suppose the conclusion is right for H2k−1 .
Notice the fact that

H2k =

 11×2k−1 11×2k−1

H2k−1 0
0 H2k−1

 ,

where 1a×b is the a× b matrix whose entries are all 1. Therefore we have

Ht
2kH2k =

[
12k−1×1 Ht

2k−1 0
12k−1×1 0 Ht

2k−1

] 11×2k−1 11×2k−1

H2k−1 0
0 H2k−1


= 12k×111×2k +

[
Ht

2k−1 0
0 Ht

2k−1

] [
H2k−1 0

0 H2k−1

]
= 12k×2k +

[
Ht

2k−1H2k−1 0
0 Ht

2k−1H2k−1

]
Notice the case that 11×2k−1 is a eigenvector of Ht

2k−1H2k−1 with eigenvalue 2k − 1, we have:

Ht
2kH2k11×2k = 12k×2k12k×1 +

[
Ht

2k−1H2k−1 0
0 Ht

2k−1H2k−1

]
12k×1

= 12k×2k12k×1 +

[
Ht

2k−1H2k−112k−1×1 0
0 Ht

2k−1H2k−112k−1×1

]
= 2k12k×1 + (2k − 1)12k×1 = (2m+1 − 1)12k×1

Ht
2kH2k

[
12k−1×1

−12k−1×1

]
= 12k×2k

[
12k−1×1

−12k−1×1

]
+

[
Ht

2k−1H2k−1 0
0 Ht

2k−1H2k−1

] [
12k−1×1

−12k−1×1

]
=

[
Ht

2k−1H2k−112k−1×1 0
0 −Ht

2k−1H2k−112k−1×1

]
= (2k − 1)

[
12k−1×1

−12k−1×1

]
Moreover, for any eigenvector v of Ht

2k−1H2k−1 in Table 1 other than 11×2k−1 , notice the fact that the sum of all entries in
v is 0, denote the eigenvalue of v as µv ,

Ht
2kH2k

[
v

02k−1×1

]
= 12k×2k

[
v

02k−1×1

]
+

[
Ht

2k−1H2k−1 0
0 Ht

2k−1H2k−1

] [
v

02k−1×1

]
=

[
Ht

2k−1H2k−1v 0
0 0

]
= µv

[
v

02k−1×1

]
Therefore [v , 0] is a eigenvector of Ht

2kH2k with eigenvalue µv , and we can show [0, v] is a eigenvector of Ht
2kH2k with

eigenvalue µv by a similar process. Above all, we proved that the vectors in Table 1 are all eigenvectors of Ht
2kH2k with

eigenvalues shown in the Table. Moreover, since any pair of eigenvectors from Table 1 are orthogonal to each other and there
are 2k vectors in the Table, we know the table contains all eigenvalues of Ht

2kH2k .
Similar as the case of Ht

2kH2k , the eigenvectors and eigenvalues of Yt
2kY2k can be proved by induction on n as well. When

k = 1,

Yt
2Y2 =

[
2 0
0 2

]
,

whose eigenvector [1, 1] and [1,−1] and both of them have eigenvalue 2. Suppose Table 1 gives eigenvalues and eigenvectors
of Yt

2k−1Y2k−1 . Notice the fact that

Y2k =


Y2k−1

11×2k−1

0
−11×2k−1

Y2k−1

0


Yt

2k

[
11×2k

0

]
= 12k×2k

Therefore,

Yt
2kY2k =

[
Yt

2k−1 −12k−1×1 0
12k−1×1 0 Yt

2k−1

]


Y2k−1

11×2k−1

0
−11×2k−1

Y2k−1

0


=

[
12k−1×2k−1 0

0 12k−1×2k−1

]
+

[
Yt

2k−1Y2k−1 0
0 Yt

2k−1Y2k−1

]

The rest of proof follows a similar process of the proof of correctness of eigenvalues and eigenvecotrs of Ht
2kH2k .

Let DHS be the diagonal matrix whose entries are square roots of eigenvalues in Table 1 and PH be the matrix whose
row vectors are the normalization of eigenvectors in Table 1. Then DHSPH is an eigendecomposition of Ht

nHn. Now let us
compute the L1 norm of i-th column of DHSPH. Notice the fact that for each eigenvalue 2j − 1, 1 ≤ j ≤ k, there exists
exactly one eigenvector vj in Table 1 which is corresponding to this eigenvalue and has non-zero i-th entry. Moreover, since

there are 2j entries in vj that are ±1 and all other entries in vj are 0, the nonzero entries in the normalization of vj are ±2−
j
2 .

Since the entries in the normalized eigenvector that correspond to eigenvalue 2k+1 − 1 are ±2−
k
2 , the L1 norm of i-th column

is:

k∑
j=1

2−
j
2

√
2j − 1 + 2−

k
2

√
2k+1 − 1 =

k∑
j=1

√
1− 1

2j
+

√
2− 1

2k
.

Therefore the sensitivity of DHSPH is
∑k
j=1

√
1− 1

2j
+
√

2− 1
2k

. Consider function f(k) = k + 1 −
√

1− 1
2k

+
√

2− 1
2k

,

easy computation will show that

f(k + 1)− f(k) = 1 +

√
2− 1

2k
−
√

1− 1

2k+1
−
√

2− 1

2k+1
> 0

for any positive integer k. Since f(1) ≈ 0.06815 > 0, we know f(k) > 0, which means the sensitivity of DHSPH is always
smaller than the sensitivity of Hn.

Notice the fact that both 11×2k and [11×2k−1 ,−11×2k−1] are eigenvectors of Yt
nYn corresponding to eigenvalue 2k, we

know [11×2k−1 ,01×2k−1] and [01×2k−1 ,11×2k−1] are also eigenvectors of Yt
nYn corresponding to eigenvalue 2k. Let DYS be

the diagonal matrix whose entries are square roots of eigenvalues in Table 1 and PY be the matrix whose first n − 2 row
vectors are normalization of eigenvectors in Table 1 and last two row vecotrs are normalization of [11×2k−1 ,01×2k−1] and
[01×2k−1 ,11×2k−1]. Then DYSPY is an eigendecomposition of Yt

nYn. Similar as DHSPH, the L1 norm of i-th column of
DYSPY is:

k−1∑
j=1

2−
j
2

√
2j + 2−

k
2

√
2k−1 = k +

√
2− 1.

Therefore the sensitivity of DYSPY is k +
√

2− 1.

F.2 Error analysis
Based on the eigen-decomposition in the previous section. We now can formally analyze the error of Hn and Yn.

Theorem 11. For any linear counting query w,

1

2
ErrorY(w) ≤ ErrorH(w) ≤ 2ErrorY(w).

Proof. Recall that the error for any given query w and strategy A is 2
ε2

∆2
Awt(AtA)−1w. Since Hn and Yn have the

same sensitivity, we need only compare the profile term wt(AtA)−1w. Let PMDMPt
M be the spectral decomposition of

(AtA)−1. Notice that:

trace(wt(AtA)−1w) =trace(wtPMDMPt
Mw)

=trace(Pt
MwwtPMDM).

Since Hn and Yn have the same eigenvectors, the only difference in error is due to the difference in eigenvalues. From Table 1
we know ratio between their corresponding eigenvalues is in range [1

2
, 2], and that all eigenvalues are positive. Therefore, the

ratio between their errors of answering w is in [1
2
, 2].

Theorem 12 (Maximum and Total Error). The maximum and total error on workloads WR and W01 using strate-
gies Hn,Yn, and In is given by:

MaxError Hn Yn In
WR Θ(log3 n/ε2) Θ(log3 n/ε2) Θ(n/ε2)
W01 Θ(n log2 n/ε2) Θ(n log2 n/ε2) Θ(n/ε2)

TotalError Hn Yn In
WR Θ(n2 log3 n/ε2) Θ(n2 log3 n/ε2) Θ(n3/ε2)
W01 Θ(n2n log2 n/ε2) Θ(n2n log2 n/ε2) Θ(n2n/ε2)

Proof. Since Wn and Hn are asymptotically equivalent, we can derive the error bounds for either. We analyze the error

of Wn. Let n = 2k, consider the range query [2k− 1
3
(4b

k−1
2
c+1−1), 2k+ 1

3
(4b

k−1
2
c+1−1)]. The error of this query is Θ(log3 n),

Figure 5: For the error profiles M1 and M2 described in Example 8, this figure shows the ellipses defined
by wM1w

t = 1, a circle, and wM2w
t = 1, an ellipse rotated 45◦. The profile term f = wM1w is an elliptic

paraboloid coming out of the page, centered around the z axis.

which follows from algebraic manipulation of Equation 1, facilitated by knowing the eigen decomposition of (Wn
tWn)

−1
.

Since Xiao et al. [17] have already shown that the worst case error of Wn is O(log3 n), we know the maximum error of
answering any query in WR is Θ(log3 n).

Moreover, it follows from algebraic manipulation that the error of answering any query w where the number of non-zero
entries is 1 is O(log2 n). Therefore the error of any 0-1 query is O(n log2 n). Consider the query (0, 1, 0, 1, . . . , 0, 1): it can can
be shown to have error Θ(n log2 n). Therefore the maximum error of answering any query in W01 is Θ(n log2 n).

Recall

TotalErrorA(W) =
2

ε2
∆Atrace(W(AtA)−1Wt).

Total error of workloads WR, W01 can be computed by applying the equation above to strategies Hn,Wn and In.

G. THE GEOMETRY OF A STRATEGY
Finding the optimal strategy for a given workload will require considering both the shape of profile and the sensitivity, as

discussed in Section 5. We use an example to demonstrate the geometry of the error profile in Sec. G.1. In Sec. G.2, we look
at the geometry of sensitivity and how the QA matrix of the decomposition of A affects the sensitivity of A.

G.1 The geometry of the error profile
As discussed in Sec. 4, for any strategy A, the error profile M = (AtA)

−1
is a positive definite matrix, that is, one for

which wMwt > 0 whenever w 6= 0. The following example gives the geometry of two error profiles.

Example 8. Figure 5 shows the ellipses corresponding to two error profiles M1 = [1 0
0 1] and M2 = [2 -1.5

-1.5 2]. Each point
in the x-y plane corresponds to a query w = [c1, c2]. Those points on each ellipse correspond to queries such that wMwt = 1.
M1 is a circle whereas M2 is a stretched and rotated ellipse. The figure shows that wM2w

t < wM1w
t for queries near and

along the line y = x.
The profile M1 has eigenvalues (1, 1) and eigenvectors PM = [1 0

0 1], indicating no stretching or rotation. The profile M2

has eigenvalues (7/2, 1/2) and its eigenvectors correspond to a 45◦ rotation, indicating that the major axis is stretched (by a√
7 ratio to the minor axis) and rotated to align with y = x.

The decomposition can also guide the design of new strategies. We can design the error profile by choosing values for
the diagonal, and choosing a rotation. Stretching and rotating in a direction makes queries in that direction relatively more
accurate than queries in the other directions.

G.2 The geometry of sensitivity
While we can design a strategy to obtain a desired profile, the error depends not only on the profile, but also on the

sensitivity. For example, we can apply Theorem 2 to the previous example.

Example 9. Applying Theorem 2, we can obtain query strategies A1 and A2 that achieve profiles M1 and M2 respectively.

A1 = [1 0
0 1] and A2 = [

√
2/7 0

0
√

2
][cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)] = [1/

√
7 −1/

√
7

1 1
].

As it is shown above, A2 has higher sensitivity than A1, so while it is more accurate for queries along y = x, the difference
is less pronounced than Figure 5 might suggest.

The sensitivity of a query strategy is determined by its columns. If A is decomposed as A = QADAPt
A then the columns

of Pt
A are orthogonal vectors, but DA stretches the axes so that the columns are no longer necessarily orthogonal. The matrix

QA then rotates the column vectors of DAPt
A, but we know that any such rotation will not impact the error profile. The

rotation does impact the sensitivity, because each rotation changes the column vectors and therefore changes the maximum
absolute sum of the column vectors. Since sensitivity is measured by the L1 norm of the column vectors, we can think of an L1

“ball” (it is actually diamond shaped) which consists of all points with L1 norm equal to a constant c. If we view the column
vectors of A as points in n dimensional space, the sensitivity is the smallest L1 ball that contains the points. Minimizing the
sensitivity of a given profile (Problem 2) is therefore equivalent to finding the rotation of the columns in A that permits them
to be contained in the smallest L1 ball.

	University of Massachusetts Amherst
	From the SelectedWorks of Andrew McGregor
	September 6, 2010

	Optimizing Linear Counting Queries Under Differential Privacy
	tmpbzRGfF.pdf

